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Motivation

Given some complicated, high-dimensional density function
T : X — [0,00), for some X C R* with d large.

(e.g. Bayesian posterior distribution)
Want to compute probabilities like :

[I(A) := /ATF(ZL') dz,

and /or expected values of functionals like :
E.(h) = / h(x)nm(z)dz.
X

Calculus 7 Numerical integration ?

Impossible! Typical 7 is something like ... (1/22)



Typical 7 : Variance Components Model
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with, say, K =19, d = 22.

High-dimensional ! Complicated ! What to do* (2/22)



Estimation from sampling : Monte Carlo

Can try to sample from 7, i.e. generate i.i.d.
Xl,XQ,...,XM ~ 7T
(meaning that P(X; € A) = [, (

Then can estimate by e.g.
| M
~ jjjgjiz)(
i=1

Good. But how to sample ? Often infeasible !
Instead ...
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Markov chain Monte Carlo (MCMC)

Define a Markov chain Xo, X1, Xo,..., such that for large n,
P(X,ecA)~ [, n(

(Just approximate . .. and not i.i.d.)

Still, hopefully for M > B > 1,

But how to define a simple Markov chain such that

P(X,€A) — /7?{1: dx
A
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The Metropolis Algorithm

m = target density (important! complicated! high-dim!)
Goal : obtain samples from 7.

The algorithm : forn =1,2,3, ...,
e YV, =X,_1+ Z,, where Z,, ~ @Q (i.i.d., symmetric)

W(Yn) )
W(Xn_l)

e o := min (1,
e with probability a, X, :=Y,, (“accept”)
e clse, with probability 1 — «, X, := X,,_1 (“reject”)

Assuming “irreducibility”, have P(X,, € A) — w(A).
Good !
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Example #1 : Java applet

7(+) simple distribution on X = {1,2,3,4,5,6}.
[Take (z) =0 for z ¢ X .|

Q(:) = Uniform{—1,1}. [APPLET]

Works.
But what if Q(-) = Uniform{—2, —1,1, 2}.
Or, Q(-) = Uniform{—~, —y+1,...,—1,1,2,...,~}.

Which ~ is best 7?7 (“optimise”)

Good 7 is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1.

(“Goldilocks Principle”)
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Example #2 : N(0,1)

Target 7(-) = N(0,1). Proposal Q(-) = N(0,0?). Which o ??
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= Z/ \ = o = %
= I-' --—12“:__;__!. = '“‘_-_ll.'— = D
' g’- = . =
= %‘-_J\- = rl—l"‘—:. = _‘_.}f.%._ — '.
— \ = S | / :
= =\ = — ==\ = J&——i\
F = AN /ST r 2 \ ,&_ R
- = - = I P ————
c=0.17 o=25"7 o=238"7
too small ! too big! (better!)

A.R. = 0.962 A.R. = 0.052 AR. =0.441

What about higher dimensions ? (need smaller o ...)
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How to make theoretical progress ?

Consider diffusion limits!

Analogy : if { X, } is simple random walk, and Z; = d—12X,,
(i.e., we speed up time, and shrink space), then as d — oo,
the process {Z;} converges to Brownian motion.

Theorem [Roberts, Gelman, Gilks, AAP 1994] :

If {X,,} is a Metropolis algorithm in high dimension d, with

Q() = N(0,L —14), and Z; = d~ 1/2Xc<lt), then under “certain
conditions” on 7(+), the process { Z; } converges to a diffusion.
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More precisely, as d — oo, Z; = d_l/QXc(li) converges to a

Langevin diffusion which satisfies :
1
dZ, = h(0)Y/2dB, + SOV logm(Z4) dt,
where

speed = h({) = 207 ®(—C,1/2)

and
acceptance rate = A(l) = 2®(—C,L/2).

—u2/2

(Here C, depends on 7(+), and ®(z) = [*__ e

du.)

Key point : algorithm’s speed h(¢) is explicitly related to its
asymptotic acceptance rate A(¢).
(9/22)




Lots of information here!
e The speed h(/) is related to the acceptance rate A(f).
e To optimise the algorithm, we should maximize h(¥).
e The maximization is easy : £opr = 2.38/C'.
e Then we can compute that : A(¢,,;) = 0.234.

So, for Q(-) = N(0,02%1,), it is optimal to choose

o lop _ (2:38)°
d (Cr)2d’

which leads to an acceptance rate of 0.234.
Clear, simple rule — good!

(Also shows algorithm’s running time is O(d).) (10/22)



What are these ‘“conditions” on 7?7

Original result : 7(x) = Hff:l f(x;) for fixed f (i.i.d.).

Very restrictive, artificial condition.

