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Abstract

In this article we extend a result of Martinez and Ycart from their paper “Decay
Rates and Cutoff for Convergence and Hitting Times of Markov Chains with Countably
Infinite State Space” [7] to show that for a regular Markov chain on a general state
space, the existence of a cutoff phenomenon for total variation distance to stationarity
as the starting point tends to infinity is equivalent to the concentration of hitting times
for any fixed regular set as the starting points tend to infinity. We apply this result to
show that all random walks on the half-line with bounded steps exhibit starting point
cutoff.
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1 Introduction

In the study of Markov chains, two quantities which are often of interest are hitting
times of certain sets and the time it takes to converge to stationarity. In particular one is
often interested in whether a Markov chain exhibits a cutoff phenomenon (see [1]): the
existence of a time where the total variation distance to stationarity transitions rapidly
from near one to near zero. Theorem 4.1 in [7] shows that for continuous-time Markov
chains on a countable state space, when the Markov chain is started arbitrarily far from
a finite set S, the existence of a cutoff phenomenon is equivalent to the concentration of
the hitting times of S, and in this case the hitting times are equivalent to the cutoff times.
The primary goal of this paper is to establish a version of this result for discrete-time
Markov chains on a general state space with the appropriate adjustments.

In Section 2 we establish our setting, notation and definitions and conclude by stating
our main result (Theorem 2.6). The bulk of the proof of Theorem 2.6 is broken up into
two propositions which are stated and proved in Section 4. In Section 3 we state and
prove two lemmas which are the tools used to extend the proof ideas from [7] to the
general state space setting. In Section 5 we use Theorem 2.6 to establish a sufficient
condition for starting point cutoff which is applied in Section 6 to show that all regular
random walks on the half-line with bounded steps exhibit starting point cutoff. In Section
7 we construct a Markov chain and a sequence of starting points that diverge to infinity
but do not exhibit starting point cutoff, and use Theorem 2.6 to justify that it works.
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Starting point cutoff on a general state space

Finally in Section 8 we state and discuss some open problems inspired by the results of
this paper. A web appendix can be found at probability.ca/CutoffWeb where we give a
detailed proof of starting point cutoff for a toy example.

2 Definitions and statement of equivalence

Throughout the paper we let P be a ϕ-irreducible, aperiodic Markov kernel with
stationary distribution π on a countably generated state space (X ,B). Given x ∈ X
we can define a Markov chain {Xt}t≥0 starting at x with Markov kernel P by defining
X0 = x and for t ≥ 1 recursively setting Xt ∼ P (Xt−1, ·). We then denote the law of
{Xt}t≥0 by Px and expectation with respect to this measure by Ex. Note that for all t ≥ 0

and A ∈ B,

Px(Xt ∈ A) = P t(x,A)

where P t is the convolution of the kernel P with itself t times. For any S ∈ B define the
hitting time τS of S as the random variable

τS = inf{t ≥ 0 : Xt ∈ S}

Note that τS is a stopping time with respect to the filtration {σ(X0, . . . , Xt)}t≥0. Define
B+ := {A ∈ B : π(A) > 0}. We make the additional assumption that P is regular in
the sense that for any A ∈ B+ and all x ∈ X , Ex[τA] < ∞. In fact this is not a strong
additional assumption since it can be shown that a ϕ-irreducible, aperiodic Markov
kernel with stationary distribution π can be restricted to a regular kernel by throwing
out a set of π-measure zero (see [8]).

In order to generalize Theorem 4.1 of [7] to the general state space setting we will
need a candidate replacement for the role of finite sets. It turns out that for regular
kernels there exists a natural replacement.

Definition 2.1. We call S ∈ B+ a regular set if for any A ∈ B+

sup
x∈S

Ex[τA] < ∞

In Chapter 11 of [8] it is shown that for ϕ-irreducible regular kernels there exists
regular sets. Note that in the discrete state space setting, finite sets will be regular
sets since the supremum becomes a maximum (though infinite sets may or may not be
regular).

Now fix a set S ∈ B+.

Definition 2.2. Let xn be a sequence of starting points in X and let tn be an increasing
sequence of positive reals such that limn→∞ tn = ∞. We say that τS concentrates at time
tn if

lim
n→∞

Pxn

(∣∣∣∣τStn − 1

∣∣∣∣ ≤ ε

)
= 1, for all ε > 0

In other words τS/tn → 1 in probability.

An equivalent definition is given in the following proposition whose proof we omit.

Proposition 2.3. Let xn be a sequence of starting points in X and let tn be an increasing
sequence of positive reals such that limn→∞ tn = ∞. Then τS concentrates at time tn if
and only if the following two conditions hold:

(i) For any c < 1, limn→∞Pxn
(τS < ctn) = 0.

(ii) For any c > 1, limn→∞Pxn
(τS < ctn) = 1.
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Starting point cutoff on a general state space

While the characterization of concentration of hitting times given in Proposition 2.3
may seem less natural, its usefulness comes from its similarity to the definition of the
cutoff phenomenon given in Definition 2.5 below. We now turn our discussion to the
convergence of P t(x, ·) to the stationary distribution π. To measure distance between
these distributions we use the total variation distance.

