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Abstract. We investigate the use of adaptive MCMC algorithms to auto-
matically tune the Markov chain parameters during a run. Examples include
the Adaptive Metropolis (AM) multivariate algorithm of Haario et al. (2001),
Metropolis-within-Gibbs algorithms for non-conjugate hierarchical models, re-
gionally adjusted Metropolis algorithms, and logarithmic scalings. Computer
simulations indicate that the algorithms perform very well compared to non-
adaptive algorithms, even in high dimension.

1. Introduction.

MCMC algorithms such as the Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970) are extremely widely used in statistical inference, to sample from complicated

high-dimensional distributions. Tuning of associated parameters such as proposal variances

is crucial to achieve efficient mixing, but can also be very difficult.

Adaptive MCMC algorithms attempt to deal with this problem by automatically “learn-

ing” better parameter values of Markov chain Monte Carlo algorithms while they run. In

this paper, we consider a number of examples of such algorithms, including some in high

dimensions. We shall see that adaptive MCMC can be very successful at finding good pa-

rameter values with little user intervention. In our context, good will be defined in terms of

some appropriate measure of Markov chain mixing, such as the integrated autocorrelation

of a functional of interest.

It is known that adaptive MCMC algorithms will not always preserve stationarity of π(·),
see e.g. Rosenthal (2004) and Proposition 3 of Roberts and Rosenthal (2005). However, they

will converge if the adaptions are done at regeneration times (Gilks et al., 1998; Brockwell

and Kadane, 2005), or under various technical conditions about the adaption procedure
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(Haario et al., 2001; Atchadé and Rosenthal, 2005; Andrieu and Moulines, 2003; Andrieu

and Atchadé, 2006).

Roberts and Rosenthal (2005) proved ergodicity of adaptive MCMC under conditions

which we find simpler to apply, and which do not require that the adaptive parameters

converge. To state their result precisely, suppose the algorithm updates Xn to Xn+1 using

the kernel PΓn , where each fixed kernel Pγ has stationary distribution π(·), but where the

Γn are random indices, chosen iteratively from some collection Y based on past algorithm

output. Write ‖ · · · ‖ for total variation distance, X for the state space, and Mε(x, γ) =

inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} for the convergence time of the kernel Pγ when beginning

in state x ∈ X . Then Theorem 13 of Roberts and Rosenthal (2005), combined slightly

with their Corollaries 8 and 9 and Theorem 23 guarantee that limn→∞ ‖L(Xn) − π(·)‖ = 0

(asymptotic convergence), and also limn→∞
1
n

∑n
i=1 g(Xi) = π(g) for all bounded g : X → R

(WLLN), assuming only the Diminishing Adaptation condition

lim
n→∞

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability , (1)

and the Bounded Convergence condition

{Mε(Xn,Γn)}∞n=0 is bounded in probability , ε > 0 . (2)

Furthermore, they prove that (2) is satisfied whenever X × Y is finite, or is compact in

some topology in which either the transition kernels Pγ, or the Metropolis-Hastings proposal

kernels Qγ, have jointly continuous densities. (Condition (1) can be ensured directly, by

appropriate design of the adaptive algorithm.) A SLLN is precluded since the convergence

statements above are only stated “in probability”, while CLTs do not necessarily hold since

Γn does not necessarily converge at all.

Such results provide a “hunting license” to look for useful adaptive MCMC algorithms. In

this paper, we shall consider a variety of such algorithms. We shall see that they do indeed

converge correctly, and often have significantly better mixing properties than comparable

non-adaptive algorithms.

We present a collection of examples. For each one, our adaptive strategy steers the

algorithm towards a desired operational “optimal” according to some prescribed criterion.

Crucially, our approach differs from that of Andrieu and Moulines, 2003 and Andrieu and

Atchadé, in that unlike our method, convergence of the adaptive strategy is specifically

sought in their approach. Our regularity conditions are thus weaker and easier to verify,

though as a result, the results we can demonstrate are necessarily weaker also.
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2. Adaptive Metropolis (AM).

In this section, we consider a version of the Adaptive Metropolis (AM) algorithm of Haario

et al. (2001). We begin with a d-dimensional target distribution π(·). We perform a Metropo-

lis algorithm with proposal distribution given at iteration n by Qn(x, ·) = N(x, (0.1)2 Id / d)

for n ≤ 2d, while for n > 2d,

Qn(x, ·) = (1− β)N(x, (2.38)2 Σn / d) + β N(x, (0.1)2 Id / d) , (3)

where Σn is the current empirical estimate of the covariance structure of the target distri-

bution based on the run so far, and where β is a small positive constant (we take β = 0.05).

It is known from Roberts et al. (1997) and Roberts and Rosenthal (2001) that the pro-

posal N(x, (2.38)2 Σ / d) is optimal in a particular large-dimensional context. Thus, the

N(x, (2.38)2 Σn / d) proposal is an effort to approximate this.

Since empirical estimates change at the nth iteration by only O(1/n), it follows that (1)

will be satisfied. Restricting β > 0 in (3) ensures that (2) is satisfied, at least for a large family

of target densities which includes all those which are log-concave outside some arbitrary

bounded region (see Section 8). Hence, this algorithm will indeed converge to π(·) and

satisfy the WLLN. (Haario et al. instead let Qn(x, ·) = N(x, Σn + ε Id) for small ε, to force

c1Id ≤ Σn ≤ c2Id for some c1, c2 > 0, which also ensures (1) and (2) for target distributions

with bounded support, but we prefer to avoid this strong assumption.)

