
Bayesian Computation via Markov chain Monte

Carlo

Radu V. Craiu

Department of Statistics

University of Toronto

Jeffrey S. Rosenthal

Department of Statistics

University of Toronto

(Version of June 6, 2013.)

1 Introduction

A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields

over 100,000 hits, and a general web search on Google yields 1.7 million hits. These

results stem largely from the ubiquitous use of these algorithms in modern computa-

tional statistics, as we shall now describe.

MCMC algorithms are used to solve problems in many scientific fields, includ-

ing physics (where many MCMC algorithms originated) and chemistry and computer

science. However, the widespread popularity of MCMC samplers is largely due to

their impact on solving statistical computation problems related to Bayesian infer-

ence. Specifically, suppose we are given an independent and identically distributed

(henceforth iid) sample {x1, . . . , xn} from a parametric sampling density f(x|θ), where

x ∈ X ⊂ Rk and θ ∈ Θ ⊂ Rd. Suppose we also have some prior density p(θ). Then

the Bayesian paradigm prescribes that all aspects of inference should be based on the

1

posterior density

π(θ|~x) =
p(θ)f(~x|θ)

∫
Θ p(θ)f(~x|θ)dθ(1)

where ~x = {x1, . . . , xn}. Of greatest interest are the posterior means of functionals

g : X → R, defined by

I =
∫

Θ
g(θ)π(θ|~x)dθ =

∫
Θ g(θ)p(θ)f(~x|θ)dθ
∫
Θ p(θ)f(~x|θ)dθ .(2)

Such expectations are usually impossible to compute directly, because of the integrals

that appear in the denominator of (1) and in (2). However, we can still study (2) as

long as we can sample from π. In the traditional Monte Carlo paradigm, we generate

an iid sample θ1, . . . , θM from π, and then estimate (2) using

ÎM =
1

M

M∑

i=1

g(θi).(3)

This estimate generally works well in cases where the iid sample θ1, . . . , θM can be

generated, and in particular ÎM → I with probability 1 as M → ∞.

However, when π is complicated and high-dimensional, classical methods devised

to draw independent samples from the distribution of interest are not implementable.

In this case, a Markov chain Monte Carlo (MCMC) algorithm proceeds by instead

constructing an updating algorithm for generating θt+1 once we know θt. MCMC

updating algorithms are constructed by specifying a set of transition probabilities for

an associated Markov chain (see e.g. (44; 43)). It then uses the realizations θ1, . . . , θM

obtained from the Markov chain as the Monte Carlo sample in (3), or more commonly

with the slight modification

ÎM =
1

M −B

M∑

i=B+1

g(θi).(4)

where B is a fixed non-negative integer (e.g. 1,000) indicating the amount of burn-in,

i.e. the number of initial samples that will be discarded due to being excessively biased

2

towards the (arbitrary) initial value θ0. If the Markov chain has π as an invariant

distribution, and if it satisfies the mild technical conditions of being aperiodic and

irreducible, then the ergodic theorem implies that with probability one, ÎM → I as

M → ∞ (see Section 8.1).

Now, unlike traditional Monte Carlo where the samples are independent, MCMC

samplers yield dependent draws. This makes the theoretical study of these algorithms

and the assessment of their speed of convergence and Monte Carlo variance much more

difficult to assess. A comprehensive evolution of the field can be traced through the

articles included in the volumes edited by (1) and (2) as well as the books devoted

to Monte Carlo methods in statistics, e.g. (3), (4), (5) and (6). We recognize that

for those scientists who are not familiar with MCMC techniques, but need them for

their statistical analysis, the wealth of information contained in the literature can be

overwhelming. Therefore, in this review we provide, in concise form, the ingredients

needed for using MCMC in most applications. Along the way, we will point the user

in need of more sophisticated methods to the relevant literature.

1.1 Example: Lupus Data

As a specific example, we present the lupus data which was first analyzed by (7),

and subsequently by (8) and (9). This data, presented in Table 1, contains disease

status for 55 patients of which 18 have been diagnosed with latent membranous

lupus, together with two clinical covariates, IgA and ∆IgG = IgG3− IgG4, that are

computed from their levels of immunoglobulin of type A and of type G, respectively.

In order to model the data generation process we need to formulate the sampling

distribution of the binary response variable. We can follow (7) and consider a probit

regression (PR) model, i.e. for each patient 1 ≤ i ≤ 55, we model the disease indicator

variables as independent

Yi ∼ Bernoulli(Φ(xT
i β)),(5)

3

Table 1: The number of latent membranous lupus nephritis cases (numerator), and

the total number of cases (denominator), for each combination of the values of the

two covariates.

IgA

∆IgG 0 0.5 1 1.5 2

-3.0 0/ 1 - - - -

-2.5 0/ 3 - - - -

-2.0 0/ 7 - - - 0/ 1

-1.5 0/ 6 0/ 1 - - -

-1.0 0/ 6 0/ 1 0/ 1 - 0/ 1

-0.5 0/ 4 - - 1/ 1 -

0 0/ 3 - 0/ 1 1/ 1 -

0.5 3/ 4 - 1/ 1 1/ 1 1/ 1

1.0 1/ 1 - 1/ 1 1/ 1 4/ 4

1.5 1/ 1 - - 2/ 2 -

4

where Φ(·) is the CDF of N(0, 1), xi = (1,∆IgGi, IgAi) is the vector of covariates,

and β is a 3 × 1 vector of parameters. We assume a flat prior p(β) ∝ 1 throughout

the paper.

For the PR model, the posterior is thus

πPR(~β|~Y , ~IgA, ~∆IgG) ∝
55∏

i=1

[
Φ(β0 + ∆IgGiβ1 + IgAiβ2)

Yi×

× (1 − Φ(β0 + ∆IgGiβ1 + IgAiβ2))
(1−Yi)

]
.(6)

We shall return to this example several times below.

1.2 Choice of MCMC Algorithm

Not all MCMC samplers are used equally. Ease of implementation (e.g. pre-existent

software), simplicity of formulation, computational efficiency and good theoretical

properties are all factors that contribute (not necessarily in this order) to an al-

gorithm’s successful and rapid dissemination. In this paper, we shall focus on the

most widely used MCMC samplers, including the Metropolis-Hastings algorithm (Sec-

tion 2), the Gibbs sampler (Section 3), and variable-at-a-time Metropolis (Section 4).

We shall also discuss optimising and adapting MCMC algorithms (Section 5), the

use of simulated tempering (Section 6), assessing MCMC errors (Section 7), and the

theoretical foundations of MCMC (Section 8).

2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm was developed by (10) and (11). It updates

the Markov chain state as follows. (For simplicity, we shall write the target (posterior)

distribution as simply π(θ).) Assume that the state of the chain at time t is θt. Then

the updating rule to construct θt+1 (i.e., the transition kernel for the MH chain) is

defined by the following two steps:

5

Step 1 A proposal ωt is drawn from a proposal density q(ω|θt);

Step 2 Set

θt+1 =




ωt with probability r

θt with probability 1 − r

where

r = min

{
1,
π(ωt)q(θt|ωt)

π(θt)q(ωt|θt)

}
.(7)

The acceptance probability (7) is independent of the normalizing constant for π (i.e.,

it does not require the value of the denominator in (1)), and is chosen precisely to

ensure that π is an invariant distribution, the key condition to ensure that ÎM → I

as M → ∞ as discussed above; see Section 8.2.

The most popular variant of the MH algorithm is the random walk Metropolis

(RWM) in which ωt = θt + ǫt where ǫt is generated from a spherically symmetric

distribution, e.g. the Gaussian case with ǫt ∼ N(0,Σ). Another common choice is

the independence sampler (IS) in which q(ω|θt) = q(ω), i.e. ωt does not depend on

the current state of the chain, θt. Generally, the RWM is used in situations in which

we have little idea about the shape of the target distribution and, therefore, we need

to meander through the parameter space. The opposite situation is one in which we

have a pretty good idea about the target π and we are able to produce a credible

approximation q which can be used as the proposal in the IS algorithm.

