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Abstract. We consider whether ergodic Markov chains with bounded step
size remain bounded in probability when their transitions are modified by an
adversary on a bounded subset. We provide counterexamples to show that
the answer is no in general, and prove theorems to show that the answer is
yes under various additional assumptions. We then use our results to prove
convergence of various adaptive Markov chain Monte Carlo algorithms.

1. Introduction.

This paper considers whether bounded modifications of stable Markov chains remain

stable. Specifically, we let P be a fixed time-homogeneous ergodic Markov chain kernel

with bounded step size, and let {Xn} be a stochastic process which follows the transition

probabilities P except on a bounded subset K where an “adversary” can make arbitrary

bounded jumps. Under what conditions must such a process {Xn} be bounded in probability?

One might think that such boundedness would follow easily, at least under mild regularity

and continuity assumptions, i.e. that modifying a stable continuous Markov chain inside a

bounded set K couldn’t possibly lead to unstable behaviour out in the tails. In fact the

situation is rather more subtle, as we explore herein. We will provide counterexamples to
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show that boundedness may fail even for well-behaved continuous chains. We will then show

that under various additional conditions, including bounds on transition probabilities and/or

small set assumptions and/or geometric ergodicity, such boundedness does hold.

The specific question considered here appears to be new, though it is somewhat remi-

niscent of previous bounds on non-Markovian stochastic processes such as those related to

adversarial queueing theory [13, 21, 6]. We present our formal setup in Section 2, our main

results in Section 3, and some counterexamples in Section 4. Our results are then proven in

Sections 5 through 10.

In Section 11, we turn our attention to adaptive Markov chain Monte Carlo (MCMC)

algorithms. MCMC proceeds by running a Markov chain long enough to approximately

converge to its stationary distribution and thus provide useful samples. Adaptive MCMC

algorithms attempt to improve on MCMC by modifying the Markov chain transitions as

they run, but this destroys the Markov property and makes convergence to stationarity

notoriously difficult to prove. We use our main results herein to establish general conditions

for convergence of certain adaptive MCMC algorithms (Theorem 21). We then apply this

result to a simple but useful adaptive MCMC algorithm (Proposition 22), and also to a

detailed statistical application involving a probit model for lupus patient data (Section 12).

For details and references about adaptive MCMC algorithms, see Section 11.

2. Formal setup and assumptions.

Let X be a non-empty general (i.e. possibly uncountable) state space, on which is defined

a metric η, which gives rise to a corresponding Borel σ-algebra F . Assume that X contains

some specified “origin” point 0 ∈ X . (In our examples and applications, X will usually be

a subset of Rd with the usual Euclidean metric.) Let P be the transition probability kernel

for a fixed time-homogeneous Markov chain on X . Assume that P is Harris ergodic with
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stationary probability distribution π, so that

lim
n→∞

‖P n(x, ·)− π‖ := lim
n→∞

sup
A∈F
|P n(x,A)− π(A)| = 0 , x ∈ X . (1)

We assume, to relate the Markov chain to the geometry of X , that there is a constant D <∞

such that P never moves more than a distance D, i.e. such that

P (x, {y ∈ X : η(x, y) ≤ D}) = 1 , x ∈ X . (2)

Let K ∈ F be a fixed bounded non-empty subset of X , and for r > 0 let Kr be the set of all

states within a distance r of K (so each Kr is also bounded).

In terms of these ingredients, we define our “adversarial Markov chain” process {Xn}

as follows. It begins with X0 = x0 for some specific initial state x0; for simplicity (see the

proof of Lemma 8) we assume that x0 ∈ K. Whenever the process is outside of K, it moves

according to the Markov transition probabilities P , i.e.

P(Xn+1 ∈ A | X0, X1, . . . , Xn) = P (Xn, A) , n ≥ 0, A ∈ F , Xn 6∈ K , (3)

When the process is inside of K, it can move arbitrarily, according to an adversary’s wishes,

perhaps depending on the time n and/or the chain’s history in a non-anticipatory manner

(i.e., adapted to {Xn}; see also Example #3 below), subject only to measurability (i.e.,

P(Xn+1 ∈ A | X0, X1, . . . , Xn) must be well-defined for all n ≥ 0 and A ∈ F), and to the

restriction that it can’t move more than a distance D at each iteration – or more specifically

that from K it can only move to points within KD. In summary, {Xn} is a stochastic process

which is “mostly” a Markov chain following the transition probabilities P , except that it is

modified by an adversary when it is within the bounded subset K.