To test this algorithm, we let π(·) = N(0, M M t), where M is a d× d matrix generated

randomly by letting {Mij}di,j=1 be i.i.d. ∼ N(0, 1). This ensures that the target covariance

matrix Σ = MM t will be highly erratic, so that sampling from π(·) presents a significant

challenge for sampling if the dimension is at all high.

The resulting trace plot of the first coordinate of the Markov chain is presented in Figure 1

for dimension d = 100, and in Figure 2 for dimension d = 200. In both cases, the Markov

chain takes a long time to adapt properly and settle down to rapid mixing. In the early

stages, the algorithm vastly underestimates the true stationary variance, thus illustrating

the pitfalls of premature diagnoses of MCMC convergence. In the later stages, by contrast,

the algorithm has “learned” how to sample from π(·), and does so much more successfully.

Another way of monitoring the success of this algorithm’s adapting is as follows. Con-

sider a multi-dimensional random-walk Metropolis algorithm with proposal covariance ma-

trix (2.38)2 Σp / d, acting on a normal target distribution with true covariance matrix Σ.

Theorem 5 of Roberts and Rosenthal (2001) prove that it is optimal to take Σp = Σ, and for
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Figure 1. The first coordinate of the AM Markov chain in dimension 100, plotted
against iteration number.
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Figure 2. The first coordinate of the AM Markov chain in dimension 200, plotted
against iteration number.
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Figure 3. The suboptimality factor b for the AM algorithm in dimension 100,
plotted against iteration number.

other Σp the mixing rate will be slower than this by a sub-optimality factor of

b ≡ d

∑d
i=1 λ

−2
i

(
∑d
i=1 λ

−1
i )2

,

where {λi} are the eigenvalues of the matrix Σ1/2
p Σ−1/2. Usually we will have b > 1, and the

closer b is to 1, the better. The criterion being optimised in AM is therefore b−1.

So how does the AM algorithm perform by this measure? For the run in dimension 100,

the value of this sub-optimality coefficient b begins at the huge value of 193.53, and then even-

tually decreases towards 1, reaching 1.086 after 500,000 iterations, and 1.024 after 1,000,000

iterations (Figure 3). In dimension 200, the value of b is even more erratic, starting around

183,000 and oscillating wildly before decreasing to about 1.04 after 800000 iterations.

We conclude from this that the AM algorithm does indeed “learn” about the true tar-

get covariance matrix, and converge to an algorithm which samples very (almost optimally)

efficiently from π(·). It is true that it takes many iterations for the algorithm to learn

this information (nearly 400,000 iterations in dimension 100, and nearly 2,000,000 in dimen-

sion 200). On the other hand, what the algorithm is learning is a d×d covariance matrix with

many parameters (5,050 parameters in dimension 100, and 20,100 in dimension 200). We

feel that this indicates very impressive performance of the AM algorithm in high dimensions.
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Figure 4. Trace plot of the first coordinate in the banana-shaped example.

2.1. An irregularly shaped example.

AM can be expected to work well on target densities in which the density contours form

roughly elliptical contours. In such examples the global covariance gives a good measure of

dependence valid in all parts of the state space. However, it is interesting to see how the

approach performs on a more challenging problem with more irregularly shaped contours.

We also applied our full Adaptive Metropolis algorithm to a “banana-shaped” distribu-

tion, as proposed by Haario et al. (1999, 2001), with density

fB = fd ◦ φB

where fd is the d-dimensional density of a N(0, diag(100, 1, 1, . . . , 1)) distribution, and where

φB(x1, . . . , xd) = (x1, x2 + Bx2
1 − 100B, x3, . . . , xd) with B > 0 the “bananicity” constant.

So,

fB(x1, . . . , xd) ∝ exp
[
− x2

1/200− 1

2
(x2 +Bx2

1 − 100B)2 − 1

2
(x2

3 + x2
4 + . . .+ x2

d)
]
.

Specifically, we take dimension d = 20, and take B = 0.1, and run the algorithm for

5,000,000 iterations. A trace plot of the first coordinate is given in Figure 4.

It is clear that the adaptation has improved mixing here. However mixing is still very

poor after 5000000 iterations which is to be expected given that ant Metropolis method
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struggles to traverse this distributions support. Whilst the AM algorithm attempts to move

around as effectively as it can, classes of algorithms which can adjust the covariance of the

proposal distribution according to the current state of the algorithm should be required.

This in part motivates some of the methods we shall introduce in later sections.

3. Adaptive Metropolis-Within-Gibbs.

Consider the following statistical model:

µ
↙ ↓ ↘

θ1 . . . . . . θK θi ∼ Cauchy(µ,A) [1 ≤ i ≤ K]
↓ ↓ ↓

Y11, . . . , Y1r1 YK1, . . . , YKrK Yij ∼ N(θi, V ) [1 ≤ j ≤ ri]

with priors N(0, 1) on µ, and IG(1, 1) on A and V . Here {Yij} are observed data, IG(a, b) is

the inverse gamma distribution with density proportional to e−b/xx−(a+1), and Cauchy(m, s)

is a translated and scaled Cauchy distribution with density proportional to [1 + ((x −
m)/s)2]−1. This model gives rise to a posterior distribution π(·) on the (K + 3)-dimensional

vector (A, V, µ, θ1, . . . , θK), conditional on the observed data {Yij}.
We take K = 500, and let the ri vary between 5 and 500. The resulting model is too

complicated for analytic computation, and far too high-dimensional for numerical integra-

tion. Furthermore, the presence of the Cauchy (as opposed to Normal) distribution destroys

conjugacy, and thus makes a classical Gibbs sampler (as in Gelfand and Smith, 1990) infea-

sible. Instead, a Metropolis-within-Gibbs algorithm (Metropolis et al., 1953; Tierney, 1994)

seems appropriate.