Modifications of these MH samplers include the delayed-rejection (12), multiple-

try Metropolis (13; 14), and reversible-jump algorithms (15; 16), among others.

In practice, one must decide which sampler to use and, maybe more importantly,

what simulation parameters values to choose. For instance, in the case of the RWM,

the proposal covariance matrix Σ plays a crucial role in the performance of the sam-

pling algorithm (17; 18).

6

2.1 Application to the Lupus Data

To see the effect of these choices in action, let us consider the lupus data under the PR

model formulation. The target distribution has density (6). Since we have little idea

of the shape of πPR, it will be hard to come up with a good independence proposal

distribution. Instead, we will use the RWM algorithm with a Gaussian proposal.

We illustrate using two possible choices for the variance-covariance matrix Σ of the

Gaussian proposal distribution: Σ1 = 0.6 I3 and Σ2 = 1.2 I3, where Id is the identity

matrix in Rd×d.

In Figure 1(a) we plot 5,000 samples for (β0, β1) that are obtained from the RWM

with proposal variance Σ1. The plot is superimposed on the two-dimensional projec-

tion of the contour plot for the density πPR. The contour plot used is obtained from

a large Monte Carlo sample produced by a state-of-the-art sampler and offers an ac-

curate description of the target. The two red lines mark the coordinates of the initial

value of the chain which has been chosen to be the maximum likelihood estimate for

β. One can see that the samples do not cover the entire support of the distribution.

Moreover, from the autocorrelation plots shown in Figure 1(b), we can see that the

chain is very “sticky”, i.e. there is strong dependence between the realizations of the

chain, despite having an acceptance rate of 39% which, as we will see in Section 5, is

usually considered reasonably high. One may be tempted to believe that the strong

dependence between the Monte Carlo draws is due to the proposal variance being too

small since sampling from a normal distribution with a small variance will result in

draws close to the mean.

We consider doubling the variance and use Σ2 = 1.2 I3 as the proposal’s covariance

matrix. The larger variance brings the acceptance rate down to 24%. Figure 1(c)

show the same plots as Figure 1(a) but for the sampler that uses Σ2. The chain seems

to travel further into the tails of the distribution, but the serial correlation remains

extremely high. Such a high autocorrelation implies that the 5K Monte Carlo sample

contains the same amount of information that would be contained in a much much

7

smaller sample of independent realizations. This reduction in effective sample size

is computationally wasteful, since we spend a lot of time collecting samples that are

essentially uninformative. In fact, under certain conditions (19) has shown that the

asymptotic variance of ÎM is σ2/M , where

σ2 = Varπ{g(θ)} + 2
∞∑

k=1

cov{g(θ1), g(θk+1)},(8)

which illustrates the importance of having small correlations between the successive

draws θt.

The high autocorrelation between the successive draws can be explained if we

consider the the strong posterior dependence between the parameters, as illustrated

by Figure 2 where we have plotted the samples obtained in pairs. The plots provide an

intuitive explanation for the poor mixing exhibited by the two RWM samplers, since

their proposals have independent components and, therefore, deviate significantly

from the target configuration.

We shall use these RWM algorithms for this lupus data to illustrate various MCMC

theoretical considerations in Section 8.4.

3 Gibbs Sampler

The Gibbs sampler is an algorithm that was first used by (20) in the context of

image restoration and, subsequently, (21) and (22) have recognized the algorithm’s

power for fitting statistical models. Assume that the vector of parameters θ ∈ Rd is

partitioned into s subvectors so that θ = (η1, . . . , ηs). Assume that the current state

of the chain is θ(t) = (η
(t)
1 , . . . , η(t)

s). The transition kernel for the Gibbs chain requires

updating, in turn, each subvector by sampling it from its conditional distribution,

given all the other subvectors. More precisely, step t + 1 of the sampler involves the

following updates:

η
(t+1)
1 ∼ π(η1|η(t)

2 , . . . , η(t)
s)

8

η
(t+1)
2 ∼ π(η2|η(t+1)

1 , η
(t)
3 , . . . , η(t)

s)

.

η(t+1)
s ∼ π(ηs|η(t+1)

1 , η
(t+1)
2 , . . . , η

(t+1)
s−1).(9)

Cycling through the blocks in a fixed order defines the Gibbs sampler with de-

terministic scan; an alternative implementation involves a random scan in which the

next block to be updated is sampled at random and each ηj has strictly positive

probability to be updated. In general, it is not known whether the Gibbs sampler

with random scan is more efficient than deterministic scan or not (23; 24; 25).

An obvious choice for the blocks η is obtained when s = d and ηj = θj for

1 ≤ j ≤ d. However, whenever possible it is recommended to have the blocks η

containing as many individual components of θ as possible while being able to sample

from the conditional distributions in (9) (see the analysis of 26).

3.1 Application to the Lupus Data

A direct implementation of the Gibbs sampler is not possible because, as can be seen

from (6), the conditional distribution of βj given the data and all the other param-

eters cannot be sampled directly. However, this difficulty dissolves once we expand

the model specification to include auxiliary variables (see also 27). Specifically, for

each i ∈ {1, . . . , 55}, consider the latent variables ψi ∼ N(xT
i β, 1), of which only the

sign Yi is observed i.e. Yi = 1(ψi > 0). Let X be the n × p matrix whose ith row is

xi and ψ = (ψ1, . . . , ψn). After introducing ψ, we notice that the conditional distri-

butions of β|ψ,X and ψ|β, Y can be sampled directly. Alternatively, sampling from

the two conditional distributions will yield draws from the conditional distribution

p(β, ψ|X, Y) whose marginal, in β, is the target π(β). The Monte Carlo approach

makes the marginalization easy since all we need to do is drop the ψ’s from the

samples {(βt, ψt); 1 ≤ t ≤ M} drawn from p(β, ψ|X, Y) and retain only the samples

{βt; 1 ≤ t ≤ m} as draws from the target π(β). This computational strategy of

9

expanding the model so that conditional distributions are available in closed form is

known as the Data Augmentation (DA) algorithm (22).

The Gibbs sampler (or DA) for the lupus data alternates between sampling from

(I) β|ψ,X ∼ N(β̃, (XTX)−1),

with β̃ = (XTX)−1XTψ and from

(II) ψi|β, Yi ∼ TN(xT
i β, 1, Yi),

where TN(µ, σ2, Y) is N(µ, σ2) truncated to be positive if Y = 1 and negative if

Y = 0. In this formulation, η1 = (β0, β1, β2)
T and ηj+1 = ψj for every j = 1, . . . , n.

The Gibbs sampling does not require tuning and does not reject any of the samples

produced. Despite these apparent advantages, the Gibbs sampler is not always pre-

ferred over the MH. For instance, in the probit (PR) model considered here, the chain

is slowly moving across the parameter space. In Figure 3(a) we plot the trajectory of

the chain for the first 300 samples when started at the MLE. The sluggishness sug-

gested by Figure 3(a) is confirmed by the autocorrelation plots which show strong and

persistent serial dependence for each parameter (Figure 3(b)). This is not necessarily

a characteristic of Gibbs samplers. For the lupus data, the high posterior dependence

between parameters makes it a difficult target, given that the Gibbs sampler will

always attempt to move the chain in directions that are parallel to the coordinate

axes.

The DA algorithms have been studied extensively due to their intensive use in

statistical modelling, e.g. linear and non-linear mixed models and mixture models

where the auxiliary latent variables are natural extensions of the model specification.

(28) and (29) propose modified versions of the vanilla DA that are designed to break

the serial dependence between the Monte Carlo samples and have the potential to

drastically improve the mixing of the Markov chain. We refer the reader to (7) for a

marginal DA implementation for the lupus data.

