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ABSTRACT7

We present a Bayesian inference approach to estimating the cumulative mass profile and mean8

squared velocity profile of a globular cluster given the spatial and kinematic information of its stars.9

Mock globular clusters with a range of sizes and concentrations are generated from lowered isothermal10

dynamical models, from which we test the reliability of the Bayesian method to estimate model param-11

eters through repeated statistical simulation. We find that given unbiased star samples, we are able12

to reconstruct the cluster parameters used to generate the mock cluster and the cluster’s cumulative13

mass and mean velocity squared profiles with good accuracy. We further explore how strongly biased14

sampling, which could be the result of observing constraints, may affect this approach. Our tests15

indicate that if we instead have biased samples, then our estimates can be off in certain ways that16

are dependent on cluster morphology. Overall, our findings motivate obtaining samples of stars that17

are as unbiased as possible. This may be achieved by combining information from multiple telescopes18

(e.g., Hubble and Gaia), but will require careful modeling of the measurement uncertainties through a19

hierarchical model, which we plan to pursue in future work.20

Keywords: globular clusters: general — methods: data analysis — methods: statistical21

1. INTRODUCTION22

Globular clusters are nearly-spherical, massive collec-23

tions of stars that are found in every type of galaxy.24

Upon formation, their early evolution is governed by25

stellar evolution in the sense that massive stars quickly26

lose mass, which causes the cluster’s potential to27

weaken. However, over the majority of their lifetimes,28

two-body relaxation and the external tidal field of their29

host galaxy are the dominant mechanisms that govern30

a cluster’s evolution (e.g. Heggie & Hut 2003). These31

two mechanisms lead to clusters becoming spherically32

symmetric, isotropic, and mass segregated over time as33

they evolve towards a state of partial energy equipar-34

tition while playing host to stellar collisions and merg-35

ers (Meylan & Heggie 1997; Spitzer 1987; Heggie & Hut36

2003). Dynamically old clusters are even capable of hav-37

ing their core energetically decouple from the rest of the38
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cluster, a process known as core collapse (Hénon 1961;39

Lynden-Bell & Wood 1968).40

Given the bevy of dynamical processes that occur41

within globular clusters, the ability to accurately mea-42

sure the current distribution of stars within a given clus-43

ter leads to a deeper understanding of how these pro-44

cesses work and shape cluster evolution. Reverse engi-45

neering the evolution of a system of clusters can then46

lead to constraining the conditions under which they47

form and therefore the formation and evolution of their48

host galaxy. A large number of distribution functions49

(DFs) have been proposed to represent the observed dis-50

tribution of stellar positions and velocities in globular51

clusters (e.g., Woolley 1954; Michie 1963; King 1966;52

Wilson 1975; Gunn & Griffin 1979; Bertin & Varri 2008;53

Gieles & Zocchi 2015; Claydon et al. 2019). The general54

picture that emerges out of the models that best rep-55

resent observations of Galactic globular clusters is that56

clusters are isotropic in their centre with density and ve-57

locity dispersion profiles that decrease to zero out to a58

truncation radius. The treatment of how the DF drops59
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to zero out to the truncation radius varies from model60