Such an algorithm might proceed as follows. We consider each of the 503 variables in

turn. For each, we propose updating its value by adding a N(0, σ2) increment. That proposal

is then accepted or rejected according to the usual Metropolis ratio. This process is repeated

many times, allowing the variables to hopefully converge in distribution to π(·). But how

should σ2 be chosen? Should it be different for different variables? How can we feasibly

determine appropriate scalings in such high dimension?

To answer these questions, an adaptive algorithm can be used. We proceed as follows.

For each of the variables i [1 ≤ i ≤ K + 3], we create an associated variable lsi giving

the logarithm of the standard deviation to be used when proposing a normal increment to

variable i. We begin with lsi = 0 for all i (corresponding to unit proposal variance). After

the nth “batch” of 50 iterations, we update each lsi by adding or subtracting an adaption

amount δ(n). The adapting attempts to make the acceptance rate of proposals for variable i
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Figure 5. The log proposal standard deviation ls1 corresponding to the
Metropolis-within-Gibbs variable θ1, plotted against batch number.

as close as possible to 0.44 (which is optimal for one-dimensional proposals in certain settings,

cf. Roberts et al., 1997; Roberts and Rosenthal, 2001). Specifically, we increase lsi by δ(n)

if the fraction of acceptances of variable i was more than 0.44 on the nth batch, or decrease

lsi by δ(n) if it was less.

Condition (1) is satisfied provided δ(n) → 0; we take δ(n) = min(0.01, n−1/2). Our

approach is to specify a global maximal parameter value M < ∞, and restrict each lsi to

the interval [−M,M ]. For a large class of target densities (which includes all those which

are log-concave outside an arbitrary bounded region) this ensures (2) hold. In practice, the

lsi stabilise nicely so the bound on M is not actually needed.

To test this adaptive algorithm, we generate independent test data Yij ∼ N(i− 1, 102),

for 1 ≤ i ≤ 500 and 1 ≤ j ≤ ri. For such data, our simulations show that the scaling

variables quickly settle down near “good” values where acceptance rates are roughly 0.44.

Indeed, for the location variables θ1, θ2, and θ3, the corresponding ls variables converge to

values near 2.4, 1.2, and 0.1, respectively (Figures 5, 6, 7). So the algorithm appears to be

converging well.

Just how good are the values chosen? The following table presents the integrated auto-

correlation times (ACT) and average squared jumping distances (after discarding the first

fifth of the run as burn-in), for both the adaptive algorithm, and the corresponding “fixed”
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Figure 6. The log proposal standard deviation ls2 corresponding to the
Metropolis-within-Gibbs variable θ2, plotted against batch number.
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Figure 7. The log proposal standard deviation ls3 corresponding to the
Metropolis-within-Gibbs variable θ3, plotted against batch number.
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algorithm where each lsi is fixed at 0:

Variable ri Algorithm ACT Avr Sq Dist

θ1 5 Adaptive 2.59 14.932
θ1 5 Fixed 31.69 0.863
θ2 50 Adaptive 2.72 1.508
θ2 50 Fixed 7.33 0.581
θ3 500 Adaptive 2.72 0.150
θ3 500 Fixed 2.67 0.147

This table shows that, when comparing adaptive to fixed algorithms, for variables θ1

and θ2, the autocorrelation times are significantly smaller (better) and the average squared

jumping distances are significantly larger (better), Thus, adapting has significantly improved

the MCMC algorithm, by automatically choosing appropriate proposal scalings separately for

each coordinate. For variable θ3 the performance of the two algorithms is virtually identical,

which is not surprising since (Figure 7) the optimal log proposal standard deviation happens

to be very close to 0 in that case.

In summary, this adaptive algorithm appears to correctly scale the proposal standard

deviations, leading to a Metropolis-within-Gibbs algorithm which mixes much faster than

a naive one with unit proposal scalings. Coordinates are improved wherever possible, and

are left about the same when they happen to already be optimal. This works even in high

dimensions, and does not require any direct user intervention or high-dimensional insight.

This algorithm has recently been applied to a statistical genetics problem (Turro et al.,

2007).

3.1. A comparison with SCAM.

A different component-wise adaptive scaling method, the Single Component Adaptive

Metropolis (SCAM) algorithm, is presented in Haario et al. (2005). That algorithm, which

resembles the Adaptive Metropolis algorithm of Haario et al. (2001), is very interesting and

promising, but differs significantly from ours since the SCAM adapting is done based on the

empirical variance of each component based on the run so far.

For comparative purposes, we also ran the SCAM algorithm of Haario et al. (2005) on the

same example as that above for adaptive Metropolis-within-Gibbs. The SCAM algorithm

uses the proposal distribution Y i
n ∼ N(X i

n−1, v
i
n) for the ith coordinate, where

vin =

{
52, n ≤ 10

(2.4)2(gin + 0.05), n ≥ 11
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Figure 8. The log proposal standard deviation ls1 corresponding to the SCAM
variable θ1, plotted against iteration number.