10

4 Variable-at-a-time Metropolis

It is possible to combine Metropolis-style moves with Gibbs-style variable-at-a-time,

to create a variable-at-a-time Metropolis algorithm. (This algorithm is also sometimes

called Metropolis-within-Gibbs, but actually this was the original form of the algorithm

used by (10).)

Assume again that the vector of parameters θ ∈ Rd is partitioned into s subvectors

so that θ = (η1, . . . , ηs). Variable-at-a-time Metropolis then proceeds by proposing

to move just one coordinate at a time (or a subset of coordinates), leaving all the

other coordinates fixed. In its most common form, we might try to move the ith

coordinate by proposing a new state ωt+1, where ωt+1,j = ηt,j for all j 6= i, and where

ηt,i ∼ N(ηt,i, σ
2). (Here ωt+1,j is the jth coordinate of ωt+1, etc.) We then accept the

proposal ωt+1 according to the Metropolis-Hastings rule (7).

As with the Gibbs sampler, we need to choose which coordinate to update each

time, and again can proceed either by choosing coordinates in the sequence 1, 2, . . . , d,

1, 2, . . . (“systematic-scan”), or by choosing the coordinate uniformly from {1, 2, . . . , d}
each time (“random-scan”). (In this formulation, one systematic-scan iteration is

roughly equivalent to d random-scan ones.)

The variable-at-a-time Metropolis algorithm is often a good generic choice, since

unlike the full Metropolis algorithm it does not require moving all coordinates at once

(which can be very challenging to do efficiently), and unlike Gibbs sampling it does

not require being able to sample from the full conditional distributions (which could

be infeasible).

4.1 Application to the Lupus Data

We now try using a componentwise RWM for updating each coordinate of β. Specif-

ically, at time t + 1, for each coordinate h, the proposal ωt+1,h is generated from

11

N(βt,h, σ
2
h) and is accepted with probability

min
{
1, π(ωt+1,h|βt,[−h])/π(βt,h|βt,[−h])

}
,(10)

where βt,[−h] is the vector of the most recent updates for all the components of β except

βh. Note that the ratio involved in (10) is identical to π(ωt+1,h, βt,[−h])/π(βt,h, βt,[−h])

and it can be computed in closed form since it is independent of any unknown nor-

malizing constants.

We have implemented the algorithm using, σ = (
√

5, 5, 2
√

2). These values were

chosen so that the acceptance rates for each component are between 20-25%. Fig-

ure 3(c) shows the samples obtained and Figure 3(d) presents the autocorrelation

functions. Notice that the serial dependence is smaller than in the full MH imple-

mentation, but remains high. Also, the samples cover most of the support of the

posterior density π. In the one-at-a-time implementation, we are no longer forcing

all components of the chain to move together at the same time, and this seems to

improve the spread of the resulting sample.

5 Optimising and Adapting the RWM Algorithm

Consider the RWM algorithm, with proposals ωt = θt + ǫt where ǫt ∼ N(0,Σ) (iid).

Although this algorithm is very specific, it still allows for great flexibility in the choice

of proposal convariance matrix Σ. This raises the question of what choice of Σ leads

to the best performance of the algorithm, as we now discuss.

5.1 Optimal Scaling

We first note that if the elements on the diagonal of Σ are very small, then the

proposals ωt will usually be very close to the previous states θt. This means that the

proposals will usually be accepted, but the chain will still hardly move at all, which

is clearly sub-optimal. At the other extreme, if Σ is very large, then the proposals ωt

12

will usually be very far from the previous states θt. This means (especially in high

dimensions) that they are quite likely to be out in the tails of the target density π

in at least one coordinate, and thus to have much lower π values. This implies that

they will almost always be rejected, which is again clearly sub-optimal.

It follows that the optimal scaling is somewhere in between these two extremes.

That is, we want our proposal scaling to be not too small, and not too large, but

rather “just right” (this is sometimes called the Goldilocks principle).

In a pioneering paper, (17) took this a step further, proving that (in a certain

idealised high-dimensional limit, at least) the optimal acceptance rate (i.e., limiting

fraction of proposed moves which are accepted) is equal to the specific fraction 0.234,

or about 23%. On the other hand, any acceptance rate between about 15% and 50%

is still fairly efficient (see e.g. Figure 3 of (18)).

Later optimal scaling results obtained by (18) and (30) indicate that (again, in a

certain idealised high-dimensional limit, at least) the optimal proposal covariance Σ

should be chosen to be proportional to the true covariance matrix of the target distri-

bution π (with the constant of proportionality chosen to achieve the 0.234 acceptance

rate).

5.2 Adaptive MCMC

Unfortunately, one generally has little idea about the true covariance of π at the

beginning of the simulation. This makes it difficult or impossible to directly apply

the optimal scaling results of the previous section. One possible approach is to first

perform a number of exploratory MCMC runs to get an idea about the geography

of the target’s importance regions, and then use this knowledge to tune the proposal

to be approximately optimal. However, this approach requires re-starting the chain

multiple times, with each run being used to tune different subsets of the simulation

parameters. This process can be lengthy and onerous especially in high dimensional

spaces, and generally has very limited success in complex models.

13

Alternatively, one can build upon the recent advances in Adaptive MCMC (AM-

CMC) where the proposal distribution is changed on the go and continuously at any

time t using the information contained in the samples obtained up to that time (see

e.g. 31; 32; 33; 34). Such an approach does not require re-starting of the chain, and

can be made to be fully automatic. On the other hand, it requires careful theoretical

analysis since, by using the past realizations of the chain (and not only the current

state), the process loses its Markovian property and asymptotic ergodicity must be

proven on a case-by-case basis. However, proving the validity of adaptive samplers

has been made easier by the general frameworks developed by e.g. (35) and (36).

5.3 Application to the Lupus Data

We have implemented the adaptive RWM proposed by (31) (see also (32)) in which

at each time t > 1000, we use for Σ in the Gaussian proposal the approximation

Σt =
(2.4)2

3
SamV art + ǫI3,(11)

where, ǫ = 0.01 and SamV art is the sample variance of all samples drawn up to time

t − 1. This is an attempt to approximately mimic the theoretical optimal scaling

results discussed in Section 5.1 above; indeed if SamV art happened to actually equal

the true covariance matrix of π, and if ǫ = 0, then (11) would indeed be the optimal

proposal covariance. In Figure 5 we show the same plots as for Figures 1(a)-1(d).

The reduction in serial autocorrelation is apparent. For instance, the mean, median,

lower and upper quartiles for the autocorrelations computed up to lag 200 equal

(0.537, 0.513, 0.377, 0.664) for the RWM sampler with Σ2, and equal the much smaller

values (0.065, 0.029, 0.007, 0.059) for the adaptive RWM.

14

6 Simulated Tempering

Particular challenges arise in MCMC when the target density π is multi-modal, i.e.

has distinct high-probability regions which are separated by low-probability barriers

which are difficult for the Markov chain to traverse. In such cases, it is often easy for

a simple MCMC algorithm like RWM to explore well within any one of the modal

regions, but it may take unfeasibly long for the chain to move between modes. This

leads to extremely slow convergence, and very poor resulting estimates.

The idea of simulated tempering is to “flatten out” the distribution into related

distributions which have less pronounced modes and hence can be more easily sam-

pled. If done carefully, this flattening out can be compensated for, to ultimately yield

good estimates for expected values from the original target density π, as we now

explain.

Specifically, simulated tempering requires a sequence π1, π2, . . . , πm of target den-

sities, where π1 = π is the original density, and πτ is flatter for the larger-τ distribu-

tions. (The parameter τ is usually referred to as the “temperature”; then π1 is the

“cold” density, and πτ for larger τ are called the “hot” densities.) These different

densities can then be combined to define a single joint density π on Θ×{1, 2, . . . , m},
defined by π(θ, τ) = 1

m
πτ (θ) for 1 ≤ τ ≤ m and θ ∈ Θ. (It is also possible to use

other weights besides the uniform choice 1
m

.)

