
Adaptive Component-wise Multiple-Try

Metropolis Sampling

Jinyoung Yang∗ , Evgeny Levi†, Radu V. Craiu‡ , and Jeffrey S. Rosenthal§

(March 2016; last revised July 2018)

Abstract

One of the most widely used samplers in practice is the component-wise Metropolis-

Hastings (CMH) sampler that updates in turn the components of a vector valued

Markov chain using accept-reject moves generated from a proposal distribution.

When the target distribution of a Markov chain is irregularly shaped, a ‘good’

proposal distribution for one region of the state space might be a ‘poor’ one for

another region. We consider a component-wise multiple-try Metropolis (CMTM)

algorithm that chooses from a set of candidate moves sampled from different dis-

tributions. The computational efficiency is increased using an adaptation rule for

the CMTM algorithm that dynamically builds a better set of proposal distributions

as the Markov chain runs. The ergodicity of the adaptive chain is demonstrated

theoretically. The performance is studied via simulations and real data examples.

∗Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: jinyoung.yang@mail.utoronto.edu
†Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: evgeny@utstat.utoronto.ca
‡Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: craiu@utstat.utoronto.ca
§Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: jeff@math.toronto.edu

1

Keywords: Adaptive Markov chain Monte Carlo, Component-wise Metropolis-Hastings,

Multiple-try Metropolis.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to analyze complex prob-

ability distributions, especially within the Bayesian inference paradigm. One of the most

used MCMC algorithms is the Metropolis-Hastings (MH) sampler, first developed by

Metropolis et al. (Metropolis et al., 1953), and later expanded by Hastings (1970). At

each iteration the MH algorithm samples a new candidate state from a proposal distri-

bution which is subsequently accepted or rejected. When the state space of the chain is

high dimensional or irregularly shaped, finding a good proposal distribution that can be

used to update all the components of the chain simultaneously is very challenging, often

impossible. The optimality results for the acceptance rate of the Metropolis-Hastings

algorithm (Gelman et al., 1996; Roberts and Rosenthal, 2001) have inspired the de-

velopment of the so-called adaptive MCMC (AMCMC) samplers that are designed to

adapt their transition kernels based on the gradual information about the target that

is collected through the very samples they produce. Successful designs can be found in

Haario et al. (2001), Haario et al. (2006), Turro et al. (2007), Roberts and Rosenthal

(2009), Craiu et al. (2009), Giordani and Kohn (2010), and Vihola (2012) among oth-

ers. Theoretical difficulties arise because the adaptive chains are no longer Markovian so

ergodicity properties must be proven on a case-by-case basis. Attempts at streamlining

the theoretical validation process for AMCMC samplers have been increasingly success-

ful including Atchadé and Rosenthal (2005), Andrieu and Moulines (2006), Andrieu and

Atchadé (2007), Roberts and Rosenthal (2007), Fort et al. (2011) and Craiu et al. (2015).

For useful reviews of AMCMC we refer to Andrieu and Thoms (2008) and Roberts and

Rosenthal (2009). It is our experience that existing adaptive strategies for MH in high

dimensional spaces may take a very long time to “learn” good simulation parameters so

2

that the samplers may not improve much before the simulation is ended.

We can increase the computational efficiency if, instead of using a full MH to update

all the components at once, we choose to update the components of the chain one-at-

a-time. The latter strategy, originally proposed by Metropolis et al. (1953), uses an

MH transition kernel for each component of the chain separately and the acceptance or

rejection is based on the target’s conditional distribution of that component given all the

other ones. More precisely, if we are interested in sampling from the continuous density

π(x) : X ⊂ Rd → R+; the component-wise MH (CMH) transition kernel updates the ith

component of the chain, xi, using a proposal yi ∈ R, yi ∼ Ti(·|xi) and setting the next

value of the chain as

z =

 (x1, . . . , xi−1, yi, xi+1, . . . , xd) w.p. αi

x w.p. 1− αi

where

αi = min

{
1,
Ti(xi|yi)π(yi|x[−i])
Ti(yi|xi)π(xi|x[−i])

}
,

and π(·|x[−i]) is the target conditional distribution of the ith component given all the

other components x[−i] = (x1, . . . , xi−1, xi+1, . . . , xd). The CMH replaces the difficult

problem of finding one good proposal in d dimensions with that of finding d good 1-

dimensional proposals. However, this seemingly easier task can also be challenging when

the conditional densities π(·|x[−i]) change significantly, e.g. have very different variances,

as x[−i] varies. Intuitively, let us imagine that for a region of the sample space of x[−i]

the proposal Ti must have a higher spread for the chain to mix well and a smaller one for

the remaining part of the support. In this case an adaptive strategy based on a single

proposal distribution cannot be efficient everywhere in the support of π. Some success

has been obtained in lower dimensions or for distributions with a well-known structure

using the regional adaptive MCMC strategies of Craiu et al. (2009) or Bai et al. (2011),

but extending those approaches can be cumbersome when d is even moderately large.

Other adaptive MCMC ideas proposed for the CMH include Haario et al. (2005) where

the authors propose to use component-wise random walk Metropolis (RWM) and to use

3

the component-specific sample variance to tune the proposal’s variance, along the same

lines that were used by Haario et al. (2001) to adapt the proposal distribution for a joint

RWM. Another intuitive approach is proposed in Roberts and Rosenthal (2009) who aim

for a particular acceptance rate for each component update.

The strategy we propose here aims to close the gap that still exists between AMCMC

and efficient CMH samplers. When contemplating the problem, one may be tempted to

try to “learn” each conditional distribution π(·|x[−i]), but parametric models are likely

not flexible enough while nonparametric models will face the curse of dimensionality

even for moderate values of d. Note that here the difficult part is understanding how the

conditional distribution changes as x[−i] varies, which is a (d− 1)-dimensional problem.

Before getting to the technical description of the algorithm, we present here the intu-

itive idea behind our design. Within the CMH algorithm imagine that for each component

we can propose m candidate moves, each generated from m different proposal distribu-

tions. Naturally, the latter will be selected to have a diverse range of variances so that

we generate some proposals close to the current location of the chain and some that are

further away. If we assume that the transition kernel for each component is such that

among the proposed states it will select the one that is most likely to improve the trade-

off between acceptance probability and jump distance, then one can reasonably infer that

this approach will boost the mixing of the chain provided that the proposal distributions

are reasonably calibrated. To mirror the discussion above, in a region where Ti should

have small spread, one wants to have among the proposal distributions a few with small

variances, and similarly in regions where Ti should be spread out we want to include

among our proposal densities a few with larger variances. This intuition can be tested

using an approach based on the multiple-try Metropolis (MTM) that originated with Liu

et al. (2000) and was further generalized by Casarin et al. (2013).

This paper is organized as follows. Section 2 introduces a component-wise multiple-

try Metropolis (CMTM) algorithm. In Section 3, we add adaption to CMTM, creating

a new Adaptive CMTM (henceforth denoted ACMTM) algorithm in which the proposal

4

distributions get modified on the fly according to the local shape of the target distribution,

and we prove (Theorem 1) convergence of this algorithm. Section 4 then applies the

adaptive CMTM algorithm to numerical examples, and compares the efficiency of the

adaptive CMTM algorithm to other adaptive Metropolis algorithms.

2 Component-wise multiple-try Metropolis

2.1 Algorithm

Assume that a Markov chain {Xn} is defined on X ⊂ Rd with a target distribution

π. The component-wise multiple-try Metropolis (CMTM) will update the chain one-

component-at-a-time using m proposals. Specifically, the kth component of the chain is

updated using proposals {y(k)j : 1 ≤ j ≤ m} that are sampled from {T (k)
j : 1 ≤ j ≤ m},

respectively. Let the value of the chain at iteration n be Xn = x ∈ Rd. One step

of the CMTM involves updating every coordinate Xk of the chain in a fixed order, for

k ∈ {1, . . . , d}. The following steps are performed to update the kth component:

1. Draw proposals y
(k)
1 , . . . , y

(k)
m where y

(k)
j ∼ T

(k)
j (·|xk) for all 1 ≤ j ≤ m.

2. Compute

w
(k)
j (y

(k)
j , x) = π(y

(k)
j |x[−k])Tj(xk|y

(k)
j)λ

(k)
j (y

(k)
j , xk), (2.1)

for each 1 ≤ j ≤ m, where x[−k] denotes the state of the chain without the kth compo-

nent and λ
(k)
j (xk, y

(k)
j) is a nonnegative symmetric function satisfying λ

(k)
j (xk, y

(k)
j) > 0

whenever T
(k)
j (y

(k)
j |xk) > 0.