Definition 2.4. For any x ∈ X and t ∈ R+ define

dx(t) :=
∥∥∥P btc(x, ·)− π

∥∥∥
TV

= sup
A∈B

∣∣∣P btc(x,A)− π(A)
∣∣∣

We say that dx(t) is the (total variation) distance to stationarity starting at x after
time t. While this makes more sense when t is a non-negative integer, defining it for
any t ∈ R+ will be convenient for defining the cutoff phenomenon. Since P is a regular
aperiodic Markov kernel, it is also an aperiodic Harris recurrent Markov kernel (see
Chapter 11 of [8]) and therefore limn→∞ dx(t) = 0 (see Chapter 13 of [8]). This is
sometimes called the Harris Ergodic Theorem. While the Harris Ergodic Theorem tells
you that a Markov chain converges to its stationary distribution, it gives no qualitative
or quantitative information about this convergence. The cutoff phenomenon (see [1]
for a review) is the observation that for many natural Markov chains (though not all)
the total variation distance to stationarity stays very close to one until it reaches some
time (the cutoff time) where it rapidly decays to zero. There are many variations for
the definition of cutoff depending on the setting and problem of interest. Often (as in
the case in [1]) a sequence of Markov chains on a sequence of finite state spaces are
considered and cutoff is a statement about the worst case starting points. In the general
state space setting there may not be a worse case starting point, since for any fixed set
A ∈ B+ there may exist a sequence of starting points xn that start arbitrarily far from A

(more precisely meaning that limn→∞Exn
[τA] = ∞). Instead we consider “starting point

cutoff”, similar to the notion in [7] where we fix a Markov kernel and let the starting
point vary.

Definition 2.5. Let xn be a sequence of starting points in X and let tn be an increasing
sequence of positive reals such that limn→∞ tn = ∞. We say that P has (starting point)
cutoff at time tn starting from xn if

(i) For any c < 1, limn→∞ dxn
(ctn) = 1.

(ii) For any c > 1, limn→∞ dxn
(ctn) = 0.

Intuitively, if P has cutoff at time tn starting from xn, it means that for sufficiently
large n, if we start a Markov chain with Markov kernel P at xn then its distance to
stationarity will be close to one for any time before tn and close to zero at any time after
tn.

We can now state our main theorem which says that starting point cutoff is equivalent
to concentration of hitting times on regular sets.

Theorem 2.6. Let xn be a sequence of starting points in X and let tn be an increasing
sequence of positive reals such that limn→∞ tn = ∞. Let S be a regular set. Then P has
cutoff at time tn starting from xn if and only if τS concentrates at time tn starting from
xn.

Proof. Using the characterization of concentration of hitting times given in Proposition
2.3 it is sufficient to prove that for regular sets:

a) (i) from Proposition 2.3 is equivalent to (i) from Definition 2.5.

b) (ii) from Proposition 2.3 is equivalent to (ii) from Definition 2.5.

a) is proved in Proposition 4.1 and b) is proved in Proposition 4.2.
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Starting point cutoff on a general state space

3 Lemmas for a general state space

In this section we prove two lemmas which allow us to extend the ideas from the proof
of Theorem 4.1 in [7] to the general state space setting of Theorem 2.6. In the context of
Theorem 2.6 we are considering a fixed regular set S and a sequence of starting points
xn. With this context in mind our first lemma says that although the time it takes the
Markov chain to hit S starting from xn may depend on n, once the Markov chain reaches
S it will converge to the stationary distribution (up to ε error) in a constant time T .

Lemma 3.1. For any regular set S, limt→∞ dx(t) = 0 uniformly on S. More precisely for
any ε ∈ (0, 1) there exists T ∈ N such that for all t ≥ T, x ∈ S and A ∈ B, we have that
|P t(x,A)− π(A)| < ε.

In the discrete state space setting where S is replaced with a finite set, this lemma
trivially follows from pointwise convergence. For the general state space setting the
informal idea of the proof is that (by Egoroff’s theorem) we know that there exists some
set B ∈ B+ such that limt→∞ dx(t) = 0 uniformly on B and we want to transfer this
uniform convergence to S. We do this by noting that since S is regular there exists a
constant T0 such that starting anywhere in S, the Markov chain will hit B by time T0 (with
probability 1− ε) and since limt→∞ dx(t) = 0 uniformly on B there will exist some time
T1 such that starting anywhere in B the Markov chain will converge to the stationary
distribution (up to ε error) in constant time T1. Therefore starting from anywhere in S

the Markov chain will hit B by time T0 and then converge to the stationary distribution
by time T0 + T1 (with 2ε error which can be made arbitrarily small).