Simulated tempering then uses π to define a joint Markov chain (θ, τ) on Θ ×
{1, 2, . . . , m}, with target density π. In the simplest case, this chain is a version

of variable-at-a-time Metropolis which alternates (say) between spatial moves which

propose (say) θ′ ∼ N(θ, σ2
θ) and then accept with the usual Metropolis probabil-

ity min
(
1, π(θ′,τ)

π(θ,τ)

)
= min

(
1, πτ (θ′)

πτ (θ)

)
, and temperature moves which propose (say)

τ ′ = τ ± 1 (prob 1
2

each) and then accept with the usual Metropolis probability

min
(
1, π(θ,τ ′)

π(θ,τ)

)
= min

(
1, πτ ′(θ)

πτ (θ)

)
.

As usual for Metropolis algorithms, this chain should converge in distribution to

15

the density π. But of course, our interest is in the original density π = π1, not in π.

The genius of simulated tempering is that in the end, we only “count” those samples

corresponding to τ = 1. That is, once we have a good sample from π, then we simply

discard all the sample values corresponding to τ 6= 1, and what remains is then a

good sample from π, as we now explain.

6.1 A Simple Example

For a specific example, suppose the target density is given by π(θ) = 1
2
N(0, 1; θ) +

1
2
N(20, 1; θ), i.e. of a mixture of the standard normal densityN(0, 1; θ) and the normal

density N(20, 1; θ) with mean 20 and variance 1. This chain is highly multimodal

(Figure 6(a)), leading to very poor mixing of ordinary RWM (Figure 7(a)).

On the other hand, if πτ (θ) = 1
2
N(0, τ 2; θ) + 1

2
N(20, τ 2; θ), i.e. a mixture of two

normal densities with means 0 and 20 but now with variances τ 2 instead of 1, then

π1 = π is the original target density, but πτ gets flatter for larger τ (Figures 6(a),

6(b), 6(c)).

This allows us to define a joint simulated tempering chain on π (with proposal

scaling σθ = 1, say), and indeed that chain mixes much faster due to the flattened

higher-temperature distributions (Figure 7(b)).

We can then identify the θ values corresponding to τ = 1 in this faster-mixing

joint chain, to get a very good sample from π1 = π (Figure 7(c)). Then, like with all

Monte Carlo sampling, a good sample from π allows us to compute good estimates

for expected values I = E(g) for functionals g of interest.

6.2 Choosing the Tempered Distributions

Simulated tempering often works quite well, but it raises the question of how to find

appropriate tempered distributions πτ . Usually we won’t “know” convenient choices

like πτ = 1
2
N(0, τ 2) + 1

2
N(20, τ 2) above, so we require more generic choices.

16

One promising approach is to let the hotter densities πτ (θ) correspond to taking

smaller and smaller powers of the original target density π(θ), i.e. to let πτ (θ) =

cτ (π(θ))1/τ for appropriate normalising constant cτ . (It is common to write β = 1/τ ,

and refer to β as the inverse temperature.) This formula guarantees that π1 = π,

and that πτ will be flatter for larger τ (since small positive powers move all positive

numbers closer to 1), which is precisely what we need.

As a specific example, if it happened that π(θ) is the density of N(µ, σ2), then

cτ (π(θ))1/τ would be the density of N(µ, τσ2). This is indeed a flatter density, similar

to the simple example above, which confirms that this is a promising approach.

One problem with this approach is the following. With this formula, if we propose

to move τ to τ ′, then we should accept this proposal with probability

min
(
1,

πτ ′(θ)

πτ (θ)

)
= min

(
1,

cτ ′

cτ
(π(θ))(1/τ ′)−(1/τ)

)
.

This formula explicitly depends on the normalising constants cτ and cτ ′ , i.e. they do

not “cancel” as for ordinary RWM. This is quite problematic since the cτ are usually

unknown and infeasible to calculate. So, what can be done?

6.3 Parallel Tempering

One idea is to use parallel tempering, also sometimes called Metropolis-Coupled MCMC

(MCMCMC). In this algorithm, the state space is Θm, corresponding to m dif-

ferent chains each with its own value of θ. So, the state at time t is given by

θt = (θt1, θt2, . . . , θtm). The intuition is that each θtτ is “at” its own temperature

τ , i.e. converging towards its own target density πτ . The overall target density is

now π(θ) = π1(θ1) π2(θ2) . . . πm(θm), i.e. the density which makes each coordinate of

θ independent and following its “own” temperature’s density.

The algorithm can then update (for any 1 ≤ τ ≤ m) the chain θt−1,τ , at tempera-

ture τ , by proposing (say) θ′t,τ ∼ N(θt−1,τ , σ
2), and then accepting this proposal with

the usual Metropolis probability min
(
1,

πτ (θ′t,τ)

πτ (θt−1,τ)

)
.

17

Crucially, the chain can also choose temperatures τ and τ ′ (say, each chosen uni-

formly from {1, 2, . . . , m}), and then propose to “swap” the values θn,τ and θt,τ ′ . This

proposal will then be accepted with its usual Metropolis probability, min
(
1,

πτ (θt,τ ′) πτ ′(θt,τ)

πτ (θt,τ) πτ ′(θt,τ ′)

)
.

The beauty of parallel tempering is that now the normalising constants do indeed can-

cel. That is, if πτ (θ) = cτ (π(θ))1/τ , then the acceptance probability becomes:

min
(
1,

cτπ(θt,τ ′)1/τ cτ ′π(θt,τ)
1/τ ′

cτπ(θt,τ)1/τ cτ ′π(θt,τ ′)1/τ ′

)
= min

(
1,

π(θt,τ ′)1/τ π(θt,τ)
1/τ ′

π(θt,τ)1/τ π(θt,τ ′)1/τ ′

)
.

So, the values of cτ and cτ ′ are not required to run the algorithm.

As a first test, we can apply parallel tempering to the above simple example, again

with πτ (θ) = 1
2
N(0, τ 2; θ) + 1

2
N(20, τ 2; θ) for τ = 1, 2, . . . , 10. We see that parallel

tempering again works pretty well in this case (Figure 7(d)).

Of course, in this simple example the normalising constants were known, so paral-

lel tempering wasn’t really required. However, in many applications the normalising

constants are unknown, in which case parallel tempering is often a very useful sam-

pling method.

7 Assessing MCMC Errors

When considering any statistical estimation procedure, an important issue is the

amount of uncertainty in the estimate, e.g. some measure of its standard error. With

conventional Monte Carlo as in (3) where the {θi} are iid, the standard error is of

course given by 1√
M

ŜD(g(θ)), where ŜD(g(θ)) is the usual estimate of the standard

deviation of the distribution of the g(θi). However, with MCMC there is usually ex-

tensive serial correlation in the samples θi, so the usual iid-based estimate of standard

error does not apply (an exception is the class of so-called perfect sampling algorithms,

see for example, (37) or (38), but they are hard to adapt for Bayesian computation).

Indeed, the standard error for MCMC is usually both larger than in iid case (due to

the correlations), and also harder to quantify.

18

The simplest way to estimate standard error from an MCMC estimate is to re-run

the entire Markov chain over again, a number of times, using the exact same values

of run length M and burn-in B as in (4), but started from different initial values θ0

drawn from the same “overdispersed” (i.e., well spread-out) initial distribution. This

leads to a sequence of iid estimates of the target expectation I, and standard errors

from this sequence of estimates can then be computed in the usual iid manner. (We

shall illustrate this in Section 8.4 below, for the RWM algorithms for the lupus data

presented in Section 2.1 above.)

However, such a procedure is often too inefficient, leading to the question of how

to estimate standard error from a single run of a single Markov chain. Specifically,

we would like to estimate v ≡ Var
(

1
M−B

∑M
i=B+1 g(θi)

)
.