Here gin is the sample variance of X
(i)
0 , X

(i)
1 , . . . , X

(i)
n−1. (Intuitively, for n ≥ 11, vin attempts to

mimic an “optimal” one-dimensional variance (2.38)2 Varπ(Xi) similar to what was discussed

above; the published version of SCAM omits the square in “2.4” but we assume the above is

what was intended.) Writing xin = 1
n

∑n−1
j=0 x

(i)
j , we see (cf. Haario et al., 2005) that we can

use the recursive equations

xin =
n− 1

n
xin−1 +

1

n
xin−1

and

gin =
n− 2

n− 1
gin−1 + (xin−1)2 +

1

n− 1
(xin)2 − n

n− 1
(xin)2 .

We again consider the first three coordinates, as above. The graphs of their proposal

variances (again on a log scale, for consistency with the above) are presented here.

We also compute the mean log σ, ACT, and average squared jumping distance:
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Figure 9. The log proposal standard deviation ls2 corresponding to the SCAM
variable θ2, plotted against iteration number.
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Figure 10. The log proposal standard deviation ls3 corresponding to the SCAM
variable θ3, plotted against iteration number.
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Variable ri Algorithm log(σ) ACT Avr Sq Dist

θ1 5 Adaptive 2.35 2.59 14.932
θ1 5 Fixed 0 31.69 0.863
θ1 5 SCAM 2.38 2.77 14.951
θ2 50 Adaptive 1.21 2.72 1.508
θ2 50 Fixed 0 7.33 0.581
θ2 50 SCAM 1.27 2.77 1.486
θ3 500 Adaptive 0.08 2.72 0.150
θ3 500 Fixed 0 2.67 0.147
θ3 500 SCAM 0.26 2.77 0.145

The table shows that the results of SCAM are comparable to those of our adaptive

Metropolis-within-Gibbs algorithm. In this case, they were virtually identical for θ1, and

just slightly worse for θ2 and θ3. As for choice of proposal variance σ2, there are some

differences, with the SCAM choices generally larger than those for our algorithm. Overall,

we feel that both of these algorithms are useful approaches to high-dimensional adaptive

MCMC, and both should be kept in the applied user’s arsenal.

4. State-Dependent Scaling.

We next consider examples of full-dimensional Metropolis-Hastings algorithms, where

the proposal distribution is given by Q(x, ·) = N(x, σ2
x), i.e. such that the proposal vari-

ance depends on the current state x ∈ X . For such an algorithm, according to the usual

Metropolis-Hastings formula (Hastings, 1970), a proposal from x to y is accepted with prob-

ability

α(x, y) = min
[
1,

π(y)

π(x)
(σx/σy)

d exp (− 1

2
(x− y)2(σ−2

y − σ−2
x ))

]
. (4)

As a first case, we let X = R, and π(·) = N(0, 1). We consider proposal kernels of the

form

Qa,b(x, ·) = N

(
x, ea

(1 + |x|
exp(π̂)

)b)
,

where π̂ is our current empirical estimate of π(g) where g(x) = log(1 + |x|). (We divide by

exp(π̂) to make the choices of a and b “orthogonal” in some sense.) After the nth batch of

100 iterations, we update a by adding or subtracting δ(n) in an effort to, again, make the

acceptance rate as close as possible to 0.44. We also add or subtract δ(n) to b to make the

acceptance rates, acc− and acc+ respectively, in the regions A− = {x ∈ X : log(1 + |x|) > π̂}
and A+ = {x ∈ X : log(1 + |x|) ≤ π̂} as equal as possible. This then increases the proposal

variance in the region where acceptance rates are highest (thus lowering the acceptance rate)
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Figure 11. The tuning parameter a in the State-Dependent Scaling example,
plotted against batch number, showing quick approach to “good” values near 1.5.

and correspondingly increasing the acceptance rate where the acceptance rate is lowest. The

criterion being minimised here is therefore acc2
+ + acc2

−.

As in previous examples, condition (1) is automatically satisfied, at least if we insist on

δ(n) → 0. In order for us to be able to demonstrated (2) however (at least for a particular

family of target densities), we shall impose an extra condition, requiring that a and b be

constrained within [−M,M ] for some global parameter M <∞.

So how does this algorithm perform in practice? Empirical expected values quickly

converge to their true values, showing excellent mixing. Furthermore, the tuning parameters

a and b quickly find their “good” values (Figures 11 and 12), though they do continue to

oscillate due to the extremely slow rate at which δ(n)→ 0.

To determine how well the adaptive algorithm is performing, we compare its integrated

autocorrelation time and average squared jumping distance to corresponding non-adaptive

algorithms, having either fixed constant variance σ2 (including the optimal constant value,

(2.38)2), and to the corresponding variable-variance algorithm. The results are as follows:
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Figure 12. The tuning parameter b in the State-Dependent Scaling example,
plotted against batch number, showing quick approach to “good” values near 1.6,
but with significant oscillation.