3. Select one y = y
(k)
s out of y

(k)
1 , . . . , y

(k)
m with probability proportional to wj(y

(k)
j , x).

4. Draw x
∗(k)
1 , . . . , x

∗(k)
s−1 , x

∗(k)
s+1 , . . . , x

∗(k)
m where x

∗(k)
j ∼ T

(k)
j (·|y) and set x

∗(k)
s = x.

5. Compute

w
(k)
j (x

∗(k)
j , y) = π(x

∗(k)
j |y[−k])Tj(yk|x

∗(k)
j)λ

(k)
j (x

∗(k)
j , yk), (2.2)

for each 1 ≤ j ≤ m, where y[−k] = (y1, . . . , yk−1, yk+1, . . . yd)

5

6. Accept y with probability

ρ = min
[
1,

w1(y
(k)
1 , x) + . . .+ wm(y

(k)
m , x)

w1(x
∗(k)
1 , y) + . . .+ wm(x

∗(k)
m , y)

]
We note that in step 1, the proposal distributions T

(k)
j depend only on the kth com-

ponent of the current state of the chain. Throughout the paper we use Gaussian distribu-

tions centered at xk for the proposal distributions T
(k)
j (y

(k)
j |xk). More general formulations

are possible, but make intuitive adaptive schemes more cumbersome and without clear

benefits in terms of efficiency. Having dependent proposals can be beneficial when the

proposal distributions are identical (Craiu and Lemieux, 2007). However, in the current

implementation the proposals have different scales so the advantage of using dependent

proposals is less clear and will not be pursued in this paper.

Whether a proposal distribution is ‘good’ or not will depend on the current state

of the Markov chain, especially if the target distribution π have conditional densities

with varying properties, e.g. different variances, across the target’s support. In addition

to choosing the m proposals, an added flexibility of the CMTM algorithm is that we

have freedom in choosing the nonnegative symmetric maps λ
(k)
j as long as they satisfy

λ
(k)
j (xk, y

(k)
j) > 0 whenever T

(k)
j (y

(k)
j |xk) > 0. In subsequent sections we show that the

CMTM algorithm with Gaussian proposals can benefit from choosing a particular form

of the function λ
(k)
j (xk, y

(k)
j).

Our choice of λ
(k)
j is guided by a simple and intuitive principle. Between two candidate

moves y
(k)
1 and y

(k)
2 that are equally far from the current state we favour y

(k)
1 over y

(k)
2 if

π(y
(k)
1 |x[−k]) is greater than π(y

(k)
2 |x[−k]), but if π(y

(k)
1 |x[−k]) is similar to π(y

(k)
2 |x[−k]), we

would like CMTM to favour whatever candidate is further away from the current state.

These simple rules lead us to consider

λ
(k)
j (x, y) = T

(k)
j (y

(k)
j |xk)−1‖(y

(k)
j − xk)‖α, (2.3)

where ‖ · ‖ is the Euclidean norm. Note that this choice of λ
(k)
j is possible because

T
(k)
j (y

(k)
j |xk) is a symmetric function in xk and y

(k)
j as it involves only one draw from a

normal distribution with mean xk.

6

Replacing (2.3) in the weights equation (2.1) results in

w
(k)
j (y

(k)
j , x) = π(y

(k)
j |x[−k])T

(k)
j (xk|y(k)j)λ

(k)
j (y

(k)
j , xk)

= π(y
(k)
j |x[−k])‖(y

(k)
j − xk)‖α. (2.4)

With this choice of λ, the selection probabilities are only dependent on the value of the

target density at the candidate point y
(k)
j and the size of the potential jump of the chain,

were this candidate accepted. From (2.3) we can see that the size of α will negotiate

the balance between the jump distance from the current state and the weight of the new

state under π. However, while we understand the trade-off imposed by the choice of α

for selecting a candidate move, it is less clear how it will impact the overall performance

of the CMTM, e.g acceptance rate or average (over coordinates and iterations) jump

distance.

Therefore, it is paramount to gauge what are good choices for the parameter α for the

mixing of the CMTM chain. In the next section we approach this task via the average

squared jumping distance (ASJ) and the autocorrelation time (ACT). To obtain the

average squared jumping distance, we calculate the squared jumping distance for each

iteration, (Xn+1−Xn)2 =
∑d

j=1(Xn+1,j−Xn,j)
2 and average them over the whole Markov

chain run. Note that if a new proposal is rejected for the jth coordinate then (Xn+1,j −

Xn,j)
2 is equal to zero, so we still add zero to total sum of the squared jumping distances

and divide the sum by the total number of iterations. The ACT can be calculated

component-wise for the jth coordinate using

τj = 1 + 2
∞∑
k=1

ρkj,

where for the jth coordinate ρkj = Cov(X0,j, Xk,j)/V ar(X0,j) is the autocorrelation at

lag k, 1 ≤ j ≤ d. Higher ACT for a Markov chain implies successive samples are highly

correlated, which reduces the effective information contained in any given number of

samples produced by the chain.

While ACT has long been known to relate directly with the variance of the Monte

Carlo estimators (Geyer, 1992), the ASJ incorporates both the jump distance and the

7

acceptance rate, a combination that has turned out to be useful in other adaptive MCMC

designs (e.g., Craiu et al., 2009). Estimates of ACT and ASJ are obtained by averaging

over the coordinates and the realized path of the chain.

2.2 Choice of α

In order to study the influence of the parameter α on the CMTM efficiency we have

conducted a number of simulation studies, some of which are described here.

We considered first a 2-dimensional mixture of two normal distributions

0.5N(µ1,Σ1) + 0.5N(µ2,Σ2) (2.5)

where 

µ1 = (5, 0)T

µ2 = (15, 0)T

Σ1 = diag(6.25, 6.25)

Σ2 = diag(6.25, 0.25)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●●

●

●
●

●

● ●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●
●

●
●●● ●

●●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●● ● ●
● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
● ●

●
● ●●●

●

●

●●●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

●
●

●
●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

● ● ●

●
●

●

●● ●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●

●

● ●
●●

●

●

●
●

●

●
●

● ●

●

●●

●
●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●●●

●

●

●
●

●

● ●

●

● ●●
●

●

●

●

●

●

●●
● ●

●

●
● ●

●
●

●

●
●

●
●

●
●

●
●

●

● ●●
● ●●●

●●

●

●

●
●●

●

● ●

●

●
●

●
●●

●

●

●●

●

●
●

●
●

●

●●

●

●●
● ●

●

●●

●
●●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

● ●●

●●

●

●
●

●

●●

●
● ●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

● ●●

●
●

●

●
●

● ●●
●●●

●

●
●

●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●● ●

●
●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
● ●

● ●●●
●

●

●● ●

●
●

●

●

● ●

●

●

●

●

●●
●

●

●●

●●

●

● ●
●

●

●

●
●

●

● ●●
●

●
● ●

●

●

● ●

●

●

●
●

● ●
●

●

●

● ●

●

●

●
●

●

●
●

●●
●

●
●●

●

●

●

●

●

●

●
●

●

●

● ● ●●
●

●

●
●

●

●

●
●●

●

●

●

● ●
●

●●
●●

●

●

●
●

● ●

●
●

●
●

●●●

●

●

●●

●
●

●

●
●

● ●● ●●
● ●

●●

●
●

●
●
●●●● ●●

● ●● ●
●

●

● ●
●
●

●

●
●

● ●●

● ● ●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●
●

●
●

●
●

●
●● ●

●
●

●●

●

●

●

● ●

●

●● ●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●● ● ●●
●●
●

● ●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●● ●
●

●

● ● ●

●

●

●

●● ●●
●

●●

●

● ●
●

●
●

●

●
●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●● ●●●

●

●

●

●

● ●●

●
●

●

●
●

●● ●

●
●

●
●●

●
●● ●

●●

●

●

●

●

●
●●

●●

●● ●

●

●

●

●●

● ●

●
●

●

●
●

● ●

●
●

●

●

0 5 10 15 20

−
5

0
5

2−dim Gaussian mixture

coordinate 1

co
or

di
na

te
 2

Figure 2.1: Target density plot. 2-

dimensional mixture of two normals

An iid sample of size 2000 from (2.5) is plotted in Figure 2.1. We run the CMTM

algorithm repeatedly with λj(x, yj) functions in (2.3) while changing the value of α from

0.1 to 15. We choose m = 5 as the number of proposals for each component, while the

proposal standard deviations σk,j’s are for each component 1, 2, 4, 8 and 16.