7.1 Variance Estimate

To estimate the variance of v above, let g(θ) = g(θ)−E(g), so E(g) = 0. And, assume

that B is large enough that θi ≈ π for i > B. Then, writing ≈ to mean “equal in the

limit as M → ∞”, we compute that:

v ≈ E
[((1

M − B

M∑

i=B+1

g(θi)
)
− E(g)

)2]
= E

[(1

M −B

M∑

i=B+1

g(θi)
)2]

=
1

(M − B)2

[
(M − B)E(g(θi)

2) + 2(M − B − 1)E(g(θi)g(θi+1))

+2(M −B − 2)E(g(θi)g(θi+2)) + . . .
]

≈ 1

M −B

(
E(g(θi)

2) + 2 E(g(θi)g(θi+1)) + 2 E(g(θi)g(θi+2)) + . . .
)

=
1

M − B

(
Varπ(g) + 2 Covπ(g(θi)g(θi+1)) + 2 Covπ(g(θi)g(θi+2)) + . . .

)

=
1

M − B
Varπ(g)

(
1 + 2 Corrπ(g(θi), g(θi+1)) + 2 Corrπ(g(θi), g(θi+2)) + . . .

)

≡ 1

M −B
Varπ(g)(ACT) = (iid variance) (ACT) ,

19

where “iid variance” is the value for the variance that we would obtain if the samples

{θi} were in fact iid, and

ACT = 1 + 2
∞∑

k=1

Corrπ

(
g(θ0), g(θk)

)
≡ 1 + 2

∞∑

k=1

ρk =
∞∑

k=−∞
ρk = 2

(∞∑

k=0

ρk

)
− 1

is the factor by which the variance is multiplied due to the serial correlations from

the Markov chain (sometimes called the “integrated auto-correlation time”). Here

“Corrπ” means the theoretical correlation that would arise from a sequence {θi}∞i=−∞

which was in stationarity (so each θi had density π) and which followed the Markov

chain transitions; this in turn implies that the correlations are a function of the time

lag between the two variables, and in particular ρ−k = ρk as above. The standard

error is then, of course, given by se =
√
v = (iid-se)

√
ACT.

Now, both the iid variance, and the quantity ACT, can be estimated from the

sample run. (For example, R’s built-in function “acf” automatically computes the

lag correlations ρk. Note also that when computing ACT in practice, we don’t sum

over all k, just until, say, |ρk| < 0.05 or ρk < 0, since for large k we should have ρk ≈ 0

but the estimates of ρk will always contain some sampling error.) This provides a

method of estimating the standard error of your sample. It also provides a method of

comparing different MCMC algorithms, since usually ACT ≫ 1, and “better” chains

would have smaller values of ACT. In the most extreme case, one sometimes even

tries to design “antithetic” chains for which ACT < 1 (see 8; 9; 39; 40; 41).

7.2 Confidence Intervals

Suppose we estimate u ≡ E(g) by the quantity e = 1
M−B

∑M
i=B+1 g(θi), and obtain

an estimate e and an approximate variance (as above) v. Then what is, say, a 95%

confidence interval for u?

Well, if a central limit theorem (CLT) applies (as discussed in Section 8 below),

then for large M − B, we have the normal approximation that e ≈ N(u, v). It then

20

follows as usual that (e − u) v−1/2 ≈ N(0, 1), so P(−1.96 < (e − u) v−1/2 < 1.96) ≈
0.95, so P(−1.96

√
v < e−u < 1.96

√
v) ≈ 0.95. This gives us our desired confidence

interval: with prob 95%, the interval (e−1.96
√
v, e+1.96

√
v) will contain u. (Strictly

speaking, we should use the “t” distribution, not normal distribution. But if M −B

is at all large, then that doesn’t really matter, so we will ignore this issue for now.)

Such confidence intervals allow us to more appropriately assess the uncertainty of our

MCMC estimates (e.g. 42).

The above analysis raises the question of whether a CLT even holds in the Markov

chain setting. This and other questions will be answered when we consider the theory

of MCMC in the following section.

8 Theoretical Foundations of MCMC

We close with some theoretical considerations about MCMC. Specifically, why does

MCMC work? The key is that the distribution of θn converges in various senses to

the target distribution π(·). This follows from basic Markov chain theory, as we now

discuss.

8.1 Markov Chain Convergence

A basic fact about Markov chains is that if a Markov chain is “irreducible” and

“aperiodic”, with “stationarity distribution” π, then θt converges in distribution to π

as t→ ∞. More precisely we have the following (see, e.g. 43; 44; 45; 46):

Theorem. If a Markov chain is irreducible, with stationarity probability density π,

then for π-a.e. initial value θ0,

(a) if g : Θ → R with E(|g|) < ∞, then lim
n→∞

1
n

∑n
i=1 g(θi) = E(g) ≡ ∫

g(θ) π(θ) dθ;

and

(b) if the chain is also aperiodic, then furthermore lim
t→∞

P(θt ∈ S) =
∫
S π(θ) dθ for all

21

measurable S ⊆ Θ.

We now discuss the various conditions of the theorem, one at a time.

Being irreducible means, essentially, that the chain has positive probability of

eventually getting from anywhere to anywhere else. In the discrete case, we can

define irreducibility as saying that for all i, j ∈ Θ there is t ∈ N such that P(θt =

j | θ0 = i) > 0. In the general case, this definition won’t do, since the probability of

hitting any particular state is usually zero. Instead, we can define irreducibility (or, φ-

irreducibility) as saying that there is some reference measure φ such that for all ζ ∈ Θ,

and for all A ⊆ Θ with φ(A) > 0, there is t ∈ N such that P(θt ∈ A | θ0 = ζ) > 0.

This condition is usually satisfied for MCMC (aside from certain rare cases where the

state space consists of highly disjoint pieces), and is generally not a concern.

Being aperiodic means that there are no forced cycles, i.e. that there do not exist

disjoint non-empty subsets Θ1,Θ2, . . . ,Θd ⊆ Θ for some d ≥ 2 such that P (θt+1 ∈
Θi+1 | θt = ζ) = 1 for all ζ ∈ Θi (1 ≤ i ≤ d− 1), and P (θt+1 ∈ Θ1 | θt = ζ) = 1 for all

ζ ∈ Θd. This virtually always holds for MCMC, e.g. it holds if P (θt+1 = ζ | θt = ζ) > 0

as for the Metropolis algorithm (due to the positive probability of rejection), or if

doing two iterations is sometimes equivalent to doing just one iteration as for the

Gibbs sampler, or if the transition probabilities have positive densities throughout Θ

as is often the case. In short, we have never known aperiodicity to be a problem for

MCMC.

The condition that the density π be stationary for the chain is the most subtle

one, as we discuss next.

8.2 Reversibility and Stationarity of Markov Chains

For ease of notation we focus in this section on discrete Markov chains, though the

general case is similar upon replacing probability mass functions by measures and

sums by integrals. We thus let π be a probability mass function on Θ, and assume

22

for simplicity that π(θ) > 0 for all θ ∈ Θ. We also let P (i, j) = P(θ1 = j | θ0 = i) be

the Markov chain’s transition probabilities.

We say that π is stationary for the Markov chain if it is preserved under the

chain’s dynamics, i.e. if it has the property that whenever θ0 ∼ π (meaning that

P(θ0 = i) = π(i) for all i ∈ Θ), then also θ1 ∼ π (i.e., P(θ1 = i) = π(i) for all i ∈ Θ).

Equivalently,
∑

i∈Θ π(i)P (i, j) = π(j) for all j ∈ Θ. Intuitively this means that the

probabilities π are left invariant by the chain, which explains why the chain might

perhaps converge to those probabilities in the limit.