We are interested in conditions guaranteeing that this process {Xn} will be bounded in

probability, i.e. will be tight, i.e. will satisfy that

lim
L→∞

sup
n∈N

P(η(Xn,0) > L |X0 = x0) = 0 . (4)
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3. Main Results.

We now consider various conditions under which (4) will or will not hold. For application

of our results to the verification of adaptive MCMC algorithms, see Section 11 below.

3.1. First results.

We first note that such boundedness is guaranteed in the absence of an adversary:

Proposition 1. In the setup of Section 2, suppose {Xn} always follows the transitions P

(including when it is within K, i.e. there is no adversary). Then (4) holds.

Indeed, Proposition 1 follows immediately since if P is Harris ergodic as in (1), then it

converges in distribution, so it must be tight and hence satisfy (4). (In fact, even if P is

just assumed to be φ-irreducible with period d ≥ 1 and stationary probability distribution

π, then this argument can be applied separately to each of the sequences {Xdn+j}∞n=0 for

j = 0, 1, . . . , d− 1 to again conclude (4).)

Boundedness also holds for a lattice like Zd, or more generally if the state space X is

topologically discrete (i.e. countable and such that each state x is topologically isolated and

hence open in X ). In this case, bounded subsets like K2D must be finite, and the result holds

without any further assumptions:

Proposition 2. In the setup of Section 2, suppose P is an irreducible positive-recurrent

Markov chain with stationary probability distribution π on a countable state space X such

that K2D is finite. Then (4) holds.

Proposition 2 is proved in Section 5 below.

However, (4) does not hold in general, not even under a strong continuity assumption:

Proposition 3. There exist adversarial Markov chain examples following the setup of

Section 2, on state spaces which are countable subsets of R2, which fail to satisfy (4), even

under the strong continuity condition that X is closed and
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∀x ∈ X , ∀ ε > 0, ∃ δ > 0 s.t. ‖P (y, ·)− P (x, ·)‖ < ε whenever η(x, y) < δ . (5)

Proposition 3 is proved in Section 4 below, using two different counterexamples.

Proposition 3 says that the adversarial process {Xn} may not be bounded in probability,

even if we assume a strong continuity condition on P . Hence, additional assumptions are

required, as we consider next.

Remark. The counterexamples in Proposition 3 are discrete Markov chains in the sense

that their state spaces are countable. However, their state spaces X are not topologically

discrete, since they contain accumulation points, and in particular sets like K2D are not finite

there, so there is no contradiction with Proposition 2.

3.2. A result using expected hitting times.

We now consider two new assumptions. The first provides an upper bound on the Markov

chain transitions out of KD:

(A1) There is M < ∞, and a probability measure µ∗ concentrated on K2D \ KD,
such that P (x, dz) ≤M µ∗(dz) for all x ∈ KD \K and z ∈ K2D \KD.

Note that in (A1) we always have z 6= x, which is helpful when considering e.g. Metropolis

algorithms which have positive probability of not moving. Choices of µ∗ in (A1) might include

Uniform(K2D \KD), or π|K2D\KD . The second assumption bounds an expected hitting time:

(A2) The expected time for a Markov chain following the transitions P to reach the
subset KD, when started from the distribution µ∗ in (A1), is finite.

In terms of these two assumptions, we have:

Theorem 4. In the setup of Section 2, if (A1) and (A2) hold for the same µ∗, then (4)

holds, i.e. {Xn} is bounded in probability.

Theorem 4 is proved in Section 5 below.
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3.3. A result assuming a small set condition.

The condition (A2), that the hitting time of KD has finite expectation, may be difficult

to verify directly. As an alternative, we consider a different assumption:

(A3) The set K2D \KD is small for P , i.e. there is some probability measure ν∗ on
X , and some ε > 0, and some n0 ∈ N, such that P n0(x,A) ≥ ε ν∗(A) for all
states x ∈ K2D \KD and all subsets A ∈ F .

We then have:

Theorem 5. In the setup of Section 2, if (A1) and (A3) hold where either (a) ν∗ = µ∗, or

(b) P is reversible and µ∗ = π|K2D\KD , then (4) holds, i.e. {Xn} is bounded in probability.

Theorem 5 is proved in Section 7 below.