8

As we see in Figure 2.2, the propor-

tion of each proposal distribution selected

increases/decreases as α changes. As ex-

pected, when α increases we see the se-

lection percentages of the proposal distri-

butions with smaller σk,j’s drop and those

with larger σk,j’s increase. Figure 2.2 shows,

with larger α’s, our algorithm favours pro-

posal distributions with larger scales, which

makes sense based on the equation (2.4).

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Proportion of Selected Proposals

alpha

P
ro

po
rt

io
n

of
 S

el
ec

te
d

P
ro

po
sa

ls

●

●

●

●
●

●
● ●

● ● ● ● ● ● ● ● ●

●
sigma=1

sigma=2

sigma=4

sigma=8

sigma=16

Figure 2.2: Proportion of proposal distri-

bution selected. Coordinate 1: Red, Blue,

Green, Orange and Purple lines show be-

haviour when σk,j = 1, 2, 4, 8, 16, respec-

tively.

Figure 2.3 shows how the ASJ and ACT change as the value of α changes. We can

infer that the highest efficiency is achieved for α ∈ (2, 4).

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0 5 10 15

6
7

8
9

10
11

12

Average Jump

alpha

Ju
m

p

●

●

●
●●

●
●
●

●

●●
●●

●

●●
●●●

●●●●
●●

●
●

●

●
●●●●●

●●
●●●●

●●
●●

●

●●

●●●
●

●
●●

●
●●●

●●

●
●

●

●
●
●●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●

●
●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 5 10 15

10
20

30
40

50
60

Average ACT

alpha

av
. A

C
T

Figure 2.3: Two-Dimensional Mixture of two Gaussians: ASJ (left panel) and ACT (right

panel) for different values of α. For each α, the estimates are obtained from a single run

with 100,000 iterations.

We also examined a 4-dimensional mixture of two normal distributions as our target

9

density:

0.5N(µ1,Σ1) + 0.5N(µ2,Σ2),

where 

µ1 = (5, 5, 0, 0)T

µ2 = (15, 15, 0, 0)T

Σ1 = diag(6.25, 6.25, 6.25, 0.01)

Σ2 = diag(6.25, 6.25, 0.25, 0.01).

The number of proposals, m = 5 and σk,j’s of the set of proposal distributions for each

coordinate are 0.5, 1, 2, 4 and 8. Figure 2.4 shows the results. We notice that the ACT

measurements are more noisy, while the ASJ ones yield a more precise message that is in

line with the previous example. Once again we can see from Figure 2.4 that the average

squared jumping distances are largest for α ∈ (2, 4).

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●●
●●

●

●●
●
●

●

●
●●

●●

●●
●
●●●

●●●●●
●
●●

●
●
●●

●●
●
●

●
●

●

●

●
●
●
●●●●●

●

●●●
●

●

●●

●●

●

●

●

●●●●
●●●●

●

●
●

●

●

●

●●

●●●
●●●●

●●
●●

●●
●
●●

●

●
●●●

●
●

●

●
●●

●●

●●●
●●

●

●●

●

●
●

●
●●●

●

●

●

●

●

●
●
●
●

●
●

0 5 10 15

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Average Jump

alpha

Ju
m

p

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

0 5 10 15

15
0

20
0

25
0

30
0

Average ACT

alpha

A
C

T

Figure 2.4: 4-Dimensional Mixture of two Gaussians: ASJ (left panel) and ACT (right

panel) for different values of α. For each α, the estimates are obtained from a single run

with 100,000 iterations.

Other numerical experiments not reported here agree with the two examples presented

and suggest that optimal values of α are between 2 and 4. In the absence of theoretical

10

results we cannot claim a universal constant α that would be optimal in every example.

However, based on the available evidence, we believe that a value of α in the (2, 4) range

will increase the efficiency of the chain. Henceforth we fix α = 2.9 in all simulations

involving CMTM.

3 Adaptive Component-wise multiple-try Metropo-

lis

3.1 CMTM Favours Component-wise ‘Better’ Proposal Distri-

butions

The intuition behind our construction as described in the introduction, relies on the idea

that CMTM will automatically tend to choose the “right” proposal among the m possible

ones. In this section we verify empirically that this is indeed the case.

We consider the same 4-dimensional mixture of normal distributions from Section 2.2

as our target distribution and run the CMTM algorithm. The target parameters are set

to reflect the numerical experiments reported in Section 4, i.e. m = 20 and σk,j = 2j with

j ∈ {−10,−9, . . . , 9}. Table 3.1 reports the selection probabilities computed from 10,000

samples for each proposal and each coordinate.

11

Table 3.1: CMTM: Frequency of selection for each proposal and each coordinate.

Coordinate

σk,j coord1 coord2 coord3 coord4

2−10 0.00 0.00 0.00 0.00

2−9 0.00 0.00 0.00 0.00

2−8 0.00 0.00 0.00 0.00

2−7 0.00 0.00 0.00 0.00

2−6 0.00 0.00 0.00 0.00

2−5 0.00 0.00 0.00 0.03

2−4 0.00 0.00 0.00 0.11

2−3 0.00 0.00 0.01 0.25

2−2 0.00 0.00 0.03 0.27

2−1 0.01 0.01 0.11 0.17

20 0.05 0.05 0.15 0.08

21 0.15 0.14 0.19 0.04

22 0.26 0.26 0.20 0.02

23 0.24 0.25 0.15 0.01

24 0.14 0.14 0.08 0.01

25 0.08 0.07 0.04 0.00

26 0.04 0.04 0.02 0.00

27 0.02 0.02 0.01 0.00

28 0.01 0.01 0.01 0.00

29 0.00 0.00 0.00 0.00

12

Table 3.2: Selection frequencies for each proposal and each coordinate calculated on two

regions of the support, A1 = {X ∈ R4 : X2 < 8} (left table) and A2 = {X ∈ R4 : X2 ≥

8} (right table). The entries in boldface show the difference in selection frequencies for

some of the proposals in the two regions of the support considered.

(a) A1 = {X ∈ R4 : X2 < 8}

Coordinate

σk,j coord1 coord2 coord3 coord4

2−10 0.00 0.00 0.00 0.00

2−9 0.00 0.00 0.00 0.00

2−8 0.00 0.00 0.00 0.00

2−7 0.00 0.00 0.00 0.00

2−6 0.00 0.00 0.00 0.01

2−5 0.00 0.00 0.00 0.03

2−4 0.00 0.00 0.00 0.10

2−3 0.00 0.00 0.00 0.25

2−2 0.00 0.00 0.00 0.27

2−1 0.01 0.01 0.01 0.18

20 0.05 0.05 0.04 0.09

21 0.16 0.14 0.17 0.04

22 0.27 0.26 0.28 0.02

23 0.24 0.25 0.23 0.01

24 0.13 0.14 0.13 0.01

25 0.07 0.08 0.07 0.00

26 0.03 0.04 0.03 0.00

27 0.02 0.02 0.01 0.00

28 0.01 0.00 0.01 0.00

29 0.00 0.00 0.01 0.00

(b) A2 = {X ∈ R4 : X2 ≥ 8}

Coordinate

σk,j coord1 coord2 coord3 coord4

2−10 0.00 0.00 0.00 0.00

2−9 0.00 0.00 0.00 0.00

2−8 0.00 0.00 0.00 0.00

2−7 0.00 0.00 0.00 0.00

2−6 0.00 0.00 0.00 0.00

2−5 0.00 0.00 0.00 0.04

2−4 0.00 0.00 0.00 0.12

2−3 0.00 0.00 0.02 0.24

2−2 0.00 0.00 0.06 0.26

2−1 0.01 0.01 0.20 0.17

20 0.05 0.06 0.24 0.08

21 0.14 0.14 0.20 0.04

22 0.26 0.26 0.13 0.02

23 0.24 0.25 0.08 0.01

24 0.14 0.14 0.03 0.00

25 0.09 0.07 0.02 0.00

26 0.04 0.04 0.01 0.00

27 0.02 0.02 0.01 0.00

28 0.01 0.01 0.00 0.00

29 0.00 0.00 0.00 0.00

13

Tables 3.2a and 3.2b present the proportion of candidate selection and acceptance

rates for each proposal. We compare the proportion of proposals selected in the regions

A1 = {X ∈ R4 : X2 < 8} and A2 = {X ∈ R4 : X2 ≥ 8}. While these regions are

defined based on knowing the target exactly, they do not enter in any way in the design

of the CMTM and are used here only to verify that the sampler indeed automatically

adapts to local characteristics of the target. We can see that the CMTM favours proposal

distributions with smaller σk,j’s when updating the third coordinate in the region A2. This

is appropriate given that in that region larger moves for the third coordinate will tend

to be rejected. This pattern does not hold for the first two coordinates for which larger

moves are appropriate throughout the sample space. This is in line with what is expected

since the target variances (= 6.25) are the same in both directions in that region and

confirms that the CMTM algorithm tends to choose the ‘better’ proposal distribution

out of the available choices provided at each iteration.