We now show that reversibility is automatically satisfied by Metropolis-Hastings

algorithms; indeed this explains why the Metropolis acceptance probabilities are de-

fined as they are. Indeed, let q(i, j) = P(ωt = j | θt−1 = i) be the proposal distribu-

tion, which is then accepted with probability min
(
1, π(j) q(j,i)

π(i) q(i,j)

)
. Then, for i, j ∈ Θ

with i 6= j, we have that

P (i, j) = q(i, j) min
(
1,

π(j) q(j, i)

π(i) q(i, j)

)
.

It follows that

π(i)P (i, j) = π(i) q(i, j) min
(
1,

π(j) q(j, i)

π(i) q(i, j)

)
= min (π(i) q(i, j), π(j) q(j, i)) .

By inspection, this last expression is symmetric in i and j. It follows that π(i)P (i, j) =

π(j)P (j, i) for all i, j ∈ Θ (at least for i 6= j, but also case i = j is trivial). This

property is described as π being reversible for the chain. (Intuitively, it implies that if

θ0 ∼ π, then P(θ0 = i, θ1 = j) = P(θ0 = j, θ1 = i), i.e. we have the same probability

of starting at i and then moving to j or vice-versa, which is also called being “time

reversible”.)

The importance of reversibility is that it in turn implies stationarity of π. Indeed,

using reversibility, we compute that if θ0 ∼ π, then:

P(θ1 = j) =
∑

i∈Θ

P(θ0 = i)P (i, j) =
∑

i∈Θ

π(i)P (i, j) =
∑

i∈Θ

π(j)P (j, i)

23

= π(j)
∑

i∈Θ

P (j, i) = π(j) ,

i.e. θ1 ∼ π too, so π is stationary.

We conclude that the stationarity condition holds automatically for any Metropolis-

Hastings algorithm. Hence, assuming irreducibility and aperiodicity (which, as noted

above, are virtually always satisfied for MCMC), the above Theorem applies and

establishes the asymptotic validity of MCMC.

8.3 MCMC Convergence Rates

Write P t(ζ, S) = P[θt ∈ S | θ0 = ζ] for the t-step transition probabilities for the

chain, and let D(ζ, t) = ‖P t(ζ, ·) − Π(·)‖ ≡ supS⊆Θ |P t(ζ, S) − Π(S)| be a measure

(specifically, the total variation distance) of the chain’s distance from stationarity

after t steps, where Π(S) =
∫
S π(ζ) dζ is the target probability distribution. Then the

chain is called ergodic if limt→∞D(ζ, t) = 0 for π-a.e. ζ ∈ Θ, i.e. if the chain transition

probabilities P t(ζ, S) converge (uniformly) to Π as t → ∞, and indeed the above

theorem indicates that this is usually the case for MCMC. However, ergodicity alone

says nothing about how quickly this convergence occurs, i.e. what is the convergence

rate.

By contrast, a quantitative bound on convergence is an actual number t∗ such that

D(ζ, t∗) < 0.01, i.e. such that the chain’s probabilities are within 0.01 of stationary af-

ter t∗ iterations. (The cut-off value 0.01 is arbitrary, but has become fairly standard.)

We then sometimes say that the chain “converges in t∗ iterations”. Quantitative

bounds, when available, are the most useful, since they provide precise instructions

about how long an MCMC algorithm must be run. Unfortunately they are often dif-

ficult to establish for complicated statistical models, though some progress has been

made (e.g. 47; 48; 49; 50).

Halfway between these two extremes is geometric ergodicity, which is more useful

than plain ergodicity, but often easier to compute than quantitative bounds. A chain

24

is geometrically ergodic if there is ρ < 1, and M : Θ → [0,∞] which is Π-a.e. finite,

such that D(ζ, t) ≤ M(ζ) ρt for all ζ ∈ Θ and t ∈ N, i.e. such that the convergence

to Π happens exponentially quickly.

One important fact is that if a Markov chain is geometrically ergodic, and if

g : Θ → R such that E(|g|2+a) < ∞ for some a > 0, then a Central Limit Theorem

(CLT) holds for quantities like e = 1
M−B

∑M
i=B+1 g(θi) (44; 19), we have the normal

approximation that e ≈ N(u, v). (In fact, if the Markov chain is reversible as above,

then it suffices to take a = 0 (51).) As explained in Section 7.2 above, this is then

key to obtaining confidence intervals and thus more reliable estimates.

Now, if the state space Θ is finite, then assuming irreducibility and aperiodicity,

any Markov chain on Θ is always geometrically ergodic. However, on infinite state

spaces this is not the case. The random-walk Metropolis (RWM) algorithm is known

to be geometrically ergodic essentially (i.e., under a few mild technical conditions) if

and only if π has exponential tails, i.e. there are a, b, c > 0 such that π(θ) ≤ ae−b|θ|

whenever |θ| > c. (52; 53) And the Gibbs sampler is known to be geometrically

ergodic for certain models (e.g. 54). But in some cases, geometric ergodicity can be

difficult to ascertain.

In the absence of theoretical convergence bounds, it is difficult to ascertain whether

the chain has reached stationarity or not. One option is to independently run some

large number K of chains that have each been started from the same overdispersed

starting distribution. IfM and B are large enough, then we expect that the estimators

provided by each chain to be in agreement. For mathematical formalization of this

general principle see e.g. (55) and (56).

8.4 Convergence of RWM for the Lupus Data

We now illustrate some of the above ideas using the RWM algorithm for the lupus

data, as presented in Section 2.1 above.

We consider running RWM for M = 6000 iterations, using a burn-in of B =

25

1000 iterations. We initialize the chain using draws from an overdispersed starting

distribution centred at the MLE, by setting βinit = β̂MLE + W where W is a vector

of 3 iid random variables each generated from a Student distribution with 2 degrees

of freedom.

We repeated this entire experiment a total of K = 350 times with proposal

variance-covariance matrix Σ1 = 0.6 I3 (Figure 8), and another K = 350 times with

proposal variance-covariance matrix Σ2 = 1.2 I3 (Figure 9). Inspection of the corre-

sponding lists of estimates of the three βi values illustrated in these figures shows that

despite the wide overdispersed starting distributions, the resulting estimates are fairly

closely concentrated around particular values (boxplots, top rows; histograms, bottom

rows) showing fairly good convergence, and are approximately normally distributed

(normal Q-Q plots, middle rows; histograms, bottom rows) showing an approximate

CLT. Choosing larger values of M and B would be expected to result in even more

concentrated values and more normal-looking distributions of the various estimates.

This brief experiment illustrates that even in the absence of theoretical conver-

gence bounds, one can use multiple independent runs from overdispersed starting

distributions to assess the convergence and accuracy and normality of MCMC esti-

mates.

8.5 The Case of the Independence Sampler

When it comes to MCMC convergence rates, one case is particularly tractable, namely

the independence sampler. Now, it is not surprising that, as long as an independence

sampler’s proposal satisfies that q(θ) > 0 whenever π(θ) > 0, irreducibility and

aperiodicity and stationarity all follow easily, so the above Theorem immediately

establishes ergodicity. But what is remarkable is that the independence sampler is

geometrically ergodic if and only if there is δ > 0 such that q(θ) ≥ δπ(θ) for π-a.e.

θ ∈ Θ, and furthermore in this case D(ζ, n) ≤ (1−δ)n for π-a.e. ζ ∈ Θ (52; 53). That

is, for the independence sampler, we have an easy test for geometric ergodicity, and

26

a free quantitative bound thrown in.

For a simple specific example, consider an independence sampler on Θ = [0,∞)

with target density π(θ) = e−θ. If the proposal density is, say, q(θ) = 0.01 e−0.01θ, then

q(θ) ≥ 0.01 π(θ) for all θ ∈ Θ, i.e. the above condition holds with δ = 0.01, so the chain

is geometrically ergodic with D(ζ, t) ≤ (1− δ)t = (0.99)t and hence converges in t∗ =

459 iterations (since (0.99)459 < 0.01). By contrast, if q(θ) = 5e−5θ, then the above

condition does not hold for any value δ > 0, so the chain is not geometrically ergodic,

and in fact it has been shown (57) that in this case 4, 000, 000 ≤ t∗ ≤ 14, 000, 000,

i.e. it takes at least four million iterations to converge. This illustrates how geometric

ergodicity can sometimes make a tremendous difference between MCMC algorithms

which converge efficiently and those which converge very poorly.