Proof. Since B is countably generated, for each fixed t ∈ N, dx(t) : X → R is measurable
(see the Appendix of [9]). Therefore since for any x ∈ X , limt→∞ dx(t) = 0 by Egoroff’s
theorem (Theorem 2.33 in [4]) there exists B ∈ B+ such that dx(t) converges to 0

uniformly on B. Since S is a regular set there exists M such that for all x ∈ S, Ex[τB ] ≤
M .

Let ε ∈ (0, 1). If we define T0 := dM
ε e, then for all x ∈ S and t ≥ T0

Px(τB > T0) ≤
Ex[τB ]

(M/ε)
by Markov’s inequality

≤ ε

Since dx(t) converges to 0 uniformly on B there exists T1 sufficiently large such that for
all x ∈ B and t ≥ T1, dx(t) ≤ ε.

Define T := T0 + T1. Then for any x ∈ S and A ∈ B, if t ≥ T then

|P t(x,A)− π(A)|

=

∣∣∣∣∣
∞∑
k=0

[Px(Xt ∈ A|τB = k)− π(A)]Px(τB = k)

∣∣∣∣∣
≤

∞∑
k=0

|Px(Xt ∈ A|τB = k)− π(A)|Px(τB = k)

≤ Px(τB > T0) +

T0∑
k=0

|Px(Xt ∈ A|τB = k)− π(A)|Px(τB = k)

≤ ε+

T0∑
k=0

sup
y∈B

∣∣P t−k(y,A)− π(A)
∣∣Px(τB = k)
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Starting point cutoff on a general state space

by the strong Markov property

≤ ε+

T0∑
k=0

sup
y∈B

dy(t− k)Px(τB = k)

≤ ε+

T0∑
k=0

εPx(τB = k) since t− k ≥ T1

= ε+ εPx(τB ≤ T0)

≤ 2ε

Therefore (since A was arbitrary) for any x ∈ S and t ≥ T ,

dx(t) ≤ 2ε

Since ε was arbitrary this proves

lim
t→∞

dx(t) = 0

uniformly on S.

Our second lemma says that for any S ∈ B+ (not necessarily regular) there exists
arbitrarily large sets B (in π-measure) for which there exists a constant time T ∈ N such
that starting anywhere in B the Markov chain will hit S by time T (with arbitrarily large
probability). Again in the context of Theorem 2.6 the point is that while the time it takes
the Markov chain to hit B starting from xn may depend on n, once you hit B the Markov
chain will hit S in constant time T (with large probability).

Lemma 3.2. For any S ∈ B+ and ε ∈ (0, 1) there exists B ∈ B and T ∈ N such that
π(B) > 1− ε and supx∈B Px(τS ≥ T ) ≤ ε.

Proof. Since P is Harris recurrent, for all x ∈ X , Ex[τS ] < ∞. Thus if we define for each
d ∈ N, Ad = {x ∈ X : Ex[τS ] ≤ d}, Ad is an increasing sequence of measurable sets
whose union is all of X . Therefore by continuity of measure there exists D sufficiently
large such that π(AD) > 1− ε and setting T = dD/εe we have that

sup
x∈AD

Px(τS ≥ T ) ≤ sup
x∈AD

Px(τS ≥ D/ε)

≤ (ε/D) sup
x∈AD

Ex[τS ] by Markov’s inequality

≤ ε by definition of AD

4 Proof of equivalence

As stated in Section 2, Theorem 2.6 follows from Proposition 4.1 and Proposition
4.2 which are stated and proved in this section. It is worth noting however that these
propositions prove something slightly stronger, as one direction of the equivalence in
each proposition holds regardless of whether the set S is regular (as long as it is in B+).
The proof of both propositions is based heavily on the proof of Theorem 4.1 in [7], but
uses the lemmas proved in Section 3 to extend it to a general state space. For each proof
direction we give a general overview of the main ideas and intuitions that will be used in
the proof before giving the proof in full technical detail.

Proposition 4.1. Let xn be a sequence in X and let tn be an increasing sequence
of positive reals such that limn→∞ tn = ∞. Let S ∈ B+ and consider the following
conditions:
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Starting point cutoff on a general state space

(i) For any c < 1, limn→∞Pxn
(τS < ctn) = 0.

(ii) For any c < 1, limn→∞ dxn
(ctn) = 1.

If (i) holds then (ii) holds and if S is a regular set then (i) and (ii) are equivalent.

Proof idea for (i) implies (ii). It is easy to see that (i) implies the weaker statement that
for any c < 1, lim infn→∞ dxn(ctn) ≥ π(S). This is because the probability that the Markov
chain starting at xn is in S at time bctnc is at most the probability that the Markov chain
starting at xn has hit S by time ctn. Therefore if the the latter probability vanishes
then so does the former and this provides a lower bound on total variation distance to
stationarity. To get the stronger statement in (ii) we want to show that we can apply
the same argument above to arbitrarily large sets in π-measure. This is where we can
use Lemma 3.2 to assert that there exists arbitrarily large sets B and a constant time
T ∈ N where once the Markov chain has hit B it will hit S in time T (with arbitrarily
large probability). Therefore if the Markov chain hits B by time ctn it will hit S in time
ctn + T (with large probability) which is asymptotically less than c+1

2 tn. Therefore since
(i) asserts that the probability the Markov chain hits S starting at xn by time c+1

2 tn is
vanishingly small, then the probability that the Markov chain hits B starting at xn by
time ctn must also be vanishingly small.