Algorithm Acceptance Rate ACT Avr Sq Dist

Adaptive (as above) 0.456 2.63 0.769
σ2 = exp(−5) 0.973 49.92 0.006
σ2 = exp(−1) 0.813 8.95 0.234

σ2 = 1 0.704 4.67 0.450
σ2 = (2.38)2 0.445 2.68 0.748
σ2 = exp(5) 0.237 7.22 0.305

σ2
x = e1.5

(
1+|x|

0.534822

)1.6
0.456 2.58 0.778

We see that our adaptive scheme is much better than arbitrarily-chosen fixed-variance

algorithms, slightly better than the optimally-chosen fixed-variance algorithm (chosen by

an ad-hoc search for maximising Average Square Jumping Distance, and given on the 5th

line), and nearly as good as an ideally-chosen variable-σ2 scheme chosen using a similar

maximisation of average squared jumping distance on a grid of possible (a, b) values (bottom

line). The results are quite impressive, since we didn’t do any manual tuning of our algorithm

at all other than telling the computer to seek a 0.44 acceptance rate.

While these functional forms of σ2
x seem promising, it is not clear how to generalise them

to higher dimensional problems. Instead, we next consider a different algorithm in which

the σ2
x are piecewise constant over various regions of the state space.
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5. Regional Adaptive Metropolis Algorithm (RAMA).

The Regional Adaptive Metropolis Algorithm (RAMA) begins by partitioning the state

space X into a finite number of disjoint regions: X = X1
•∪ . . . •∪Xm. The algorithm then

proceeds by running a Metropolis algorithm with proposal Q(x, ·) = N(x, exp(2 ai)) when-

ever x ∈ Xi. Thus, if x ∈ Xi and y ∈ Xj, then σ2
x = e2ai and σ2

y = e2aj , and it follows from (4)

that a proposal from x to y is accepted with probability

α(x, y) = min
[
1,

π(y)

π(x)
exp (d(ai − aj)−

1

2
(x− y)2[exp(−2aj)− exp(−2ai)])

]
.

The adaptions proceed as follows, in an effort to make the acceptance probability close

to 0.234 in each region. (Such an acceptance rate is optimal in certain high-dimensional

settings; see Roberts et al., 1997; Roberts and Rosenthal, 1998, 2001; Bédard, 2006a, 2006b,

and we envisage that typically Xi would be a space of the same dimension as X .) For

1 ≤ i ≤ d, the parameter ai is updated by, after the nth batch of 100 iterations, considering

the fraction of acceptances of those proposals which originated from Xi. If that fraction is

less than 0.234 then ai is decreased by δ(n), while if it is more than ai is increased by δ(n).

Then, if ai > M we set ai = M , while if ai < −M we set ai = −M . Finally, if there were

no proposals from Xi during the entire batch, then ai is left unchanged. Thus the algorithm

attempts to minimise
∑m
i=1 acc

2
i where acci represents the acceptance rate for moves starting

in the region Xi.
Provided that δ(n) → 0, condition (1) will trivially hold. Moreover, if we assume that

M < ∞ then it is natural to demonstrate (2) again by using a simultaneous drift condi-

tion. Such an argument will require some conditions on the target density, but is easy to

demonstrate for log-concave densities such as the example below. See Section 8 for further

discussion.

For a first example, we let X = Rd, and π(·) = N(0, Id). We consider proposal kernels

of the form

Qa,b(x, ·) = N
(
x, e2a 1‖x‖2≤d + e2b 1‖x‖2>d

)
.

Once every 100 iterations, we update a by adding or subtracting δ(n) to make the acceptance

rate in the region {‖x‖2 ≤ d} as close as possible to 0.234. We also add or subtract δ(n) to b

to make the acceptance rate in the region {‖x‖ > d} as close as possible to 0.234. We again

restrict a and b to some [−M,M ]. (We take δ(n) = min(0.01, n−1/2) ≡ 0.01 and M = 100.)

We choose dimension d = 10, and begin with a = b = 0.
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Figure 13. The tuning parameter a in the Normal RAMA example, plotted
against batch number.

How well does it work? The tuning parameters a and b quickly migrate towards their

“good” values of −0.3 and −0.13, respectively, but they continue to oscillate somewhat

around these values (Figures 13 and 14).

How good are the values of a and b found by the computer? The following table gives

comparisons of the integrated autocorrelation time and average squared jumping distance

for various choices of a and b:

a, b ACT Avr Sq Dist

adaptive (as above) 15.54 0.1246
−0.3, −0.13 15.07 0.1258
−0.3, 0.0 15.44 0.1213
0.0, −0.13 17.04 0.1118

0.0, 0.0 17.037 0.1100

The table indicates that the adaptive algorithm (top line) is quite competitive with the

corresponding fixed-parameter choice (second line), which in turn has smaller integrated

autocorrelation time, and larger average squared jumping distance, than any of the other

choices of a and b. This indicates that the computer has again succeeded in finding good

values for the tuning parameters.

Next, we consider the following statistical model related to James-Stein estimators, as
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Figure 14. The tuning parameter b in the Normal RAMA example, plotted
against batch number.

studied in e.g. Rosenthal (1996):

µ
↙ ↓ ↘

θ1 . . . . . . θK θi ∼ N(µ,A) [1 ≤ i ≤ K]
↓ . . . . . . ↓
Y1 . . . . . . YK Yi ∼ N(θi, V ) [1 ≤ i ≤ K]

Here the {Yi} are observed data. We use the prior distributions µ ∼ N(µ0, σ
2
0) and A ∼

IG(a1, b1), and replace V by its (fixed) empirical Bayes estimate. We let π(·) be the resulting

posterior distribution for (A, µ, θ1, . . . , θK), on the (K + 2)-dimensional state space X =

[0,∞)×RK+1. The density of π(·), with respect to Lebesgue measure, is then given by

f(A, µ, θ1, . . . , θK) = N(µ0, σ
2
0;µ) IG(a1, b1;A)×

K∏
i=1

[
N(µ,A; θi) N(θi, V ;Yi)

]
∝ exp(−(µ− µ0)2/2σ2

0) exp(−b1/A) /Aa1+1 ×

×
K∏
i=1

[
A−1/2 exp(−(θi − µ)2/2A) V −1/2 exp(−(Yi − θi)2/2V )

]
.