3.2 Comparison with a Mixture Transition Kernel

An astute reader may wonder about a different strategy for using the different proposals

that one may have at one’s disposal. Maybe the most natural alternative is a random

mixture of the component-wise Metropolis-Hastings (CMH) algorithms. The set of pro-

posal distributions used in both algorithms is the same and we assign equal weights for

the proposal distributions in the mixture. The mixture CMH kernel selects each proposal

at random with equal probability, but since a single proposal is produced each time a

coordinate is updated, it is different than a CMTM algorithm with equal weights wj.

However, this comparison will help us determine whether adjusting the selection prob-

abilities of each proposal distribution is an improvement over equal probability selection.

Our target distribution is the 4-dimensional mixture of two normals introduced in Section

2.2. We use m = 20 and the same proposal scales discussed in the previous section. In

Tables 3.3a and 3.3b we present the acceptance rates for each coordinate and each pro-

posal for the two samplers. The results in Table 3.3 suggest that proposal distributions

14

with small variances have their proposals, if selected, accepted with with high frequency.

In the case of mixture of CMH this also means that if we were to guide our selection of

proposals based on acceptance rates, we would favour small jumps. The selection step

in the CMTM yield more even acceptance probabilities across proposals. This leads us

to believe that the acceptance rates are not very informative about which variances are

preferable in each coordinate.

To compare the efficiency of the two algorithms, we report in Table 3.4 the ASJ and

ACT calculated from 100 replicated runs as well as the CPU time. We note that the

average squared jumping distance significantly improves with the CMTM compared to

the mixture CMH. We can also see that for all the chain’s coordinates the ACT is an

order of magnitude smaller for the CMTM than the mixture CMH. When programming

the examples in this paper we were able to take advantage of the R software’s efficient

handling of vector operations (the programs used are included in the online supplementary

materials for the article). This explain the small difference in CPU time even as CMTM

requires m times more evaluations of the target than the mixture CMH.

15

Table 3.3: Post-selection acceptance frequencies. The NA’s in the table are due to the

fact that some proposals are never selected for some of the coordinates.

(a) Mixture of CMH

Coordinate

σk,j coord1 coord2 coord3 coord4

2−10 1.00 1.00 1.00 1.00

2−9 1.00 1.00 1.00 0.99

2−8 1.00 1.00 1.00 0.98

2−7 0.99 1.00 1.00 0.98

2−6 1.00 1.00 0.99 0.93

2−5 0.99 1.00 1.00 0.90

2−4 0.99 0.99 0.98 0.78

2−3 0.99 0.97 0.96 0.65

2−2 0.97 0.95 0.97 0.39

2−1 0.91 0.94 0.88 0.23

20 0.88 0.87 0.77 0.11

21 0.76 0.76 0.63 0.06

22 0.58 0.58 0.43 0.04

23 0.39 0.36 0.26 0.01

24 0.21 0.21 0.19 0.01

25 0.11 0.12 0.11 0.00

26 0.05 0.05 0.04 0.00

27 0.02 0.04 0.02 0.00

28 0.02 0.00 0.01 0.00

29 0.01 0.01 0.00 0.00

(b) CMTM

Coordinate

σk,j coord1 coord2 coord3 coord4

2−10 NaN NaN NaN NaN

2−9 NaN NaN NaN NaN

2−8 NaN NaN NaN NaN

2−7 NaN NaN NaN 0.17

2−6 NaN NaN NaN 0.52

2−5 NaN NaN 1.00 0.44

2−4 0.50 NaN 0.50 0.52

2−3 0.00 0.00 0.42 0.50

2−2 0.17 0.43 0.53 0.47

2−1 0.49 0.38 0.58 0.47

20 0.54 0.45 0.49 0.44

21 0.57 0.52 0.52 0.45

22 0.51 0.49 0.49 0.37

23 0.48 0.45 0.47 0.41

24 0.46 0.45 0.48 0.33

25 0.41 0.48 0.48 0.33

26 0.40 0.35 0.50 0.43

27 0.45 0.31 0.45 0.38

28 0.47 0.24 0.35 0.00

29 0.33 0.45 0.61 NaN

16

Table 3.4: Comparison of performance indicators that were computed from 100 inde-

pendently replicated runs. The tables contain statistics about the execution time for a

complete run (cputime), the average squared jump distance and the ACT. For CMTM

two cputimes are shown: fast (‘vectorized’) and slow (no ‘vectorization’ for likelihood

evaluations is used).

(a) Mixture of CMH

Min. Median Mean Max.

cputime(s) 4.47 4.56 4.57 4.97

sq. jump 0.467 0.619 0.622 0.784

coord1 coord2 coord3 coord4

ACT 464.21 460.41 28.07 26.70

(b) CMTM

Min. Median Mean Max.

cputime(s)-fast 10.25 10.41 10.43 11.22

cputime(s)-slow 140.11 142.30 142.58 153.79

sq. jump 6.20 6.62 6.62 7.07

coord1 coord2 coord3 coord4

ACT 41.96 41.25 1.64 1.64

3.3 The Adaptive CMTM Algorithm (ACMTM)

Given its propensity to choose a good candidate among those put forward by the proposal

distributions, it is reasonable to infer that CMTM’s performance will be roughly aligned

with the most suitable proposal for the region of the state space currently visited by the

chain. The other side of the coin is that a whole set of bad proposals will compromise

the efficiency of the CMTM algorithm. Therefore, we focus our efforts in developing an

adaptive CMTM (ACMTM) design that aims to minimize, possibly annihilate, the chance

of having at our disposal only poorly calibrated proposal distributions in any region of

the space.

The adaptation strategy is centered on finding well-calibrated values for the set Sk =

{σk,j : 1 ≤ j ≤ m} for every coordinate 1 ≤ k ≤ d. Note that Sk varies across

coordinates.

Consider an arbitrarily fixed coordinate k and suppose we label the m proposal distri-

butions such that σk,1 < σk,2 < . . . < σk,m. Changes in the kernel occur at fixed points in

the simulation process, called adaption points. We want our adaptive algorithm to adapt

17

less and less as the simulation proceeds, a condition known as Diminishing Adaptation

(DA) and long recognized as being useful for establishing the chain’s valid asymptotic be-

haviour (Roberts and Rosenthal, 2007). However, the adaption strategy proposed above

may not diminish in the long run, so we ensure the DA condition more directly by only

adapting on ath iteration (for a ≥ 1) with probability Pa = max(0.99a−1, 1√
a
). Since

Pa → 0, the DA condition is ensured. On the other hand, we chose Pa so that it de-

creases slowly and has high values at the beginning of the run when most adaptations

will take place. Furthermore, the Borel-Cantelli lemma guarantees that the adaption will

keep occurring for as long as we run the chain since
∑∞

a=1 Pa =∞. For instance, in 10000

iterations we have recorded between 60 and 70 adaptation attempts, a quarter of which

occurred within the first 2,000 iterations. An adaption is performed only if the selection

frequencies are anomalous, as detailed below.

Specifically, an adaption is required for the standard deviations σk,j only if we notice

that the candidates generated by the proposal distribution T
(k)
j with the smallest scale,

σk,1, or the largest one, σk,m, are under- or over-selected. For instance, suppose that in

an inter-adaptation time interval the candidates generated using σk,1 are selected more

than 100 × 2
m

% or less that 100 × 1
2m

% of the time. If we denote qj the frequency of

selecting the candidate generated using σk,j we have mmax qj ≥
∑

j qj = 1 ≥ mmin qj.