Proof of (i) implies (ii). Suppose (i) holds. Let c < 1. Let ε ∈ (0, 1). By Lemma 3.2 there
exists a set B ∈ B and T ∈ N such that π(B) > 1− ε and supx∈B Px(τS ≥ T ) ≤ ε. Since
limn→∞ tn = ∞ and c < 1 we can choose N0 sufficiently large such that for all n ≥ N0,
T < 1−c

2 tn. Since limn→∞Pxn
(τS < c+1

2 tn) = 0 we can choose N1 sufficiently large such
that for all n ≥ N1, Pxn

(τS < c+1
2 tn) ≤ ε. Define N := max{N0, N1}. Then for all n ≥ N

P bctnc(xn, B)

≤ Pxn
(τB ≤ ctn)

= Pxn(τS ≤ (τS − τB) + ctn)

≤ Pxn(τS ≤ T + ctn) + Pxn(τS − τB ≥ T ) by a union bound

≤ Pxn
(τS ≤ T + ctn) + sup

x∈B
Px(τS ≥ T ) by the strong Markov property

≤ Pxn

(
τS ≤ c+ 1

2
tn

)
+ ε since n ≥ N0 and by the definition of B

≤ ε+ ε since n ≥ N1

= 2ε

therefore for all n ≥ N

dxn(ctn) ≥ π(B)− P bctnc(xn, B) ≥ 1− 3ε

Since ε was arbitrary this proves

lim
n→∞

dxn
(ctn) = 1

Proof idea for (ii) implies (i) when S is a regular set. By Lemma 3.1 we can choose some
T such that for all t ≥ T , x ∈ S and A ∈ B, we have that |P t(x,A) − π(A)| < 1/4. This
implies that if S is hit by time ctn (starting from xn) then for any time t ≥ T we have
that the probability the Markov chain is in A at time bctnc+ t is within 1/4 of π(A). In
particular since b c+1

2 tnc is asymptotically greater than bctnc+T we can use this to assert

that for any A ∈ B with π(A) > 1/2, P b c+1
2 tnc(xn, A) ≥ Pxn

(τS < ctn)(π(A) − 1/4) >
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Pxn
(τS < ctn)(1/4). But condition (ii) implies that there exists a sequence An ∈ B for

which π(An) is arbitrarily close to 1 and P b c+1
2 c(xn, An) is arbitrarily close to 0. Plugging

these An into the above inequality implies (i).

Proof of (ii) implies (i) when S is a regular set. Suppose S is a regular set and suppose
(ii) holds. Let c < 1. Let ε ∈ (0, 1/2). Since limn→∞ dxn

( c+1
2 tn) = 1 there exists N0

sufficiently large such that for each n ≥ N0, there exists An ∈ B such that π(An) > 1− ε

and P b c+1
2 tnc(xn, An) < ε. By Lemma 3.1 we can choose T sufficiently large such that

for any x ∈ S and t ≥ T , dx(t) < 1/4. In particular this implies for any n ≥ N0 and
t ≥ T that infx∈S P t(x,An) > π(An)− 1/4 > 1/4. Furthermore since limn→∞ tn = ∞ and
c < 1 we can choose N1 sufficiently large such that for all n ≥ N1 and t ≤ bctnc we have
b c+1

2 tnc − t ≥ T . Define N = max{N0, N1}. Then for any n ≥ N we have

Pxn(τS < ctn)

≤
bctnc∑
t=0

Pxn(τS = t)

≤ 4

bctnc∑
t=0

inf
x∈S

P (b c+1
2 tnc−t)(x,An)Pxn(τS = t)

 since n ≥ N0 and n ≥ N1

≤ 4

bctnc∑
t=0

Pxn(Xb c+1
2 tnc ∈ An | τS = t)Pxn(τS = t)

 by the strong Markov property

= 4Pxn
(Xb c+1

2 tnc ∈ An, τS ≤ bctnc)

≤ 4P b c+1
2 tnc(xn, An)

≤ 4ε

Since ε was arbitrary, this proves

lim
n→∞

Pxn
(τS < ctn) = 0

Proposition 4.2. Let xn be a sequence in X and let tn be an increasing sequence
of positive reals such that limn→∞ tn = ∞. Let S ∈ B+ and consider the following
conditions:

(i) For any c > 1, limn→∞Pxn(τS < ctn) = 1.

(ii) For any c > 1, limn→∞ dxn(ctn) = 0.

If (ii) holds then (i) holds and if S is a regular set then (ii) and (i) are equivalent.