For a numerical example, we let K = 18, and let Y1, . . . , Y18 be the (real) baseball data

of Table 1 of Morris (1983) (see also Efron and Morris, 1975). Thus, X ⊆ R20. We choose

the prior parameters as µ0 = 0, σ2
0 = 1, a1 = −1, and b1 = 2.
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Figure 15. The tuning parameter a in the James-Stein RAMA example, plotted
against batch number.

We again perform the RAMA algorithm. Specifically, after the nth batch of 100 iterations,

we update a by adding or subtracting δ(n) to make the acceptance rate in the region {∑i(θ1−
µ0)2 ≤ 0.15} as close as possible to 0.234. We also add or subtract δ(n) to b to make the

acceptance rate in the region {∑i(θ1 − µ0)2 > 0.15} as close as possible to 0.234.

The simulations again show good mixing, and rapid convergence of functional averages

to their true posterior means. Furthermore, the adaptive parameters a and b quickly settle

down to near −3.3 and −3.2 respectively (Figures 15, 16).

How good are the values of the tuning parameters chosen? We again compare integrated

autocorrelation times and average squared jumping distances, as follows (acceptance rates

are also shown):

a, b Acc Rate ACT Avr Sq Dist ×104

adaptive (as above) 0.228 31.60 2.756
−3.3, −3.2 0.194 25.75 2.793
−2.3, −2.3 0.003 50.67 0.192
−4.3, −4.3 0.655 38.92 1.168
−3.3, −4.3 0.647 36.91 1.153
−4.3, −3.3 0.281 38.04 2.407
−0.6, −0.6 2.5 ×10−5 53.97 0.010
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Figure 16. The tuning parameter b in the James-Stein RAMA example, plotted
against batch number.

We again see that the adaptive algorithm (top line) is quite competitive with the corre-

sponding fixed-parameter choice (second line), which in turn is better than any of the other

choices of a and b. This shows that, once again, the adaptive algorithm has automatically

chosen good values of the MCMC tuning parameters, without requiring user intervention.

Remarks.

1. In our simulations, the condition M < ∞ has never been necessary, since RAMA has

never tried to push any of the {aj} towards unbounded values. Indeed, we conjecture

that under appropriate regularity assumptions (e.g. if the densities are jointly continu-

ous), condition (2) will be satisfied automatically due to drifting of the parameters ai

back to reasonable values due to the adaptive process (cf. Roberts and Rosenthal, 2005,

Corollary 14).

2. If some value aj is much too large, then α(x, y) may be very small for all y ∈ Xj and x 6∈
Xj. This means that the region Xj may virtually never be entered, so that aj will remain

virtually constant, leading to isolation of Xj and thus very poor convergence. Hence, it is

important with RAMA to begin with sufficiently small values of the {ai}. Alternatively,

it might be wise to decrease each ai slightly (rather than leaving it unchanged) after each

batch in which there were no proposals from Xi.
3. The version of RAMA presented here requires that the user specify the regions {Xi}mi=1
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by hand. However, it may also be possible to have the computer automatically select

appropriate regions, by e.g. doing a preliminary run with fixed proposal variance, and

then grouping together state space subsets which appear to have similar acceptance rates.

4. Roberts et al. (1997) show that in certain situations the optimal scaling for Metropolis

algorithms can be characterised as that which has acceptance probability 0.234. One

can ask whether these results carry over to RAMA, and whether equal acceptance rates

on different regions (as sought by RAMA) truly leads to optimality. We believe this

to be true quite generally, but can only prove it for very specific settings (e.g. birth-

death processes). The method of proof of Roberts et al. (see also Bédard, 2006a, 2006b)

appears to carry over away from the region boundaries, but the behaviour at the region

boundaries is more complicated.

5. If we set δ(n) to a constant, as opposed to having δ(n)→ 0, then condition 1 might fail,

so the chain might not converge to π(·). On the other hand, the chain together with the

parameter values {aj} is jointly Markovian, and under appropriate scaling may have its

own joint diffusion limit. It would be interesting (Stewart, 2006) to study that diffusion

limit, to e.g. see how much asymptotic error results from failing to satisfy (1).

6. To Log or Not To Log.

Suppose π is the density function for a real-valued random variable W . Then if π is

heavy-tailed, it may be advantageous to take logarithms, i.e. to instead consider the density

function for W̃ ≡ logW . This leads to the question, when is it advantageous to consider W̃

in place of W? Once again, adaptive algorithms can provide insights into this question.

To avoid problems of negative or near-negative values, we modify the logarithm function

and instead consider the function

`(w) ≡ sgn(w) log(1 + |w|) ,

where sgn(w) = 1 for w > 0, and sgn(w) = −1 for w < 0. The function ` is an increasing,

continuously differentiable mapping from R onto R, with inverse `−1(w) = sgn(w) (e|w|− 1),

and graph as follows:
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Figure 17. Graph of the modified log function `.