to model, with additional treatments being necessary to61

address the presence of radial anisotropy (Michie 1963)62

and globular cluster rotation (Varri & Bertin 2012).63

Complicating the situation slightly is that stars within64

globular clusters have a large range of masses, while65

most DFs assume all stars have the same mass. Hence66

mass segregation, which is a natural outcome of clusters67

evolving towards a state of partial energy equipartition,68

is not considered in the models. Failing to account for69

the presence of mass segregation has been shown to incur70

strong biases when fitting models to the surface bright-71

ness profile or number density profile of a cluster (Shana-72

han & Gieles 2015; Sollima et al. 2015). One solution is73

to treat a globular cluster system as the combination of74

several single mass models (Da Costa & Freeman 1976).75

Historically, the application of the aforementioned76

models to observed globular clusters has been in the fit-77

ting of their observed number density or surface bright-78

ness profiles. From a given distribution function, it is79

possible to derive how the number of stars per unit area80

on the sky or volume decreases with clustercentric dis-81

tance. Assuming a mass spectrum and mass-to-light ra-82

tio, a surface brightness profile can also be derived. Sev-83

eral different distribution function-based models have84

been successfully fit to Galactic (McLaughlin & van der85

Marel 2005; Miocchi et al. 2013; de Boer et al. 2019, e.g)86

and extragalactic (Woodley & Gómez 2010; Usher et al.87

2013; Webb et al. 2013; Puzia et al. 2014, e.g) globular88

clusters.89

Alternatives to fitting clusters with distribution func-90

tion based models include comparing observations to91

large suites of N -body star cluster simulations (Heggie92

& Giersz 2014; Baumgardt & Hilker 2018) and Jeans93

Modelling (Cappellari 2008; Watkins et al. 2013). Di-94

rect N -body simulations can also be used to test and rule95

out different distribution function based models, as com-96

pleteness, contamination and measurement errors will97

not contribute to the uncertainty in the fit. For exam-98

ple, Zocchi et al. (2016) successfully demonstrated that99

direct N -body simulations of star clusters could be well100

fit by the lowered isothermal models of Gieles & Zocchi101

(2015).102

In addition to the issues associated with assuming103

what model best represents globular clusters in general,104

the process of finding the exact model parameters (or N -105

body simulation) that best represent a specific globular106

cluster is also challenging. Historically, globular clusters107

were fit with models by comparing observed and theo-108

retical surface brightness profiles or density profiles (e.g,109

McLaughlin & van der Marel 2005). A typical approach110

to fitting observational data with models would be to ra-111

dially bin the observed stars and then minimize the χ2112

between the observed surface brightness or density pro-113

file and the model profile. Such an approach will result114

in systematic error due to binning the data, with the115

completeness of the dataset, contamination from non-116

cluster stars, and measurement errors introducing ad-117

ditional uncertainty into the fit as well. Binning data118

is also undesirable as information is lost about each in-119

dividual star. Furthermore, as previously mentioned,120

multi-mass models require either a mass-to-light ratio121

be added as a free parameter when fitting surface bright-122

ness profiles or a mass-to-light ratio be assumed for the123

observational data (Hénault-Brunet et al. 2019).124

Gaia Data Release 2 (Gaia Collaboration et al. 2016,125

2018) and the Hubble Space Telescope Proper Motion126

(HSTPROMO) Survey (Bellini et al. 2014) have helped127

usher in a new era of globular cluster studies, with spa-128

tial and kinematic information now available for a large129

number of cluster stars. Knowing the kinematic prop-130

erties of individual stars can mitigate uncertainties re-131

lated to contamination, as kinematics make it easier to132

determine what stars in the observed field of view are133

truly members of the cluster or are simply foreground or134

background stars. Combining membership constraints135

with spatial and photometric information of core stars136

in high-resolution images of cluster centres also allows137

for the radial coverage across a cluster to be improved138

(de Boer et al. 2019).139

Kinematic information can also be taken into consid-140

eration when fitting clusters with models, as the cluster’s141

density profile and velocity dispersion can be simultane-142

ously fit by minimizing the combined χ2 (Baumgardt &143

Hilker 2018). Extending the method even further, Zoc-144

chi et al. (2017) has fit lowered isothermal models to the145

Galactic globular cluster Omega Centauri by simultane-146

ously fitting its surface brightness profile, line of sight ve-147

locity dispersion profile, radial proper motion dispersion148

profile, and tangential proper motion dispersion pro-149

file. Unfortunately, even with kinematic information,150

issues related to binning data, completeness, and mea-151

surement uncertainties remain when fitting data with152

models. Furthermore, when trying to simultaneously fit153

surface brightness profiles and kinematic profiles, one154

must assume how to weight the importance of each fit.155

For example, when fitting through the minimization of156

χ2 between model and observed data, it must be decided157

whether the total χ2 is simply the sum of the individual158

χ2 values calculated for the density and kinematic profile159

fits or if they should be weighted differently. The ad-160

vantages and disadvantages of fitting each of the models161

discussed above to observed cluster datasets are summa-162

rized by Hénault-Brunet et al. (2019).163



Bayesian Inference of GC Properties Using Distribution Functions 3

The purpose of this study is to investigate and po-164

tentially improve the method in which distribution165

function-based models can be fit to observed star cluster166

datasets by avoiding systematic errors and loss of infor-167

mation associated with radially binning the data, con-168

tamination, and completeness. We instead estimate the169

model parameters, cumulative mass profile, and mean-170

square velocity profile of a globular cluster (GC) using171

the positions and velocities of individual stars and as-172

suming a physical model for the GC through a DF and173

Bayesian method.174

A Bayesian framework has at least four main advan-175

tages for this type of analysis. First, we wish to in-176

corporate useful prior information about GCs to help177

constrain parameter estimates. Second, since kinematic178

data for GCs is often incomplete, using a Bayesian179

framework allows one to include both incomplete and180

complete data simultaneously. Third, astronomical data181

are also subject to measurement uncertainties that are182

well understood by astronomers, and that we can incor-183

porate via a hierarchical Bayesian framework. Fourth,184

our ultimate goal is to infer the cumulative mass profile185

without having to make assumptions about the mass-186

to-light ratio of the GC, and this should be achievable187

given samples from the posterior distribution of model188

parameters.189

For the current study, we work with simulated data190

generated using limepy (Gieles & Zocchi 2015) of low-191

ered isothermal models for GCs and test the ability of192

a Bayesian framework to recover a cluster’s true to-193

tal mass, cumulative mass profile, mean-square veloc-194

ity profile, and other parameters of interest. A related195

study was completed by Hénault-Brunet et al. (2019),196

where they used a single snapshot from a direct N -body197

simulation of the Galactic GC M4 (Heggie & Giersz198

2014) to compare the ability of multiple methods to re-199

cover the simulated cluster’s mass and mass profile. In200

the current paper, rather than comparing and contrast-201

ing the pros and cons of different methodological ap-202

proaches on a single snapshot, we study the pros and203

cons of a single method to recover the mass profile of204

different types of of globular clusters (e.g., “average”,205

“compact”, “extended” GCs). This approach is espe-206

cially important, as Hénault-Brunet et al. (2019) sug-207

gested that single-mass DF methods could lead to bi-208

ases in the mass and mass profile. We would like to209

concretely quantify any possible biases, and identify210

whether they are dependent on certain types of GCs211

(e.g., average, compact, and extended).212

The paper is structured as follows. In Section 2, we213

introduce the suite of simulated data used to test our ap-214

proach, with the fitting routine and methods described215

in Section 3. In Section 4, we examine the estimated cov-216

erage probabilities of the Bayesian credible intervals for217

the model parameters, and discuss situations in which218

inference from the posterior distribution is (and is not)219

able to reproduce the true cumulative mass profile and220

mean-square velocity profile of the simulated GCs. Fu-221

ture applications of this work, including the use of obser-222

vational data, are also discussed. Finally, we summarize223

our findings in Section 5.224

2. SIMULATED DATA225

We develop and test our method for GC parame-226

ter inference with simulated kinematic data d = (r,v)227

of stars in a GC-centric reference frame, where ri =228 √
x2
i + y2i + z2i and vi =

√
v2x,i + v2y,i + v2z,i are the dis-229

tance and speed of the ith star. The data are generated230

using the python code limepy (Gieles & Zocchi 2015),231

which uses a four-parameter model for the phase-space232

distribution function f(r,v) of stars in the cluster (see233

Section 3). The limepy parameters are234

θlimepy =(g,Φ0,Mtotal, rh) (1)

where g (dimensionless) is a truncation parameter, Φ0235

(dimensionless) determines the central potential, Mtotal236

(in M⊙) is the total mass, and rh (in parsecs, pc) is the237

half-light radius. Overall, g and Φ0 impact the shape of238

the GC profile, while Mtotal and rh are scale parame-239

ters. In the case of isotropic GCs, a value of g = 0 in240

the limepy model is equivalent to the Woolley (1954)241

model, and a value of g = 1 is equivalent to the King242

models (Michie 1963; King 1966, see also Gieles & Zoc-243

chi 2015). The value of g is not only a truncation pa-244

rameter but also plays a role in determining the spatial245

distribution of stars. The parameter Φ0 — which de-246

termines the central gravitational potential — helps set247

the concentration of stars.248

GCs with the same Mtotal, g, and Φ0, but with dif-249

ferent half-light radii rh, have relatively different levels250

of compactness. That is, a GC with a small half-light251

radius is much more compact than a GC with a large252

half-light radius. At the same time, GCs with the same253

Mtotal, g, and rh, but different Φ0 values have relatively254

different concentrations. Lower (higher) Φ0 values lead255

to a larger (smaller) concentrated region of stars at the256

GC center.257

Figure 1 shows examples of GCs with different levels of258

compactness and concentrations; the figure shows exam-259

ples of the clustercentric x and y positions of GC stars260

(first and third rows) and the magnitude of the stars’261

velocities as a function of distance r from the center of262

the cluster (second and fourth rows). The three GCs263

shown in the top two panels of Figure 1 have the same264
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Figure 1. First row: The x and y coordinates of ten thousand randomly selected stars in three different simulated GCs: a
compact (left), average (middle), and extended (right) GC with 105 stars and limepy parameters g = 1.5, Φ0 = 5.0, M = 105,
and rh = 1.0, 3.0 and 9.0 respectively. Second row: The magnitude of each star’s velocity (semi-transparent circles) as a function
of total distance r, using the same stars as in the top row. Third and fourth rows: The same as the top two rows, except for a
GC with parameters g = 1.5, M = 105, and rh = 3.0, and changing the Φ0 parameter: Φ0 = 2.0 (left), average (middle, same
as top two rows), and Φ0 = 8.0.
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Mtotal, g, and Φ0 values, but have increasing half-light265

radii rh from left to right. In the bottom two panels of266

Figure 1, the GCs have the same g, Mtotal and rh, but267

have increasing Φ0 values from left to right. Note that268

the “average” GC is shown in the center of all rows of269

Figure 1, to show the transition from low rh to high rh270

and from low Φ0 to high Φ0. From Figure 1, we see that271

either a low (high) rh or a low (high) Φ0 leads to subtle272

differences in positional space but noticeably different273

distributions in velocity.274

In this work, we explore different GC morphologies275

based on the parameter values listed in Table 1 (i.e., the276

types shown in Figure 1). Every simulated GC has the277

same total mass (Mtotal = 105M⊙) and truncation pa-278

rameter g = 1.5, but has a different level of compactness279

(different rh) or different concentration (different Φ0).280

To simplify our terminology we refer to the five scenar-281

ios in Table 1 as: compact (small rh), average, extended282

(large rh), Low Φ0, and High Φ0. We create 50 GCs of283

each type in order to repeat our analysis many times.284

GC Type Parameter Values
g Φ0 Mtotal (10

5M⊙) rh (pc)
average 1.5 5.0 1.0 3.0
compact 1.5 5.0 1.0 1.0
extended 1.5 5.0 1.0 9.0
high Φ0 GC 1.5 8.0 1.0 3.0
low Φ0 GC 1.5 2.0 1.0 3.0

Table 1. Summary of limepy parameter values used to
simulated different GC types analysed in this study.

Each simulated GC contains N = 105 stars. In real285

data sets, we do not have kinematic information for all n286

stars due to limited observations and observational selec-287

tion effects. Thus, we study the effects of our mass pro-288

file estimates when selecting stars (a) randomly, (b) only289

in the outer regions (thereby mimicking Gaia data), and290

(c) only in the inner regions (thereby mimicking HST291

data). In each case, we use a subsample of 500 stars292

from each GC. Moreover, these three different tests,293

combined with the five different morphological GCs (Ta-294

ble 1), leads to fifteen different scenarios.295

For this initial study and for the development and296

testing of our code, we use complete data in both posi-297

tion and velocity and assume there is no measurement298

uncertainty. We also work in the reference frame of the299

GC, where positions and velocities of individual stars300

are given with respect to the GC center. Of course,301

real data are collected in a Heliocentric reference frame,302

may be incomplete (e.g., only projected distances and303

line-of-sight velocities are known), and are subject to304

measurement uncertainty. However, it is worthwhile to305

investigate the ability of this method in an idealized case306

where we have complete data. Ultimately, our goal is307

to work in projected space on the plane of the sky (i.e.,308

the reference frame in which actual data are measured),309

account for incomplete data (e.g., only one component310

of the velocity is known), and incorporate measurement311

uncertainty through a hierarchical model.312

3. METHODS313

Using the simulated spatial and kinematic data of
stars from each GC mentioned in Section 2, we take
a Bayesian approach to infer the model parameters
of each GC. From Bayes’ theorem (Bayes 1763), the
posterior probability of a vector of model parameters
θ = (g,Φ0,Mtotal, rh), given data d, is

p(θ|d) = p(d|θ)p(θ)
p(d)