Proof idea for (ii) implies (i). It is easy to see that (ii) implies the weaker statement that
for any c > 1, lim supn→∞Pxn(τS < ctn) ≥ π(S). This is because the probability that
the Markov chain starting at xn has hit S by time ctn is at least the probability that the
Markov chain starting from xn is in S at time bctnc. Therefore we get the lower bound by
noticing that (ii) implies that the probability that the Markov chain starting from xn is in
S at time bctnc can be made arbitrarily close to π(S). Of course this argument applies to
any set B ∈ B, and for B with large π-measure, it shows that lim supn→∞Pxn(τB < ctn)

must be close to 1. Therefore we again use Lemma 3.2 to find arbitrarily large sets B

with constant times T ∈ N such that once the Markov chain hits B it will hit S in time
T (with arbitrarily large probability). Hence if the Markov chain hits B by time b c+1

2 tnc
(with arbitrarily large probability) which is asymptotically less than ctn − T , it will hit S
by time ctn (with arbitrarily large probability).
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Starting point cutoff on a general state space

Proof of (ii) implies (i). Suppose (ii) holds. Let c > 1. Let ε ∈ (0, 1/2). By Lemma 3.2
there exists a set B ∈ B and T ∈ N such that π(B) > 1 − ε and supx∈B Px(τS ≥ T ) ≤ ε.
Since limn→∞ dxn

( c+1
2 tn) = 0, we can choose N0 sufficiently large such that for all

n ≥ N0, dxn
( c+1

2 tn) < ε. In particular this implies that for all n ≥ N0, Pxn
(τB < c+1

2 tn) ≥
P b c+1

2 tnc(xn, B) ≥ π(B) − ε > 1 − 2ε. Since limn→∞ tn = ∞ and c > 1, we can choose
N1 sufficiently large such that for all n ≥ N1 we have ctn − b c+1

2 tnc > T . Define
N = max{N0, N1}. Then for any n ≥ N ,

Pxn
(τS < ctn)

≥ Pxn
(τBS < ctn) where τBS = inf{t ≥ τB : Xt ∈ S}

≥ Pxn

(
τBS < ctn, τB ≤

⌊
c+ 1

2
tn

⌋)

=

b c+1
2 tnc∑
t=0

Pxn
(τBS < ctn | τB = t)Pxn

(τB = t)

≥
b c+1

2 tnc∑
t=0

inf
y∈B

Py(τS < ctn − t)Pxn(τB = t) by the Strong Markov property

≥
b c+1

2 tnc∑
t=0

(
1− sup

y∈B
Py (τS ≥ T )

)
Pxn(τB = t) since n ≥ N1

≥
b c+1

2 tnc∑
t=0

(1− ε)Pxn
(τB = t) since n ≥ N1 by definition of B

= (1− ε)Pxn

(
τB <

⌊
c+ 1

2
tn

⌋)
≥ (1− ε)(1− 2ε) since n ≥ N0

Since ε was arbitrary this proves

lim
n→∞

Pxn(τS < ctn) = 1

Proof idea for (i) implies (ii) when S is a regular set. Fixing c > 1, to prove (ii) we need
to show that for any ε ∈ (0, 1) there exists N ∈ N such that for all n ≥ N and A ∈ B we
have that |P bctnc(xn, A)− π(A)| < ε. Notice that this is very similar to what we needed
to prove in Lemma 3.1 except we are starting from xn. In fact the proof of (i) implies (ii)
will be very similar to the proof of Lemma 3.1 except here S plays the role of B and the
time it takes to reach S starting from xn will depend on n. Condition (i) implies that for
sufficiently large n, the Markov chain starting from xn will reach S by time c+1

2 tn (with
probability 1 − ε). Since limt→∞ dx(t) = 0 uniformly on S (by Lemma 3.1) there exists
some time T such that starting anywhere in S the Markov chain will converge to the
stationary distribution (up to ε error) in constant time T . Therefore starting from xn (for
sufficiently large n) the Markov chain will hit S by time c+1

2 tn which is asymptotically
less than bctnc − T and then converge to the stationary distribution by time bctnc (with
2ε error which can be made arbitrarily small).

Proof of (i) implies (ii) when S is a regular set. Suppose S is a regular set and suppose
(i) holds. Let c > 1. Let ε ∈ (0, 1). Since limn→∞Pxn(τS ≤ c+1

2 tn) = 1, we can choose N0

sufficiently large such that for all n ≥ N0, Pxn
(τS ≤ c+1

2 tn) > 1 − ε. By Lemma 3.1 we
can choose T sufficiently large such that for any x ∈ S and t ≥ T , dx(t) ≤ ε. Furthermore
since limn→∞ tn = ∞ and c > 1 we can choose N1 sufficiently large such that for all
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n ≥ N1 and t ≤ b c+1
2 tnc we have bctnc − t ≥ T . Define N = max{N0, N1}. Let A ∈ B.