If π is the density for W , and W̃ = log(W ), then taking Jacobians shows that the density

for W̃ is given by π̃(w) = e|w| π(e|w| − 1).

A result of Mengersen and Tweedie (1996) says, essentially, that a random-walk Met-

ropolis (RWM) algorithm for a density π will be geometrically ergodic if and only if π has

exponential or sub-exponential tails, i.e. satisfies

log π(x)− log π(y) ≥ η(y − x) , y > x ≥ x1 (5)

for some x1 > 0 and η > 0 (and similarly for y < x ≤ −x1). (A similar result holds in

multi-dimensional contexts , cf. Roberts and Tweedie, 1996.) But if π on R satisfies (5),

then so does π̃, since if y > x ≥ − log(η) + β ≥ x1 > 0, then

log π̃(x)− log π̃(y) = (x− y) + log π(ex − 1)− log π(ey − 1)

≥ (x− y) + η((ey − 1)− (ex − 1)) = −(y − x) + ηex(ey−x − 1)

≥ −(y − x) + ηx(y − x) = (y − x)(ηex − 1) ≥ (y − x)(eβ − 1) .

Hence, (5) is satisfied for π̃ with η̃ = eβ − 1. In fact, by making β arbitrarily large, we can

make η̃ as large as we like, showing that the tails of π̃ are in fact sub-exponential.

This suggests that, at least as far as geometric ergodicity is concerned, it is essentially

always better to work with π̃ than with π. As a specific example, if π is the standard Cauchy

distribution, then RWM on π is not geometrically ergodic, but RWM on π̃ is.

22



Despite this evidence in favour of log transforms for RWM, it is not clear that taking

logarithms (or applying `) necessarily helps with the quantitative convergence of RWM. To

investigate this, we use an adaptive algorithm.

Specifically, given π, we consider two different algorithms: one a RWM on π, and the

other a RWM on π̃, each using proposal distributions of the form Q(x, ·) = N(x, σ2). After

the nth batch of 100 iterations, we allow each version to adapt its own scaling parameter σ

by adding or subtracting δ(n) to log(σ), in an effort to achieve acceptance rate near 0.44 for

each version. Then, once every 100 batches, we consider whether to switch versions (i.e., to

apply ` if we currently haven’t, or to undo ` if we currently have), based on whether the

current average squared jumping distance is smaller than that from the last time we used

the other version. (We force the switch to the other version if it fails 100 times in succession,

to avoid getting stuck forever with just one version.)

How does this adaptive algorithm work in practice? In the following table we considered

three different one-dimensional symmetric target distributions: a standard Normal, a stan-

dard Cauchy, and a Uniform[−100, 100]. For each target, we report the percentage of the

time that the adaptive algorithm spent on the logged density π̃ (as opposed to the regular

density π). We also report the mean value of the log proposal standard deviation for both

the regular and the logged RWM versions.

Target Log % lsreg lslog

Normal 3.62% 2.52 2.08
Cauchy 99.0% 3.49 2.66
Uniform 4.95% 6.66 2.65

We see from this table that, for the Normal and Uniform distributions, the adaptive

algorithm saw no particular advantage to taking logarithms, and indeed stayed in the regular

(unlogged) π version the vast majority of the time. On the other hand, for the Cauchy target,

the algorithm uses the logged π̃ essentially as much as possible. This shows that this adaptive

algorithm is able to distinguish between when taking logs is helpful (e.g. for the heavy-tailed

Cauchy target), and when it is not (e.g. for the light-tailed Normal and Uniform targets).

For multi-dimensional target distributions, it is possible to take logs (or apply the func-

tion `) separately to each coordinate. Since lighter tails are still advantageous in multi-

dimensional settings (Roberts and Tweedie, 1996), it seems likely to be advantageous to

apply ` to precisely those coordinates which correspond to heavy tails in the target distribu-

tion. In high dimensions, this cannot feasibly be done by hand, but an adaptive algorithm
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could still do it automatically. Such multi-dimensional versions of this adaptive logarithm

algorithm appear worthy of further investigation.

7. How to adapt.

Whilst the theory of adaptation has progressed significantly in recent years, practical

implementation raises many important and largely unstudied problems. One issue is that

we still know very little about how to optimise MCMC algorithms. The use of monitored

acceptance probabilities has the appeal of simplicity and the support of some theory. In 1-

dimension the use of 0.44 and in higher-dimensional problems the adoption of 0.234 together

with the scaling rule σ = 2.38/d1/2 are based on results in Gelman et al (1996). However

the use of these simple rules, although often effective, are based on approximations and are

not rigorously proved for complex non-homogeneous models used in statistical analysis. In

our two heterogeneous scaling examples, we are guided by established theoretical properties

of MCMC - particularly that Metropolis algorithms are not geometrically ergodic for heavy

tailed target densities. We believe that there is considerable further scope for algorithm

development based on MCMC theory.

One important question asks whether an effective adaptive scheme should require that

Γ converges. It is intuitively appealing to think of the adaptive scheme searching for ”the

best” algorithm from a collection of candidates. Our approach here is, however, not to

require convergence of Γ since we are eager to have adaptive procedures which work in as

general a context as possible. It may well be (and we suspect so) that all the examples in this

paper involve situations where Γn does converge, but we have not attempted to demonstrate

this. A complementary approach to our work in this respect is that adopted by Andrieu

and Moulines (2003). This has the appeal of generality, but it may be that an algorithm in

which we do not have convergence of Γn converges less rapidly than one in which Γn does

converge. More experience with practical examples is necessary to resolve these issues.

