
Sampling via Rejection-Free Partial Neighbor Search

Sigeng Chena, Jeffrey S. Rosenthala, Aki Doteb, Hirotaka Tamurac, and
Ali Sheikholeslamid

aDepartment of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada; bFujitsu Ltd, Kanagawa,
Japan; cDXR Laboratory Inc, Kanagawa, Japan; dDepartment of Electrical and Computer Engineering,
University of Toronto, Toronto, Ontario, Canada

ABSTRACT
The Metropolis algorithm involves producing a Markov chain to converge
to a specified target density p. To improve its efficiency, we can use the
Rejection-Free version of the Metropolis algorithm, which avoids the ineffi-
ciency of rejections by evaluating all neighbors. Rejection-Free can be
made more efficient through parallelism hardware. However, for some spe-
cialized hardware, such as Digital Annealing Unit, the number of neighbors
being considered at each step is limited. Hence, we propose an enhanced
version of Rejection-Free known as Partial Neighbor Search, which only
considers a portion of the neighbors. This method will be tested on several
examples to demonstrate its effectiveness and advantages under different
circumstances. Our method has already been used in the industry.

ARTICLE HISTORY
Received 24 November 2022
Accepted 25 September 2023

KEYWORDS
Metropolis algorithm; Partial
Neighbor Search; qUBO;
Rejection-Free;
Unbiased PNS

MATHEMATICAL SUBJECT
CLASSIFICATION
60J22; 62D05

1. Introduction

The Monte Carlo method involves the deliberate use of random numbers in a calculation with
the structure of a stochastic process (Kalos and Whitlock 2009). Monte Carlo techniques are
based on repeating experiments sufficiently many times to obtain many quantities of interest
using the Law of Large Numbers and other statistical inference methods (Kroese et al. 2014). The
three main applications of Monte Carlo methods are optimization, numerical integration, and
sampling (Kroese et al. 2014). This paper focuses on the Markov chain Monte Carlo method for
sampling.

The Markov chain Monte Carlo method (MCMC) simulates observations from a target distri-
bution to obtain a chain of states that eventually converges to the target distribution itself. The
Metropolis algorithm (Metropolis et al. 1953; Hastings 1970), an MCMC method, is one of the
most popular techniques among its kind (Hitchcock 2003). The Metropolis algorithm produces a
Markov chain X0, X1, X2, :::f g on the state space S and target density function p, as follows: given
the current state xk, the Metropolis algorithm first proposes a new state y from a symmetric pro-
posal distribution Qðxk, �Þ; it then accepts the new state (i.e. sets xkþ1 ¼ y) with probability
minð1, pðyÞ

pðxkÞ
Þ; otherwise, it rejects the proposal (i.e. sets xkþ1 ¼ xk). This simple algorithm ensures

that the Markov chain has p as a stationary distribution.
However, the Metropolis algorithm may suffer from the inefficiency of rejections. We have a

probability of ½1� minð1, pðyÞ
pðxkÞ
Þ� to remain at the current state, even though we have spent time

proposing a state, computing a ratio of target probabilities, generating a random variable, and
deciding not to accept the proposal. Therefore, we proposed the Rejection-Free algorithm in

CONTACT Sigeng Chen sigeng.chen@mail.utoronto.ca Department of Statistical Sciences, University of Toronto,
Toronto, Ontario, Canada.
� 2023 Taylor & Francis Group, LLC

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR

2025, VOL. 54, NO. 3, 837–865
https://doi.org/10.1080/03610918.2023.2266157

http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2023.2266157&domain=pdf&date_stamp=2025-02-24
http://www.tandfonline.com
https://doi.org/10.1080/03610918.2023.2266157

Rosenthal et al. (2021) to improve the Metropolis algorithm’s performance. By Rejection-Free, we
can move to a different state and calculate the number of all immediately repeated states within
one step by considering all the neighbors at once. In addition, the parallelism of computer hard-
ware can significantly increase the efficiency of Rejection-Free. Using parallelism in Rejection-
Free combined with simple techniques such as parallel tempering can yield 100� to 10,000�
speedups (Sheikholeslami 2021). However, there is a limit to the number of parallel tasks that can
be executed simultaneously on most specialized parallelism hardware. For example, the current
version of Digital Annealing Unit (DAU) (Matsubara et al. 2020) can process the rejection-free
algorithm efficiently up to 8192 neighbors simultaneously with on-chip memory, and otherwise,
rejection-free will be significantly slowed down due to the use of external memory. Accordingly,
the ceiling on the number of neighbors that can be evaluated at each step can be a problem.
Consequently, we present an enhanced version of the Rejection-Free called Partial Neighbor
Search (PNS), which only considers part of the neighbors when applying the Rejection-Free tech-
nique, whereas the Rejection-Free technique means considering all selected neighbors and calcu-
lating the next state when ignoring any immediately repeated states.

Our PNS algorithm was originally designed to assist Fujitsu Limited, a Japanese multinational
information and communications technology equipment and services corporation that designed
DAU. Since DAU can only handle a limited number of tasks, it cannot perform the full Rejection-
Free algorithm in parallel on large state spaces. Thus, we aimed to find an algorithm where the
number of neighbors being considered at each step can be controlled. Fujitsu Limited has recently
applied for several patents for PNS. We can also apply PNS to the current version of DAU. Just like
Rejection-Free, PNS also has a limitation of 8192 neighbors being considered at each step for on-
chip memory. However, PNS can be applied to cases with infinitely many neighbors, and we only
need to pick a Partial Neighbor Set with at most 8192 neighbors. Thus, the PNS algorithm has great
utility in extending DAU technology to even more significant problems in an industrial setting, and
our algorithm is already well-used in an industrial setting. In addition, although PNS was designed
for parallelism hardware, we also find it useful when applied to a single-core implementation. Note
that, PNS has also been developed to solve optimization problems, and it outperforms the
Simulated Annealing and Rejection-Free algorithms in many optimization problems, including the
QUBO, Knapsack, and 3R3XOR problems; see Chen et al. (2023) for further information.
Moreover, for the sampling question here, PNS is also better than the Metropolis-Hastings algo-
rithm. Especially when Rejection-Free is not applicable, such as the continuous cases, PNS can be
our best choice to do sampling. Furthermore, PNS can also be used for a more efficient burn-in.

We next review the Metropolis-Hastings algorithm and Rejection-Free algorithm in more
detail. Then, in Sec. 2, we introduce our Basic Partial Neighbor Search (Basic PNS) sampling
algorithm, which considers subsets of neighbor states for possible moves and calculates the multi-
plicity list directly from the subsets. Unfortunately, this version of the Markov chain does not
converge to the target density. In Sec. 3, we introduce our unbiased version of Partial Neighbor
Search (Unbiased PNS), where the sampling distribution will converge to the target density cor-
rectly; see Appendix A for the proof. Unlike Rejection-Free, Unbiased PNS can always use the
advantage of the parallelism hardware to improve the sampling efficiency, no matter the dimen-
sion of the problem. We apply the Unbiased PNS to the QUBO question to illustrate its perform-
ance in Sec. 4. In addition, we discuss the choice of subsets of the Unbiased PNS for the QUBO
question in Sec. 5. We further illustrate that we can apply the Unbiased PNS to continuous mod-
els in Sec. 6. We compare the Metropolis algorithm and Unbiased PNS in a continuous example
called the Donuts example to demonstrate the performance of Unbiased PNS in Sec. 7.
Furthermore, in our optimization paper (Chen et al. 2023), the performance of PNS in optimiza-
tion questions is much better than Rejection-Free and Simulated Annealing. Thus we adapt the
Optimization PNS and use it as the burn-in part for sampling in Sec. 8. Geyer (2011) stated that
burn-in until converging to stationarity is not necessary for MCMC. If we take Geyer’s (2011)

838 S. CHEN ET AL.

argument, then we can use Optimization PNS to replace the burn-in. On the other hand, we can
combine the Optimization PNS and the regular burn-in to get a better algorithm that will con-
verge to stationarity faster. Later, in Sec. 9, we combine our PNS with Multiple-Try Metropolis
Liu, Liang, and Wong (2000) and Barker’s transition probability Barker (1965). In Appendix A,
we prove the convergence theorem of our Unbiased PNS algorithm. In addition, in Appendix B,
we show how to sample proportionally and efficiently on parallelism hardware. Even when we
apply the algorithm to a single core implementation, the technique also reduces the time of
selecting the next state to some extent.

1.1. Background on the Metropolis-Hastings algorithm

Discrete sampling questions usually contain the following essential elements (adapted from the
essential elements of Simulated Annealing in Bertsimas and Tsitsiklis 1993):

1. a state space S;

2. a real-valued target distribution p : S ! ½0, 1� where
P

x2SpðxÞ ¼ 1;

3. 8x 2 S, 9 a proposal distribution Qðx, �Þ where
P

y2Sn xf gQðx, yÞ ¼ 1,
and Qðx, yÞ > 0() Qðy, xÞ > 0, 8x, y 2 S;

4. 8x 2 S, 9 a neighbor set NðxÞ ¼ y 2 SjQðx, yÞ > 0
� �

� Sn xf g:

For simplicity, we focus on the discrete cases here. We will talk more about the general state
space in Appendix A.

The Metropolis algorithm has been the most successful and influential of all the members of the
Monte Carlo method (Beichl and Sullivan 2000). It is designed to generate a Markov chain that
converges to a given target distribution p on a state space S: The Metropolis-Hastings(M-H) algo-
rithm is a generalized version of the Metropolis algorithm, including the possibility of a non-sym-
metric proposal distribution Q (Hitchcock 2003). The M-H algorithm is stated in Algorithm 1.

Algorithm 1. The Metropolis-Hastings algorithm
initialize X0
for k in 1 to K do

random Y 2 NðXk−1Þ based on QðXk−1, �Þ
random Uk � Uniformð0, 1Þ
if Uk <

pðYÞQðY ,Xk−1Þ

pðXk−1ÞQðXk−1,YÞ then
. accept with probability min 1, pðYÞQðY ,Xk−1Þ

pðXk−1ÞQðXk−1,YÞ

n o

Xk Y . accept and move to state Y
else

Xk Xk−1 . reject and stay at Xk−1
end if

end for

Algorithm 1 ensures the Markov chain X0, X1, X2, :::, XKf g has p as stationary distribution. It
follows (assuming irreducibility) that the expected value EpðhÞ of a functional h : S! R with
respect to p can be estimated by 1

K
PK

i¼1hðXiÞ for sufficiently large run length K.
In Algorithm 1, if Uk �

pðYÞQðY ,Xk−1Þ

pðXk−1ÞQðXk−1,YÞ , then we will remain at the current state, even though we
have spent time in proposing a state, computing a ratio of target probabilities, generating a random
variable Uk, and deciding not to accept the proposal. Such inefficiencies could happen frequently
and are considered a necessary evil of the M-H algorithm. Thus, we proposed the Rejection-Free
algorithm (Rosenthal et al. 2021) to improve the inefficiency caused by these rejections.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 839

1.2. Background on Rejection-Free algorithm for sampling

Before introducing the Rejection-Free algorithm, we must first introduce the jump chain. Given a
run Xkf g of a Markov chain, we define the jump chain to be Jk, Mkf g, where Jkf g represents the
same chain as Xkf g except omitting any immediately repeated states, and we use the multiplicity
list Mkf g to count the number of times the original chain remains at the same state.