, (2)

where p(d|θ) is the probability of the data conditional314

on the model parameters, p(θ) is the prior distribution315

on the model parameters, and p(d) is the “evidence”316

or prior predictive density. The latter is a constant,317

leaving us with a target distribution proportional to318

the posterior distribution p(θ|d), which we will estimate319

through sampling in order to perform parameter infer-320

ence (Section 3.3). Our simulated data d described in321

Section 2 are the six Cartesian phase-space components322

(x, y, z, vx, vy, vz) of each star, which we treat as per-323

fectly measured. An individual star’s phase-space com-324

ponents di = (xi, yi, zi, vx,i, vy,i, vz,i) provide its cluster-325

centric distance ri and speed vi, which are needed for326

the calculation of the DF f(θ; di).327

In practice, p(d|θ) is often taken to be the likeli-328

hood — a function of model parameters for fixed data329

L(θ;d) — which we define using the DF in Section 3.1.330

The prior distributions for the model parameters θ =331

(g,Φ0,Mtotal, rh) in the limepy model are described in332

Section 3.2.333

3.1. Likelihood334

In this study, we define the likelihood using a phys-335

ical distribution function (DF), f(θ; di) of the limepy336

lowered-isothermal model. Given a fixed set of data d337

of N stars, the likelihood is a function of the model pa-338

rameters θ and the total mass Mtotal of the GC:339

L(θ;d)=
N∏
i=1

f(θ; di)

Mtotal
(3)

=

N∏
i=1

f(g,Φ0,Mtotal, rh; ri, vi)

Mtotal
, (4)
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where the stars are assumed to be independent.340

For lowered-isothermal models, the DF f is calculated341

numerically via the limepy software (Gieles & Zocchi342

2015), and thus the likelihood must be calculated nu-343

merically too.344

As mentioned in Section 2, we simulate position and345

kinematic data of stars following a limepy model DF346

with parameters θ shown in Table 1, assume the like-347

lihood defined in equation 4, and define physically-348

motivated informative priors on the model parameters.349

Given that the likelihood is defined by the DF that was350

used to generate the data, we expect to obtain reason-351

able parameter estimates through inference made from352

the posterior distribution using Markov Chain Monte353

Carlo (MCMC) sampling. However, we are also going354

to impose prior distributions that are at least weakly in-355

formative, and so it is good practice to test whether the356

posterior can still be used to reliably infer the model pa-357

rameters. Moreover, in the cases where the sampling of358

stars from the cluster is biased to inside the core or out-359

side the core, we aim to understand how this sampling360

bias affects parameter inference.361

3.2. Prior Distributions362

Two advantages of Bayesian inference are the neces-363

sity to incorporate meaningful prior information, and364

the requirement to state this explicitly. In order for the365

DF to correspond to a physically realistic collection of366

stars in a GC, all model parameters must be greater367

than zero. Negative parameter values are not allowed368

by the likelihood, but we also disallow negative param-369

eter values via the priors (this increases efficiency and370

keeps the limepy model from returning errors).371

One reason to use informative priors is that im-372

ages and studies both within the Milky Way Galaxy373

and around other galaxies provide prior information on374

quantities like the mass and half-light radius of GCs.375

For example, GC masses span about an order of magni-376

tude and most astronomers would be comfortable setting377

the prior p(log10 Mtotal) ∼ N(µM , σM ), where the hy-378

perparameters1 µM and σM are defined in log10 Mtotal.379

This is the prior we choose, and it is also supported by380

the near universal GC mass function (Brodie & Strader381

2006; Harris 2010).382

The limepy model works in Mtotal space, so we need
to do a change of variables to obtain the prior p(Mtotal).
Using a change of variables, the prior on Mtotal is

p(Mtotal) =
N(µM , σM )

Mtotal ln 10
. (5)

1 the term hyperparameters is used to differentiate µM and σM

from the model parameters of interest

The half-light radius is another quantity of GCs for383

which we have considerable prior information. Images384

of GCs give an independent estimate of rh, with a con-385

servative measurement uncertainty of roughly 0.4pc (e.g.386

de Boer et al. 2019). In this simulation study, we as-387

sume the observer has this prior information and set a388

truncated normal prior on rh.389

We have considerably less prior information on the390

values of g and Φ0, aside from the physically allowable,391

positive values. For these parameters, we use truncated392

uniform distributions. In summary, we assume the pa-393

rameters for the limepy model are distributed as394

g∼unif(0.001, 3.5), (6)
Φ0∼unif(1.5, 14), (7)

Mtotal∼
N(µM , σM )

Mtotal ln(10)
, (8)

and rh∼N(a, b, µrh , σrh), (9)

where µM = 5.85 and σM = 0.6 (defined in log10 Mtotal),395

and hyperparameters for the lower and upper bounds of396

rh are a = 0 and b = 30 respectively. The mean and397

standard deviation for the rh parameter (µrh and σrh)398

are chosen to reflect plausible information an observer399

would have for a given GC. Thus, for the average GCs400

in our analysis, we try different means, such as µrh =401

3.4, µrh = 3.1, etc. with σrh = 0.4pc. Our results are402

insensitive to the choice of the mean, as long as it is not403

too many standard deviations away from the true value.404

3.3. Sampling the Target Distribution405

Given the limepy model, we have a likelihood func-
tion L(g,Φ0,M, rh ;d) for the four unknown parame-
ters, depending on the observed star data d. Combining
the above prior distributions with this limepy likelihood
function leads to a posterior distribution or target pos-
terior density via Bayes’ theorem (eq. 2),

p(g,Φ0,Mtotal, rh|d) ∝ p(d|g,Φ0,Mtotal, rh)×
p(g)p(Φ0)p(Mtotal)p(rh),

where we assume independent priors. Our406

goal is to sample from the target distribution407

p(g,Φ0,Mtotal, rh|d), and perform inference of the pa-408

rameter values, the cumulative mass profile, and the409

mean-square velocity profile of the GC.410

Ultimately, we explore and collect samples of this pos-411

terior density using a MCMC algorithm, specifically a412

version of the standard Metropolis algorithm (Metropo-413

lis et al., 1953) that includes automated, finite adaptive414

tuning (to be discussed later). First, however, we find415

optimal starting values; we use the differential evolu-416

tion optimizer function DEopt from the NMOF package417
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(Schumann 2011–2021; Gilli et al. 2019) in R (R Core418

Team 2019) to find modal (i.e., argmax) values of the419

four parameters, and then use these values as the initial420

state of our MCMC algorithm. Differential evolution421

was first introduced by Storn & Price (1997), and we re-422

fer the reader to this paper for details on the algorithm.423

This initial step allows an automated selection of good424

starting values, which helps to overcome the complicated425

structure of the posterior distribution, thereby making426

sampling more efficient. Once the starting values are427

obtained, we run an automated, finite adaptive-tuning428

method during the burn-in of the Markov chain. To429

describe the finite adaptive-tuning method, we first pro-430

vide a brief review of proposal distributions and sam-431

pling efficiency.432

Sampling a target or posterior distribution using a
standard Metropolis algorithm requires a choice of pro-
posal or “jumping” distribution. The latter is used to
randomly suggest a new place in parameter space, θ∗,
based on the current location θi. Often, this suggestion
is done using a normal distribution such that

θ∗ = θi +Z, (10)

