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Motivation

Given some complicated, high-dimensional density function
π : X → [0,∞), for some X ⊆ Rd with d large.
(e.g. Bayesian posterior distribution)

Want to compute probabilities like :

Π(A) :=
∫
A

π(x) dx ,

and/or expected values of functionals like :

Eπ(h) :=
∫
X
h(x)π(x) dx .

Calculus ? Numerical integration ?

Impossible ! Typical π is something like . . .
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Typical π : Variance Components Model

π(V,W, µ, θ1, . . . , θK)

= C e−b1/V V −a1−1e−b2/WW−a2−1

× e−(µ−a3)2/2b3V −K/2W−
1
2

∑K

i=1
Ji

× exp

[
−

K∑
i=1

(θi − µ)2/2V

−
K∑
i=1

Ji∑
j=1

(Yij − θi)2/2W

]
,

with, say, K = 19, d = 22.

High-dimensional ! Complicated ! What to do ? (2/22)



Estimation from sampling : Monte Carlo

Can try to sample from π, i.e. generate i.i.d.

X1, X2, . . . , XM ∼ π

(meaning that P(Xi ∈ A) =
∫
A
π(x) dx).

Then can estimate by e.g.

Eπ(h) ≈ 1
M

M∑
i=1

h(Xi) .

Good. But how to sample ? Often infeasible !
Instead . . .
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Markov chain Monte Carlo (MCMC)

Define a Markov chain X0, X1, X2, . . ., such that for large n,
P(Xn ∈ A) ≈

∫
A
π(x) dx.

(Just approximate . . . and not i.i.d.)

Still, hopefully for M � B � 1,

Eπ(h) ≈ 1
M −B

M∑
i=B+1

h(Xi) .

But how to define a simple Markov chain such that

P(Xn ∈ A) →
∫
A

π(x) dx
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The Metropolis Algorithm

π = target density (important ! complicated ! high-dim !)
Goal : obtain samples from π.

The algorithm : for n = 1, 2, 3, . . .,
• Yn := Xn−1 + Zn, where Zn ∼ Q (i.i.d., symmetric)

• α := min
(

1, π(Yn)
π(Xn−1)

)
• with probability α, Xn := Yn (“accept”)
• else, with probability 1− α, Xn := Xn−1 (“reject”)

Assuming “irreducibility”, have P(Xn ∈ A)→ π(A).
Good !
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Example #1 : Java applet

π(·) simple distribution on X = {1, 2, 3, 4, 5, 6}.
[Take π(x) = 0 for x 6∈ X .]

Q(·) = Uniform{−1, 1}. [APPLET]

Works.
But what if Q(·) = Uniform{−2,−1, 1, 2}.
Or, Q(·) = Uniform{−γ,−γ + 1, . . . ,−1, 1, 2, . . . , γ}.
Which γ is best ? ? (“optimise”)

Good γ is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1.
(“Goldilocks Principle”)
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Example #2 : N(0,1)

Target π(·) = N(0, 1). Proposal Q(·) = N(0, σ2). Which σ ? ?

σ = 0.1 ? σ = 25 ? σ = 2.38 ?
too small ! too big ! (better !)

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

What about higher dimensions ? (need smaller σ . . .)
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How to make theoretical progress ?

Consider diffusion limits !

Analogy : if {Xn} is simple random walk, and Zt = d−1/2Xdt

(i.e., we speed up time, and shrink space), then as d → ∞,
the process {Zt} converges to Brownian motion.

Theorem [Roberts, Gelman, Gilks, AAP 1994] :
If {Xn} is a Metropolis algorithm in high dimension d, with
Q(·) = N(0, `

2

d Id), and Zt = d−1/2X
(1)
dt , then under “certain

conditions” on π(·), the process {Zt} converges to a diffusion.

(8/22)



More precisely, as d → ∞, Zt = d−1/2X
(1)
dt converges to a

Langevin diffusion which satisfies :

dZt = h(`)1/2dBt +
1
2
h(`)∇ log π(Zt) dt ,

where
speed = h(`) = 2 `2 Φ(−Cπ`/2)

and
acceptance rate ≡ A(`) = 2 Φ(−Cπ`/2) .

(Here Cπ depends on π(·), and Φ(x) =
∫ x
−∞

e−u2/2
√

2π
du.)

Key point : algorithm’s speed h(`) is explicitly related to its
asymptotic acceptance rate A(`).
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Lots of information here !
• The speed h(`) is related to the acceptance rate A(`).
• To optimise the algorithm, we should maximize h(`).
• The maximization is easy : `opt

.= 2.38/Cπ.
• Then we can compute that : A(`opt)

.= 0.234.

So, for Q(·) = N(0, σ2Id), it is optimal to choose

σ2 =
`2opt
d

=
(2.38)2

(Cπ)2d
,

which leads to an acceptance rate of 0.234.

Clear, simple rule – good !

(Also shows algorithm’s running time is O(d).) (10/22)



What are these “conditions” on π ?

Original result : π(x) =
∏d
i=1 f(xi) for fixed f (i.i.d.).

Very restrictive, artificial condition.