For example, if the original chain is

Xkf g ¼ a, b, b, b, a, a, c, c, c, c, d, d, a, :::f g,

then the jump chain and the corresponding multiplicity list would be

Jkf g ¼ a, b, a, c, d, a, :::f g; Mkf g ¼ 1, 3, 2, 4, 2, 1, :::f g:

The jump chain itself is also a Markov chain. If we assume the transition probability of the
original Markov chain Xkf g generated by Algorithm 1 is

P Xk ¼ yjXk−1 ¼ x
� �

¼ Qðx, yÞmin 1,
pðyÞQðy, xÞ
pðxÞQðx, yÞ

� �

, (1)

Then the transition probabilities P̂ðyjxÞ for the jump chain Jk, Mkf g is specified by

P̂ðJk ¼ xjJk−1 ¼ xÞ ¼ 0; 8x 2 S;

P̂ðJk ¼ yjJk−1 ¼ xÞ ¼ PðXk ¼ yjXk−1 ¼ x, Xk−1 6¼ xÞ

¼
PðXk ¼ yjXk−1 ¼ xÞ

P
z 6¼xPðXk ¼ zjXk−1 ¼ xÞ

, 8y 6¼ x:

(2)

Moreover, the conditional distribution of Mkf g given Jkf g is equal to the distribution of 1þ G
where G is a geometric random variable with success probability 1 − PðxjxÞ ¼

P
z 6¼xPðzjxÞ; see

Rosenthal et al. (2021) for more details. Note that, there are two different ways of defining the
geometric distribution. Here we choose the one with density function being PðG ¼ gÞ ¼ ð1 − pÞgp
for g ¼ 0, 1, 2, 3, :::, and thus, 1þ G 2 1, 2, 3, :::f g:

In addition, for the jump chain Jk, Mkf g
K
k¼1, we call the total number of different states K to

be the jump sample size, and we call
PK

k¼1Mk to be the original sample size, which is the corre-
sponding length of the original Markov chain.

Given the above properties of the jump chain, the Rejection-Free algorithm is a sampling
method that produces the jump chain as described by Algorithm 2. Note that the Rejection-Free
algorithm described here can only deal with the discrete cases with at most a finite number of
neighbors for all states. We’ll review the Rejection-Free for general state space in Sec. 6.

Algorithm 2. Rejection-Free algorithm for discrete case
initialize J0
for k in 1 to K do

choose the next jump chain State Jk 2 N ðJk−1Þ such that

P̂ðJk ¼ yjJk−1Þ / QðJk−1, yÞmin 1, pðyÞQðy,Jk−1Þ

pðJk−1ÞQðJk−1,yÞ

n o

calculate multiplicity list Mk−1 1þ G where G � GeometricðpÞ with

p ¼
P

z2N ðJk−1Þ
QðJk−1, zÞmin 1, pðzÞQðz,Jk−1Þ

pðJk−1ÞQðJk−1,zÞ

n o

end for

840 S. CHEN ET AL.

Note that, in Algorithm 2, when we need to pick our next state Jk according to the given proba-
bilities, we can use the technique shown in Appendix B, which is specially designed for parallel-
ism hardware. In addition, even when the Rejection-Free is applied to a single core
implementation, such a technique is still faster than other methods to sample proportionally,
since calculating arg min is much faster than calculating the summation.

Algorithm 2 ensures (assuming irreducibility) that the expected value EpðhÞ of a functional h :

S ! R with respect to p can be estimated by
PK

k¼1
Mk hðJkÞ

PK

k¼1
Mk

for sufficiently large run length K,

while avoiding any rejections. Rejection-Free can lead to great speedup in examples where rejec-
tions frequently happen for the M-H algorithm (Rosenthal et al. 2021).

2. Basic partial neighbor search algorithm

In Algorithm 2, we can do this algorithm with parallelism in computer hardware to produce
more efficient samples. However, the number of tasks that can be computed simultaneously by
the parallelism hardware is not unlimited, while the number of neighbors NðxÞ

�
�

�
� can be super

large. How can we take full advantage of the Rejection-Free with limited parallel hardware?
Assume the number of neighbors in Rejection-Free is at most N. That is, for 8x 2 S, NðxÞ

�
�

�
� �

N: In addition, assume the number of tasks that can be computed simultaneously by the parallel-
ism hardware is M. If M>N, then we can compute the transition probability of the original
chain simultaneously by the parallelism hardware, where the transition probability is

PðJk ¼ yjJk−1Þ / QðJk−1, yÞmin 1,
pðyÞQðy, Jk−1Þ

pðJk−1ÞQðJk−1, yÞ

� �

: (3)

Then the transition probability P̂ (defined at Eq. 2) for the Rejection-Free algorithm as stated
in Algorithm 2 is propositional to P, 8y 6¼ Jk−1: On the other hand, if M � N, the simplest way
to take advantage of parallelism hardware is to evenly distribute the calculation tasks of the tran-
sition probabilities to each unit. In this case, each unit of parallelism hardware needs to calculate
the probabilities for either bN

Mc (the floor function) or dN
Me (the ceiling function) times, and then

we can put the information from all these parts together for the next step of the algorithm. This
method works for processors designed for general purposes, such as Intel and AMD cores.
However, these chips are not specially designed for parallel computing, and off-chip communica-
tion significantly slows down the transfer rate of data to and from the cores (Sodan et al. 2010).
Therefore, using Intel and AMD cores as parallelism hardware is applicable but not ideal.

Moreover, several parallelization hardware specialized for parallel MCMC trials has been pro-
posed. For example, the second generation of Fujitsu Digital Annealer uses a dedicated processor
called a Digital Annealing Unit (DAU) (Matsubara et al. 2020) to achieve high speed. This dedi-
cated processor is designed to minimize communication overhead in arithmetic circuitry and
with memory. In addition, the dedicated processor provides a virtually Rejection-Free process,
resulting in a throughput that is orders of magnitude faster than that of a general-purpose proces-
sor. The problem with this Fujitsu chip is that it is rigidly constrained by on-chip memory cap-
acity relative to the problem size M that can be processed in parallel. For problem sizes N>M, it
is impossible to compute transition probabilities for all neighborhoods to achieve Rejection-Free
or similar parallel trials. The number of neighbors considered in each step must be limited to be
within the on-chip memory capacity.

Initially, we want to adapt our Optimization Partial Neighbor Search (Optimization PNS) algo-
rithm from Chen et al. (2023) to the sampling question here. Intuitively, we can use the
Optimization PNS and add a step for calculating the multiplicity list. The Basic PNS algorithm is
shown in Algorithm 3. Again, we focus on discrete cases with at most a finite number of neigh-
bors here. We will talk about PNS for general state space in Sec. 6 and Appendix A.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 841

Algorithm 3. Basic Partial Neighbor Search algorithm
initialize J0
for k in 1 to K do

pick the Partial Neighbor Set N kðJk−1Þ � N ðJk−1Þ

choose the next jump chain State Jk 2 N kðJk−1Þ such that

P̂ðJk ¼ yjJk−1Þ / QðJk−1, yÞmin 1, pðyÞQðy,Jk−1Þ

pðJk−1ÞQðJk−1,yÞ

n o

calculate multiplicity list Mk−1 1þ G where G � GeometricðpÞ with

p ¼
P

z2N kðJk−1Þ
QðJk−1, zÞmin 1, pðzÞQðz,Jk−1Þ

pðJk−1ÞQðJk−1,zÞ

n o

end for

Again, in Algorithm 3, when we need to pick our next state Jk according to the given probabil-
ities, we can use the technique shown in Appendix B. In addition, the only difference between
the Basic PNS (Algorithm 3) and Rejection-Free (Algorithm 2) is that we only calculate the tran-
sition probability and all the corresponding values for a subset N k of all the neighbors for each
step within the loop. Here, N kðJk−1Þ is a subset of NðJk−1Þ at our choice, and the subscript k in
N k represents the subset of neighbors for step k. For example, we can simply say that N kðJk−1Þ is
a random subset of NðJk−1Þ with half of the elements. In addition, QkðX, YÞ is the corresponding
proposal distribution satisfying Qkðx, yÞ / Qðx, yÞ for Y 2 N kðxÞ and Qkðx, yÞ ¼ 0 otherwise.
However, the Markov chain produced by Algorithm 3 is different from the true MCMC, and it
might not converge to the true density p, as we now show.

2.1. Example 1 of the nonconvergence problem by Basic PNS

The first example is shown in Figure 1, from which we have pðAÞ / 1, pðBÞ / 2, and pðCÞ / 3:
We consider the Basic PNS algorithm with a uniform proposal distribution Q: In addition, only
half of the neighbors are chosen for N k at each step. That is, we only need to consider one
neighbor each time.

Then, if the MCMC is located at state A, then NðAÞ ¼ B, Cf g: N kðAÞ ¼ Bf g or {C} each with
50% probability, and thus, the algorithm will force the chain to move to either B or C with 50%
probability. Similarly, when the Markov chain is located at state B, the next state will be A or C
with 50% probability, and when the Markov chain is located at state C, the next state will be A
or B with 50% probability.

On the other hand, we can calculate the corresponding multiplicity lists MA, MB, and MB at
state A as follows:

1. P̂½BjA� / P½BjA� ¼ QðA, BÞmin 1, pðBÞQðB,AÞ
pðAÞQðA,BÞ

n o
¼ 0:5;

Figure 1. Diagram of Example 1 showing non-convergence property of the Basic PNS.

842 S. CHEN ET AL.

2. P̂½CjA� / P½CjA� ¼ QðA, CÞmin 1, pðCÞQðC,AÞ
pðAÞQðA,CÞ

n o
¼ 0:5;

3. the transition probabilities P̂ from A to either B or C in Rejection-Free are both 50%;
4. MA ¼ 1þ G where G � GeomðP½BjA� þ P½CjA�Þ ¼ Geomð1Þ
5. EðMAÞ ¼ 1
6. Similarly, we have EðMBÞ ¼

5
4 , EðMAÞ ¼

9
4

Thus, for the Basic PNS Chain Jk, Mkf g
K
k¼1 with large K, the proportions P of state A, B, and

C in the Markov chain are

PBasic PNSðAÞ ¼
P

Jk¼AMk

XK

k¼1
Mk

¼
1

1þ 5
4þ

9
4
¼

2
9
6¼ pðAÞ ¼

1
6

;

PBasic PNSðBÞ ¼
5

18
6¼ pðBÞ ¼

1
3

;

PBasic PNSðCÞ ¼
1
2
¼ pðCÞ: For state C; it is just a coincidence

(4)

This example shows that the samples from Basic PNS are not converging to the target dens-
ity p.

2.2. Example 2 of the nonconvergence problem by Basic PNS

The second example is shown in Figure 2, which is a much larger problem compared to the first
example. We have 16 states in example 2. All states are connected to exactly four states. The tar-
get density is described as pðAÞ / 1, pðB1Þ ¼ pðB2Þ ¼ pðB3Þ ¼ pðB4Þ / e, pðC1Þ ¼ pðC2Þ ¼ ::: ¼

pðC6Þ / e2, pðD1Þ ¼ pðD2Þ ¼ pðD3Þ ¼ pðD4Þ / e3, and pðEÞ / e4: This example is too large to be
calculated by hand, so we use simulations to calculate the limiting distribution of the samples.
The convergence of the sampling distribution is measured by the Total Variation
Distance (TVD).

