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This web appendix provides proofs of the computational lemmas in the main
article, which is available at: www.probability.ca/NoticesArt.pdf

Proof of Lemma 1:

To avoid problematic configurations where the particles are very close together,
we first set X ′ = {(x1, x2, x3) ∈ X : ∀1 ≤ i < j ≤ 3, |xi − xj | ≥ 1/4}. Since X ′ is a
compact set, and π is continuous and positive on X ′, it must achieve its minimum
m := minx,y∈X ′

π(y)
π(x) > 0 there. Let A ⊂ X . Then from any state x ∈ X , the chain

will move into A on the next step provided that the proposed new configuration y
is within the subset A, and that the proposal is accepted. Hence,

P (x,A) =

∫
A
P (x, dy) =

∫
A

min[1,
π(y)

π(x)
] dy ≥

∫
A∩X ′

mdy = m Leb(A ∩X ′) ,

where Leb is Lebesgue measure on R6. So, if we set ε = mLeb(X ′), and ν(A) =
Leb(A ∩ X ′)

/
Leb(X ′), then ε > 0, and ν is a probability measure, and P (x,A) ≥

ε ν(A), i.e. a uniform minorization condition is satisfied.
To obtain quantitative convergence bounds, we need to estimate Leb(X ′) and m.

In order for (x1, x2, x3) ∈ X ′, we can choose any x1 ∈ [0, 1]2 (with two-dimensional
area 1), then choose any x2 ∈ [0, 1]2 \B(x1, 1/4) (with area ≥ 1− 3.14(1/4)2), then
choose any x3 ∈ [0, 1]2 \ (B(x1, 1/4) ∪ B(x2, 1/4)) (with area ≥ 1 − 3.14(1/4)2 −
3.14(1/4)2). [Here B(x, r) is the two-dimensional disc centered at x of radius r,
with area 3.14 r2, where we write the constant as “3.14” to avoid confusion with the
stationary distribution π(·).] Hence, Leb(X ′) ≥ (1)(1− 3.14

16 )(1− 3.14
8 ) ≥ 0.48.

Also, for any x ∈ X ′, we must have 0 ≤ |xi| ≤
√

2 and 1/4 ≤ |xi − xj | ≤
√

2, so
therefore

0 ≤ |x1|+ |x2|+ |x3| ≤ 3
√

2 , and
3√
2
≤
∑
i<j

|xi − xj |−1 ≤ 12 .
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It follows that

m ≥ e−C(3
√
2)−D(12)

e−C(0)−D(3/
√
2)

= e−C(3
√
2)−D(12−(3/

√
2)) ≥ e−C(4.25)−D(9.88) .

Hence,
ε = m Leb(X ′) ≥ (0.48) e−C(4.25)−D(9.88) ,

as claimed.

Proof of Lemma 2:

Let x ∈ C. Without loss of generality, assume x ≥ 0. First consider B ⊂ [−1, 1],
and let z ∈ [0, 1] and y ∈ B. Then we must have [0, 1] ⊆ [x − 2, x + 2], and
B ⊆ [z − 2, z + 2]. Hence, the proposal density q satisfies that q(x, z) = q(z, y) = 1

4 .

Also, π(x) ≤ e0 = 1, and e−1 ≤ π(y) ≤ 1, and π(z) ≥ e−1, so if α(x, z) = min[1, π(z)π(x) ]

is the probability of accepting a proposed move from x to z, then α(x, z) ≥ e−1 and
α(z, y) ≥ e−1. Hence,

P 2(x,B) ≥
∫
B

∫ x+2

x−2
q(x, z)α(x, z) q(z, y)α(z, y) dz dy

≥
∫
B

∫ 1

0
(1/4)(e−1)(1/4)(e−1) dz dy =

1

16e2
Leb(B) .