Thus, the thresholds represent, respectively, more than double the selection percentage

for the least selected proposal and less than half of the selection percentage for the most

popular proposal. A high selection percentage for σk,1 suggests that the chain tends to

favour, when updating the kth coordinate, proposals with smaller scale so the ACMTM

design requires to: 1) halve the value of σk,1; 2) recalculate the intermediate values,

σk,2, . . . , σk,m−1 to be equidistant between σk,1 and σk,m on the log-scale. A low selection

percentage for σk,1 will ensure that the lowest scale is doubled up followed by step 2).

Similarly, if the largest element in Sk, σk,m, produces proposals with selection per-

centages above or below the thresholds mentioned above, we will double or halve σk,m,

respectively. Each modification is followed by redistribution of the intermediate scales.

18

If neither the smallest nor the largest elements in Sk produce proposals that are

outside the boundaries set by the two thresholds, we wait until the algorithm reaches the

next ‘adaption point’ and recalculate the proportion of each proposal candidate being

selected during the last inter-adaption time interval.

Let us denote by m the number of multiple-try proposals, d the number of coordinates

for the Markov chain, β the length of inter-adaptation period, Pa the probability to at

each attempt and M the number of MCMC iterations. With these notations we lay out

the rules for the ACMTM update in Algorithm 1.

Finally, we make two minor technical modifications to our ACMTM algorithm, to

ensure the Containment condition of Roberts and Rosenthal (2007), and thus allow us to

prove the convergence of our algorithm in Section 3.5 below. Namely:

(A1) We choose a (very large) non-empty compact subset K ⊂ X , and force Xn ∈ K

for all n. Specifically, we reject all proposals Yn+1 6∈ K (but if Yn+1 ∈ K, then we still

accept/reject Yn+1 by the usual rule for the CMTM algorithm described in Section 2.1).

Correspondingly, the initial value X0 should be chosen in K.

(A2) We choose a (very large) constant L > 0 and a (very small) constant ε > 0, and

force the proposal scalings σk,j to always be in [ε, L]. Specifically, if σn,k,j is the value of

σk,j used at the n-th iteration in our adaptive CMTM algorithm, then if σn,k,j would be

greater than L, we instead set σn,k,j = L, while if σn,k,j would be less than ε, we instead

set σn,k,j = ε. Correspondingly, the initial values σ0,k,j should all be chosen in [ε, L].

Remark. Our adaptive algorithm keeps the number of different proposals at each iteration

fixed at some constant m. We have also experimented with allowing the value m itself

to be updated adaptively. This strategy did not outperform the algorithms with fixed

m = 20 design in any of the experiments conducted, so we do not pursue it further here.

However, our theoretical justification also covers this case as long as the possible m values

are bounded; see the remark following the proof of Theorem 1 below.

19

Algorithm 1 Adaption Rules for ACMTM

Given: {σk,j : 1 ≤ k ≤ d, 1 ≤ j ≤ m} - initial proposal variances

Set initial values β = 100, Pa = 1

for t = 1 to M do

if t = 0 mod β then

Let a = t/β and u ∼ U[0, 1]

if u ≤ Pa then

Let σk,j ≤ . . . ≤ σk,m be the scales used and {Sk,j : 1 ≤ k ≤ d, 1 ≤ j ≤ m}

be the selection rates computed since the previous adaptation till now. Then

for k = 1 to d do

if Sk,m > 2/m then

σk,m = 2σk,m

Adjust {σk,j} so that they are equidistant on log base 2 scale.

else if (Sk,m < 1/(2m)) ∧ (σk,1 < σk,m/2) then

σk,m = σk,m/2

Adjust {σk,j} so that they are equidistant on log base 2 scale.

end if

if Sk,1 > 2/m then

σk,1 = σk,1/2

Adjust {σk,j} so that they are equidistant on log base 2 scale.

else if (Sk,1 < 1/(2m)) ∧ (2σk,1 < σk,m) then

σk,1 = 2σk,1

Adjust {σk,j} so that they are equidistant on log base 2 scale.

end if

end for

end if

Pa = max(0.99a−1, 1√
a
)

end if

Perform CMTM update as described in Section 2.1.

end for 20

3.4 To Adapt or Not To Adapt?

We compare the ACMTM algorithm with the CMTM algorithm without adaption to see

if the adaption indeed improves the efficiency of the algorithm. We use the 4-dimensional

mixture of two normal distributions from Section 2.2 as our target distribution. The

σk,j’s for the non-adaptive algorithm are those given in Section 3.1 and they are also the

starting σk,j’s for the adaptive algorithm. Evidently the final values are the same as the

initial ones for the non-adaptive version of the sampler. In Table 3.5 we report the final

values of the σk,j’s obtained after the last adaption in one random run of ACMTM. For

this particular run, the last adaption occurred right after 1800 iterations out of 10000

iterations in total. We notice that the scales chosen vary from component to component.

For instance, the fourth component of the chain has a smaller marginal variance so

the adaption will favour smaller scales. Similarly, the third component requires both

large and small proposal scales and we can see that reflected in the range of values for

{σ3,j; 1 ≤ j ≤ m} which is different than for the first two components.

The comparison in terms of ASJ and ACT is based on 100 independent replicates.

The results shown in Table 3.6 indeed confirm the benefits of adaptation, as both ASJ

and ACT are in agreement regarding the superiority of ACMTM over CMTM.

Table 3.6: Comparison of performance indicators that were computed from 100 inde-

pendently replicated runs. The tables contain statistics about the execution time for a

complete run (cputime), the average squared jump distance and the ACT.

(a) Non-adaptive CMTM

Min. Median Mean Max.

cputime(s) 10.25 10.41 10.43 11.22

sq. jump 6.20 6.62 6.62 7.07

coord1 coord2 coord3 coord4

ACT 41.96 41.25 1.64 1.64

(b) Adaptive CMTM

Min. Median Mean Max.

cputime(s) 10.42 10.57 10.65 13.14

sq. jump 8.88 10.15 10.04 10.76

coord1 coord2 coord3 coord4

ACT 22.55 22.46 1.43 1.00

21

Table 3.5: Adaptive CMTM: Final σk,j for each coordinate and each proposal used.

coord1 coord2 coord3 coord4

prop1 4.0000 4.0000 2.0000 0.1250

prop2 4.1486 4.1486 2.0743 0.1345

prop3 4.3028 4.3028 2.1514 0.1446

prop4 4.4626 4.4626 2.2313 0.1556

prop5 4.6284 4.6284 2.3142 0.1674

prop6 4.8004 4.8004 2.4002 0.1800

prop7 4.9788 4.9788 2.4894 0.1937

prop8 5.1638 5.1638 2.5819 0.2083

prop9 5.3556 5.3556 2.6778 0.2241

prop10 5.5546 5.5546 2.7773 0.2410

prop11 5.7610 5.7610 2.8805 0.2593

prop12 5.9750 5.9750 2.9875 0.2789

prop13 6.1970 6.1970 3.0985 0.3000

prop14 6.4273 6.4273 3.2136 0.3227

prop15 6.6661 6.6661 3.3330 0.3472

prop16 6.9138 6.9138 3.4569 0.3734

prop17 7.1707 7.1707 3.5853 0.4017

prop18 7.4371 7.4371 3.7185 0.4321

prop19 7.7134 7.7134 3.8567 0.4648

prop20 8.0000 8.0000 4.0000 0.5000

22

Table 3.7: Adaptive CMTM: Rate of selection for each proposal and each coordinate.

coord1 coord2 coord3 coord4

prop1 0.04 0.05 0.05 0.04

prop2 0.05 0.05 0.05 0.05

prop3 0.05 0.05 0.05 0.05

prop4 0.05 0.04 0.05 0.05

prop5 0.05 0.05 0.05 0.05

prop6 0.05 0.05 0.05 0.05

prop7 0.05 0.05 0.05 0.04

prop8 0.05 0.05 0.05 0.05

prop9 0.05 0.05 0.05 0.06

prop10 0.05 0.05 0.05 0.05

prop11 0.05 0.05 0.04 0.05

prop12 0.05 0.05 0.05 0.05

prop13 0.05 0.05 0.05 0.06

prop14 0.05 0.05 0.05 0.05

prop15 0.05 0.05 0.05 0.05

prop16 0.05 0.05 0.05 0.05

prop17 0.05 0.05 0.05 0.05

prop18 0.05 0.05 0.05 0.04

prop19 0.05 0.05 0.05 0.04

prop20 0.05 0.05 0.05 0.04

When comparing the rate of selection for each proposal, as reported in Tables 3.1 and

3.7, we observe the almost constant selection probabilities for the ACMTM which suggests

that all the proposal scales selected are important in the simulation. Finally, we also

compare the acceptance frequencies for the selected proposals for CMTM and ACMTM,

as shown in Tables 3.3b and 3.8, respectively. The adaptive version of the algorithm

clearly makes better use of the generated proposals. There are no longer any NA’s, i.e.

all proposals are occasionally accepted in each coordinate. In fact, the acceptance rates for

ACMTM are quite even, again suggesting a balanced use of the proposal distributions. In

almost every instance the acceptance rates have gone up compared to the CMTM values

in Table 3.3b.