Assumption (A3) is often straightforward to verify. For example:

Proposition 6. Suppose X is an open subset of Rd which contains a bounded rectangle

J which contains K2D \KD. Suppose there are δ > 0 and ε > 0 such that

P (x, dy) ≥ ε Leb(dy) whenever x, y ∈ J with |y − x| < δ , (6)

where Leb is Lebesgue measure on Rd. Then (A3) holds with ν∗ = Uniform(K2D \KD).

Proposition 6 is proved in Section 8 below.

3.4. A result assuming geometric ergodicity.

Assumption (A3) can be verified for various Markov chains, as we will see below. However,

its verification will sometimes be difficult. An alternative approach is to consider geometric

ergodicity, as follows (see e.g. [17] for context):

(A4) The Markov chain transition kernel P is geometrically ergodic, i.e. there is ρ <
1 and a π-a.e. finite measurable function ξ : X → [1,∞] such that ‖P n(x, ·)−
π‖ ≤ ξ(x) ρn for n ∈ N and x ∈ X .

We also require a slightly different version of (A1):
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(A5) There is M <∞ such that P (x, dz) ≤M π(dz) for all x ∈ KD and z ∈ K2D.

(Of course, (A5) holds trivially for z 6∈ K2D, since then P (x, dz) = 0.) We then have:

Theorem 7. In the setup of Section 2, if (A4) and (A5) hold, then (4) holds, i.e. {Xn} is

bounded in probability.

Theorem 7 is proved in Section 10 below.

4. Counterexamples to prove Proposition 3.

We next present two counterexamples to illustrate that with the setup and assumptions

of Section 2, the bounded in probability property (4) might fail. Each example has a state

space X which is a countable subset of R2 with the usual Euclidean metric η(x, y) := |y−x|.

In Example #1, X is not closed, and (5) does not hold; this is remedied in Example #2.

Example #1. Let X = {(1
i
, j) : i ∈ N, j = 0, 1, . . .} be the state space. That is,

X =
⋃
i∈NXi where each Xi ≡ {(1

i
, j)}j=0,1,... is a different “column”. Let π(1

i
, j) =

2−i (1
i
) (1− 1

i
)j, so that π restricted to each Xi is a geometric distribution with mean i. Let

K = {(1
i
, 0)} consist of the bottom element of each column (see Figure 1).

Let the Markov chain P proceed, outside of K, by doing a simple±1 Metropolis algorithm

up and down its current column Xi to be reversible with respect to π. That is, for j ≥

1, P ((1
i
, j), (1

i
, j − 1)) = 1

2
, and P ((1

i
, j), (1

i
, j + 1)) = 1

2
(1 − 1

i
), and the leftovers

P ((1
i
, j), (1

i
, j)) = 1− P ((1

i
, j), (1

i
, j − 1))− P ((1

i
, j), (1

i
, j + 1)). Intuitively, the larger

the column number i, the higher is the conditional mean of π on Xi, so the higher the chain

will tend to move within Xi, and the longer it will take to return to K.

Inside of K, choose any appropriate transitions to make the chain irreducible and re-

versible with respect to π, e.g. choose P ((1
i
, 0), (1

i
, 1)) = 1

2
(1− 1

i
), and P ((1

i
, 0), ( 1

i−1
, 0)) =

1/4 [for i > 1 only, otherwise 0], and P ((1
i
, 0), ( 1

i+1
, 0)) = i/8(i + 1), and the leftovers

P ((1
i
, 0), (1

i
, 0)) = 1− P ((1

i
, 0), ( 1

i+1
, 0))− P ((1

i
, 0), ( 1

i−1
, 0))− P ((1

i
, 0), (1

i
, 1)).
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Figure 1. Part of the state space in Example #1.

Let the adversary proceed within K as follows. If Xn ∈ K, then Xn+1 = ( 1
n
, 1). That

is, the chain moves from K to higher and higher column numbers as time goes on.

With these specifications, K is bounded, and the process {Xn} never moves more than a

distance D = 1, so the setup of Section 2 is satisfied. However, the process {Xn} will, over

time, move to closer and closer to 0 in the x-direction, and will then tend to climb higher

and higher in the y-direction. More formally, write Xn,1 and Xn,2 for the x-coordinate

and y-coordinate of Xn. Then given any L < ∞, choose m ∈ N such that the median

of a mean-m Geometric random variable, d−1/ log2(1 − 1
m

)e, is at least L. Then let τ =

inf{n : Xn,1 ≤ 1
m
}. Then after time τ , the y-coordinate of Xn will be stochastically larger

than a usual ±1 Metropolis algorithm for a Geometric distribution with mean m. Hence,
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lim infn→∞P(Xn,2 ≥ L) will be at least as large as the probability that a mean-m Geometric

random variable will be ≥ L. This probability is at least 1
2
. It follows that {Xn,2}, and hence

also {Xn}, are not bounded in probability, i.e. that (4) does not hold.