Given the Markov chain Xkf g
K
k¼1 generated by the Metropolis algorithm, the sampling distri-

bution is defined as PSampledðxÞ ¼
PK

k¼1
1ðXk¼xÞ
K ,8x 2 S, where 1 represents the indicator function.

In addition, for the jump chain Jk, Mkf g
K
k¼1 generated by either Rejection-Free or PNS, the sam-

pling distribution is defined as PSampledðxÞ ¼
PK

k¼1
Mk�1ðJk¼xÞ
PK

k¼1
Mk

, 8x 2 S: The corresponding TVD val-

ues in both cases are defined as

Figure 2. Diagram of Example 2 showing non-convergence property of the Basic PNS.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 843

TVDðPSampled, pÞ ¼
1
2

X

x2S
PSampledðxÞ − pðxÞ
�
�

�
�: (5)

According to the definition, TVD is strictly between ½0, 1�: When the sampling distribution
PSampled gets closer to the target distribution p, TVD will decrease to 0. In other words, conver-
gence to stationarity is described by how quickly TVD decreases to 0.

The simulation results are shown in Figure 3. For a given amount of samples (K¼ 50, 100,
150, 200, :::, 500, 1000, 1500, 2000, :::, 7500), we did 1000 simulations for each of them. The
TVD values and the times here are the average values from these 1000 simulations. We compared
four methods: Rejection Free and Basic PNS with three different subset sizes. The Markov chains,
produced by Rejection-Free, will converge to the target density, so the TVD value gets close to 0
at last. For PNS with N 0j j ¼ 1, we select one random neighbor among all four neighbors at a
time, forcing the chain to move to that state. This method is the worst, and it converges at
around 0.3. PNS with N 0j j ¼ 2 means that we randomly select two neighbors at every step and
apply the Rejection-Free technique (select from these two states by probability proportional to the
transition probability, and calculate the multiplicity list by the average of the transition probabil-
ities). All three PNS algorithms are not converging to the target density p.

Both Examples show that the samples from Basic PNS will not converge to the target distribu-
tion p. Thus, we turn attention to a more promising avenue, the unbiased version of the Partial
Neighbor Search algorithm, where convergence to stationarity is guaranteed.

3. Unbiased Partial Neighbor Search algorithm

We first need to review the alternating chains technique for the Rejection-Free algorithm
(Rosenthal et al. 2021) to introduce our upgraded algorithm version.

3.1. Alternating chains for Rejection-Free

We may wish to switch between two or more different proposal distributions for the M-H algo-
rithm. An example of the M-H algorithm with alternating chains for every L0 steps among I pro-
posal distributions Q0,Q1, :::,QI−1 is shown as Algorithm 4.

Figure 3. Average values of TVD between samples and the target density p for example 2 as a function of average CPU time in
seconds for four scenarios: Rejection-Free and Basic PNS with three different Partial Neighbor Set sizes. Each dot within the plot
represents the result of the average TVD value and average CPU time in seconds from 1000 simulation runs given a certain ori-
ginal sample size, where the sizes are 50, 100, 150, 200, :::, 500, 1000, 1500, 2000, :::, 7500f g:

844 S. CHEN ET AL.

Algorithm 4. Metropolis-Hasting algorithm with Alternating Chains
initialize i 0 . start with proposal distribution Q0

initialize L L0 . start with L0 remaining samples
initialize X0
for k in 1 to K do

random Y based on QiðXk−1, �Þ
random Uk � Uniformð0, 1Þ
if Uk <

pðYÞQiðY ,Xk−1Þ

pðXk−1ÞQ
iðXk−1,YÞ then

. accept with probability min 1, pðYÞQiðY ,Xk−1Þ

pðXk−1ÞQ
iðXk−1,YÞ

n o

Xk Yk . accept and move to state Y
else

Xk Xk−1 . reject and stay at Xk−1
end if
L L − 1 . one less remaining sample from the proposal distribution
if L¼ 0 then . if we don’t have enough remaining samples

i iþ 1 mod I . switch to the next proposal distribution
L L0 . L0 remaining states for the next proposal distribution

end if
end for

However, if we proceed with alternating chains naively for Rejection-Free, it can lead to bias.
For each proposal distribution Qi, we need to get the same amount of samples by the original
sample size (

PK
k¼1Mk) instead of the jump sample size (K) to fix the bias problem. For I pro-

posal distributions Q0,Q1, :::,QI−1, the corresponding neighbor sets are N 0,N 1, :::,NI−1 where
N

i
ðxÞ ¼ y : y 2 S,Qiðx, yÞ > 0

� �
for i ¼ 0, 1, :::, I − 1: Then, if we choose to switch between

proposal distributions for L0 original samples, we can do alternating chains in a Rejection-Free
manner as Algorithm 5. Note that, we used superscripts here for the proposal distribution Q for
Rejection-Free, and later, we will use subscripts for the corresponding proposal distribution Q for
Partial Neighbor Search. We used different notations for the proposal distributions to show their
difference. For Rejection-Free here, the Markov chain produced by each proposal distribution Qi

with superscripts will converge to the target distribution with just themselves, and we want to use
the combination of them to improve the efficiency of convergence. On the other hand, the pro-
posal distribution Qi with subscripts for Partial Neighbor Search, which we will introduce later,
will not converge to the target distribution with only themselves, and we need to combine all of
them to make the samples converge to the target distribution.

Algorithm 5. Rejection Free algorithm with Alternating Chains
initialize i 0 . start with proposal distribution Q0

initialize L L0 . start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m 1þ G where G � GeometricðpÞ with
p ¼

P
z2N i

ðJk−1Þ
QiðJk−1, zÞmin 1, pðzÞQiðz,Jk−1Þ

pðJk−1ÞQ
iðJk−1,zÞ

n o

if m � L then . if we have enough remaining original samples
Mk−1 m, L L − m
choose the next jump chain State Jk 2 N

i
ðJk−1Þ such that

P̂ðJk ¼ yjJk−1Þ / Q
iðJk−1, yÞmin 1, pðyÞQiðy,Jk−1Þ

pðJk−1ÞQ
iðJk−1,yÞ

n o

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 845

else . if we don’t have enough remaining original samples
Mk−1 L, L L0, Jk Jk−1, i ðiþ 1 mod IÞ

. stay at Jk−1 for L times and switch to the next N i

end if
end for

Algorithm 5 is equivalent to Algorithm 4 except that algorithm 5 computes immediate
repeated state for each proposal distribution all at once. As such, it has no bias, is consistent, and
will converge to the target distribution correctly. Again, in Algorithm 5, when we need to pick
our next state Jk according to the given probabilities, we can use the technique shown in
Appendix B.

3.2. Alternating chains for Partial Neighbor Search

Alternating Chains can also be applied to PNS. We first define the meaning of Partial Neighbor
Sets here. For simplicity, we focus on discrete cases here and will define the Partial Neighbor Sets
for general state space in Appendix A.

Before we start our Markov chain, we have a proposal distribution Q with a corresponding
neighbor set N where NðxÞ :¼ y 2 SjQðx, yÞ > 0

� �
: A Partial Neighbor Set means any function

N i satisfies the following conditions:

1. N i : S ! PðSÞ, where S is the state space, and PðSÞ is the power set of S;

2. N iðxÞ � N ðxÞ, 8x 2 S;

3. y 2 N iðxÞ () x 2 N iðyÞ, 8x, y 2 S;

Usually, we want to pick N i such that N iðxÞ
�
�

�
� < NðxÞ

�
�

�
� to perform proper PNS. In addition,

to ensure irreducibility, we need to make sure [I−1
i¼0 N iðxÞ ¼ N ðxÞ for all x 2 S: The correspond-

ing proposal distribution is defined to be Qiðx, yÞ : S � S ! R, where Qiðx, yÞ / Qðx, yÞ for y 2
N iðxÞ and Qiðx, yÞ ¼ 0 otherwise;

Therefore, we propose the Unbiased Partial Neighbor Search (Unbiased PNS) with
Alternating Chains for every L0 original samples as shown in Algorithm 6. The proof that the
Markov chain produced by Unbiased PNS will converge to the target distribution p is shown
in Appendix A.

Again, in Algorithm 6, when we need to pick our next state according to the given probabil-
ities, we can use the technique shown in Appendix B, which is faster than other methods to sam-
ple proportionally.

Algorithm 6. Unbiased Partial Neighbor Search
select N i for i ¼ 0, 1, :::, I − 1 where [I−1

i¼0 N iðXÞ ¼ N ðXÞ
initialize i 0 . start with proposal distribution Q0
initialize L L0 . start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m 1þ G where G � GeometricðpÞ with
p ¼

P
z2N iðJk−1Þ

QiðJk−1, zÞmin 1, pðzÞQiðz,Jk−1Þ

pðJk−1ÞQiðJk−1,zÞ

n o

if m � L then . if we have enough remaining original samples
Mk−1 m, L L − m
choose the next jump chain State Jk 2 N iðJk−1Þ such that
P̂ðJk ¼ yjJk−1Þ / QiðJk−1, yÞmin 1, pðyÞQiðy,Jk−1Þ

pðJk−1ÞQiðy,Jk−1Þ

n o

846 S. CHEN ET AL.

else . if we don’t have enough remaining original samples
Mk−1 L, L L0, Jk Jk−1, i ðiþ 1 mod IÞ

. stay at Jk−1 for L times and switch to the next N i
end if

end for

Again, in Algorithm 6, when we need to pick our next state Jk according to the given probabil-
ities, we can use the technique shown in Appendix B. The Markov chains produced by Algorithm
6 will converge to the target distribution, but how is its efficiency compared to the Metropolis-
Hasting algorithm and Rejection-Free? We will compare these three algorithms with some simula-
tions in Sec. 4.

4. Application to QUBO model

Quadratic unconstrained binary optimization (QUBO) has been rising in importance in combina-
torial optimization because of its wide range of applications in finance and economics to machine
learning (Kochenberger et al. 2014). It can also be used as a sampling question, which aims to
sample from the distribution

pðxÞ ¼ exp xTQx
� �

; where x 2 0, 1f g
N (6)

for a given N by N matrix Q (usually symmetric or upper triangular).
To run our algorithm, we used uniform proposal distributions among all neighbors where the

neighbors are defined as binary vectors with Hamming distance 1. That is, Qðx, yÞ ¼ 1
N for 8y

such that x − yj j ¼
PN

i¼1 xi − yij j ¼ 1,8x, y 2 0, 1f g
N
: Thus, the neighbors are all binary vectors

different by one flip. For the first simulation here, the PNS neighbor sets N 0,N 1 are chosen sys-
tematically, where N 0 represents flip entries from 1 to bN2c, and N 1 represents flip entries from
bN2c þ 1 to N. We will discuss many other choices for the PNS neighbor sets in Sec. 5

Figure 4 shows the results for comparing the Metropolis algorithm, Rejection-Free, and
Unbiased PNS by sampling from a 16� 16 QUBO question to a single-core implementation. The
QUBO matrix Q is an upper triangular matrix, where the non-zero elements were generated ran-
domly by Qi,j � Normalð0, 102Þ, 8i � j: We compare the TVD values from the Metropolis
Algorithm, Rejection-Free, and Unbiased PNS with different original sample sizes. For the
Metropolis algorithm, the numbers of original samples are 100, 200, 400, 800, :::, 102400f g: The
number of original samples for Rejection-Free is 40 times more than the number for the
Metropolis algorithm, and the number for Unbiased PNS is 30 times more. We used these many
numbers of original samples to make the run-time for all three algorithms to be about the same.
For each given number of original sample sizes, we simulated 1000 runs, recorded the corre-
sponding TVD values and times used for the sampling part, and calculated the average values
given the number of original samples. Note that the average time represents the CPU time for
where the algorithm is calculated by running the algorithm on a single-core implementation. In
addition, before we generate the samples, we apply the algorithm for the same number of steps
for burn-in.