Acknowledgements. We thank Nancy Reid for encouraging us to write this review

paper, and thank the anonymous referee for a very careful reading which led to many

improvements.

References

[1] Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures

of model complexity and fit (with discussion). Journal of the Royal Statistical

Society, Series B 64:583–639(57)

[2] Brooks S, Gelman A, Jones GL, Meng XL, eds. 2011. Handbook of Markov chain

Monte Carlo. Chapman & Hall/CRC, Boca Raton, FL

[3] Chen MH, Shao QM, Ibrahim J. 2000. Monte Carlo methods in Bayesian com-

putation. Springer Verlag

[4] Liu JS. 2001. Monte Carlo strategies in scientific computing. Springer

27

[5] Robert CP, Casella G. 2004. Monte Carlo statistical methods. Springer-Verlag

New York Inc.

[6] Robert CP, Casella G. 2010. Introducing Monte Carlo methods with R. Use R!

New York: Springer

[7] van Dyk D, Meng XL. 2001. The art of data augmentation (with discussion). J.

Comput. Graph. Statist. 10:1–111

[8] Craiu RV, Meng XL. 2005. Multi-process parallel antithetic coupling for forward

and backward MCMC. Ann. Statist. 33:661–697

[9] Craiu RV, Lemieux C. 2007. Acceleration of the multiple-try Metropolis algo-

rithm using antithetic and stratified sampling. Statistics and Computing 17:109–

120

[10] Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E. 1953. Equations

of state calculations by fast computing machines. J. Chem. Ph. 21:1087–1092

[11] Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika 57:97–109

[12] Green P, Mira A. 2001. Delayed rejection in reversible jump Metropolis-Hastings.

Biometrika 88:1035–1053

[13] Liu J, Liang F, Wong W. 2000. The multiple-try method and local optimization

in Metropolis sampling. Journal of the American Statistical Association 95:121–

134

[14] Casarin R, Craiu RV, Leisen F. 2013. Interacting multiple try algorithms with

different proposal distributions. Statistics and Computing :to appear

[15] Green PJ. 1995. Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika 82:711–732

28

[16] Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an un-

known number of components (with discussion). Journal of the Royal Statistical

Society: Series B 59:731–792

[17] Roberts GO, Gelman A, Wilks W. 1997. Weak convergence and optimal scaling

of random walk Metropolis algorithms. Ann. Appl. Probab. 7:110–120

[18] Roberts GO, Rosenthal JS. 2001. Optimal scaling for various Metropolis-Hastings

algorithms. Statist. Sci. 16:351–367

[19] Geyer CJ. 1992. Practical Markov chain Monte Carlo (with discussion). Statis-

tical Science 7:473–483

[20] Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence PAMI-6:721–741

[21] Gelfand AE, Smith AFM. 1992. Sampling-based approaches to calculating

marginal densities. J. Amer. Statist. Assoc. 87:523–532

[22] Tanner MA, Wong WH. 1987. The calculation of posterior distributions by data

augmentation. J. Amer. Statist. Assoc. 82:528–540

[23] Amit Y. 1991. On rates of convergence of stochastic relaxation for Gaussian and

non-Gaussian distributions. J. Multivariate Anal. 38:82–100

[24] Amit Y. 1996. Convergence properties of the Gibbs sampler for perturbations of

Gaussians. Ann. Statist. 24:122–140

[25] Liu JS, Wong WH, Kong A. 1995. Covariance structure and convergence rate of

the Gibbs sampler with various scans. JRSS-B 57:157–169

29

[26] Liu JS, Wong WH, Kong A. 1994. Covariance structure of the Gibbs sampler

with applications to the comparisons of estimators and augmentation schemes.

Biometrika 81:27–40

[27] Albert J, Chib S. 1993. Bayesian analysis of binary and polychotomous response

data. JASA 88:669–679

[28] Liu JS, Wu YN. 1999. Parameter expansion for data augmentation. Journal of

the American Statistical Association 94:1264–1274

[29] Meng XL, van Dyk D. 1999. Seeking efficient data augmentation schemes via

conditional and marginal augmentation. Biometrika 86:301–320

[30] Bedard M. 2006. On the robustness of optimal scaling for random walk Metropo-

lis algorithms. Ph.D. thesis, Department of Statistics, University of Toronto

[31] Haario H, Saksman E, Tamminen J. 2001. An adaptive Metropolis algorithm.

Bernoulli 7:223–242

[32] Roberts GO, Rosenthal JS. 2009. Examples of adaptive MCMC. J. Comput.

Graph. Statist. 18:349–367

[33] Craiu RV, Rosenthal JS, Yang C. 2009. Learn from thy neighbor: Parallel-chain

adaptive and regional MCMC. Journal of the American Statistical Association

104:1454–1466

[34] Bai Y, Craiu RV, Di Narzo A. 2011. Divide and conquer: A mixture-based

approach to regional adaptation for MCMC. J. Comput. Graph. Statist. 20:63–

79

[35] Andrieu C, Moulines E, Priouret P. 2005. Stability of stochastic approximation

under verifiable conditions. Siam Journal On Control and Optimization 44:283–

312

30

[36] Roberts GO, Rosenthal JS. 2007. Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms. J. Appl. Probab. 44:458–475

[37] Propp JG, Wilson DB. 1996. Exact sampling with coupled Markov chains and

applications to statistical mechanics. Random Structures and Algorithms 9:223–

252

[38] Craiu RV, Meng XL. 2011. In Handbook of Markov Chain Monte Carlo, eds.

S Brooks, A Gelman, G Jones, XL Meng. Chapman & Hall/CRC, Boca Raton,

FL, 199–226

[39] Adler SL. 1981. Over-relaxation methods for the Monte Carlo evaluation of the

partition function for multiquadratic actions. Phys. Rev. D 23:2901–2904

[40] Barone P, Frigessi A. 1990. Improving stochastic relaxation for Gaussian random

fields. Probab. Engrg. Inform. Sci. 4:369–389

[41] Neal RM. 1995. Suppressing random walks in Markov chain Monte Carlo using

ordered overrelaxation. Tech. Rep. 9508, University of Toronto

[42] Flegal J, Haran M, Jones G. 2008. Markov chain Monte Marlo: Can we trust the

third significant figure? Statist. Sci. 23:250–260

[43] Meyn SP, Tweedie RL. 1993. Markov Chains and Stochastic Stability. Commu-

nications and Control Engineering Series. London: Springer-Verlag

[44] Tierney L. 1994. Markov chains for exploring posterior distributions. Ann.