Then for all n ≥ N we have

|P bctnc(xn, A)− π(A)|

=

∣∣∣∣∣
∞∑
t=0

[Pxn
(Xbctnc ∈ A|τS = t)− π(A)]Pxn

(τS = t)

∣∣∣∣∣
≤

∞∑
t=0

∣∣Pxn(Xbctnc ∈ A|τS = t)− π(A)
∣∣Pxn(τS = t)

≤ Pxn

(
τS >

c+ 1

2
tn

)
+

b c+1
2 tnc∑
t=0

∣∣Pxn(Xbctnc ∈ A|τS = t)− π(A)
∣∣Pxn(τS = t)

≤ ε+

b c+1
2 tnc∑
t=0

sup
x∈S

∣∣∣P bctnc−t(x,A)− π(A)
∣∣∣Pxn

(τS = t)

since n ≥ N0 and by the strong Markov property

≤ ε+

b c+1
2 tnc∑
t=0

sup
x∈S

dx(bctnc − t)Pxn(τS = t)

≤ ε+

b c+1
2 tnc∑
t=0

εPxn
(τS = t) since n ≥ N1

≤ ε+ εPxn

(
τS ≤

⌊
c+ 1

2
tn

⌋)
≤ 2ε

Therefore (since A was arbitrary) for any n ≥ N

dxn
(ctn) ≤ 2ε

Since ε was arbitrary
lim

n→∞
dxn

(ctn) = 0

5 A sufficient condition for cutoff

Theorem 2.6 reduces the problem of exhibiting a starting point cutoff phenomenon
for a general state space Markov chain to the problem of showing a concentration of
hitting times to some regular set S. In general this may be just as difficult to show, but
in some cases this may be much easier. In this section we use Theorem 2.6 to establish a
sufficient condition for starting point cutoff. We will use this result in Section 6 to show
that any regular random walk on the half-line with bounded steps exhibits the starting
point cutoff phenomenon.

Proposition 5.1. Suppose there exists a constant C such that for all x ∈ X \ S

|EX1
[τS ]− Ex[τS ]| ≤ C almost surely

Then for any sequence of starting points xn such that limn→∞Exn [τS ] = ∞ we have that
Xt exhibits starting point cutoff at time tn = Exn [τS ] starting from xn.

In order to prove Proposition 5.1 (a qualitative result) we first prove a quantitative
concentration inequality (Lemma 5.2). The proof of this lemma is based on a well-known
technique for establishing concentration inequalities for hitting times using the classical
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Azuma’s inequality and the fact that the shifted expected hitting times form a martingale
(for example see [6]).

Lemma 5.2. Suppose there exists a constant C such that for all x ∈ X \ S

|EX1 [τS ]− Ex[τS ]| ≤ C almost surely

Then for any x ∈ X and ε > 0,

Px(|τS − Ex[τS ]| ≥ εEx[τS ]) ≤ 2 exp

(
−2ε2Ex[τS ]

(1 + ε)C2

)
To prove this lemma we state (without proof) the version of the Azuma’s inequality

we will use (see Theorem 5.1 in [2]).

Theorem 5.3. Suppose {Mt}Tt=0 is a martingale with respect to a filtration {Ft}Tt=0 and
there exists C ≥ 0 such that for each t ≥ 1,

|Mt −Mt−1| ≤ C almost surely

Then for any ε > 0,

P(|MT −M0| ≥ ε) ≤ 2 exp

(
−2ε2

TC2

)
Proof of Theorem 5.2. Let X0 = x. Fix ε > 0. Let T = b(1 + ε)Exn

[τS ]c. For t from 0 to T

define

Mt =

{
EXt

[τS ] + t when t < τS

τS when t ≥ τS

It is easy to check thatMt is a martingale with respect to the filtration Ft = σ(X0, . . . , Xt).
Then for any t from 1 to T , eitherXt−1 ∈ S in which case |Mt−Mt−1| = 0, orXt−1 ∈ X \S
in which case |Mt −Mt−1| = |EXt

[τS ]− EXt−1
[τS ] + 1| ≤ C + 1 almost surely. Therefore

|Mt −Mt−1| ≤ C + 1 almost surely. Thus by Theorem 5.3,

P(|MT −M0| ≥ εEx[τS ]) ≤ 2 exp

(
−2ε2Ex[τS ]

(1 + ε)C2

)
We will finish the proof by showing that the event |τS − Ex[τS ]| ≥ εEx[τS ] implies the
event |MT −M0| ≥ εEx[τS ] and therefore

Px(|τS − Ex[τS ] > εEx[τS ]) ≤ P(|MT −M0| ≥ εEx[τS ])

≤ 2 exp

(
−2ε2Ex[τS ]

(1 + ε)C2

)
Suppose first τS − Ex[τS ] > εEx[τS ]. Then τS > (1 + ε)Ex[τS ] ≥ T . In particular this
implies MT = EXT

[τS ]+ b(1+ ε)Ex[τS ]c and since M0 = Ex[τS ] we have that |MT −M0| ≥
EXT

[τS ] + b(1 + ε)Ex[τS ]c − Ex[τS ] ≥ (EXT
[τS ] − 1) + εEx[τS ] ≥ εEx[τS ]. In the other

case suppose Ex[τS ] − τS ≥ εEx[τS ]. Then T ≥ (1 − ε)Ex[τS ] > τS . In particular this
implies that MT = τS and since M0 = Ex[τS ] we have that |MT −M0| = |τS − Ex[τS ]| =
Ex[τS ]− τS ≥ εEx[τS ].