where Z ∼ N(0,Σ). Here, N(0,Σ) is the jumping dis-433

tribution with a covariance matrix Σ set by the user.434

The value of Σ determines whether, on average, “big435

jumps” or “small jumps” are attempted from the cur-436

rent location of θi. These proposed jumps are either ac-437

cepted or rejected according to the standard formula in438

the Metropolis algorithm. The efficiency of the sampling439

is dependent on the choice of this covariance matrix. For440

example, if the variance is too small then the algorithm441

make jumps that are too small. If the variance is too442

large, then the algorithm will make jumps that are too443

large.444

Finding a Σ that enables the most efficient sam-445

pling is sometimes accomplished through manual tun-446

ing: adjusting Σ until the appropriate acceptance rate447

is achieved. Obviously, this can be a tedious and time-448

consuming process, especially in the case of multiple pa-449

rameters. Thankfully, there are methods which auto-450

mate this task and that are founded in statistical the-451

ory.452

In this paper, we use an automated, finite adaptive-453

tuning method during the burn-in of the Markov chain.454

This adaptive-tuning method is one in which the pro-455

posal step sizes are adjusted automatically and itera-456

tively. We obtain a good covariance matrix for the pro-457

posal distribution using an Adaptive Metropolis algo-458

rithm (Haario et al. 2001; Roberts & Rosenthal 2009)459

which repeatedly updates the Metropolis proposal dis-460

tribution (i.e., the proposal covariance matrix) based on461

the empirical covariance of the run so far, in an effort462

to obtain a proposal covariance matrix equal to about463

(2.38)2 times the target covariance matrix divided by464

the Markov chain’s dimension, which has been shown to465

be optimal under appropriate assumptions (Roberts &466

Rosenthal 1997, 2001). Foundational works on the sub-467

ject of adaptive Metropolis and convergence are found468

in the statistics literature (Haario et al. 2001; Roberts469

et al. 1997; Roberts & Rosenthal 2009).470

The practice of using the Adaptive Metropolis algo-471

rithm for an initial run and then fixing the proposal472

variance for the final run corresponds to “finite adapta-473

tion” as in Proposition 3 of Roberts & Rosenthal (2007).474

We require a minimum of five initial runs to update the475

proposal variance, but also automatically allow for fur-476

ther iterations as needed to achieve efficient sampling.477

Almost all of the GCs we analyze take no more than five478

iterations of the finite adaptive tuning, which takes one479

to five minutes per cluster on a simple laptop computer.480

Once the finite adaptive step is complete, we run a481

standard Metropolis algorithm using the final (hopefully482

approximately optimal) proposal distribution found by483

the Adaptive Metropolis step. The final sampling takes484

less than 15 minutes per cluster to complete. At the485

end, we discard an initial burn-in period, and take the486

remaining chain values as a sample from the posterior487

density.488

The above procedure allows us to approximately sam-489

ple from p(g,Φ0,Mtotal, rh|d), and hence (a) approxi-490

mately compute the posterior means and other statis-491

tics of the four unknown parameters (g,Φ0,Mtotal, rh),492

including Bayesian credible intervals, and (b) calculate493

a cumulative mass profile of the GC for every sample494

from the target distribution.495

3.4. Different Cluster and Sampling Cases496

Very generally, GCs may be classified as having an av-497

erage, compact, or extended morphology based on their498

radius rh, or may be considered to have high or low con-499

centration based on the value of Φ0. Additionally, the500

spatial and kinematic data from stars may be a random501

sample from everywhere in the cluster, a random sample502

beyond some radius, or a random sample within some503

radius. We expect the ability of our method to recover504

the true mass, cumulative mass profile, and mean-square505

velocity profile to depend on both GC morphology and506

the type of sampling of its stars. Understanding the507

bias in parameter inference that can occur as a result of508

biased sampling is important, since in reality we some-509

times lack position and kinematic data from the inner510

or outer regions of the cluster. Thus, we investigate511
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multiple combinations of the aforementioned cases to512

understand any possible bias.513

Table 1 summarize the types of GCs we investigate.514

In our simulated GCs, all stars have the same brightness515

and mass, and so the half-light radius corresponds to the516

half-mass radius. For each case, we simulate 50 GCs us-517

ing the parameter values listed in Table 1, and subsam-518

ple 500 stars either (1) randomly, (2) outside rcut, or519

(3) inside rcut. We choose an rcut value of 1.5pc mostly520

for simplicity but also partly because recent work by521

the HSTPROMO Team indicates that proper motions522

are most often available for stars within the half-mass523

radius (Watkins et al. 2013) but not beyond. Our con-524

servative choice for rcut is therefore half of the average525

effective radius of Galactic clusters (excluding very ex-526

tended clusters with effective radii greater than 10 pc)527

(Baumgardt & Hilker 2018). We use this same cut-off ra-528

dius when sampling outer stars (i.e., situation (2) above)529

as well. In this way, we investigate what happens when530

data are only available for outer stars (e.g., when Gaia531

kinematic data are used).532

By repeating the analysis on 50 randomly generated533

GCs, we estimate and examine the coverage probabil-534

ities for the Bayesian credible regions for all sampling535

scenarios, for all GCs listed in Table 1 (Section 4).536

For example, for the average cluster, we generate 50537

simulated GCs with parameter values g = 1.5,Φ0 =538

5,Mtotal = 105M⊙, and rh = 3.0pc, and randomly sam-539

ple 500 stars from each GC. For each GC, we run the540

analysis on the subsample of stars, obtaining samples of541

the target distribution as described in the previous sec-542

tion. Next, we estimate the mean, interquartile range,543

and 95% credible interval of the posterior distribution544

using our MCMC samples from the target distribution.545

After doing this for all 50 average GCs, we count how546

many times the interquartile ranges and 95% credible547

intervals cover the true parameter value to estimate the548

coverage probability. If the Bayesian credible regions549

are reliable, then the interquartile ranges should cover550

the true parameter values 50% of the time, and the 95%551

credible intervals should cover the true parameter values552

95% of the time.553

The same procedure is repeated for all GC types listed554

in Table 1. For example, we look at GCs with dif-555

ferent half-light radii, reflecting extended and compact556

clusters. For these clusters we use parameter values of557

g = 1.5,Φ0 = 5,Mtotal = 105M⊙, and rh = 9.0pc and558

g = 1.5,Φ0 = 5,Mtotal = 105M⊙, and rh = 1.0pc re-559

spectively. To further explore the parameter space be-560

lieved to be covered by Galactic GCs, and specifically to561

explore GCs that are more (less) concentrated, we also562

look GCs with a high (low) Φ0.563

Using our estimate of the posterior distribution for564

a single GC, we can also estimate that GC’s cumula-565

tive mass profile (CMP). The CMP is an estimate of566

the mass contained within some distance r of the GC.567

To estimate the CMP, we follow the same procedure as568

described in Eadie & Jurić (2019), who used this ap-569

proach to estimate the Milky Way’s CMP. For every570

set of model parameters (g,Φ0,Mtotal, rh) sampled by571

our algorithm (i.e., every row of parameter values in the572

Markov chain), we calculate the cumulative mass pro-573

file determined by the limepy model. Because we have574

1000s of rows in our Markov chain, we obtain thousands575

of CMP estimates. These CMPs provide us with a visual576

and quantitative estimate that can be used to calculate577

Bayesian credible regions and that can be compared di-578

rectly to the true CMP of the cluster.579

Another quantity of interest that we can estimate580

using the posterior distribution for a single GC is the581

mean-square velocity; the mean-square velocity is equal582

to the sum of the velocity dispersion squared (or the583

variance) and the square of the mean velocity. The584

limepy code can calculate the mean-square velocity as a585

function of radius from the centre of the cluster, given a586

specific set of model parameters. Thus, the estimate of587

the GC’s mean-square velocity profile can be calculated588

in much the same way as the CMP, using the parameter589

samples from the posterior distribution.590

In all of the GC examples, we assume that we know591

the complete position and velocity components of the592

stars. However, in reality we often have incomplete data.593

For example, we may only have projected measurements594

on the plane of the sky (i.e., projected distances in the595

x−y plane, and proper motions). This missing data may596

influence our mass and mass profile estimates in unex-597

pected ways, and is important to study. In a Bayesian598

analysis one can treat the missing components as pa-599

rameters in the model, but this also means that further600

prior distributions must be set. Given the complexity of601

the problem, we leave this to future work.602

4. RESULTS & DISCUSSION603

4.1. Random Sampling604

For the cases in which we randomly sample stars from605

everywhere in the cluster, we find the Bayesian credible606

regions to be reliable for all five GC types.607

As an example, Figure 2 shows the 95% credible in-608

tervals (error bars) for each model parameter, for 50609

realizations of an average cluster. The true parameter610

values are shown as vertical blue lines, and the num-611

ber of times out of 50 that the 95% credible interval of612

the target distribution overlaps the true value is shown613

at the top of each panel. We can see that the credible614



Bayesian Inference of GC Properties Using Distribution Functions 9

0.5 1.0 1.5 2.0 2.5

50 50

g

G
C

 ID
Average GCs, stars randomly sampled

1
3

5
7

9
12

15
18

21
24

27
30

33
36

39
42

45
48

2 3 4 5 6 7 8

50 50

Φ0

47 50

Mtotal (105 Msun)
0.85 0.95 1.05 1.15 2.6 2.8 3.0 3.2 3.4

48 50

rh (pc)

Figure 2. The parameter estimates and 95% credible intervals for fifty simulated “average” GCs. Each panel shows 50 credible
intervals (error bars), the corresponding mean (points), and the true parameter value (vertical blue line). Each row of points
across the four panels corresponds to the parameter estimates for the GC with ID given on the vertical axis. The fraction at
the top of each panel indicates the number of times the 95% credible interval overlaps the true parameter value. The fractions
are very large, as they should be for 95% intervals.

intervals for each parameter reliably contains the true615

parameter approximately 95% of the time (Figure 2).616

As a second example, we show a similar plot for the617

case of the extended GCs (Figure 3). Here too, we find618

the 95% credible intervals to be reliable for the most619

part. The credible intervals for g and Φ0 are slightly620

overconfident, since the true parameter value lies within621

the 95% credible intervals only 90% and 92% of the time622

respectively.623

As a final and third example, Figure 4 shows the same624

type of plot for a more concentrated cluster with Φ0 = 8.625

Again, the credible intervals are reliable, showing good626

coverage probabilities.627

Table 2 shows the estimated coverage probabilities for628

the Mtotal parameter in the case of random sampling,629

for all five types of clusters, found by calculating the630

fraction of times that the true Mtotal is contained within631

GC Type C.I. Coverage Prob. for Mtotal

average 0.50
compact 0.42
extended 50% 0.52
high Φ0 0.48
low Φ0 0.38
average 0.94
compact 0.90
extended 95% 1.00
high Φ0 0.94
low Φ0 0.92

Table 2. Estimated coverage probabilities under the random
sampling case, for different GC morphologies. In the table
heading, C.I. stands for credible interval.