Some generalizations (Bédard, AAP 2007) :

T(x) = H?Zl 0;(d) f(0;(d) x;), where certain {6;(d)} repeat
more and more as d — co. More flexible! (Also, for certain
other cases, 0.234 is no longer optimal : Bédard, SPA 2008.)

Anyway, 0.234 is often nearly optimal, even if the theorem
conditions are not satisfied. (“robust”)

But does acceptance rate tell us everything ?

(11/22)



Example #3 : 7 = N(0.Y) in dimension 20

First try : Q(-) = N(0, I3g) (acc rate = 0.006)
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Horrible : X111 = 24.54, E(X?) = 1.50.
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Second try : Q(-) = N(O, (0.0001)2120) (acc=0.892)
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Also horrible : 311 = 24.54, E(X?%) = 0.0053.
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Third try : Q(-) = N(o, (0.02)2120) (acc=0.234)
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Still poor : 31 = 24.54, E(X?) = 3.63.
(14/22)



Fourth try : Q(-) = N(o, (2.38)2/20] 2) (acc=0.263)
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Much better : 317 = 24.54, E(X?) = 25.82.
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Optimal Proposal Covariance

Theorem [Roberts and R., Stat Sci 2001] :

Under certain conditions on 7(-), the optimal Metropolis al-
gorithm Gaussian proposal distribution as d — oo is

Q) = N(o, ((2.38)2/d) 2).

(Not N (0, 021;) ...) Furthermore, with this choice, the asymp-
totic acceptance rate is again 0.234.

And, optimal / nearly optimal for many other high-dimensional
densities, too.

But this only helps if X is known !
What if it isn’t 7 ? (16/22)



How to use this result if Y. is unknown ?

Use adaptive MCMC! (Haario et al., Bernoulli 2001)

e Replace X by the empirical estimator >,,.

e Hope that for large n, we have X, ~
e Then N(o, ((2.38)2/d)2n) ~ N(o, ((2.38)2/d)z).
e So, use this proposal instead !

Are we allowed to do this? 7 (Subtle, because the process is
no longer Markovian.)

e In examples, it usually works well ... (next page)

e But not always ... [APPLET]
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(Good adaptation in dimension 200 ...
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Is Adaptive MCMC Valid 7 ?

Theorem [Roberts and R.., J Appl Prob 2007] : Yes, any adap-
tive MCMC converges asymptotically to 7 (-), assuming :

1. “Diminishing Adaptation” : Adaption chosen so that

lim sup sup |Pr,.,,(z,A) — Pr,(z,A)| =0 (in prob.)
N—00 pex ACX
2. “Containment” : Times to stationary from X,,, if we fix
~v =TI',,, remain bounded in probability as n — oo. [Technical
condition. Satisfied e.g. under compactness and continuity.|

Meanwhile, in applications, adaption often leads to signifi-
cant speed-ups, even in hundreds of dimensions (Roberts and

R., JCGS 2009 ; Richardson, Bottolo, R., Valencia 2010).
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Another application : Simulated Tempering

Simulated Tempering : replace m by a family {Wﬁi m ., with
0< 0B <Bm-1<...<fy=1.
Here 77 is the “hot” distribution (easily sampled).

And 7P0 = 7 is the “cold” distribution (the distribution of
interest, but hard to sample).

Hope the algorithm can move efficiently between the different
7P, so it can “benefit” from 7°™ to efficiently explore 7.

Question : how to choose the values (3; 7

Often chosen to be “geometric” : 5; = a* for 0 < a < 1.

Theorem [Atchadé, Roberts, R., Stat & Comput 2010] : op-
timal to choose {G;} so that the asymptotic acceptance rate
for moves (§; — (;+1 is 0.234. (Not necessarily geometric!)
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Langevin Algorithms

If possible, it’s more efficient to use a non-symmetric pro-
posal distribution, inspired by Langevin diffusions :

2
Y, = X1+ 0 Zy + %V]ogﬂ(Xn_l) .

Theorem |[Roberts and R., JRSSB 1997] :

Optimal choice is now o = £d~'/6 (not ¢ = £d~'/?), and
A('gopt) = 0.574 (IlOt A(£0pt> = 0234)

In this case, the algorithm’s running time is O(d/?), not
O(d), with optimal acceptance rate 0.574, not 0.234.
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Summary

e The Metropolis algorithm is very important.

e The optimisation of the algorithm can be crucial.

e Want acceptance rate far from 0, far from 1.

e Various theorems tell us how to optimise under certain

conditions : 0.234, N(o, (2.38)2% /d), etc.

e Even if some information is unknown (e.g., ), can still
adapt towards the optimal choice ; valid if the adaption sat-
isfies “Diminishing Adaptation” and “Containment”.

e Can lead to tremendous speed-up in high dimensions.
e Application to computing rare tail probabilities of 7w(-) 7 ?
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