Proof of Proposition 5.1. By Theorem 2.6 it suffices to show that τS concentrates at
times tn = Exn

[τS ]. Let ε > 0. For each n ∈ N

Pxn

(∣∣∣∣ τS
Exn [τS ]

− 1

∣∣∣∣ ≥ ε

)
= Px(|τS − Ex[τS ]| ≥ εEx[τS ])

≤ 2 exp

(
−2ε2Ex[τS ]

(1 + ε)C2

)
by Lemma 5.2

ECP 30 (2025), paper 15.
Page 10/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP663
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Starting point cutoff on a general state space

Taking the limit as n → ∞ shows that

lim
n→∞

Pxn

(∣∣∣∣ τS
Exn

[τS ]
− 1

∣∣∣∣ ≥ ε

)
= 0

and therefore

lim
n→∞

Pxn

(∣∣∣∣ τS
Exn

[τS ]
− 1

∣∣∣∣ ≤ ε

)
= 1

6 Random walks on the half line

In this section we apply Proposition 5.1 to show that all random walks on the half-line
with bounded step size exhibit the starting point cutoff phenomenon. Let {Wt}t≥1 be a
sequence of i.i.d real-valued random variables and let x ∈ [0,∞). We define a random
walk Xt on the half-line [0,∞) recursively by setting:

X0 = x,

Xt = [Xt−1 +Wt]
+ for t ≥ 1

where [x]+ = max{x, 0}. It is shown in Proposition 11.4.1 of [8] that this Markov chain
is regular if and only if µ := E[Wt] < 0, and in this case all compact sets are regular
sets. We will consider in particular the regular set S = {0}. We say that Xt is a random
walk on the half-line with bounded steps if there exists C > 0 such that |Wt| ≤ C almost
surely.

Theorem 6.1. SupposeXt is a random-walk on the half-line with bounded steps such that
µ := E[Wt] < 0. Then for any sequence of starting points xn ∈ [0,∞), if limn→∞ xn = ∞
then Xt exhibits starting point cutoff at time tn = Exn

[τ{0}] starting from xn.

Proof. Fix x ∈ X and let X0 = x. Let St =
∑t

i=1 Wi. Note that

τ{0} = inf {t ≥ 0 | Xt = 0} = inf {t ≥ 0|St ≤ −x}

Therefore by Wald’s equation (see Theorem 2.6.2 in [3]) we have

Ex[τ{0}] =
E[Sτ{0} ]

µ

but since

−(C + x) ≤ Wτ{0} − x ≤ Wτ{0} + S(τ{0}−1)
= Sτ{0} ≤ −x almost surely:

we have that

−(C + x) ≤ E[Sτ{0} ] ≤ −x

and therefore

− (C + x)

µ
≤ Ex[τ{0}] ≤ −x

µ

thus

|(EX1 [τ{0}]− Ex[τ{0}])| ≤
(|X1 − x|+ C)

µ
=

(|W1|+ C)

µ
≤ 2C

µ
almost surely

Therefore by Proposition 5.1, Xt exhibits starting point cutoff at time tn = Exn
[τ{0}]

starting from xn.

ECP 30 (2025), paper 15.
Page 11/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP663
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Starting point cutoff on a general state space

0

1

1

1

2

2

2

3

3

3

. . .

. . . . . .

4 5 6 . . .

x

x

2x

. . . . . .

. . . . . .

. . .

1 1 1 1

1

2−1

2−2 2−3 2−4

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1

1 1 1 1 1 1 1

Figure 1: Example Chain.

7 An example without starting point cutoff

In this section we construct an example of a Markov chain with a sequence of starting
points xn that diverges to infinity (in the sense that the expected hitting time of a fixed
regular set from those starting points diverges to infinity) where the Markov chain does
not exhibit the starting point cutoff phenomenon from those starting points (meaning
precisely that there does not exist a sequence of positive reals tn for which the Markov
kernel associated with the chain has starting point cutoff at time tn starting from xn).

Consider the Markov chain depicted in Figure 1. Its state space is three disjoint
copies of N glued together at 0. When at 0 the Markov chain jumps to a state in the
middle row with a Geometric(1/2) distribution. When at a non-zero state x in the middle
row the Markov chain jumps to x in the top row with probability 1/2 or jumps to 2x in
the bottom row with probability 1/2. Once in the top or bottom row the Markov chain
jumps deterministically down in the same row one step at a time until it reaches 0. It is
easy to see that this is an aperiodic regular Markov chain and S = {0} is a regular set.
Now for any increasing sequence of starting points xn in the middle row we have that
Pxn(τS = xn) = 1

2 and Pxn(τS = 2xn) = 1
2 so it is clear that limn→∞Exn [τS ] = ∞ and

τS starting from xn cannot concentrate at any (deterministic) time tn for any sequence
of positive reals tn. Therefore by Theorem 2.6 for any increasing sequence of starting
points xn in the middle row, the Markov chain does not exhibit the starting point cutoff
phenomenon.