.
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Figure 3. The parameter estimates and 95% credible intervals for fifty simulated “extended” GCs, when stars are randomly
sampled at all radii. The fractions are again very large, as they should be.

the Bayesian credible interval. We can see that both the632

50% and 95% credible intervals for Mtotal are reliable633

when the stars are randomly sampled throughout the634

cluster, despite cluster type.635

The MCMC samples can also be used to infer the cu-636

mulative mass profile (CMP) of the cluster under the637

limepy model. Figure 5 shows the CMP inferred for one638

example of an average, compact, extended, low Φ0, and639

high Φ0 cluster in the random sampling case. The pos-640

terior distribution samples of g,Φ0,Mtotal and rh from641

the Markov chains are used to calculate the posterior es-642

timate of the CMP, shown as transparent black curves.643

The red curve shows the true CMP given by the limepy644

model with the correct parameters.645

The CMPs provide not only a visual inspection of646

our method, but also a quantitative one. The poste-647

rior curves for a given GC (e.g., the collection of black648

curves for the average GC in Figure 5) can be used to649

construct Bayesian credible intervals at all radii (e.g.,650

the teal regions for the average GC in Figure 6). Af-651

ter constructing these credible regions for each GC, we652

can ask: “how often does the true CMP lie within these653

credible regions, at different radii?”.654

As an example of this quantitative comparison, we use655

the results of all 50 realizations of average GCs to cal-656

culate the reliability of the CMP 95% credible regions.657

Table 3 shows how often the true M(r < R) fell within658

the 95% credible region at 10 logarithmically-spaced dis-659

tances r, for the average GCs. The results show that the660

credible regions are reliable, with the true M(r < R) be-661

ing recovered approximately 95% of the time at all radii.662

In general, we find that the credible regions and CMPs663

are reliable for all types of GCs when the stars are sam-664

pled randomly throughout the cluster. It is reassuring665

that we can recover the true parameter values and the666

CMPs reliably from a random sample of only 500 stars.667

In the case of real data, we will not know the true668

CMP of a GC. Thus, one might like to check whether the669
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Figure 4. The parameter estimates and 95% credible intervals for fifty simulated high Φ0 GCs, when stars are randomly
sampled at all radii. The fractions are again very large, as they should be.

Average GCs, stars randomly sampled
r (pc) within 95% c.r.
1.00 49/50
1.39 49/50
1.95 50/50
2.71 50/50
3.79 50/50
5.28 46/50
7.37 46/50

10.28 46/50
14.34 47/50
20.00 47/50

Table 3. Reliability of CMP credible regions (c.r.) for the
average GCs, under random sampling of stars.

CMP inference is reasonable given the observed data.670

One way to compare the Bayesian inferred CMP to the671

observed data is shown in Figure 6. Here, the 50, 75,672

and 95% credible regions are compared to the empirical673

cumulative distribution function of the 500 stars’ posi-674

tions, r. Another way to do this kind of comparison or675

check, which is not done here, would be to perform pos-676

terior predictive checks — simulate data from the poste-677

rior distribution, and compare these simulated data to678

the real data (e.g., see Shen et al. 2021, where Bayesian679

posterior predictive checks are used to check inferences680

about the CMP of the Milky Way).681

Additionally, we can inspect other physical quantities682

provided by the limepy model fit. For example, Figure 7683

shows the mean-square velocity v2 profiles as a function684

of radius for one GC in each of the five morphologies.685

Under random sampling of the stars, we observe that686

the true mean-square velocity profile is well-recovered687

by the MCMC samples. Similarly to the CMPs dis-688

cussed above, Bayesian credible regions for velocity pro-689

files could also be calculated, and posterior predictive690
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Figure 5. Example cumulative mass profiles (CMPs) calculated from the posterior samples (black curves) for the five GC
types (Table 1), in the case of random sampling. Each plot shows the posterior samples for a single GC, with the type of GC
(average, compact, extended, high Φ0, or low Φ0) indicated above each figure. The red solid curves show the true mass profile
from the limepy model, showing excellent agreement.

checks could be performed to compare simulated data691

from the posterior to the observed data.692

4.2. Biased Sampling693

In general, we find that biased sampling of stars from694

only inside or outside the cluster core results in model695

parameter estimates that are biased and in Bayesian696

credible intervals that are unreliable. While obtaining697

biased estimates from a biased data sample is not sur-698

prising, the reality is that this type of sampling mimics699

the data from some telescopes. Investigating these cases700

can illuminate the kind of biases we should expect and701

possibly correct for. Indeed, through our investigations702

of biased sampling, we find the success of the parameter703

inference and CMP inference is a combination of both704

the cluster’s morphology and the type of biased sam-705

pling.706

As an example, Figure 8 shows the 95% credible inter-707

vals for an average GC when only the outer stars’ data708

are sampled. We can see that the credible intervals are709

unreliable, and that parameter estimates are biased. In710

particular, Mtotal, g, and rh are consistently overesti-711

mated, while Φ0 is underestimated.712

In contrast, biased sampling of outer stars of an ex-713

tended cluster result in parameter estimates that are714

much more reliable (Figure 9). In this case, the ex-715

tended GC’s mass Mtotal and half-light radius rh can716

actually be estimated reliably.717

In Table 4, we summarize how reliably we can recover718

Mtotal in the biased sampling cases. Only the extended719

cluster with sampling in the outer regions is reliable.720

Also note the ∗’s in the table, which indicate when the721

MCMC algorithm had trouble finding a stationary dis-722

tribution with good mixing, leading to biased estimates723

of the total mass (Table 2). In these particular cases,724

the behaviour of the Markov chain would be a clue to725

the observer that the model is having trouble describing726

the data.727
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Figure 6. The cumulative mass profile 50, 75, and 95% Bayesian credible regions (dark to light teal-shaded regions respectively)
for the examples shown in Figure 5. Comparing these inferred CMPs to the empirical cumulative distribution function (ECDF)
of the 500 stars’ distances r (black curves) could act as a check that the Bayesian inference is reasonable given the data, when
the true CMP is unknown.

GC Type C.I. Coverage Prob. for Mtotal

outside core inside core
average 0.02*, + 0.00*, −
compact 0.00*, + 0.14*, −
extended 50% 0.60, − 0.00*, −
high Φ0 0.00, + 0.00, −
low Φ0 0.12, + 0.00*, −
average 0.08*, + 0.00*, −
compact 0.00*, + 0.62*, −
extended 95% 0.96, − 0.00*, −
high Φ0 0.00, + 0.00*, −
low Φ0 0.48, + 0.00*, −

Table 4. Estimated coverage probabilities and bias in mass
estimates. Also shown is whether the mass parameters are
on average overestimated (+) or underestimated (−), or un-
biased (no symbol). A ∗ indicates the chains had trouble
converging and/or the estimates are at the lower or upper
end of the prior distribution(s).