23

Table 3.8: ACMTM: Post-selection acceptance probabilities for each proposal.

coord1 coord2 coord3 coord4

prop1 0.58 0.66 0.49 0.60

prop2 0.57 0.58 0.58 0.60

prop3 0.60 0.65 0.62 0.60

prop4 0.63 0.55 0.59 0.60

prop5 0.61 0.59 0.58 0.65

prop6 0.65 0.53 0.60 0.60

prop7 0.59 0.59 0.60 0.62

prop8 0.64 0.65 0.58 0.60

prop9 0.58 0.57 0.59 0.60

prop10 0.57 0.61 0.60 0.56

prop11 0.61 0.66 0.59 0.54

prop12 0.57 0.54 0.62 0.66

prop13 0.53 0.54 0.66 0.60

prop14 0.55 0.58 0.57 0.61

prop15 0.61 0.60 0.58 0.55

prop16 0.58 0.61 0.60 0.60

prop17 0.54 0.65 0.61 0.57

prop18 0.58 0.61 0.58 0.53

prop19 0.56 0.56 0.62 0.60

prop20 0.61 0.63 0.66 0.59

3.5 Convergence of Adaptive CMTM

We prove below the convergence of the adaptive CMTM algorithm described in Sec-

tion 3.3. As explained in Section 3.3, Diminishing Adaptation condition holds by the

construction of the adaption mechanism.

Theorem 1. Consider the adaptive CMTM algorithm in Section 3.3 to sample from

state space X that is an open subset of Rd for some d ∈ N. Let π be a target probability

distribution, which has a continuous positive density on K with respect to the Lebesgue

measure. Then, the adaptive CMTM algorithm converges to stationarity as in

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0. (3.1)

Proof. By Roberts and Rosenthal (2007), the convergence of an adaptive MCMC algo-

24

rithm as in (3.1) can be ensured by two conditions Diminishing Adaptation and Contain-

ment. Our algorithm satisfies Diminishing Adaptation (DA) as explained in Section 3.3.

So, it suffices to show that our algorithm satisfies the Containment condition.

The Containment condition of Roberts and Rosenthal (2007) (see also Craiu et al.

(2015); Rosenthal and Yang (2016) states that the process’s convergence times are bounded

in probability, i.e. that {Mε(Xn,Γn)}∞n=1 is bounded in probability, where Mε(x, γ) :=

inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} for all ε > 0, and P n

γ is a fixed n-step proposal kernel.

We proceed similarly to the proof of Proposition 23 of Craiu et al. (2015). By our

assumption (A1), the process {Xn} is bounded in probability, in fact ‖Xn‖ ≤ L for all n.

To continue, we let Y be the collection of all d × m matrices of real numbers in [ε, L].

Then by our assumption (A2), Y is compact. Here each γ ∈ Y corresponds to a particular

choice of MTM proposals, where γk,j equals the scaling of the jth proposal kernel for the

kth coordinate. And, our adaption rule is such that choosing which γ ∈ Y to use for

each iteration n is determined by the past and/or current information obtained from the

chain.

Next, let Pγ be the Markov kernel corresponding to one full sequence of updates for

all coordinates of the chain, in sequence. Then Pγ is Harris ergodic to π, since it is

known that any non-adaptive CMTM algorithm must converge to π (cf. Liu et al. (2000);

Casarin et al. (2013)). It follows that ∆(x, γ, n) := ‖P n
γ (x, ·)− π(·)‖ → 0 as n → ∞ for

each (x, γ), where ‖ · · · ‖ is the usual total variation distance convergence metric. Now,

with our algorithm as set up in Section 3.3, ∆(x, γ, n) is a continuous function of (x, γ):

indeed, it is a composition of single-coordinate MTM updates each of which is continuous

as in the proof of Corollary 11 of Roberts and Rosenthal (2007).

To finish, we note (following Rosenthal and Yang (2016)) that by Dini’s Theorem,

lim
n→∞

sup
x∈C

sup
γ∈Y

∆(x, γ, n) = 0

for any compact set C ⊂ X . Hence, for any ε > 0, there is D < ∞ such that

supx∈C supγ∈Y ∆(x, γ,D) < ε. It follows that supx∈C supγ∈YMε(x, γ) ≤ D < ∞. In

25

particular, choosing C = K from our assumption (A1), we know that P (Xn 6∈ K) = 0 for

all n, so if D := supx∈K supγ∈YMε(x, γ), then for any δ > 0, P (Mε(Xn,Γn) > D) = 0 ≤ δ

for all n. In particular, {Mε(Xn,Γn)}∞n=1 is bounded in probability. Therefore, the Con-

tainment condition holds, thus finishing the proof.

Remark. Our theorem is still valid if the number of proposals m is allowed to change from

iteration to iteration, providedm is forced to remain between 1 and some large finite upper

bound M . Indeed, in that case Y is a discrete union of M different collections of d×m

matrices, and ∆(x, γ, n) is continuous separately on each collection, and the rest of the

proof can then proceed without further change.

4 Applications

In the following examples we compare the CMTM and ACMTM started with the same

set of σk,j. We also compare their performance with CMH and adaptive CMH. The de-

sign of the latter is based on the theoretical results of Gelman et al. (1996) and Roberts

and Rosenthal (2001) who found that the optimal acceptance rate for one-dimensional

Metropolis algorithm is 0.44 and therefore adjusts the proposal variance to get an accep-

tance rate close to this value for each coordinate.

First we compare CMTM (with different number of proposals m) with CMH, both

with generic proposals. For CMTM with m proposals we set σk,j = 2j−1−bm/2c for each

coordinate 1 ≤ j ≤ m. The CMH’s proposals are fixed at 1 for each coordinate.

In second comparisons we compare adaptive CMTM with different number of pro-

posals and adaptive CMH. The starting σ’s are identical to the ones used in their non-

adaptive counterparts.

For all the examples we use the effective sample size (ESS) and ESS/CPUtime (CPUtime

is the time needed to complete the simulation) to compare the efficiency of MCMC al-

gorithms. The latter is particularly relevant for algorithm comparison since it is a way

to quantify the resource allocation efficiency. Since ESS = M/τ , where M is the number

26

of samples obtained from a Markov chain and τ is the ACT, one can see that ESS is

equivalent to ACT. One may intuitively interpret ESS the number of iid samples from

the target that would contain the same amount of information about the target as the

MCMC sample. The chains are run for 10000 iterations. The first 5000 samples obtained

are discarded while the remaining ones are used to calculate the ACT. The reported

ESS is based on averaging the ACT over 50 independent runs. The R programs used to

generate these results are included in the online supplementary material.

4.1 Variance Components Model

The Variance Components Model (VCM) is a typical hierarchical model, often used in

Bayesian statistics community. Here, we use the data on batch to batch variation in

dyestuff yields. The data were introduced in Davies (1967) and later analyzed by Box

and Tiao (1973). The Bayesian set-up of the Variance Components Model on dyestuff

yields is also well-described in Roberts and Rosenthal (2004). The data record yields on

dyestuff of 5 samples, from each of 6 randomly chosen batches. The data is shown in

Table 4.1.

Table 4.1: Dyestuff Batch Yield (in grams)

Batch 1 1545 1440 1440 1520 1580

Batch 2 1540 1555 1490 1560 1495

Batch 3 1595 1550 1605 1510 1560

Batch 4 1445 1440 1595 1465 1545

Batch 5 1595 1630 1515 1635 1625

Batch 6 1520 1455 1450 1480 1445

Let yij be the yield on the dyestuff batch, with i indicating which batch it is from and j

indexing each individual sample from the batch. The Bayesian model is then constructed

as:

yij|θi, σ2
e ∼ N(θi, σ

2
e), i = 1, 2, ..., K, j = 1, 2, ..., J

27

where θi|µ, σ2
θ ∼ N(µ, σ2

θ). θi’s are conditionally independent of each other given µ, σ2
θ .