Statist. 22:1701–1728

[45] Rosenthal JS. 2001. A review of asymptotic convergence for general state space

Markov chains. Far East J. Theor. Stat. 5:37–50

[46] Roberts GO, Rosenthal JS. 2004. General state space Markov chains and MCMC

algorithms. Probab. Surv. 1:20–71 (electronic)

31

[47] Rosenthal JS. 1995. Minorization conditions and convergence rates for Markov

chain Monte Carlo. J. Amer. Statist. Assoc. 90:558–566

[48] Jones G, Hobert J. 2001. Honest exploration of intractable probability distribu-

tions via Markov chain Monte Carlo. Statistical Science 16:312–334

[49] Rosenthal JS. 2002. Quantitative convergence rates of Markov chains: a simple

account. Electron. Comm. Probab. 7:123–128 (electronic)

[50] Douc R, Moulines E, Rosenthal J. 2004. Quantitative bounds on convergence of

time-inhomogeneous Markov chains. Annals of Applied Probability 14:1643–1665

[51] Roberts GO, Rosenthal JS. 1997. Geometric ergodicity and hybrid Markov

chains. Electron. Comm. Probab. 2:no. 2, 13–25 (electronic)

[52] Mengersen KL, Tweedie RL. 1996. Rates of convergence of the Hastings and

Metropolis algorithms. The Annals of Statistics 24:101–121

[53] Roberts GO, Tweedie RL. 1996. Geometric convergence and central limit the-

orems for multidimensional Hastings and Metropolis algorithms. Biometrika

83:95–110

[54] Papaspiliopoulos O, Roberts GO. 2008. Stability of the Gibbs sampler for

Bayesian hierarchical models. Ann. Statist. 36:95–117

[55] Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple

sequences. Statistical Science Vol. 7:457–472

[56] Brooks SP, Gelman A. 1998. General methods for monitoring convergence of

iterative simulations. J. Comput. Graph. Statist. 7:434–455

[57] Rosenthal JS, Roberts GO. 2011. Quantitative non-geometric convergence

bounds for independence samplers. Methodology and Computing In Applied Prob-

ability 13:391–403

32

β1

β 0

 0.005
 0.005

 0.05

 0.2

 0.4
 0.6

 0.8

5 10 15 20 25

−
12

−
10

−
8

−
6

−
4

−
2

0

(a)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β0

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β1

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β2

(b)

β1

β 0

 0.005
 0.005

 0.05

 0.2

 0.4
 0.6

 0.8

5 10 15 20 25

−
12

−
10

−
8

−
6

−
4

−
2

0

(c)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β0

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β1

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

β2

(d)

Figure 1: Left panels: Scatterplots of 5,000 samples for (β0, β1) obtained using the

RWM with proposal variance (a) Σ1 and (c) Σ2. The points are superimposed on

the 2-dimensional projection of the contour plot for the target πPR. Right panels:

Autocorrelation plots for the three components of the chain for the RWM with proposal

variance (b) Σ1 and (d) Σ2.

33

β0

5 10 15 20

−
10

−
8

−
6

−
4

−
2

0

5
10

15
20

β1

−10 −8 −6 −4 −2 0 0 2 4 6 8 10 12

0
2

4
6

8
10

12

β2

Figure 2: Pair plots for the samples obtained using the RWM with proposal variance

Σ2.

34

β1

β
0

 0.005
 0.005

 0.05

 0.2

 0.4
 0.6

 0.8

5 10 15 20 25

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

(a)

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

β0

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

β1

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
β2

(b)

β1

β
0

 0.005
 0.005

 0.05

 0.2

 0.4
 0.6

 0.8

5 10 15 20 25

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

(c)

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

β0

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

β1

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

β2

(d)

Figure 3: Left panels: (a) Trajectory of the Gibbs chain for 300 updates for (β0, β1)

(c) Scatterplots of 5,000 samples for (β0, β1) obtained using the variable-at-a-time

MH. The points are superimposed on the 2-dimensional projection of the contour plot

for the target πPR. Right panels: Autocorrelation plots for the three components of

the chain for (b) Gibbs sampler and (d) variable-at-a-time MH.

35

(a) (b)

Figure 4: Trace plots of the first coordinate of RWM, on the same 20-dimensional

target, with acceptance rates both approximately 0.234, where the proposal covariance

matrix Σ is proportional to either: (a) the identity I20 or (b) to the target covariance

matrix. The run in(b) clearly mixes much faster.

β1

β 0

 0.005
 0.005

 0.05

 0.2

 0.4
 0.6

 0.8

5 10 15 20 25

−
12

−
10

−
8

−
6

−
4

−
2

0

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

β0

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

β1

0 50 100 150 200

0.
0

0.
4

0.
8

Lag

A
C

F

β2

Figure 5: Top left panel: Scatterplots of 30,000 samples for (β0, β1) obtained using

the RWM with adaptive variance. The points are superimposed on the 2-dimensional

projection of the contour plot for the target πPR. Top, right panel: Autocorrelation

plots for the three components of the chain show much lower serial dependence when

compared with the non-adaptive RWM samplers.

36

−10 0 10 20 30

0.
00

0.
05

0.
10

0.
15

0.
20

x

tf(
x)

(a)

−10 0 10 20 30

0.
01

0.
02

0.
03

0.
04

0.
05

x

tf(
x)

(b)

−10 0 10 20 30

0.
01

2
0.

01
4

0.
01

6
0.

01
8

0.
02

0
0.

02
2

0.
02

4

x

tf(
x)

(c)

Figure 6: (a) The highly multimodal target density π(θ) = 1
2
N(0, 1; θ)+ 1

2
N(20, 1; θ).

(b) A somewhat flatter density π4 = 1
2
N(0, 42; θ) + 1

2
N(20, 42; θ). (c) An even flatter

density π10 = 1
2
N(0, 102; θ) + 1

2
N(20, 102; θ).

37

0 10000 20000 30000 40000 50000

−
20

0
20

40

Index

xl
is

t

(a)

0 10000 20000 30000 40000 50000

−
20

0
20

40

Index

xl
is

t

(b)

0 10000 20000 30000 40000 50000

−
20

0
20

40

Index

xl
is

t

(c)

0 2000 4000 6000 8000 10000

0
5

10
15

20

Index

xl
is

t[,
 1

]

(d)

Figure 7: Trace plots for the π(θ) = 1
2
N(0, 1; θ)+ 1

2
N(20, 1; θ) example. (a) Ordinary

RWM gets stuck in π’s modal region near 20, and cannot find the second modal

region near 0. (b) The θ coordinate of simulated tempering for π. (c) Identifying (red

circles) the θ values of the simulated tempering corresponding to τ = 1 (and hence to

π). (d) The coordinate θ1 for the corresponding parallel tempering algorithm, showing

excellent mixing.

38

−
3.

5
−

3.
0

−
2.

5
−

2.
0

β̂0

5.
0

6.
0

7.
0

8.
0

β̂1

3.
0

3.
5

4.
0

4.
5

5.
0

β̂2

−3 −2 −1 0 1 2 3

−
3.

5
−

3.
0

−
2.

5
−

2.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

5.
0

6.
0

7.
0

8.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

3.
0

3.
5

4.
0

4.
5

5.
0

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

β̂0

D
en

si
ty

−4.0 −3.5 −3.0 −2.5 −2.0

0.
0

0.
4

0.
8

β̂1

D
en

si
ty

5 6 7 8

0.
0

0.
2

0.
4

β̂2

D
en

si
ty

3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 8: Results of K = 350 independent replications of a RWM algorithm for the

lupus data as in Section 2.1, with proposal variance-covariance matrix Σ1 = 0.6 I3,

for estimates of the quantities β0 (left column) and β1 (middle column) and β2 (right

column), showing the resulting boxplot (top row) and normal Q-Q plot (middle row)

and histogram (bottom row).

39

−
3.

5
−

3.
0

−
2.

5
−

2.
0

β̂0

5.
0

6.
0

7.
0

8.
0

β̂1

3.
0

3.
5

4.
0

4.
5

5.
0

β̂2

−3 −2 −1 0 1 2 3

−
3.

5
−

3.
0

−
2.

5
−

2.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

5.
0

6.
0

7.
0

8.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

3.
0

3.
5

4.
0

4.
5

5.
0

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

β̂0

D
en

si
ty

−4.0 −3.5 −3.0 −2.5 −2.0

0.
0

0.
4

0.
8

β̂1

D
en

si
ty

5 6 7 8

0.
0

0.
2

0.
4

β̂2

D
en

si
ty

3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 9: Results of K = 350 independent replications of a RWM algorithm for the

lupus data as in Section 2.1, with proposal variance-covariance matrix Σ2 = 1.2 I3,

for estimates of the quantities β0 (left column) and β1 (middle column) and β2 (right

column), showing the resulting boxplot (top row) and normal Q-Q plot (middle row)

and histogram (bottom row).

40