From Figure 4, we can see that the quality of the samples by the Metropolis algorithm and
Rejection-Free are the same given the original sample sizes. This result is consistent with our con-
clusion that Rejection-Free is identical to the Metropolis algorithm, except Rejection-Free gener-
ates the same states simultaneously with all immediately repeated states. Thus, these two
algorithms are different only by the CPU time. In addition, the quality of the samples by
Unbiased PNS is worse than both the Metropolis algorithm and Rejection-Free given a certain
number of original samples because each Partial Neighbor Set is biased within its L0 original sam-
ples, while the combination of them is unbiased. Thus, the average TVD value for Unbiased PNS

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 847

is more significant for the same amount of original samples. However, for a given amount of
CPU time, the performance of Unbiased PNS is much better than the Metropolis algorithm and
worse than Rejection-Free.

In this case, Unbiased PNS can provide significant speedups compared to the Metropolis algo-
rithm. On the other hand, we did not expect the Unbiased PNS can beat Rejection-Free under
this circumstance. Unbiased PNS is worse than Rejection-Free in two aspects. First, the Unbiased
PNS is biased within each L0 original samples. In addition, at the end of each L0 original samples,
the algorithm is very likely to reject once and stay in the same state. Thus, Unbiased PNS is not
entirely rejection-free anymore and usually rejects once for every L0 original samples.

However, we need the Unbiased PNS because we may not have as many circuit blocks in the
parallelism hardware as we want. Thus, we can, at most, consider a limited number of neighbors
for some specialized hardware, such as DA. Thus, Rejection-Free is not applicable in this case,
and we would need the help of Unbiased PNS, which is better than applying the Metropolis
algorithm.

Again, parallelism in computer hardware can increase the speed for both Rejection-Free and
Unbiased PNS by mapping the calculation of the transition probabilities for different neighbors
onto different cores (Rosenthal et al. 2021). Besides that, we can also use multiple replicas at dif-
ferent temperatures, such as in parallel tempering, or deploy a population of replicas at the same
temperature (Sheikholeslami 2021). Combining these methods by parallelism can yield 100x to
10,000� speedups for both Rejection-Free and Unbiased PNS (Sheikholeslami 2021).

5. Optimal choice for the partial neighbors

In the section 4, we used two systematically pre-selected neighbor sets N 0,N 1: However, for the
optimization version of the QUBO question, we concluded that random Partial Neighbor Sets are
better than systematic Partial Neighbor Sets; see Chen et al. (2023). Thus, we compare two ways
of choosing Partial Neighbor Sets here: systematic and random. For simplicity, assume that we
have N neighbors for all states, and we use Unbiased PNS neighbor sets of size n. Therefore, we

Figure 4. Average values of TVD between sampling and target density p as a function of the number of iterations (left) and
average time in seconds (right) for three methods: Metropolis algorithm, Rejection-Free, and Unbiased PNS. We used an upper
triangular 16� 16 QUBO matrix, generated randomly by Qi,j � Nð0, 102Þ for upper triangular elements. Each dot within the plot
represents the result of the average TVD value and time used for 1000 simulation runs given certain original sample sizes. The
original sample sizes for the Metropolis algorithm are 100, 200, 400, 800, :::, 1,024,000f g. The original samples from Rejection-
Free are 40� more than those from Metropolis, and the original samples from Unbiased PNS are 30� more than those from
Metropolis. We choose these sizes to get a close average CPU time for all three methods. For Unbiased PNS, we used jN kj ¼ 8
and L0 ¼ 100:

848 S. CHEN ET AL.

have ð
N
n
Þ different Partial Neighbor Sets. For systematic method, we choose I Partial Neighbor

Sets N if g
I

i¼1, where [Ii¼1N iðxÞ ¼ N ðxÞ: We proceed with each Partial Neighbor Set for L0 ori-
ginal samples and then move on to the next until we reach the I-th one and then go back to the
first one. We use the notation N iðxÞ for systematic Partial Neighbor Sets because N iðxÞ is pre-
determined for i ¼ 1, 2, :::, I : On the other hand, for random Partial Neighbor Sets, we choose a

new set N k from all ðN
n
Þ potential Partial Neighbor Sets after each L0 original samples. We use

the notation N kðxÞ for random Partial Neighbor Sets because N kðxÞ can be different for every
PNS step, and the subscript k represents the special Partial Neighbor Set for step k. For both
methods, Qiðx, yÞ,Qkðx, yÞ / Qðx, yÞ for y 2 N iðxÞ, and Qiðx, yÞ ¼ Qkðx, yÞ ¼ 0 otherwise.

To compare the above two methods of selecting Partial Neighbor Sets, we apply them to the
previous 16� 16 QUBO question, and we test the following four scenarios:

� two systematic Partial Neighbor Sets where the first set considers flipping the first half of the
bits, and the second set considers flipping the second half of the bits;

� four systematic Partial Neighbor Sets where each set considers flipping a quarter of the bits;
� random Partial Neighbor Sets with N

2 partial neighbors; that is, each set considers flipping a
random set of bits with size N

2 ;

� random Partial Neighbor Sets with N
4 partial neighbors; that is, each set considers flipping a

random set of bits with size N
4 ;

The result is shown in Figure 5; for this case, systematic Partial Neighbor Sets are better than
random Partial Neighbor Sets. However, random Partial Neighbor Sets can be better when we
run the same code with a different random seed. After running this simulation for 100 different
random seeds, the systematic neighbor sets are better 56 times. Thus, we conclude that the per-
formance of these two Partial Neighbor Sets is close to each other. We will continue using the
systematic Partial Neighbor Sets in our later simulation.

In previous simulations, we naively use we used N iðxÞ
�
�

�
� ¼ 4 or 8 and L0 ¼ 100 in previous

examples. What is the optimal choice for N iðxÞ
�
�

�
�? We want to compare N iðxÞ

�
�

�
� ¼ 2, 4, 6, 8, :::, 14

Figure 5. Average values of TVD between sampling and target density p as a function of the number of iterations (left) and
average time in seconds (right) for four scenarios: systematic PNS and random PNS, each with Partial Neighbor Set sizes of 4 and
8. Random upper triangular 16� 16 QUBO matrix is generated randomly by Qi,j � Nð0, 102Þ for upper triangular elements. Each
dot within the plot represents the average TVD value and time used for 1000 simulation runs given a certain original sample
size, where the sizes are 3000,6000, 12,000, 24,000, :::, 3,072,000f g: For all PNS, we used L0 ¼ 100:

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 849

by the QUBO question. In previous cases, we only used the systematic Partial Neighbor Set size n
that can be divided evenly by N. For other n’s that cannot be divided evenly such as 14, we create
the Partial Neighbor Sets in loops to make equally spaced sets. For example, we create the follow-
ing 8 Partial Neighbor Sets for N iðxÞ

�
�

�
� ¼ 14 :

� N 1ðxÞ ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14f g

� N 2ðxÞ ¼ 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12f g

� N 3ðxÞ ¼ 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10f g

� N 4ðxÞ ¼ 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8f g

� N 5ðxÞ ¼ 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6f g

� N 6ðxÞ ¼ 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4f g

� N 7ðxÞ ¼ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2f g

� N 8ðxÞ ¼ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16f g

Figure 6 shows the results for comparing the Unbiased PNS with N ij j ¼ 2, 4, 6, 8, 10, 12, and
14 for 8X 2 0, 1f g

16
: Every other simulation setting is the same as the previous simulations for

the QUBO question. The choice of L0 is still 100. According to the left plot, we can say that given
the same amount of original samples, the Markov chain from N ij j ¼ 14 is the least biased. On
the other hand, from the right plot, we can conclude that, given the same amount of CPU time,
the sample quality from N ij j ¼ 14 is the best. In addition, the performances are close to each
other for all cases where N ij j � 8: Note that a single-core implementation makes all these com-
parisons by the CPU time, and parallelism hardware can provide speedups. Intuitively, the more
tasks that can be calculated simultaneously, the greater the speedup. Thus, if we apply our
Unbiased PNS on parallelism hardware with a limited number of parallel tasks that can be com-
puted simultaneously, we should choose the largest possible Partial Neighbor Set size N ij j:

Furthermore, Figure 7 shows the results for comparing the Unbiased PNS with L0 ¼ 10, 50,
100, 500, and 1000. Again, every other setting of the simulation is the same, and N ij j is still 8,
8x 2 0, 1f g

16
: The left plot shows that given the same samples, the Markov chain from L0 ¼ 10 is

the least biased. However, the right plot shows that, given the same amount of CPU time, the
TVD values are about the same except L0 ¼ 10: The case with L0 ¼ 100 is slightly better than the
other cases, but the difference is not too large. L0 ¼ 10 becomes the worst since such L0 has too

Figure 6. Average values of TVD between sampling and target density p as a function of the number of iterations (left) and
average time in seconds (right) for four scenarios: Unbiased PNS with different partial neighbor set sizes {2, 4, 6, … , 14}.
Random upper triangular 16� 16 QUBO matrix is generated randomly by Qi,j � Nð0, 102Þ for upper triangular elements. Each
dot within the plot represents the average TVD value and time used for 1000 simulation runs given a certain original sample
size, where the sizes are {3000, 6000, 12,000, 24,000, … , 3,072,000}. For all PNS, we used L0 ¼ 100:

850 S. CHEN ET AL.

many rejections (about one rejection for every 10 samples). Thus, for a single-core implementa-
tion, the choice of L0 is not that important as long as it is not extreme. In addition, for parallel-
ism hardware, when we change the partial neighbors being chosen, we have to bring the new
neighbors to the memory. This can be a waste of time if we are doing this very frequently. Thus,
L0 should not be too small for parallel computing.

6. Continuous models

We talked about the application of Unbiased PNS to discrete cases in the previous sections. Can
we apply Unbiased PNS on continuous models? We first review how to apply Rejection-Free on
general (continuous) state space as in Theorem 13 from Rosenthal et al. (2021).