The priors for the σ2
θ , σ

2
e and µ are: σ2

θ ∼ IG(a1, b1), σ
2
e ∼ IG(a2, b2) and µ ∼ N(µ0, σ

2
0).

Letting ~θ = {θ1, θ2, . . . , θK} and D = {yij : i = 1, 2, . . . , K, j = 1, 2, . . . , J} , the

posterior density function of this VCM model is

f(σ2
θ , σ

2
e , µ,

~θ|D, a1, a2, b1, b2, σ2
0) ∝

(σ2
θ)
−(a1+1)e−b1/σ

2
θ (σ2

e)
−(a2+1)e−b2/σ

2
ee−(µ−µ0)

2/2σ2
0

K∏
i=1

e(θi−µ)
2/2σ2

θ

σθ

K∏
i=1

J∏
j=1

e(yij−θi)
2/2σ2

e

σe
.

We set the hyperparameters a1 = a2 = 300 and b1 = b2 = 1000, making inverse gamma

priors very concentrated and let σ2
0 = 1010. The variance components are updated on the

log scale.

Figure 4.1 shows ESS and ESS/CPU (averaged over 50 runs) of the CMTM algorithms

with and without adaption and of standard CMH and adaptive CMH algorithm. For both

CMTM algorithms (with and without adaption), the starting proposals were generic for

every coordinate as described above.

28

0 2 4 6 8

0
10

00
20

00
30

00
40

00
50

00
60

00
Non−adaptive ESS

Coordinate

E
S

S

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 2 4 6 8

0
50

00
10

00
0

15
00

0

Adaptive ESS

Coordinate

E
S

S

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 2 4 6 8

0
50

10
0

15
0

20
0

Non−adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0

Adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 2 4 6 8

0
10

0
20

0
30

0
40

0

Adaptive ESS/CPU slow

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.1: Variance components model. For non-adaptive samplers we compare CMTM

with 5 and 30 generic proposals and CMH represented by red, green and blue lines re-

spectively. For adaptive samplers we compare between ACMTM with 3, 5, 20 or 30

proposals and the adaptive CMH represented by red, green, purple, black and blue lines

respectively. Top Row: Comparison of ESS for non-adaptive (left panel) and adap-

tive (right panel) samplers. Bottom Row: Comparison of ESS/CPU for non-adaptive

samplers (left panel) using ‘vectorized operations’ for likelihood evaluations in CMTM,

ESS/CPU for adaptive samplers with ‘vectorized operations’ (middle panel) and without

(right panel).

29

The plots for non-adaptive samplers clearly show that CMTM with 30 proposals is

the most efficient in ESS and even when CPU time is taken into account it still performs

better than CMH. Similar results is evident for adaptive samplers. Clearly adaptive

CMTM with 20 or 30 proposals have much better ESS than adaptive CMH. When CPU

time is considered than adaptive CMTM with 20 proposals is the most efficient.

4.2 “Banana-shaped” Distribution

The “Banana-shaped” distribution was originally presented in Haario et al. (1999) as an

irregularly-shaped target that may call for different proposal distributions for the different

parts of the state space.

The target density function of the “banana-shaped” distribution is constructed as

fB = f ◦ φB, where f is the density of d−dimensional multivariate normal distribution

N(0, diag(100, 1, 1, . . . , 1)) and φB(x) = (x1, x2 + Bx21 − 100B, x3, . . . , xd). B > 0 is the

nonlinearity parameter and the non-linearity or “bananacity” of the target distribution

increases with B. The target density function is

fB(x1, x2, . . . , xd) ∝ exp[−x21/200− 1

2
(x2 +Bx21 − 100B)2 − 1

2
(x23 + x24 + . . .+ x2d)].

We set B = 0.01 and d = 10, the results are shown in Figure 4.2 (averaged over 50

runs starting with generic proposals).

30

0 5 10 15

0
10

00
20

00
30

00
40

00
50

00
60

00
Non−adaptive ESS

Coordinate

E
S

S

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 5 10 15

0
50

00
10

00
0

15
00

0
20

00
0

Adaptive ESS

Coordinate

E
S

S

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Non−adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 5 10 15

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 5 10 15

0
20

0
40

0
60

0
80

0

Adaptive ESS/CPU slow

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.2: Banana-shaped distribution. For non-adaptive samplers we compare CMTM

with 5 and 30 generic proposals and CMH represented by red, green and blue lines re-

spectively. For adaptive samplers we compare between ACMTM with 3, 5, 20 or 30

proposals and the adaptive CMH represented by red, green, purple, black and blue lines

respectively. Top Row: Comparison of ESS for non-adaptive (left panel) and adap-

tive (right panel) samplers. Bottom Row: Comparison of ESS/CPU for non-adaptive

samplers (left panel) using ‘vectorized operations’ for likelihood evaluations in CMTM,

ESS/CPU for adaptive samplers with ‘vectorized operations’ (middle panel) and without

(right panel).

31

Focusing on ESS plots, CMTM and adaptive CMTM with 30 proposals clearly out-

perform standard CMH and adaptive CMH in all coordinates. When CPU time is taken

into account then CMH and adaptive CMH performs a little better than CMTM algo-

rithms on most coordinates. However on coordinate 1, CMTM methods perform much

better than CMHs, actually by a factor of 2.5 or more.

4.3 Mixture of 20-dimensional Gaussians

We are also examining the gains brought by the ACMTM in the case of bimodal distri-

butions. We consider the mixture

0.5N20(µ1,Σ1) + 0.5N20(µ2,Σ2)

where

µ1 =(5, 5, 0, 0, 0, 0, 10, 15, 0, 0, 5, 5, 0, 0, 0, 0, 10, 15, 0, 0),

µ2 =(10, 10, 0, 0, 0, 0, 7, 20, 0, 0, 10, 10, 0, 0, 0, 0, 7, 20, 0, 0),

Σ1 = diag(16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00,

0.01, 16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00, 0.01),

Σ2 = diag(16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25,

0.01, 16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25, 0.01).

In this example, CMTM methods with 30 proposals (in each coordinate) is the most

efficient in ESS and ESS/CPU. The comparison is reported in Figure 4.3. We note that

the adaptive and non adaptive versions of CMTM perform much better than the CMHs

counterparts.

The ESS/CPU calculations suggest that the best performance is achieved when the

number of chains m is between 20 and 30. When programming the examples (the pro-

grams are available as online supplemental material), we have taken advantage of the soft-

ware R’s ability to handle vectorial operations much more efficiently than loops. When

32

similar savings can be obtained, we recommend using m = 20 in practice. In instances

where the likelihood is expensive to compute due to the large number of observations in

the data, embarrassingly parallel strategies could be used efficiently in conjunction with

ACMTM (Neiswanger et al., 2013; Scott et al., 2013; Wang and Dunson, 2013; Reihaneh

et al., 2016).

33

0 5 10 15 20 25 30

0
10

00
20

00
30

00
40

00
50

00
60

00
Non−adaptive ESS

Coordinate

E
S

S

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 5 10 15 20 25 30

0
50

00
10

00
0

15
00

0
20

00
0

Adaptive ESS

Coordinate

E
S

S

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 5 10 15 20 25 30

0
20

40
60

80

Non−adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:gen 5

CMTM:gen 30

CMH:gen

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

25
0

Adaptive ESS/CPU fast

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

0 5 10 15 20 25 30

0
20

40
60

80

Adaptive ESS/CPU slow

Coordinate

E
S

S
/C

P
U

CMTM:adp 3

CMTM:adp 5

CMTM:adp 20

CMTM:adp 30

CMH:adp

Figure 4.3: 20-dimensional mixture distribution. For non-adaptive samplers we compare

CMTM with 5 and 30 generic proposals and CMH represented by red, green and blue

lines respectively. For adaptive samplers we compare between ACMTM with 3, 5, 20

or 30 proposals and the adaptive CMH represented by red, green, purple, black and

blue lines respectively. Top Row: Comparison of ESS for non-adaptive (left panel)

and adaptive (right panel) samplers. Bottom Row: Comparison of ESS/CPU for non-

adaptive samplers (left panel) using ‘vectorized operations’ for likelihood evaluations in

CMTM, ESS/CPU for adaptive samplers with ‘vectorized operations’ (middle panel) and

without (right panel).