8 Open problems

In this section we state and discuss three open problems inspired by the results of
this paper. The first proposes a possible extension of the theory, and the latter two
propose extensions of the application.

Question 8.1. Can one characterize the starting point cutoff phenomenon for a se-
quence of (possibly distinct) regular Markov chains by a concentration of hitting times
(generalizing both Theorem 2.6 and Theorem 1 of [5])?

Theorem 1 of [5] shows that for a sequence of finite irreducible reversible Markov
chains satisfying the product condition, cutoff starting from a sequence of starting
distributions can be characterized by concentration of hitting times for a sequence of
sets “worst in expectation”. While this result only holds for reversible chains and does
not apply directly to the general state space setting of Theorem 2.6, one could imagine a
generalization that applies to sequences of regular Markov chains (on a general state
space). In the case where the sequence of Markov chains is constant this should reduce
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to Theorem 2.6. Since the main tool of [5], Starr’s maximal inequality [10], applies on a
general probability space, we believe it is likely that Theorem 1 of [5] can be extended
to sequences of reversible regular Markov chains on a general state space in a similar
way that this paper extends the results of [7] using ideas from [8].

Question 8.2. Could Proposition 5.1 be used to establish a cutoff phenomenon for other
general classes of chains?

One can think of many examples where the hypothesis of Proposition 5.1 likely holds
but is hard to verify. This is because there does not seem to be any good tools for
computing or bounding Ex[τS ] in general. There may however be other interesting
general classes of chains where bounds on this expectation could be derived and the
hypothesis of Proposition 5.1 could be shown to hold.

Question 8.3. What are the necessary and sufficient conditions on the (possibly un-
bounded) distribution of Wt for the random walk on the half-line Xt to exhibit starting
point cutoff?

We showed in Theorem 6.1 that bounded steps is a sufficient condition for random
walks on the half-line to exhibit the starting point cutoff phenomenon, but it is easy
to construct examples which show this is not necessary. It would be interesting to
determine precisely under what conditions a random walk on the half-line exhibits
starting point cutoff.

References

[1] Persi Diaconis, The cutoff phenomenon in finite Markov chains., Proceedings of the National
Academy of Sciences of the United States of America 93 4 (1996), 1659–64. MR1374011

[2] Devdatt Dubhashi and Alessandro Panconesi, Concentration of Measure for the Analysis of
Randomized Algorithms, 1st ed., Cambridge University Press, USA, 2009. MR2547432

[3] Rick Durrett, Probability: Theory and examples, 5 ed., Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press, 2019. MR3930614

[4] G.B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, 1999. MR1681462

[5] Jonathan Hermon, A technical report on hitting times, mixing and cutoff, arXiv: Probability
(2015). MR3765366

[6] Timo Kötzing, Concentration of first hitting times under additive drift, Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA),
GECCO’14, Association for Computing Machinery, 2014, p. 1391–1398. MR3383680

[7] Servet Martínez and Bernard Ycart, Decay Rates and Cutoff for Convergence and Hitting
Times of Markov Chains with Countably Infinite State Space, Advances in Applied Probability
33 (2001), no. 1, 188–205. MR1825322

[8] Sean Meyn, Richard L. Tweedie, and Peter W. Glynn, Markov Chains and Stochastic Stability,
2 ed., Cambridge Mathematical Library, Cambridge University Press, 2009. MR2509253

[9] Gareth Roberts and Jeffrey Rosenthal, Geometric Ergodicity and Hybrid Markov Chains,
Electronic Communications in Probability 2 (1997), 13–25. MR1448322

[10] Norton Starr, Operator limit theorems, Transactions of the American Mathematical Society
121 (1966), no. 1, 90–115. MR0190757

ECP 30 (2025), paper 15.
Page 13/13

https://www.imstat.org/ecp

https://mathscinet.ams.org/mathscinet-getitem?mr=1374011
https://mathscinet.ams.org/mathscinet-getitem?mr=2547432
https://mathscinet.ams.org/mathscinet-getitem?mr=3930614
https://mathscinet.ams.org/mathscinet-getitem?mr=1681462
https://mathscinet.ams.org/mathscinet-getitem?mr=3765366
https://mathscinet.ams.org/mathscinet-getitem?mr=3383680
https://mathscinet.ams.org/mathscinet-getitem?mr=1825322
https://mathscinet.ams.org/mathscinet-getitem?mr=2509253
https://mathscinet.ams.org/mathscinet-getitem?mr=1448322
https://mathscinet.ams.org/mathscinet-getitem?mr=0190757
https://doi.org/10.1214/25-ECP663
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Definitions and statement of equivalence
	Lemmas for a general state space
	Proof of equivalence
	A sufficient condition for cutoff
	Random walks on the half line
	An example without starting point cutoff
	Open problems
	References