Let S be a general state case, and l a r-finite reference measure on S: Suppose a Markov
chain on S has transition probabilities Pðx, dyÞ / qðx, yÞlðdyÞ for q : S � S ! ½0, 1�: Again let P̂
be the transitions for the corresponding jump chain Jk with multiplicities Mk: Then:

1. P̂ðx, xf gÞ ¼ 0, and for x 6¼ y, P̂ðx, dyÞ ¼ qðx,yÞÐ
qðx,zÞlðdzÞ

lðdyÞ
2. The conditional distribution of Mk given Jk is equal to the distribution of 1þ G where G

is a geometric random variable with success probability p ¼ aðJkÞ

where aðxÞ ¼ P½Xkþ1 6¼ xjXk ¼ x� ¼
Ð

qðx, zÞlðdzÞ ¼ 1 − rðxÞ ¼ 1 − PðxjxÞ
3. If the original chain is /-irreducible (see, e.g., Meyn and Tweedie (2012)) for some positive

r-finite measure / on X , then the jump chain is also /-irreducible for the same /:
4. If the original chain has stationary distribution pðxÞlðdxÞ, then the jump chain has stationary

distribution given by p̂ðxÞ ¼ caðxÞpðxÞlðdxÞ where c−1 ¼
Ð

aðyÞpðyÞlðdyÞ
5. If h : S ! R has finite expectation, then with probability 1,

lim
K!1

XK

k¼1
MkhðJkÞ

XK

k¼1
Mk

¼ lim
K!1

XK

k¼1

hðJkÞ

aðJkÞ

� �

XK

k¼1

1
aðJkÞ

� � ¼ pðhÞ :¼

ð

hðxÞpðxÞlðdxÞ

Figure 7. Average values of TVD between sampling and target density p as a function of the number of iterations (left) and
average time in seconds (right) for Unbiased Partial Neighbor Search with different sizes of L0. Random upper triangular 16� 16
QUBO matrix is generated randomly by Qi,j � Nð0, 102Þ for upper triangular elements. Each dot within the plot represents the
average TVD value and time used for 1000 simulation runs given a certain original sample size, where the sizes are

300, 600, 1200, 2400, :::, 3072000f g: For all PNS, we used jN ij ¼ 8:

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 851

Although we have a solid theory base for Rejection-Free on general state space, applying Rejection-
Free to the continuous sampling questions efficiently on most computer hardware is pretty hard. The
biggest challenge is the calculation of integration

Ð
qðx, zÞlðdzÞ: We need many calculations for the

numerical integration. In addition, such tasks can hardly be split efficiently into specialized hardware
with a reasonable amount of parallel calculating units. At the same time, Unbiased PNS can be surpris-
ingly helpful in this case. As long as the Metropolis algorithm can be applied, PNS can be applied
straightforwardly without any calculation of integration. We need to choose the Partial Neighbors Sets
N iðxÞ to be a finite subset of all the neighbors NðxÞ in Algorithm 6. We check the performance of
our Unbiased PNS on a simple continuous sampling question: the Donuts Example.

7. Application to the Donuts example

Inspired by Feng (2021), we use a donuts example to show Unbiased PNS’s performance on con-
tinuous state space. Suppose we have two independent random variables l and h where

l � Normalþðl0, r2Þ, h � Uniform 0, pÞ:½ (7)

Here, Normalþ means the Truncated Normal distribution without the negative tail, and p in
the Uniform distribution means the circular constant instead of the target density. Then we
define two random variables X1 and X2 to be

X1 ¼
ffiffiffi
l
p

sin h, X2 ¼
ffiffiffi
l
p

cos h: (8)

The determinant of the Jacobian matrix is 1
2 : Thus we have

fX1,X2ðx1, x2Þ /
1
r

exp −
ðx2

1 þ x2
2 − l0Þ

2

2r2

� �

, (9)

For example, a 3-D map for the density for X1 and X2 with l0 ¼ 9, and r¼ 10 is shown in
Figure 8. The density is scaled to ½0, 1�: In our later simulation, we use l0 ¼ 9 and r ¼ 0:1
instead. We use large r to show the shape of our distribution because it is hard to see its shape
when it sharply peaks with a small r. However, for the simulation, PNS can outperform the
Metropolis algorithm when there are many rejections, so we use a small r to get a sharply peaked
distribution to increase the rejection rate in the Metropolis algorithm. Note that Unbiased PNS
and Rejection-Free are not always better than the Metropolis algorithm. For an extreme example,
when we have a distribution where all the states have the same target density values, there will be
no rejection for the Metropolis algorithm. At each step, the Metropolis algorithm will uniformly
pick a random neighbor from the current state and move to that neighbor, while (Rejection-Free/
PNS) will calculate the transition probabilities for (all/part) of the neighbors and uniformly pick a
random one. The Metropolis algorithm will be far better than Rejection-Free and PNS in this
case. In practice, the higher the dimension of the problem and the more sharply peaked the dis-
tribution is, the better the Rejection-Free and Unbiased PNS will be. Thus, we use r ¼ 0:1 for
the simulation to create a sharply peaked distribution for later simulation.

Figure 8. The scaled probability density plot for the Donuts Example with l0 ¼ 9 and r¼ 10. The density is scaled to ½0, 1�: We
used large r to show the shape of our distribution. With small r, it is hard to see the shape of a sharply peaked distribution.

852 S. CHEN ET AL.

In addition, the proposal distribution is defined to be the standard normal distribution for
both dimensions. That is, for x ¼ ðx1, x2Þ, y ¼ ðy1, y2Þ 2 R2,Qðx, yÞ ¼ /ðy1 − x1Þ/ðy2 − x2Þ where
/ is the density function of the standard normal distribution. Then for any x 2 R2, we
have NðxÞ ¼ R2

:

Since the Partial Neighbor Sets are always the whole space of R2, it is tough for us to apply
Rejection-Free here since the integration of the whole space needs too many computational resour-
ces. Even if we limit the neighbors to a small area around the current state, integration is needed as
long as the problem is continuous, and the Rejection-Free will be consequentially slow. At the same
time, Unbiased PNS can be applied to continuous cases without calculating integration by making
minor changes to Algorithm 6. The Unbiased PNS algorithm for continuous is stated as Algorithm
7. In Algorithm 7, we did not define the systematic Partial Neighbor Sets as we had for the discrete
cases. We want to use Unbiased PNS with finite many partial neighbors being considered at each
step, but we have uncountable neighbors. It is impossible to divide these uncountable neighbors
into finite Partial Neighbor Sets with finite sizes. Thus, we can only use the random Partial
Neighbor Set, which randomizes a new finite Partial Neighbor Set for every L0 original samples. In
the later simulation, we use Partial Neighbor Sets with N kj j ¼ 50: That is, we consider 50 partial
neighbors at each step. Note that, in Sec. 3.2, we defined the Partial Neighbor Sets, and according
to the third condition, we must have reversibility for all N iðxÞ, which means y 2 N iðxÞ () x 2
N iðyÞ, 8x, y 2 S: Therefore, we choose the Partial neighbor Set N iðxÞ as follows:

1. generate d1, d2 � Normalð0, 1Þ;
2. for state x ¼ ðx1, x2Þ, put y ¼ ðx1 þ d1, x2 þ d2Þ into the Partial Neighbor Set N iðxÞ;
3. to ensure the reversibility, also put y0 ¼ ðx1 − d1, x2 − d2Þ into the Partial Neighbor

Set N iðxÞ;
4. repeats the above steps 25 times to generate a total of 50 neighbors for the Partial Neighbor

Set N iðxÞ:

In addition, L0 is selected to be 1000. Using L0 ¼ 100 to 1000 will not affect the sampling
speed too much, similar to the conclusion in Sec. 5.

Algorithm 7. Unbiased PNS for Continuous Case
select one Partial Neighbor Set N 0
initialize L L0 . start with L0 remaining original samples
initialize J0
for k in 1 to K do

calculate multiplicity list m 1þ G where G � GeometricðpÞ with
p ¼

P
z2N 0ðJk−1Þ

Q0ðJk−1, zÞmin 1, pðzÞQ0ðz,Jk−1Þ

pðJk−1ÞQ0ðJk−1,zÞ

n o

if m � L then . if we have enough remaining original samples
Mk−1 m, L L − m
choose the next jump chain State Jk 2 N 0ðJk−1Þ such that

P̂ðJk ¼ yjJk−1Þ / Q0ðJk−1, yÞmin 1, pðyÞQ0ðy,Jk−1Þ

pðJk−1ÞQ0ðy,Jk−1Þ

n o

else . if we don’t have enough remaining original samples
Mk−1 L, L L0, Jk Jk−1,

. stay at Jk−1 for the remaining L times
select a new Partial Neighbor Set N 0

end if
end for

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 853

Moreover, we measure the sampling results by bias instead of the TVD. The calculation of
TVD in the continuous case also needs much integration, which is hard to calculate. On the other
hand, given samples X1, X2::::, XKf g, we usually use the MCMC to approximate the expected
value EpðhÞ of a function h : S! R by the usual estimator, êKðhÞ ¼ 1

K
PK

k¼1hðX1,k, X2,kÞ: The
Strong Law of Large Numbers for Markov chains says that assuming that EpðhÞ is finite and that
the Markov chain is irreducible with stationary distribution p, we must have limK!1êK ¼ EpðhÞ:

Therefore, BiasðhÞ ¼ êKðhÞ − EpðhÞ
�
�

�
� ¼ 1

K
PK

k¼1hðXkÞ − EpðhÞ
�
�
�

�
�
� can also be a good measure-

ment for the quality of the samples. According to the definition, bias is greater or equal to 0.
When the samples X1, X2::::, XKf g gets closer to the target distribution p, the bias will decrease to
0. Thus, convergence to stationarity is described by how quickly the bias decreases to 0 for all
function h. This property is similar to TVD from Sec. 4. In fact, for any probability distribution
P1 and P2, TVDðP1,P2Þ ¼ supSðP1ðSÞ,P2ðSÞÞ (Chen, Gao, and Ren 2016).

For example, we check the sum of the bias from the first-degree terms X1 and X2. Since the
Donuts example is centered at 0, thus EpðX1Þ ¼ EpðX2Þ ¼ 0: Thus, we have

BiasðX1Þ þ BiasðX2Þ ¼ êKðX1Þ − EpðX1Þ þ êKðX2Þ − EpðX2Þ

¼ j
1
K

XK

k¼1
X1,k þj

1
K

XK

k¼1
X2,k

�
�
�
�
�

�
�
�
�
�
, (10)

Note that both biases will decrease to 0 if our Markov chain converges to the target density p.
In addition, for the Rejection-Free Chain J1,k, J2,k, Mkf g

K
k¼1 generated by the Unbiased PNS algo-

rithm, the bias is defined to be

BiasðJ1Þ þ BiasðJ2Þ ¼

j
XK

k¼1
Mk � J1,kj

XK

k¼1
Mk

þ

j
XK

k¼1
Mk � J2,kj

XK

k¼1
Mk

(11)

The result for comparing the Metropolis algorithm and Unbiased PNS by the bias of first-
degree term is shown in Figure 9. Each dot within the plot represents the average value of 100
simulation runs. For each run, we generate a Markov chain for a given number of samples for
both algorithms. The average time represents the CPU time we apply the algorithm by a single-
core implementation. Again, parallelism hardware such as DA can yield 100� to 10,000� speed-
ups for Unbiased PNS (Sheikholeslami 2021).

From Figure 9, we can see that the quality of the samples by Unbiased PNS is again worse
than the Metropolis algorithm because each Partial Neighbors Set is biased within L0 original
samples, while the combination of them is unbiased. Thus, the average bias values for Unbiased
PNS are more significant for the same amount of samples. However, for a given amount of CPU
time, the performance of Unbiased PNS is much better than the Metropolis algorithm. For this
example, the Unbiased PNS can get 30� more samples than the Metropolis algorithm within the
same time by a single-core implementation. Rejections slow down the Metropolis algorithm while
Unbiased PNS is not influenced, and thus, Unbiased PNS works much better in this simulation.