Some generalizations (Bédard, AAP 2007) :
π(x) =

∏d
i=1 θi(d) f(θi(d)xi), where certain {θi(d)} repeat

more and more as d → ∞. More flexible ! (Also, for certain
other cases, 0.234 is no longer optimal : Bédard, SPA 2008.)

Anyway, 0.234 is often nearly optimal, even if the theorem
conditions are not satisfied. (“robust”)

But does acceptance rate tell us everything ?
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Example #3 : π = N(0,Σ) in dimension 20

First try : Q(·) = N(0, I20) (acc rate = 0.006)

Horrible : Σ11 = 24.54, E(X2
1 ) = 1.50.
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Second try : Q(·) = N
(

0, (0.0001)2I20

)
(acc=0.892)

Also horrible : Σ11 = 24.54, E(X2
1 ) = 0.0053.
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Third try : Q(·) = N
(

0, (0.02)2I20

)
(acc=0.234)

Still poor : Σ11 = 24.54, E(X2
1 ) = 3.63.
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Fourth try : Q(·) = N
(

0, [(2.38)2/20] Σ
)

(acc=0.263)

Much better : Σ11 = 24.54, E(X2
1 ) = 25.82.
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Optimal Proposal Covariance

Theorem [Roberts and R., Stat Sci 2001] :
Under certain conditions on π(·), the optimal Metropolis al-
gorithm Gaussian proposal distribution as d→∞ is

Q(·) = N
(

0, ((2.38)2/d) Σ
)
.

(NotN(0, σ2Id) . . .) Furthermore, with this choice, the asymp-
totic acceptance rate is again 0.234.

And, optimal / nearly optimal for many other high-dimensional
densities, too.

But this only helps if Σ is known !
What if it isn’t ? ? (16/22)



How to use this result if Σ is unknown ?

Use adaptive MCMC ! (Haario et al., Bernoulli 2001)

• Replace Σ by the empirical estimator Σn.

• Hope that for large n, we have Σn ≈ Σ.

• Then N
(

0, ((2.38)2/d)Σn
)
≈ N

(
0, ((2.38)2/d)Σ

)
.

• So, use this proposal instead !

Are we allowed to do this ? ? (Subtle, because the process is
no longer Markovian.)

• In examples, it usually works well . . . (next page)

• But not always . . . [APPLET]
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Good adaptation in dimension 200 . . .
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Is Adaptive MCMC Valid ? ?

Theorem [Roberts and R., J Appl Prob 2007] : Yes, any adap-
tive MCMC converges asymptotically to π(·), assuming :
1. “Diminishing Adaptation” : Adaption chosen so that

lim
n→∞

sup
x∈X

sup
A⊆X

|PΓn+1(x,A)− PΓn
(x,A)| = 0 (in prob.)

2. “Containment” : Times to stationary from Xn, if we fix
γ = Γn, remain bounded in probability as n→∞. [Technical
condition. Satisfied e.g. under compactness and continuity.]

Meanwhile, in applications, adaption often leads to signifi-
cant speed-ups, even in hundreds of dimensions (Roberts and
R., JCGS 2009 ; Richardson, Bottolo, R., Valencia 2010).
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Another application : Simulated Tempering

Simulated Tempering : replace π by a family {πβi}mi=1, with
0 ≤ βm < βm−1 < . . . < β0 = 1.
Here πβm is the “hot” distribution (easily sampled).
And πβ0 = π is the “cold” distribution (the distribution of
interest, but hard to sample).
Hope the algorithm can move efficiently between the different
πβi , so it can “benefit” from πβm to efficiently explore πβ0 .
Question : how to choose the values βi ?
Often chosen to be “geometric” : βi = ai for 0 < a < 1.
Theorem [Atchadé, Roberts, R., Stat & Comput 2010] : op-
timal to choose {βi} so that the asymptotic acceptance rate
for moves βi 7→ βi±1 is 0.234. (Not necessarily geometric !)
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Langevin Algorithms

If possible, it’s more efficient to use a non-symmetric pro-
posal distribution, inspired by Langevin diffusions :

Yn = Xn−1 + σ Zn +
σ2

2
∇ log π(Xn−1) .

Theorem [Roberts and R., JRSSB 1997] :
Optimal choice is now σ = ` d−1/6 (not σ = ` d−1/2), and
A(`opt)

.= 0.574 (not A(`opt)
.= 0.234).

In this case, the algorithm’s running time is O(d1/3), not
O(d), with optimal acceptance rate 0.574, not 0.234.
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Summary

• The Metropolis algorithm is very important.
• The optimisation of the algorithm can be crucial.
• Want acceptance rate far from 0, far from 1.
• Various theorems tell us how to optimise under certain

conditions : 0.234, N
(

0, (2.38)2Σ / d
)

, etc.

• Even if some information is unknown (e.g., Σ), can still
adapt towards the optimal choice ; valid if the adaption sat-
isfies “Diminishing Adaptation” and “Containment”.
• Can lead to tremendous speed-up in high dimensions.
• Application to computing rare tail probabilities of π(·) ? ?
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