For GCs with high Φ0, biased sampling of stars in the728

inner regions also leads to poor parameter estimates and729

unreliable credible regions (Figure 10). For some of the730

GCs in the scenario, the Markov chains become stuck in731

one location. The estimates of the mean from these bad732

chains are shown as the open circles with a small dot in733

the middle (i.e., the “estimates” have a variance of zero734

because the chains became stuck at a single place in735

parameter space). The exact estimated parameter val-736

ues in these bad cases are rather meaningless and ran-737

dom. Moreover, if a scientist were to see this behaviour738

in a Markov chain from a real data analysis, then they739

would know not to trust the solution. However, in many740

cases of randomly generated GCs with high Φ0 and bi-741

ased sampling in the inner regions, the Markov chains742

do look reasonable even when their estimates are not.743

Thus, a scientist could mistakenly assume the conver-744

gence is giving reliable parameter estimates. We will745

return to this scenario shortly.746
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Figure 7. Example mean-square velocity profiles calculated from the posterior samples (black curves) for the case of random
sampling. Each plot title indicates the type of GC (average, compact, extended, high Φ0, or low Φ0). The red solid curves show
the true mean-square velocity profile from the limepy model, again showing good agreement. The semi-transparent vertical
dashes along the bottom of each plot show the exact location r of the randomly sampled stars in the GC.

As mentioned in the previous section, the CMPs pro-747

vide more insight than simply looking at the parame-748

ter estimates and their credible intervals, both visually749

and quantitatively. Figure 11 shows example CMPs for750

each GC morphology when the stars in these GCs are751

sampled only in their outer or inner regions (first and752

second column respectively). Looking at the first col-753

umn in Figure 11, we see that when stars are sampled754

outside the core, the inner region of the cluster’s pro-755

file tends to be underestimated — regardless of the GC756

morphology. The opposite is true for sampling inside757

the core (the second column). At the same time, sam-758

pling outside the core tends to lead to an overestimate759

of the total mass, while sampling inside the core leads760

to a (sometimes severe) underestimate.761

There are two exceptions to the observation that bi-762

ased samples lead to biased CMPs, namely (1) when763

extended and low Φ0 clusters are sampled in the outer764

regions, and (2) when compact clusters are sampled in765

the inner regions. For the extended and low Φ0 GC,766

our method is able to recover the true CMP reasonably767

well when stars outside the core are sampled, whereas768

this is certainly not the case when stars inside the core769

are sampled. For the compact GC, we see the opposite770

case — the CMP is reasonably-well estimated when the771

sample contains stars inside the core versus outside the772

core.773

These cases where biased samples still lead to unbi-774

ased estimates are not surprising — sampling stars in775

the outer region of an extended or less concentrated clus-776

ter will provide a better representation of the true stel-777

lar distribution than sampling stars in its core, because778

these types of GCs are less dense in their inner regions779

(Figure 1). Likewise, sampling stars in the inner region780

of a compact cluster will be a better representation of the781

true stellar distribution than a sample from the outer re-782

gion because compact GCs are more dense towards their783

centers.784
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Figure 8. The mean estimate and 95% credible intervals for average GCs whose stars were sampled outside the core. Due to
the biased sampling, most of the intervals miss the true value.

Next, we test the reliability of the CMP Bayesian cred-785

ible regions. As an example, we show the results for786

low-Φ0 GCs when stars are sampled outside the core.787

(Table 5). It is clear that the 95% c.r. at all radii are788

unreliable, with the inner regions being the most unre-789

liable.790

Next, we use the MCMC samples to estimate the791

mean-square velocity v2 profile as a function of radius.792

In Figure 12, each row corresponds to a specific GC793

type, and the columns indicate whether stars were sam-794

pled outside (left) or inside (right) the core of the GC.795

The light blue, dashed line shows the rcut value, and796

along the bottom are semi-transparent marks showing797

the exact positions of the stars in the sample.798

In the left-hand column of Figure 12, the estimated v2799

profiles are reasonably-well matched to the true profiles800

for three morphologies (average, extended, and low-Φ0801

GCs). Notably, the corresponding mass profile CMPs802

in Figure 11 are also some of better estimates of the803

entire set. For the other two types of GCs, it is the804

inner part of the profiles that do not match; the true805

mean-square velocity profile (red curve) in the center of806

Low Φ0 GCs, stars sampled outside core
r (pc) within 95% c.r.
1.00 0/50
1.36 0/50
1.85 0/50
2.52 0/50
3.43 6/50
4.67 39/50
6.35 39/50
8.64 28/50
11.76 23/50
16.00 23/50

Table 5. Reliability of CMPs for Low Φ0 GCs, in the case
of biased sampling.
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Figure 9. Same as Figure 2, but for extended GCs whose stars are sampled only from the outer regions.

the GC is much higher than the predicted profiles (black807

curves). Our findings suggest that a reasonable estimate808

of the v2 profile might be possible for outer regions of809

the GC when stars are sampled outside the core, but810

that it would be ill-advised to extrapolate the model fit811

to the inner regions when only stars outside of the core812

are available.813

In the right-hand column of Figure 12, we see that for814

every type of GC the true mean-square velocity profile is815

poorly matched by the predictions at all radii r. Within816

the rcut value, the true profile is generally lower than the817

black curves, whereas it is much higher than the black818

curves outside rcut. Thus, the kinematic information819

from inner GC stars alone is not enough to constrain820

the model at any radii.821

One aspect that we have not explored in the biased822

sampling cases is whether the rcut value plays a sig-823

nificant role in determining parameter estimates — es-824

pecially if that rcut value was more directly linked to825

GC morphology. Here, we have used a fixed rcut value826

mostly for simplicity — but in future work it would be827

worth exploring the impact of rcut more fully. For exam-828

ple, the rcut value for an extended or less-concentrated829

GC might be relatively smaller than that for the rcut830

value for a compact or highly-concentrated GC.831

It is also worth mentioning that for the fits in the832

right-hand column of Figure 12, the Markov chains had833

trouble converging and/or the estimates of the param-834

eter were at the lower or upper end of the prior distri-835

butions (see Table 4). Both of these issues are red flags;836

the model has not been fit well to the data and any837

inference would be imprudent.838

5. CONCLUSION839

This paper has investigated the estimation of glob-840

ular cluster properties based upon a sample of their841

constituent stars. We have developed a Markov chain842

Monte Carlo (MCMC) algorithm to compute the four843

parameters of a lowered isothermal model that is used844

to represent a GC system. Our algorithm uses a version845
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Figure 10. Same as Figure 2, but for high Φ0 GCs sampled inside the core.

of the Metropolis algorithm, together with a numerical846

optimisation to find good starting values, and a finite847

adaptation tuning phase to find a good proposal covari-848

ance matrix. We then applied our algorithm to simu-849

lated data generated using the limepy package (Gieles850

& Zocchi 2015), and examined the extent to which the851

parameters, mass profile, and mean-square velocity pro-852

file of the original cluster are recovered by our algorithm.853

A major goal for this study was to investigate what854

types of bias can occur when the GC’s stars are sampled855

(a) randomly, (b) from the outer regions of the cluster,856

and (c) from the inner regions of the cluster. In sum-857

mary, are findings are:858

• Using all spatial and kinematic information and859

sampling stars randomly from throughout the860

cluster, our method gives reliable credible inter-861

vals for the parameter values, as well as reliable cu-862

mulative mass profiles (CMPs), and mean-squared863

velocity profiles.864

• Using a biased sample of stars (i.e., within/outside865

rh) gives unreliable credible intervals, leads to bi-866

ased parameter estimates, and provides poor infer-867

ence of the CMP and mean-square velocity profile.868

• There are two possible exceptions where even bi-869

ased samples still tend to be reliable: (1) extended870

and low Φ0 clusters that are sampled in the outer871

regions, and (2) compact clusters that are sampled872

in the inner regions. In these cases, we believe the873

credible intervals for the parameters and CMPs874

are more reliable because the distribution of the875

sampled data is more similar the true distribution876

of stars in the cluster.877

These results are quite promising. If the stellar data878

is sampled randomly in an unbiased fashion, then our879

algorithm’s estimates are quite accurate. The mass pro-880

files correspond closely to the theoretical curves, and881

the parameter estimates are close to the true parame-882

ters. We are also able to accurately estimate our error883
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Figure 11. Example cumulative mass profile estimates (black curve) when stars are subject to selection bias either outside or
inside the core of the GC. The black semi-transparent curves show the mass profiles predicted by the MCMC samples, and the
solid red curves show the true mass profiles. Each row corresponds to the type of GC, and each column corresponds to the type
of biased sampling — stars sampled outside or inside the core of the GC. The biased samples lead to very poor estimates in most
cases, with the exception of the morphology-sampling combinations of extended cluster-outside core, the compact cluster-inside
core, and low-Φ0-inside core.
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range, so that our 50% and 95% credible regions for the884