In addition, we can also check the sum of the bias from the second-degree terms BiasðX2
1Þ þ

BiasðX2
2Þ, the sum of the bias from the fourth-degree terms BiasðX4

1Þ þ BiasðX4
2Þ, and the sum of

the bias from the positive rate Biasð1ðX1 > 0ÞÞ þ BiasðIðX1 > 0ÞÞ, where 1 means the indicator
function. To calculate the bias of the second-degree terms, we have X2

1 þ X2
2 ¼ l �

Normalþðl0, r2Þ: Note that, for the Truncated normal distribution with mean 9 and standard
deviation 0.1, the probability for a negative tail is too small, so we can treat it as a normal distri-
bution. Thus,

854 S. CHEN ET AL.

EpðX2
1Þ ¼

1
2

EpðX2
1 þ X2

2Þ ¼
1
2

Epðl
2Þ �

1
2
l2

0: (12)

BiasðX2
1Þ þ BiasðX2

2Þ ¼ êKðX2
1Þ − EpðX2

1Þ þ êKðX2
2Þ − EpðX2

2Þ

�
1
K

XK

k¼1
X2

1,k −
1
2
l2

0

�
�
�
�
�

�
�
�
�
�
þ

1
K

XK

k¼1
X2

2,k −
1
2
l2

0

�
�
�
�
�

�
�
�
�
�
:

(13)

Similarly,

BiasðX4
1Þ þ BiasðX4

2Þ ¼ êKðX4
1Þ − EpðX4

1Þ þ êKðX4
2Þ − EpðX4

2Þ

�
1
K

XK

k¼1
X4

1,k −
3
8
ðl4

0 þ r2Þ

�
�
�
�
�

�
�
�
�
�
þ

1
K

XK

k¼1
X4

2,k −
3
8
ðl4

0 þ r2Þ

�
�
�
�
�

�
�
�
�
�
;

(14)

Biasð1ðX1 > 0ÞÞ þ Biasð1ðX2 > 0ÞÞ ¼ êKð1ðX1 > 0ÞÞ − Epð1ðX1 > 0ÞÞþ
êKð1ðX2 > 0ÞÞ − Epð1ðX2 > 0ÞÞ

¼
1
K

XK

k¼1
1ðX1,k > 0Þ −

1
2

�
�
�
�
�

�
�
�
�
�
þ

1
K

XK

k¼1
1ðX2,k > 0Þ −

1
2

�
�
�
�
�

�
�
�
�
�
:

(15)

The results for the comparison of the Metropolis algorithm and Unbiased PNS by the sum of
the average bias from the second-degree terms BiasðX2

1Þ þ BiasðX2
2Þ, the fourth-degree terms

BiasðX4
1Þ þ BiasðX4

2Þ, and the positive rate BiasðIðX1 > 0ÞÞ þ BiasðIðX1 > 0ÞÞ are shown in Figure
10. From the result for different choices of the terms, we can conclude that Unbiased PNS per-
forms better than the Metropolis algorithm in this continuous Donuts example.

Figure 9. Sum of the average bias of X1 and X2 between sampling and target density p as a function of the number of iterations
(left) and average time in seconds (right) for two methods: Metropolis algorithm and Unbiased PNS. We used the Donuts
example with r0 ¼ 10 and r ¼ 0:1: Each dot within the plot represents the result of the average bias value and time used for
1000 simulation runs given certain original sample sizes. The original sample sizes for the Metropolis algorithm are

50,000, 100,000, 150,000, 300,000, 450,000, :::, 1,500,000f g: The sizes for Unbiased PNS are 20� more than the sizes for the
Metropolis. We choose these sizes to get a close average CPU time for both methods. For Unbiased PNS, we used jN kj ¼ 50
and L0 ¼ 1000:

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 855

8. Burn in by Partial Neighbor Search

8.1. Optimization instead of burn-in

In previous sections, when we need K original samples, we have to generate 2K original samples.
We use the first K original samples as the burn-in part. This way, we started our sampling pro-
cess from stationarity. However, Geyer (2011) argued that burn-in is not necessary for MCMC.
As an alternative to burn-in, any point the researcher does not mind having in a sample is a
good starting point. His argument indicates that we can usually start at a point whose target
density value is large. Geyer (2011) claimed that this alternative method is usually better than
regular burn-in.

We can apply optimization algorithms in Chen et al. (2023) before sampling if we accept the
above statement. For example, we can cancel the burn-in part of the QUBO question in Sec. 4.
Instead, before we start sampling from the target density, we consider optimization algorithms
that try to maximize pðxÞ ¼ exp xTQx

� �
for x 2 0, 1f g

N
: Then we can start sampling from a

state with a large pðxÞ value, although it may not be optimal. Simulated Annealing is one such
algorithm. In addition, we can also use Optimization Rejection-Free and Optimization PNS from
Chen et al. (2023).

To find x from the state space S which maximizes pðxÞ, given the proposal distribution Q,
and the corresponding neighbors N , and a non-increasing cooling schedule T : N! ð0,1Þ, the
corresponding algorithms for Simulated Annealing, Optimization Rejection-Free, and
Optimization PNS are described in Algorithm 8, 9, and 10.

Algorithm 8. Simulated Annealing
initialize X0, and Xmax ¼ X0
for k in 1 to K do

random Y 2 NðXk−1Þ based on QðXk−1, �Þ
random Uk � Uniformð0, 1Þ
if Uk <

pðYÞ
pðXk−1Þ

h i1=TðkÞ
then

. accept with probability min 1, pðYkÞ

pðXk−1Þ

h i1=TðkÞ
� �

Xk ¼ Y . accept and move to state Y

Figure 10. Sum of the average bias from the second-degree terms BiasðX2
1 Þ þ BiasðX2

2 Þ (left), the fourth-degree terms
BiasðX4

1 Þ þ BiasðX4
2 Þ (middle), and the positive rate Biasð1ðX1 > 0ÞÞ þ Biasð1ðX1 > 0ÞÞ (right) between sampling and target

density p as a function of average time in seconds for two methods: Metropolis algorithm and Unbiased PNS. I means the indi-
cator function. We used the Donuts example with r0 ¼ 10 and r ¼ 0:1: Each dot within the plot represents the result of the
average bias value and time used for 1000 simulation runs given certain original sample sizes. The original sample sizes for the
Metropolis algorithm are 50,000, 100,000, 150,000, 300,000, 450,000, :::, 1,500,000f g: The sizes for Unbiased PNS are 20� more
than the sizes for the Metropolis. We choose these sizes to get a close average CPU time for both methods. For Unbiased PNS,
we used jN kj ¼ 50 and L0 ¼ 1000:

856 S. CHEN ET AL.

if pðYÞ > pðXmaxÞ then
Xmax ¼ Y

end if
else

Xk ¼ Xk−1 . reject and stay at Xk−1
end if

end for

Algorithm 9. Optimization Rejection-Free
initialize J0, and set Xmax ¼ J0
for k in 1 to K do

choose the next jump chain State Jk 2 N ðJk−1Þ such that
P̂ðJk ¼ yjJk−1Þ / QðJk−1, yÞmin 1, pðyÞQðy,Jk−1Þ

pðJk−1ÞQðJk−1,yÞ

n o

if pðJkÞ > pðXmaxÞ then
Xmax ¼ Jk

end if
end for

Algorithm 10. Optimization Partial Neighbor Search
initialize J0, and set Xmax ¼ J0
for k in 1 to K do

pick the Partial Neighbor Set N kðJk−1Þ � N ðJk−1Þ

choose the next jump chain State Jk 2 N kðJk−1Þ such that
P̂ðJk ¼ yjJk−1Þ / QðJk−1, yÞmin 1, pðyÞQðy,Jk−1Þ

pðJk−1ÞQðy,Jk−1Þ

n o

if pðJkÞ > pðXmaxÞ then
Xmax ¼ Jk

end if
end for

In Chen et al. (2023), we illustrated the superior performance of Optimization PNS with
many examples, such as the QUBO question, the Knapsack problem, and the 3R3XOR problem.
In all these problems, Optimization PNS is the best algorithm compared to the Simulated
Annealing algorithm and Optimization Rejection-Free. See Chen et al. (2023) for more details.
Therefore, we can use Optimization PNS as in Algorithm 10 to replace the burn-in part before
sampling.

However, the starting states obtained by the proposed three optimization algorithms will not
converge to the target density. Therefore, people can use these optimization methods to replace
the burn-in part only if they believe that the sampling can start without stationarity, just like
Geyer (2011).

8.2. Burn-in until convergence

Section 8.1, we mentioned that some people believe that MCMC does not necessarily need to
start from stationarity. However, some people may insist on starting from stationarity. Then we
can combine the algorithm for optimization and sampling and try to take advantage of both ver-
sions to get a burn-in algorithm. We can apply the optimization algorithm for a certain number

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 857

of steps K0, and then we apply the sampling algorithms such as Rejection-Free (Algorithm 2) or
Unbiased PNS (Algorithm 6) for K1 samples.

To check the distribution of the states after a certain number of steps of the hybrid algorithm,
We generate a certain number of Markov chains by the algorithms and record each chain’s last
state. As a result, we can get the distribution after burn-in, and we call this distribution the start-
ing distribution for sampling. For example, just like the previous example in Sec. 4, we still con-
sider a 16� 16 QUBO question. Every setting is the same as what we have in Sec. 4 except we
used Qi,j � Normalð0, 12Þ,8i � j: We didn’t use the standard deviation of 10 like Sec. 4, since we
only use the last states from one Markov chain, we generate one such starting distribution with
100, 000 Markov chains and check the TVD value between the starting distribution and the target
density. Thus, if we use a standard deviation of 10, we need a much longer time to get a small
TVD value. The number of steps for Optimization PNS K0 is chosen to be b 1

20 K1c (b c represents
the floor function). The number of samples K1 ¼ 20, 40, 60, :::, 200: In addition, we also compare
Unbiased PNS with Optimization PNS plus Unbiased PNS. Since we believe Unbiased PNS will
converge slower than Rejection-Free, so we choose K1 ¼ 40, 80, :::, 600, and K0 ¼ b

1
40 K1c: The

temperature function T(k) in the optimization algorithms is set to be constantly 1. The result is
shown in Figure 11.

From Figure 11, algorithms with the help of Optimization PNS converge faster with respect to
the CPU time. We used a 16� 16 QUBO question here. In addition, we concluded that the
higher the dimension is and the more sharply peaked the distribution is, the better the optimiza-
tion PNS will be (Chen et al. 2023). Optimization PNS performs extremely well in the optimiza-
tion version of 200� 200 QUBO question (Chen et al. 2023). Thus, we can also use the
Optimization PNS to help burn-in in high dimension or sharply peaked distributions. Since the
calculation of TVD for high-dimension problems is infeasible, so we just did a simulation of
16� 16 QUBO question here. See Chen et al. (2023) for more simulation results from optimiza-
tion problems with higher dimensions.

Figure 11. Average values of TVD between the starting distribution from 100,000 chains and target density p as a function
of the average time for the chains in seconds for four methods: Rejection-Free, Optimization PNS plus Rejection-Free,
Unbiased PNS, and Optimization PNS plus Unbiased PNS. Random upper triangular 16� 16 QUBO matrix is generated
randomly by Qi,j � Nð0, 12Þ for upper triangular elements. The original sample sizes for Rejection Free are K1 ¼

20, 30, 40, 50, :::, 1000f g, and the number of steps for the corresponding Optimization PNS is K0 ¼ b
K1
20c: The original sample sizes

for Unbiased PNS are K1 ¼ 40, 50, 60, :::, 1500f g, and the number of steps the corresponding Optimization PNS is K0 ¼ b
K1
40c:

Each dot within the plot represents the TVD value between the target distribution p and the distribution of the last state of
100,000 Markov chains.