Finally, for any A ⊆ R,

P 2(x,A) ≥ P 2(x, A ∩ [−1, 1]) ≥ 1

16e2
Leb(A ∩ [−1, 1]) =

1

8e2
ν(A) ,

which gives the result.

Proof of Lemma 3:

Without loss of generality, assume x ≥ 0. Note that

PV (x) =

∫ x+2

x−2
q(x, y) [V (y)α(x, y) + V (x)(1− α(x, y))] dy .

We first compute the “top half” of this integral, where x ≤ y ≤ x − 2. Here
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α(x, y) = π(y)
π(x) = e−y

e−x = ex−y, and q(x, y) = 1/4, so∫ x+2

x
q(x, y) [V (y)α(x, y) + V (x)(1− α(x, y))] dy

=

∫ x+2

x

1

4
e

y
2 ex−ydy +

∫ x+2

x

1

4
e

x
2 (1− ex−y)dy)

=
1

4
ex
∫ x+2

x
e−

y
2 dy +

1

4
e

x
2 (2)− 1

4
e

3x
2

∫ x+2

x
e−ydy

=
1

4
ex[−2e−

x+2
2 + 2e−

x
2 ] +

1

4
e

x
2 (2)− 1

4
e

3x
2 [−e−x−2 + e−x]

=
1

4
e

x
2 (−2e−1 + 2 + 2 + e−2 − 1)

=
1

4
(3 + e−2 − 2e−1)V (x) ≡ λ1 V (x) ,

where λ1 = 1
4(3 + e−2 − 2e−1)

.
= 0.6. Then we consider three different cases:

Case 1: x ∈ (2,∞) 6⊆ C = [−2, 2]. Then α(x, y) := min{1, e−|y|
e−|x|
} = 1 for all

y ∈ [x− 2, x), so

PV (x) =

∫ x

x−2
q(x, y)V (y)dy + λ1V (x) =

1

4

∫ x

x−2
e

y
2 dy + λ1V (x)

=
1

4
e

x
2 2(1− e−1) + λ1V (x) = (

1

2
(1− e−1) + λ1)V (x) ≤ 0.916V (x) .

Case 2: x ∈ [1, 2] ⊆ C. Again α(x, y) = 1 for all y ∈ [x− 2, x], so

PV (x) =

∫ x

x−2
V (y)q(x, y)dy + λ1V (x) =

1

4
(

∫ 0

x−2
e−

y
2 dy +

∫ x

0
e

y
2 dy) + λ1V (x)

=
1

4
(

∫ 2−x

0
e

y
2 dy +

∫ x

0
e

y
2 dy) + λ1V (x) =

1

2
(e

x
2 + e1−

x
2 )− 1 + λ1e

x
2

Let z = e
x
2 . Then, computing numerically,

max
x∈[1,2]

[PV (x)− 0.916V (x)] = max
z∈[
√
e,e]

[1

2
(z +

e

z
)− 1 + λ1z − 0.916 z

]
≤ 0.13 .

Case 3: x ∈ [0, 1] ⊆ C. Then α(x, y) = 1 for any y ∈ [−x, x].

PV (x) =

∫ −x
x−2

[
q(x, y)α(x, y)V (y) + q(x, y)(1− α(x, y))V (x)

]
dy

+

∫ x

−x
q(x, y)V (y) dy + λ1V (x)

=
1

4
e

x
2

∫ 2−x

x
(e

x−y
2 + 1− ex−y) dy +

1

2

∫ x

0
e

y
2 dy + λ1e

x
2

=
e

x
2

4

[
−2ex−1 + e2(x−1) − 2x+ 3

]
+ e

x
2 − 1 + λ1e

x
2 .
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Computing numerically, this implies that

max
x∈[0,1]

[PV (x)− 0.916V (x)] ≤ 0.285 .

Combining these three cases (and their symmetric versions for x < 0) shows that
the univariate drift condition

PV (x) ≤ 0.916V (x) + 0.285 1C(x)

holds for all x ∈ X , as claimed.
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