parameters have very close to the correct coverage prob-885

abilities.886

If the stars are instead sampled in a biased fashion,887

then the results are more mixed. Biased sampling of888

outer stars only for an extended and low Φ0 cluster still889

works well, since the essential information is preserved.890

However, in other cases, biased samples lead to biased891

estimates with poor coverage probabilities. This is not892

surprising, since our model assumes that the star sample893

is truly random (i.e., unbiased).894

As we have seen, the bias in parameter estimates and895

profiles can be quite pronounced and consistent among896

the simulations when the data sample is biased. We897

could propose a “calibration” to correct for these pa-898

rameter and profile biases, and such a calibration would899

allow us to re-scale the parameters and profiles to better900

match the truth. However, this calibration would only901

be valid for the specific analysis of full 6-D phase-space902

information that we have presented here. Ultimately,903

we plan to expand our method in future work to deal904

with projected position data and missing velocity com-905

ponents (i.e., a more realistic data scenario). At that906

stage, the biases in the mass and velocity profile esti-907

mates could change substantially. Thus, we leave any908

calibration to future work, when its application will be909

most useful.910

There are many avenues to pursue for future work.911

We are currently investigating how to modify the model912

to give more accurate estimates in the face of biased913

samples, and similarly when only projected values of the914

star positions and velocities are known.915

Both biased samples and missing data are an as-916

tronomer’s reality. For example, kinematic data of stars917

measured by HST typically sample only a portion of the918

cluster, whereas the Gaia satellite mostly provides kine-919

matic data from stars in a GC’s outer regions with the920

inner regions being incomplete. Without accounting for921

a biased sample, parameter inference is less reliable.922

Real kinematic data from HST and Gaia also have923

well-understood measurement uncertainties. We have924

not included measurement uncertainties in our simula-925

tion study, but a valuable next step would be to gen-926

erate noisy measurements and then include a measure-927

ment model for each star that takes into account the928

sampling distribution of the measured kinematic compo-929

nents. This step could be accomplished through a hier-930

archical model. Additionally, one could use this frame-931

work as a way to combine data from different telescopes932

that have different measurement properties (e.g. HST933

and Gaia), and thus obtain a less-biased sample of the934

stars in the cluster. As we have shown in this work,935

an unbiased sample of stars is key to reliable parameter936

inference and recovering a good estimate of the CMP.937

Ultimately, astronomers are not only interested in the938

intrinsic properties of GCs, but are also interested in939

comparison and selection of GC models. The latter will940

help our understanding of internal GC dynamics and the941

larger story of GC evolution as GCs traverse the Galac-942

tic potential. For example, the recently developed SPES943

model (Claydon et al. 2019) allows some of the stars in944

a GC to be “potential escapers”. The existence of en-945

ergetically unbound stars within clusters is, again, an946

astronomer’s reality and could strongly affect how well947

a given distribution function is fit to observations. In948

fact, de Boer et al. (2019) found that the SPES mod-949

els were a better representation of Galactic GCs than950

limepy models when fitting to GC density profiles. We951

are currently investigating some preliminary model com-952

parison tests with simulated data from the limepy and953

spes models (Lou et al, in prep).954

It is also important to compare the method presented955

here to traditional methods in the literature that use956

the projected distances of stars to estimate density and957

mass profiles, and that combine data sets from different958

telescopes to use stars at all radii (e.g., de Boer et al.959

2019). However, at this stage of our research we have960

assumed an “ideal” scenario in which we have the full 6-961

dimensional phase-space information of stars — a com-962

parison of our results to other methods which use only963

projected distances of the stars will unfairly favour our964

method simply because we have more positional infor-965

mation. In a follow-up study, we plan to improve our966

Bayesian approach so that it can be applied to the mea-967

surements of projected distances, and at this stage a968

more fair comparison of methods could be made.969

The ability to attribute a given dynamical model to an970

observed GC is a key step towards unravelling a GC’s971

current properties as well as its evolutionary history.972

Understanding the underlying distribution function of973

stars within a cluster allows for more complex GC fea-974

tures, like its dark remnant population, binary popula-975

tion, degree of mass segregation, and its tidal history976

to be more thoroughly explored. Using a model that in-977

corporates all these components — while also improving978

the statistical framework to account for sampling bias in979

observations — will allow us to better understand the980

dynamical state of globular clusters. Knowing a cluster’s981

dynamical state also places constraints on the cluster’s982

properties at birth and how it has evolved over time.983

Hence, being able to fit a dynamical model to an ob-984

served GC strengthens the cluster’s utility as a tool to985

study the Universe around it.986
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Figure 12. Example mean-square velocity profile estimates (black curves) from the MCMC samples when stars are subject
to selection bias. The solid red curves show the true v2 profiles. Each row corresponds to the type of GC, and each column
corresponds to the type of biased sampling — stars sampled outside or inside the core of the GC. The vertical, light-blue dashed
line indicates the rcut = 1.5pc and the semi-transparent vertical dashes along the bottom of each plot shows the individual
positions of each star in the (biased) sample. The biased samples lead to very poor estimates in most cases, with the exception
of the morphology-sampling combinations of average-outside core, extended cluster-outside core, and low-Φ0-outside core.