858 S. CHEN ET AL.

9. Combine PNS with other MCMC techniques

9.1. Multiple Try Metropolis

In the Metropolis algorithm, we only propose one state at a time, and our Rejection-Free and
PNS algorithms are adaptions of the Metropolis algorithm where we consider more neighbors at
each step. Similarly, Multiple-Try Metropolis (MTM) is also an adaption of the Metropolis algo-
rithm which proposed more than one neighbor to be tested at each step (Martino 2018). Some
numerical studies show that MTM can be significantly better than the traditional Metropolis-
Hastings algorithm (Liu, Liang, and Wong 2000).

The MTM algorithm is described by Algorithm 11. This algorithm is designed to increase the
sampling speed by increasing the acceptance rate, although the step size is increased as well.
Compare to our methods, MTM can only get one sample at a time by computing the ð2l − 1Þ
weights.

Algorithm 11. Multiple Try Metropolis
initialize X0
choose a non-negative symmetric function k : S � S ! R
define wðx, yÞ ¼ pðxÞQðx, yÞkðx, yÞ, 8x, y 2 S
for k in 1 to K do

draw y1, y2, :::, yl independently from QðXk−1, �Þ
compute the weights wðyj, Xk−1Þ, 8j ¼ 1, 2, :::, k
select y from the y1, y2, :::, yl based on wðXk−1, �Þ
produce a reference set by drawing z1, :::, zl−1 from the distribution Qðy, �Þ
set zl ¼ Xk−1
accept Xk ¼ y with probability minð1, wðy1,Xk−1Þþ:::þwðyl ,Xk−1Þ

wðz1,yÞþ:::þwðzl ,yÞ Þ

end for

In addition, we can extend MTM to PNS as well. At each step, by applying the MTM transi-
tion rule for M times, we can obtain M proposals y1, y2, :::, yM with M corresponding acceptance
probabilities p1, p2, :::, pM: Then we can choose our next state by P̂ðyijXk−1Þ / pi, and we can also
calculate our multiplicity list by m ¼ 1þ G where G � GeometricðpÞ, and p ¼ 1

M
PM

i¼1pi:

However, we don’t think it is a great idea to combine these two methods. Multiple-try
Metropolis needs to compute the energy of ð2l − 1Þ other states at every step. In addition, for
each step of PNS, we have to do it for M times. Thus, we need to calculate M � ð2l − 1Þ func-
tions for every step, and it can be overwhelming. In addition, the purpose of MTM is to increase
the acceptance rate, while PNS works well for those cases with low acceptance rates. Thus, we
think combining these two methods won’t be very efficient.

9.2. Barker’s rule

In Algorithm 1, we used the regular Metropolis-Hasting acceptance probability
minð1, pðYÞQðY ,Xk−1Þ

pðXk−1ÞQðXk−1,YÞÞ: On the other hand, we also have many other Markov chain kernels such as
Barker’s acceptance function (Barker 1965), where we accept the proposal with probability

pðYÞQðY,Xk−1Þ

pðYÞQðY ,Xk−1ÞþpðXk−1ÞQðXk−1,YÞ : We don’t use these Markov chain kernels very often because based on
Paskun-Tierney ordering (Peskun 1973; Tierney 1998), these kernels are usually less efficient than
the regular ones. However, under some special circumstances, we may need to use these kernels.
Thus, we extend our PNS algorithm to these special Markov chain kernels as well.

Here use a simulation to show the change of the TVD values by sampling with PNS with
Barker’s acceptance function. Similar to the simulation from Sec. 4, we used the QUBO sampling

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 859

example again. The only difference is that the non-zero elements were generated randomly by
Qi,j � Normalð0, 12Þ instead of Normalð0, 102Þ, 8i � j: We used a small variance here because we
have to calculate log ð exp ðyTQyÞ þ exp ðxTQxÞÞ, and with a large variance, calculating the expo-
nential values may cause numerical overflows. The result is shown in Figure 12. The figure illus-
trates that the Markov chain with Barker’s transition probabilities converges to the correct
distribution, although the converging speed is slower than the regular Metropolis-Hastings kernel,
which demonstrates that the Paskun-Tierney ordering works for PNS as well. Note that, the
Markov chain produced by Metropolis-Hasting will converge correctly as long as the Markov
chain kernels used is reversible. Similarly, we believe that PNS with any reversible Markov chain
kernels works as well.

10. Conclusion

We introduced three versions of the Partial Neighbor Search algorithms of sampling. Basic PNS
is straightforward but does not converge to the target density. The Unbiased PNS will converge
to the target density, but it performs worse than Rejection-Free compared to a single-core imple-
mentation in the QUBO question. However, the Unbiased PNS can use specialized parallelism
hardware such as DA to improve the sampling efficiency significantly, while Rejection-Free can-
not. In addition, Rejection-Free is infeasible in many continuous cases, but the Unbiased PNS
can be applied to all continuous cases and works much better than the Metropolis algorithm.
Finally, we illustrated that Optimization PNS from Chen et al. (2023) can be used to improve the
burn-in part before sampling.

Acknowledgments

The authors thank Fujitsu Ltd. and Fujitsu Consulting (Canada) Inc. for providing financial support. The authors
thank the reviewers and editors for very careful readings and helpful comments which have greatly improved the
manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 12. Average values of TVD between sampling and target density p as a function of the number of iterations (left) and
average time in seconds (right) for two methods: Unbiased PNS with regular transition rule and Barker’s transition rule. We used
an upper triangular 16� 16 QUBO matrix, generated randomly by Qi,j � Nð0, 12Þ for upper triangular elements. Each dot within
the plot represents the result of the average TVD value and time used for 100 simulation runs given certain original sample sizes.
The original sample sizes for both algorithms are 2000, 4000, 8000, 16,000, :::, 2,048,000f g: We choose these sizes to get a close
average CPU time for all three methods. For Unbiased PNS, we used jN kj ¼ 8 and L0 ¼ 100:

860 S. CHEN ET AL.

References

Barker, A. A. 1965. Monte Carlo calculations of the radial distribution functions for a proton? electron plasma.
Australian Journal of Physics 18 (2):119–34. doi: 10.1071/PH650119.

Beichl, I., and F. Sullivan. 2000. The metropolis algorithm. Computing in Science & Engineering 2 (1):65–69. doi:
10.1109/5992.814660.

Bertsimas, D., and J. Tsitsiklis. 1993. Simulated annealing. Statistical Science 8 (1):10–15. doi: 10.1214/ss/1177011077.
Bortz, A. B., M. H. Kalos, and J. L. Lebowitz. 1975. A new algorithm for Monte Carlo simulation of ising spin sys-

tems. Journal of Computational Physics 17 (1):10–18. doi: 10.1016/0021-9991(75)90060-1.
Chen, M., C. Gao, and Z. Ren. 2016. A general decision theory for Huber’s �-contamination model. Electronic

Journal of Statistics 10 (2):3752–74. doi: 10.1214/16-EJS1216.
Chen, S., J. S. Rosenthal, A. Dote, H. Tamura and A. Sheikholeslami. 2023. Optimization via rejection-free partial

neighbor search. Statistics and Computing 33:131–47. Springer.
Efraimidis, P. S., and P. G. Spirakis. 2006. Weighted random sampling with a reservoir. Information Processing

Letters 97 (5):181–5. doi: 10.1016/j.ipl.2005.11.003.
Feng, C. 2021. MCMC interactive gallery. https://chi-feng.github.io/mcmc-demo/app.html?algorithm=Random

WalkMH&target=donut (accessed 05 July, 2022).
Geyer, C. J. 2011. Introduction to Markov chain Monte Carlo. In Handbook of Markov chain Monte Carlo, vol. 45,

20116022. Boca Raton.
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57

(1):97–109. doi: 10.1093/biomet/57.1.97.
Hitchcock, D. B. 2003. A history of the Metropolis-Hastings algorithm. The American Statistician 57 (4):254–7.

doi: 10.1198/0003130032413.
Kalos, M. H., and P. A. Whitlock. 2009. Monte Carlo methods. Toronto, Canada: John Wiley & Sons.
Kochenberger, G., J.-K. Hao, F. Glover, M. Lewis, Z. L€u, H. Wang, and Y. Wang. 2014. The unconstrained binary

quadratic programming problem: A survey. Journal of Combinatorial Optimization 28 (1):58–81. doi: 10.1007/
s10878-014-9734-0.

Kroese, D. P., T. Brereton, T. Taimre, and Z. I. Botev. 2014. Why the Monte Carlo method is so important today.
WIREs Computational Statistics 6 (6):386–92. doi: 10.1002/wics.1314.

Liu, J. S., F. Liang, and W. H. Wong. 2000. The multiple-try method and local optimization in metropolis sam-
pling. Journal of the American Statistical Association 95 (449):121–34. doi: 10.1080/01621459.2000.10473908.

Martino, L. 2018. A review of multiple try MCMC algorithms for signal processing. Digital Signal Processing 75:
134–52. doi: 10.1016/j.dsp.2018.01.004.

Matsubara, S., M. Takatsu, T. Miyazawa, T. Shibasaki, Y. Watanabe, K. Takemoto, and H. Tamura. 2020. Digital
annealer for high-speed solving of combinatorial optimization problems and its applications. Paper presented at
the 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), January 13–16, 2020 in
National Convention Center, Beijing, China, 667–672. IEEE. doi: 10.1109/ASP-DAC47756.2020.9045100.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calcula-
tions by fast computing machines. The Journal of Chemical Physics 21 (6):1087–92. doi: 10.1063/1.1699114.

Meyn, S. P., and R. L. Tweedie. 2012. Markov chains and stochastic stability. New York: Springer Science &
Business Media.

Peskun, P. H. 1973. Optimum Monte-Carlo sampling using Markov chains. Biometrika 60 (3):607–12. doi: 10.
1093/biomet/60.3.607.

Rosenthal, J. S., A. Dote, K. Dabiri, H. Tamura, S. Chen, and A. Sheikholeslami. 2021. Jump Markov chains and
rejection-free Metropolis algorithms. Computational Statistics 36 (4):2789–811. doi: 10.1007/s00180-021-01095-2.

Sheikholeslami, A. 2021. The power of parallelism in stochastic search for global optimum: Keynote paper. Paper
presented at the ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), 13–22
September 2021. doi: 10.1109/ESSCIRC53450.2021.9567809.

Sodan, A. C., J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh. 2010. Parallelism via multithreaded and
multicore CPUs. Computer Magazine. 43 (3):24–32. doi: 10.1109/MC.2010.75.

Tierney, L. 1998. A note on Metropolis-Hastings kernels for general state spaces. Annals of Applied Probability 8:1–9.

Appendix A. Unbiased PNS convergence theorem

Definition 1. For sampling questions in general state space, we usually have the following elements:

1. a state space S;

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 861

2. a r-finite reference measure l on S, where l could be a counting measure for discrete cases, and l could be
a Lebesgue measure for continuous cases;

3. a target density p : S ! ½0, 1�, where
Ð

x2SpðxÞlðdxÞ ¼ 1;

4. a target distribution P : PðSÞ ! ½0, 1�, where PðAÞ :¼
Ð

A
pðxÞlðdxÞ, 8A � S, and P means the power set;

5. a proposal density qðx, yÞ : S � S ! ½0, 1�, where
Ð

S
qðx, yÞlðdyÞ ¼ 1, 8x, y 2 S;

6. a proposal distribution Qðx, dyÞ / qðx, yÞlðdyÞ;
7. a corresponding neighbor set NðxÞ :¼ y 2 Sjqðx, yÞ > 0

� �
� Sn xf g;

8. the transition probabilities Pðx, dyÞ ¼ qðx, yÞminð1, pðyÞqðy,xÞ
pðxÞqðx,yÞÞlðdyÞ, where Pðx, dyÞ ¼ qðx, yÞlðdyÞ if the denom-

inator pðxÞqðx, yÞ ¼ 0:

Given the above elements, assume irreducibility and aperiodicity, we can generate a Markov
chain X0, X1, :::, XKf g such that the limiting distribution of limn!1Xn converges to the stationar-
ity distribution pðxÞlðdxÞ by Algorithm 1.