34

It is also important to note that in all 3 examples described above adaptive CMTM

is always more efficient than CMTM with generic proposals. CPU time for both are

about the same but ESS generally much larger for the latter. Hence adaptive CMTM

generally produces much better results and it is advisable to use it for real-world problems

especially since it only requires a few lines of extra code.

5 Conclusion and Discussion

It is known that adaptive algorithms can be highly influenced by initial values given to

their simulation parameters and by the quality of the chain during initialization period,

i.e. the period during which no modifications of the transition kernel take place. ACMTM

is no exception, but some of its features can be thought of as means towards a more robust

behaviour. For instance, the fact that we can start with multiple proposals makes it less

likely that all initial values will be poor choices for a given coordinate. The ACMTM

is motivated by situations in which the sampler requires very different proposals across

coordinates and across regions of the state space. In such situations, traditional adaptive

samplers are known to fail unless special modifications are implemented (Craiu et al.,

2009; Bai et al., 2011), but even these tend to underperform when the sample space

dimension is high.

The adaption mechanism is very rapid as the scales can change in multiple of 2’s and

is also stable since modifications to the kernel occur only if over selection from one of the

boundary scale proposals is detected. Thus, even if proposal scales are not perfect but

good enough, they would not change much under this adaptive design.

The increase in CPU time is the price we pay for the added flexibility of having

multiple proposals and the ability to dynamically choose the ones that fit the region of

the space so that acceptance rate and mixing rates are improved. And while this tends

to attenuate the ACMTM’s efficiency, one cannot find among the algorithms we used

for comparison in this paper one that is performing better on average even after taking

35

CPU time into account. However, we recommend using ACMTM in difficult sampling

problems (e.g. multimodal target, variable variances for the conditional distributions

across the sample space) when other approaches do not perform well.

Finally, it is the authors belief that AMCMC samplers will be used in practice more if

their motivation is intuitive and their implementation is easy enough. We believe that the

ACMTM fulfills these basic criteria and further modifications can be easily implemented

once new needs are identified.

Supplementary Materials

function description.pdf describes the R program used for the examples in the paper.

CMTM sampling fun.pdf is the R program used for the examples in the paper.

target densities used.R is the R program that contains the targets used in the paper.

Acknowledgement

We thank the Editor, the Associate Editor and three anonymous referees for thorough

comments and insightful suggestions that have greatly improved the paper. Funding

support for this work was provided by individual grants to RC and JSR from the Natural

Sciences and Engineering Research Council of Canada.

References

Andrieu, C., and Atchadé, Y. F. (2007), “On the efficiency of adaptive MCMC algo-

rithms,” Electronic Communications in Probability, 12(33), 336–349.

Andrieu, C., and Moulines, E. (2006), “On the ergodicity properties of some adap-

tive Markov Chain Monte Carlo algorithms,” The Annals of Applied Probability,

16(3), 1462–1505.

36

Andrieu, C., and Thoms, J. (2008), “A tutorial on adaptive MCMC,” Statist. Comput.,

18, 343–373.

Atchadé, Y. F., and Rosenthal., J. S. (2005), “On adaptive Markov Chain Monte Carlo

algorithms,” Bernoulli, 11(5), 815–828.

Bai, Y., Craiu, R. V., and Di Narzo, A. (2011), “Divide and C onquer: A mixture-based

approach to regional adaptation for MCMC,” J. Comput. Graph. Statist., 20(1), 63–79.

Box, G. E. P., and Tiao, G. C. (1973), Bayesian inference in statistical analysis Addison-

Wesely, Reading, MA.

Casarin, R., Craiu, R. V., and Leisen, F. (2013), “Interacting multiple try algorithms

with different proposal distributions,” Statistics and Computing, 23(2), 185–200.

Craiu, R. V., Gray, L., Latuszynski, K., Madras, N., Roberts, G. O., and Rosenthal, J. S.

(2015), “Stability of Adversarial Markov Chains, with an Application to Adaptive

MCMC Algorithms,” Annals of Applied Probability, 25(6), 3592–3623.

Craiu, R. V., and Lemieux, C. (2007), “Acceleration of the multiple-try Metropolis algo-

rithm using antithetic and stratified sampling,” Statistics and Computing, 17(2), 109–

120.

Craiu, R. V., Rosenthal, J. S., and Yang, C. (2009), “Learn from thy neighbor: Parallel-

Chain Adaptive and Regional MCMC,” J. Amer. Statist. Assoc., 104(488), 1454–1466.

Davies, O. L. (1967), Statistical methods in research and production Oliver & Boyd,

Edinburgh and London.

Fort, G., Moulines, E., and Priouret, P. (2011), “Convergence of adaptive and interacting

Markov chain Monte Carlo algorithms,” The Annals of Statistics, 39(6), 3262–3289.

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996), “Efficient Metropolis jumping

rules,” in Bayesian Statistics, ed. J. M. B. et al., Vol. 5 Oxford University Press,

pp. 599–607.

37

Geyer, C. J. (1992), “Practical Markov chain Monte Carlo,” Statistical Science, 7(4), 473–

483.

Giordani, P., and Kohn, R. (2010), “Adaptive independent Metropolis–Hastings by fast

estimation of mixtures of normals,” Journal of Computational and Graphical Statistics,

19(2), 243–259.

Haario, H., Laine, M., Mira, A., and Saksman, E. (2006), “DRAM: efficient adaptive

MCMC,” Statistics and Computing, 16(4), 339–354.

Haario, H., Saksman, E., and Tamminen, J. (1999), “Adaptive proposal distribution for

random walk Metropolis algorithm,” Computational Statistics, 14(3), 375–396.

Haario, H., Saksman, E., and Tamminen, J. (2001), “An adaptive Metropolis algorithm,”

Bernoulli, 7(2), 223–242.

Haario, H., Saksman, E., and Tamminen, J. (2005), “Componentwise adaptation for high

dimensional MCMC,” Computational Statistics, 20(2), 265–273.

Hastings, W. K. (1970), “Monte Carlo sampling methods using Markov chains and their

applications,” Biometrika, 57(1), 97–109.

Liu, J. S., Liang, F., and Wong, W. H. (2000), “The multiple-try method and local

optimization in Metropolis sampling,” Journal of the American Statistical Association,

95(449), 121–134.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.

(1953), “Equation of state calculations by fast computing machines,” The journal of

chemical physics, 21(6), 1087–1092.

Neiswanger, W., Wang, C., and Xing, E. (2013), “Asymptotically exact, embarrassingly

parallel MCMC,” arXiv preprint arXiv:1311.4780, .

38

Reihaneh, E., Craiu, R. V., and Rosenthal, J. S. (2016), “Likelihood inflating sampling

algorithm,” arXiv preprint arXiv:1605.02113, .

Roberts, G. O., and Rosenthal, J. S. (2001), “Optimal scaling for various Metropolis-

Hastings algorithms,” Statistical science, 16(4), 351–367.

Roberts, G. O., and Rosenthal, J. S. (2004), “General state space Markov chains and

MCMC algorithms,” Probability Surveys, 1, 20–71.

Roberts, G. O., and Rosenthal, J. S. (2007), “Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms,” Journal of Applied Probability, 44(2), 458–475.

Roberts, G. O., and Rosenthal, J. S. (2009), “Examples of adaptive MCMC,” Journal of

Computational and Graphical Statistics, 18(2), 349–367.

Rosenthal, J. S., and Yang, J. (2016), Ergodicity of Discontinuous Adaptive MCMC

Algorithms,. Submitted for publication. Available at http://probability.ca/jeff/

ftpdir/adversarial.pdf.

Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H., George, E., and McCulloch,

R. (2013), Bayes and big data: The consensus Monte Carlo algorithm,, in EFaBBayes

250 conference, Vol. 16.

Turro, E., Bochkina, N., Hein, A. M. K., and Richardson, S. (2007), “BGX: a Biocon-

ductor package for the Bayesian integrated analysis of Affymetrix GeneChips,” BMC

bioinformatics, 8(1), 439–448.

Vihola, M. (2012), “Robust adaptive Metropolis algorithm with coerced acceptance rate,”

Statistics and Computing, 22(5), 997–1008.

Wang, X., and Dunson, D. B. (2013), “Parallelizing MCMC via Weierstrass sampler,”

arXiv preprint arXiv:1312.4605, .

39