AM and RAMA are set up naturally in a multi-dimensional context. Multivariate gener-

alisations of the state-dependent strategy used in Section 4 are clearly possible. The simplest

idea is to apply the same strategy to each of the d components, obtaining a collection of

parameters, (a1, b1) . . . (ad, bd) defining a proposal of independent components with variance

in the ith direction given by ea(1 + |xi|)b. More complex proposals which try to respect the

dependence in the target density (as in AM) are also possible.
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8. Checking the Bounded Convergence condition.

The Diminishing Adaptation condition is relatively easy to check, and in fact adaptive

procedures are generally constructed with this condition directly in mind. On the other

hand, the Bounded Convergence condition is typically more difficult to check.

One way of showing this is to show that all MCMC kernels satisfy the same Lyapunov

drift condition. For instance, Roberts and Rosenthal (2005) show that an adaptive MCMC

algorithm satisfying Diminishing Adaptation satisfies Bounded Convergence (and is hence

ergodic) if the family {Pγ}γ∈Y simultaneously strongly aperiodically geometrically ergodic, ie

there is C ∈ F , V : X → [1,∞), δ > 0, λ < 1, and b <∞, such that supC V = v <∞, and

(i) for each γ ∈ Y , there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δ νγ(·) for

all x ∈ C; and

(ii) (Pγ)V ≤ λV + b1C .

A natural approach to the establishment of simultaneously strongly aperiodically geomet-

rically ergodicity is to use the drift function π−1/2 as in Roberts and Tweedie (1996) for AM

and Roberts and Rosenthal (1997) for Adaptive Metropolis-within-Gibbs. As an example of

a precise result which can be shown in this way, for the AM algorithm, the condition will

hold by this argument for all target densities which are log-concave (except perhaps on some

bounded region).

The state-dependent proposal variance case can also be analysed to give a drift condition

with Lyapunov function π−1/2, at least for b < 2. This is essentially because asymptotically

(as |x| → ∞) the accept/reject ratio is dominated by the ratio π(y)/π(x) and thus all moves

to smaller |x| values are accepted with all moves to larger π(x) values are possibly rejected.

Then standard calculation as those in Roberts and Tweedie (1996), together with continuity

and compactness arguments for the parameters a and b are sufficient to demonstrate the

simultaneous drift condition.

It seems that these results will be easily generalisable to the other examples in this paper,

essentially because all methods are essentially constructed from random walk Metropolis.

These extensions are subject to further work (Bai, Roberts, and Rosenthal, 2008).

9. Conclusion.

This paper has considered automated tuning of MCMC algorithms, especially Metropolis-

Hastings algorithms, with quite positive results.

For example, for Metropolis-within-Gibbs algorithms, the following (generally well-known)

statements are all reinforced through our simulation. (1) The choice of proposal variance
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σ2 is crucial to the success of the algorithm. (2) Good values of σ2 can vary greatly from

one coordinate to the next. (3) There are far too many coordinates to be able to select

good values of σ2 for each coordinate by hand. (4) Adaptive methods can be used to get the

computer to find good values of σ2 automatically. (5) If done carefully, the adaptive methods

can be provably ergodic, and quite effective in practice, thus allowing for good tuning and

rapid convergence of MCMC algorithms that would otherwise be impractical.

The practical experience of this paper, though very promising, also raises important

questions. In particular, how robust are the strategies suggested in the various methods

here? For example, in the adaptive Metropolis-within-Gibbs example, how crucial is the

choice of δ(n) in the success of the method, and how does this vary from problem to problem?

We still know comparatively little about what adaptive strategies to use in any particular

context. Our feeling is that the choice of adaptive strategy should be guided by theoretical

knowledge about MCMC. For instance, when using RWM, particular problems are observed

with heavy-tailed target distributions (such as lack of geometric ergodicity, breakdown of

CLTs etc). In this case it makes sense to use a strategy which attempts to stabilise the

algorithm excursions, and this points to the use of heterogeneous scaling and/or a strategy

which lightens the tails (such as that introduced in Section 6).

One important issue for adaptive scaling concerns the practical issue that scaling the

proposal correlation structure to match that of the target will be a very poor strategy

when some of the target distribution variances are infinite. Typically in practical MCMC

situations, this may not be very easy to check analytically by inspection of the target density.

For this reason, perhaps it makes more sense to scale according to acceptance rate criteria

rather than variances. However it is impossible to use this to match correlation structure,

and further work is required to introduce robust versions of the AM and other methods.

Adaptive strategies are generally simple to implement. However it is very important

that such a strategy is constructed in such a way that the conditions for ergodicity are

satisfied. Further work is clearly required to give sufficiently simple conditions to enable

routine adaptation to take place in applied problems. In terms of adaptive strategies, there is

now extensive MCMC theory to help guide the construction of suitable adaptive algorithms.

One potential problem evolves from an adaptive strategy which is too “greedy” in that it

tries to adapt too closely to initial information from the output. Such algorithms can take

considerable time to “recover” from misleading initial information.

Overall, we feel that these results indicate the widespread applicability of adaptive

MCMC algorithms to many different MCMC settings, including complicated high-dimensional

distributions. We hope that this paper will inspire users of MCMC to experiment with adap-
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tive algorithms in their future applications (e.g. Turro et al., 2007). All of the software used

to run the algorithms described herein is freely available at probability.ca/adapt.
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