Bayesian Inference of GC Properties Using Distribution Functions 21

ACKNOWLEDGEMENTS987

GME acknowledges the support of a Discovery Grant988

from the Natural Sciences and Engineering Research989

Council of Canada (NSERC, RGPIN-2020-04554), and a990

Connaught New Reseacher grant from the University of991

Toronto. JSR was supported by NSERC grant RGPIN-992

2019-04142. JW would like to thank Mark Gieles for993

helpful discussions regarding the limepy software pack-994

age. GME would like to thank Joshua Speagle for help-995

ful discussions regarding the differential optimization al-996

gorithm. The authors would also like to thank the ref-997

eree for their very helpful report that helped improve998

this paper.999

Software: The code for this research can be found1000

at https://github.com/gweneadie/GCs. Our code makes1001

use of the following software and software packages:1002

astropy (Astropy Collaboration et al. 2013), Cairo (Ur-1003

banek & Horner 2020), coda (Plummer et al. 2006),1004

dplyr (Wickham et al. 2020), limepy (Gieles & Zoc-1005

chi 2015), MASS (Venables & Ripley 2002), NMOF (Schu-1006

mann 2011–2021; Gilli et al. 2019), R (R Core Team1007

2019), reticulate (Ushey et al. 2020), tibble (Müller1008

& Wickham 2020), and tidyverse (Wickham et al.1009

2019).1010

REFERENCES

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,1011

et al. 2013, A&A, 558, A33,1012

doi: 10.1051/0004-6361/2013220681013

Baumgardt, H., & Hilker, M. 2018, MNRAS, 478, 1520,1014

doi: 10.1093/mnras/sty10571015

Bayes, T. 1763, Philosophical transactions of the Royal1016

Society of London, 3701017

Bellini, A., Anderson, J., van der Marel, R. P., et al. 2014,1018

ApJ, 797, 115, doi: 10.1088/0004-637X/797/2/1151019

Bertin, G., & Varri, A. L. 2008, ApJ, 689, 1005,1020

doi: 10.1086/5926841021

Brodie, J. P., & Strader, J. 2006, ARA&A, 44, 193,1022

doi: 10.1146/annurev.astro.44.051905.0924411023

Cappellari, M. 2008, MNRAS, 390, 71,1024

doi: 10.1111/j.1365-2966.2008.13754.x1025

Claydon, I., Gieles, M., Varri, A. L., Heggie, D. C., &1026

Zocchi, A. 2019, MNRAS, 487, 147,1027

doi: 10.1093/mnras/stz11091028

Da Costa, G. S., & Freeman, K. C. 1976, ApJ, 206, 128,1029

doi: 10.1086/1543631030

de Boer, T. J. L., Gieles, M., Balbinot, E., et al. 2019,1031

MNRAS, 485, 4906, doi: 10.1093/mnras/stz6511032

Eadie, G., & Jurić, M. 2019, The Astrophysical Journal,1033

875, 1591034

Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al.1035

2016, A&A, 595, A1, doi: 10.1051/0004-6361/2016292721036

Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.1037

2018, A&A, 616, A1, doi: 10.1051/0004-6361/2018330511038

Gieles, M., & Zocchi, A. 2015, MNRAS, 454, 576,1039

doi: 10.1093/mnras/stv18481040

Gilli, M., Maringer, D., & Schumann, E. 2019, Numerical1041

Methods and Optimization in Finance, 2nd edn.1042

(Waltham, MA, USA: Elsevier/Academic Press).1043

http://www.enricoschumann.net/NMOF/1044

Gunn, J. E., & Griffin, R. F. 1979, AJ, 84, 752,1045

doi: 10.1086/1124771046

Haario, H., Saksman, E., Tamminen, J., et al. 2001,1047

Bernoulli, 7, 2231048

Harris, W. E. 2010, arXiv e-prints, arXiv:1012.3224.1049

https://arxiv.org/abs/1012.32241050

Heggie, D., & Hut, P. 2003, The Gravitational1051

Million-Body Problem: A Multidisciplinary Approach to1052

Star Cluster Dynamics (Cambridge University Press)1053

Heggie, D. C., & Giersz, M. 2014, MNRAS, 439, 2459,1054

doi: 10.1093/mnras/stu1021055

Hénault-Brunet, V., Gieles, M., Sollima, A., et al. 2019,1056

MNRAS, 483, 1400, doi: 10.1093/mnras/sty31871057

Hénon, M. 1961, Annales d’Astrophysique, 24, 3691058

King, I. R. 1966, AJ, 71, 64, doi: 10.1086/1098571059

Lynden-Bell, D., & Wood, R. 1968, MNRAS, 138, 495,1060

doi: 10.1093/mnras/138.4.4951061

McLaughlin, D. E., & van der Marel, R. P. 2005, ApJS,1062

161, 304, doi: 10.1086/4974291063

Meylan, G., & Heggie, D. C. 1997, A&A Rv, 8, 1,1064

doi: 10.1007/s0015900500081065

Michie, R. W. 1963, MNRAS, 125, 127,1066

doi: 10.1093/mnras/125.2.1271067

Miocchi, P., Lanzoni, B., Ferraro, F. R., et al. 2013, ApJ,1068

774, 151, doi: 10.1088/0004-637X/774/2/1511069

Müller, K., & Wickham, H. 2020, tibble: Simple Data1070

Frames. https://CRAN.R-project.org/package=tibble1071

Plummer, M., Best, N., Cowles, K., & Vines, K. 2006, R1072

News, 6, 7. https://journal.r-project.org/archive/1073

Puzia, T. H., Paolillo, M., Goudfrooij, P., et al. 2014, ApJ,1074

786, 78, doi: 10.1088/0004-637X/786/2/781075

R Core Team. 2019, R: A Language and Environment for1076

Statistical Computing, R Foundation for Statistical1077

Computing, Vienna, Austria.1078

https://www.R-project.org/1079

https://github.com/gweneadie/GCs
http://doi.org/10.1051/0004-6361/201322068
http://doi.org/10.1093/mnras/sty1057
http://doi.org/10.1088/0004-637X/797/2/115
http://doi.org/10.1086/592684
http://doi.org/10.1146/annurev.astro.44.051905.092441
http://doi.org/10.1111/j.1365-2966.2008.13754.x
http://doi.org/10.1093/mnras/stz1109
http://doi.org/10.1086/154363
http://doi.org/10.1093/mnras/stz651
http://doi.org/10.1051/0004-6361/201629272
http://doi.org/10.1051/0004-6361/201833051
http://doi.org/10.1093/mnras/stv1848
http://www.enricoschumann.net/NMOF/
http://doi.org/10.1086/112477
https://arxiv.org/abs/1012.3224
http://doi.org/10.1093/mnras/stu102
http://doi.org/10.1093/mnras/sty3187
http://doi.org/10.1086/109857
http://doi.org/10.1093/mnras/138.4.495
http://doi.org/10.1086/497429
http://doi.org/10.1007/s001590050008
http://doi.org/10.1093/mnras/125.2.127
http://doi.org/10.1088/0004-637X/774/2/151
https://CRAN.R-project.org/package=tibble
https://journal.r-project.org/archive/
http://doi.org/10.1088/0004-637X/786/2/78
https://www.R-project.org/


22 Eadie, Webb, and Rosenthal

Roberts, G. O., Gelman, A., & Gilks, W. R. 1997, The1080

annals of applied probability, 7, 1101081

Roberts, G. O., & Rosenthal, J. S. 1997, Electronic1082

Communications in Probability, 2, 131083

—. 2001, Statistical science, 16, 3511084

—. 2007, Journal of applied probability, 44, 4581085

—. 2009, Journal of Computational and Graphical1086

Statistics, 18, 349, doi: 10.1198/jcgs.2009.061341087

Schumann, E. 2011–2021, Numerical Methods and1088

Optimization in Finance (NMOF) Manual. Package1089

version 2.4-1). http://enricoschumann.net/NMOF/1090

Shanahan, R. L., & Gieles, M. 2015, MNRAS, 448, L94,1091

doi: 10.1093/mnrasl/slu2051092

Shen, J., Eadie, G. M., Murray, N., et al. 2021, arXiv1093

e-prints, arXiv:2111.09327.1094

https://arxiv.org/abs/2111.093271095

Sollima, A., Baumgardt, H., Zocchi, A., et al. 2015,1096

MNRAS, 451, 2185, doi: 10.1093/mnras/stv10791097

Spitzer, L. 1987, Dynamical evolution of globular clusters1098

(Princeton University Press)1099

Storn, R., & Price, K. 1997, Journal of global optimization,1100

11, 3411101

Urbanek, S., & Horner, J. 2020, Cairo: R Graphics Device1102

using Cairo Graphics Library for Creating High-Quality1103

Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG,1104

PostScript) and Display (X11 and Win32) Output.1105

https://CRAN.R-project.org/package=Cairo1106

Usher, C., Forbes, D. A., Spitler, L. R., et al. 2013,1107

MNRAS, 436, 1172, doi: 10.1093/mnras/stt16371108

Ushey, K., Allaire, J., & Tang, Y. 2020, reticulate: Interface1109

to ’Python’.1110

https://CRAN.R-project.org/package=reticulate1111

Varri, A. L., & Bertin, G. 2012, A&A, 540, A94,1112

doi: 10.1051/0004-6361/2011183001113

Venables, W. N., & Ripley, B. D. 2002, Modern Applied1114

Statistics with S, 4th edn. (New York: Springer).1115

http://www.stats.ox.ac.uk/pub/MASS4/1116

Watkins, L. L., van de Ven, G., den Brok, M., & van den1117

Bosch, R. C. E. 2013, MNRAS, 436, 2598,1118

doi: 10.1093/mnras/stt17561119

Webb, J. J., Sills, A., & Harris, W. E. 2013, ApJ, 779, 94,1120

doi: 10.1088/0004-637X/779/2/941121

Wickham, H., François, R., Henry, L., & Müller, K. 2020,1122

dplyr: A Grammar of Data Manipulation.1123

https://CRAN.R-project.org/package=dplyr1124

Wickham, H., Averick, M., Bryan, J., et al. 2019, Journal of1125

Open Source Software, 4, 1686, doi: 10.21105/joss.016861126

Wilson, C. P. 1975, AJ, 80, 175, doi: 10.1086/1117291127

Woodley, K. A., & Gómez, M. 2010, PASA, 27, 379,1128

doi: 10.1071/AS090591129

Woolley, R. V. D. R. 1954, MNRAS, 114, 191,1130

doi: 10.1093/mnras/114.2.1911131

Zocchi, A., Gieles, M., & Hénault-Brunet, V. 2017,1132

MNRAS, 468, 4429, doi: 10.1093/mnras/stx3161133

Zocchi, A., Gieles, M., Hénault-Brunet, V., & Varri, A. L.1134

2016, MNRAS, 462, 696, doi: 10.1093/mnras/stw11041135

http://doi.org/10.1198/jcgs.2009.06134
http://enricoschumann.net/NMOF/
http://doi.org/10.1093/mnrasl/slu205
https://arxiv.org/abs/2111.09327
http://doi.org/10.1093/mnras/stv1079
https://CRAN.R-project.org/package=Cairo
http://doi.org/10.1093/mnras/stt1637
https://CRAN.R-project.org/package=reticulate
http://doi.org/10.1051/0004-6361/201118300
http://www.stats.ox.ac.uk/pub/MASS4/
http://doi.org/10.1093/mnras/stt1756
http://doi.org/10.1088/0004-637X/779/2/94
https://CRAN.R-project.org/package=dplyr
http://doi.org/10.21105/joss.01686
http://doi.org/10.1086/111729
http://doi.org/10.1071/AS09059
http://doi.org/10.1093/mnras/114.2.191
http://doi.org/10.1093/mnras/stx316
http://doi.org/10.1093/mnras/stw1104

	Introduction
	Simulated Data
	Methods
	Likelihood
	Prior Distributions
	Sampling the Target Distribution
	Different Cluster and Sampling Cases

	Results & Discussion
	Random Sampling
	Biased Sampling

	Conclusion