Definition 2. Suppose we have a state space S, a reference measure l, and a target density p, the
proposal distribution Q and the corresponding neighbor set N : Then, a Partial Neighbor Set N i
means a function N i satisfying the following conditions:

1. N i : S ! PðSÞ, where S is the state space, and PðSÞ is the power set of S;

2. N iðxÞ � N ðxÞ,8x 2 S, and we must pick a finite subset N iðxÞ to ensure a finite for loop in Algorithm 6;
3. y 2 N iðxÞ () x 2 N iðyÞ, 8x, y 2 S;

Given a Partial Neighbor Set N i, the proposal distribution for N i is defined to be Qi :

S � PðSÞ ! R, where Qiðx, dyÞ ¼
P

r2N iðxÞ
qðx,rÞdrðdyÞ

P
z2N iðxÞ

qðx,zÞ
, where dr means the point mass at r. On the

other hand, since we will only pick a finite subset N iðxÞ,Qiðx, dyÞ can also be expressed as
Qiðx, yÞ ¼ qðx,yÞ1ðy2N iðxÞÞP

z2N iðxÞ
qðx,zÞ

, where 1 means indicator function.

Here, before we prove the convergence theorem of the Unbiased PNS as stated in Algorithm 6,
we first prove it for another version of the Unbiased PNS as stated in Algorithm 12. It is easy to
see that the only difference between Algorithm 12 and Algorithm 6 is that we are not using the
Rejection-Free technique here, where we calculate all the transition probabilities at once, pick the
next jump chain state, and calculate the multiplicity list according to the transition probabilities.

Algorithm 12. Unbiased Partial Neighbor Search without Rejection-Free technique
select N i for i ¼ 0, 1, :::, I − 1 where [I−1

i¼0 N iðXÞ ¼ N ðXÞ
initialize i¼ 0 . start with neighbor set N 0
initialize L ¼ L0 . start with L0 remaining samples
initialize X0 . initial the starting state
for k in 1 to K do

random Y 2 N iðJk−1Þ based on QiðXk−1, �Þ
random Uk � Uniformð0, 1Þ
if Uk <

pðYÞQiðY ,Xk−1Þ

pðXk−1ÞQiðXk−1,YÞ then
. accept with probability min 1, pðYÞQiðY ,Xk−1Þ

pðXk−1ÞQiðXk−1,YÞ

n o

Xk ¼ Y . accept and move to state Y
else

Xk ¼ Xk−1 . reject and stay at Xk−1
end if
L¼ L − 1 . a new sample from N i
if L¼ 0 then . if we don’t have enough remaining samples

L ¼ L0, and i ¼ iþ 1 mod I . switch to the next N i
end if

end for

862 S. CHEN ET AL.

Proposition 1: Suppose we have a state space S, a reference measure l, and a target density p, the
proposal distribution Q and the corresponding neighbor set N . In addition, suppose the Partial
Neighbor Set N if g

I−1
i¼0 satisfies all the conditions in Definition 1. Then pðxÞlðdxÞ is the stationary

distribution for Algorithm 12 with the Partial Neighbor Set N i:

Proof. Let Piðx, dyÞ be the transition probability for Partial Neighbor Set N i:
Then, 8y 2 N iðxÞ, we have

Piðx, dyÞ ¼ Qiðx, yÞminð1,
pðyÞQiðy, xÞlðdyÞ
pðxÞQiðx, yÞlðdxÞ

Þ

¼
qðx, yÞ

P
z2N iðxÞqðx, zÞ

minð1,
pðyÞ qðy,xÞP

z2N iðyÞ
qðy,zÞ

lðdyÞ

pðxÞ qðx,yÞP
z2N iðxÞ

qðx,zÞ
lðdxÞ

Þ

¼ minð
qðx, yÞ

P
z2N iðxÞqðx, zÞ

,
pðyÞ qðy,xÞP

z2N iðyÞ
qðy,zÞ

lðdyÞ

pðxÞlðdxÞ
Þ

(16)

Note that, 8y 2 N iðxÞ, we have x 2 N iðyÞ: Thus, we have
pðxÞlðdxÞPiðx, dyÞ

¼ pðxÞlðdxÞminð
qðx, yÞ

P
z2N iðxÞqðx, zÞ

,
pðyÞ qðy,xÞP

z2N iðyÞ
qðy,zÞ

lðdyÞ

pðxÞlðdxÞ
Þ

¼ minðpðxÞ
qðx, yÞ

P
z2N iðxÞqðx, zÞ

lðdxÞ, pðyÞ
qðy, xÞ

P
z2N iðyÞqðy, zÞ

lðdyÞÞ

¼ pðyÞlðdyÞPiðy, dxÞ

(17)

On the other hand, 8y 62 N iðxÞ, pðxÞlðdxÞPiðx, dyÞ ¼ 0 ¼ pðyÞlðdyÞPiðy, dxÞ:
Thus, by reversibility, N i is stationary with pðxÞlðdxÞ: w

Proposition 2: Suppose we have a state space S, a reference measure l, a target density p, and a
Markov chain X0, X1, X2, :::f g produced by algorithm 12. In addition, suppose pðxÞlðdxÞ is the station-
ary distribution is the stationary distribution for Algorithm 12 with all N if g

I−1
i¼0 , and [I−1

i¼0 N i makes
the Markov chain irreducible. Moreover, suppose there are rejections for the Markov chain, and thus
the Markov chain is aperiodic. Then the Markov chain converges in total variation distance; i.e.:

lim
k!1

sup
A�S

PðXk 2 AÞ −
ð

A

pðyÞlðdyÞ
�
�
�
�

�
�
�
� ¼ 0 (18)

Proof. This follows immediately from Theorem 13.0.1 in Meyn and Tweedie (2012). w

Theorem 3: Suppose we have a state space S, a reference measure l, a target density p, a Markov
chain X0, X1, X2, :::f g produced by algorithm 12, and a jump chain ðJ0, M0Þ, ðJ1, M1Þ, ðJ2, M2Þ, :::

� �

produced by algorithm 6. Meanwhile, suppose the proposal distribution Q and the corresponding
neighbor set N ensure the Markov chain produced by the Metropolis-Hastings algorithm converges
to the stationarity pðxÞlðdxÞ. In addition, suppose pðxÞlðdxÞ is the stationary distribution for all
N if g

I−1
i¼0 , and [I−1

i¼0 N i makes both chains irreducible. Moreover, suppose both chains are aperiodic.
Then the jump chain has the following properties:

1. The conditional distribution of Mk given Jk is equal to the distribution of 1þ G where G is a geometric random
variable with success probability aiðJkÞ where aiðxÞ :¼ 1 − Piðx, xf gÞ, and Pi is the transition probability for
Partial Neighbor Set N i;

2. the transition probability P̂i from the jump chain satisfy P̂iðx, dyÞ ¼ 1
aiðxÞPiðx, dyÞ1ðx 6¼ yÞ, and P̂iðx, xf gÞ ¼ 0;

3. If the original chain is /-irreducible (see, e.g., Meyn and Tweedie 2012) for some positive r-finite measure /

on S, then the jump chain is also /-irreducible for the same /:

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 863

4. If the Markov chain has stationary distribution pðxÞlðdxÞ given N i, then the jump chain has stationary distri-
bution p̂ðxÞ ¼ ciaiðxÞpðxÞlðdxÞ where c−1

i ¼
Ð

aiðyÞpðyÞlðdyÞ
5. If h : S ! R has finite expectation, then with probability 1,

lim
K!1

XK

k¼1
MkhðJkÞ

XK

k¼1
Mk

¼ pðhÞ :¼

ð

hðxÞpðxÞlðdxÞ:

Proof. The proof is trivial given the Proposition 2 and Theorem 13 from the Rejection-Free paper
(Rosenthal et al.. 2021). We reviewed Theorem 13 from the Rejection-Free paper in Sec. 6. w

Appendix B. How to sample proportionally

Given Ai > 0, for i ¼ 1, 2, :::, N, how can we sample Z so that PðZ ¼ iÞ ¼ AiP
j
Aj

? We could choose
U � Uniform½0, 1�, and then set Z ¼ min i,

Pi
j¼1Aj > U �

PN
j¼1Aj

n o
: However, this involves

summing all of the Aj, which is inefficient. If
PN

j¼1Aj ¼ 1, then we could choose U �
Uniform½0, 1� and just set Z ¼ min i,

Pi
j¼1Aj > U

n o
, which is slightly easier and can be done by

binary searching. However, it still requires summing lots of the Aj, which could still be inefficient.
If

PN
j¼1Aj < 1, then we could choose U � Uniform½0, 1�, and then still set Z ¼

max i,
Pi

j¼1Aj > U
n o

, except if no such i exists then we reject that choice of U and start again.

In addition to the previous problems, this could involve lots of rejection if
PN

j¼1Aj is much
smaller than 1, which is again inefficient. Another option is the following method, based on
Efraimidis and Spirakis (2006); see also the n-fold way approach to kinetic Monte Carlo in Bortz,
Kalos, and Lebowitz (1975).

Proposition 4: Let A1, A2, :::, AN be positive numbers, Let Rjf g
N
j¼1 be i.i.d. � Uniform½0, 1�, and let

dj ¼ − log ðRjÞ

Aj
for j ¼ 1, 2, :::, N. Finally, set Z ¼ arg minjdj. Then P½Z ¼ i� ¼ AiP

j
Aj

, i.e. Z selects i
from 1, 2, :::, Nf g with probability proportional to Ai.

Proof.
P Z ¼ i½ � ¼ P dj > di, 8j 6¼ i

� �

¼ P −
log ðRjÞ

Aj
> −

log ðRiÞ

Ai
, 8j 6¼ i

" #

¼ P Rj < RAj=Ai
i , 8j 6¼ i

h i

¼

ð1

0
P Rj < RAj=Ai

i ,8j 6¼ ijRi ¼ x
h i

dx

¼

ð1

0
P Rj < xAj=Ai ,8j 6¼ i
h i

dx

¼

ð1

0

Y

j6¼i
xAj=Ai dx

¼

ð1

0
x
P

j6¼i
Aj=Ai dx

¼
x
P

j6¼i
Aj=Aiþ1

� �

P
j6¼iAj=Ai þ 1

j
1
x¼0

¼
Ai
P

jAj

(19)

w

864 S. CHEN ET AL.

Proposition 4 is useful, especially when we apply Rejection-Free and PNS to parallelism
hardware. Each core can calculate the random variable Z separately, and we only need to find the
arg min to get a sample with probability proportional to the given values. On the
other hand, for other methods of sampling, usually we have to calculate the summation from
P½Z ¼ i� ¼ AiP

j
Aj

which is much slower than finding arg min : In addition, such a method is

much faster even when we apply it to a single-core implementation.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 865