(Alternatively, the adversary could proceed within K by moving from (1
i
, 0) to either

(1
i
, 1) with probability 1

2
(1 − 1

i
), or to ( 1

i+1
, 0) with probability (1 + 1

i
)/4, or to ( 1

i−1
, 0)

with probability (1 + 1
i
)/4 [for i > 1 only, otherwise 0], or remain at (1

i
, 0) with the leftover

probability. This would make the process {Xn} be time-homogeneous Markov and reversible

with respect to the infinite measure π defined by π(1
i
, j) = (1

i
) (1− 1

i
)j. Then {Xn} will be

therefore be null recurrent. Hence, again, (4) will not hold.)

Now, in the above Example, the state space X is not closed. One could easily “extend”

the example to include {(0, j) : j ∈ N} and thus make X closed. However, this cannot be

done in a continuous way, i.e. there is no way to satisfy (5) in this example. This might lead

one to suspect that a continuity condition such as (5) suffices to guarantee (4). However,

that is not the case, as the following example shows:

Example #2. Our state space X will be another countable subset of R2, defined as

follows. Let O = (0, 0) be the origin. Let S0 = {(i, 0) : i ∈ N}. Let {βk}∞k=1 be an increasing

sequence of integers with βk > k to be specified later. For k ∈ N, let Sk consist of the k

points (i, i
k
) for i = 1, 2, . . . , k, together with βk − 1 additional points equally spaced on the

line segment from (k, 1) to the y-axis point (0, βk). Finally, let Y = {(0, i) : i ∈ N} be the

positive integer y-axis. Then X = O ∪ Y ∪
⋃∞
k=0 Sk (see Figure 2).

Define transitions P on X as follows. On S0, we have P ((i, 0), (i−1, 0)) = 1, i.e. it always

moves towards the origin. Similarly, on Y , we have P ((0, i), (0, i−1)) = 1, i.e. it again always

moves towards the origin. On the first k− 1 points of Sk, we have P ((i, i
k
), (i+ 1, i+1

k
)) = i

k
,

and P ((i, i
k
), (i − 1, 0)) = 1 − i

k
, i.e. it either continues upwards on Sk, or moves towards

the origin on S0. On the remaining points of Sk, with probability 1 it moves one additional
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Figure 2. Part of the state space in Example #2, including
O (origin), and Y (y-axis), and S0 (x-axis), and S1

with β1 = 2 (through (1,1)), and S3 with β3 = 5
(through (3,1)), and S5 with β5 = 7 (through (5,1)).

point along Sk’s path towards (0, βk). The chain’s step sizes are thus all bounded above by

e.g. D =
√

2.

Note that these transition probabilities are continuous in a very strong sense: if xn → x

(which can only happen for x ∈ S0 or for a.a. constant sequences), then P (xn, y)→ P (x, y)

for all y ∈ X , and in particular ‖P (xn, ·)− P (x, ·)‖ → 0. So, (5) is satisfied.

Note also that if this chain is started at (1, 1
k
), then it has probability

∏k
i=1( i

k
) > 0 of

continuing along Sk all the way to (k, 1), in which case it will take a total of k+2βk iterations

to return to O. Otherwise, for 1 ≤ j ≤ k − 1, it takes 2j − 1 iterations with probability
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(
∏j−1

i=1
i
k
)(1 − j

k
). Thus, if rk = E(τO |X0 = (1, 1

k
)) is the expected return time to O from

(1, 1
k
), then

rk = (k + 2βk)
( k∏
i=1

i

k

)
+

k−1∑
j=1

(
2j − 1

)( j−1∏
i=1

i

k

)(
1− j

k

)
.

In particular, by letting βk grow sufficiently quickly, we can make rk grow as quickly as

desired.

Finally, we specify that from O, for k ∈ N the Markov chain moves to (1, 1
k
) with

probability ak, for some positive numbers ak summing to 1 to be specified later.

Meanwhile, the adversary’s compact set is given by the single state K = {O}. From O,

the adversary proceeds simply by moving to each (1, 1
k
) with probability bk, where the bk

are non-negative and sum to 1, and will be specified later. (Thus, the adversary’s actions

are chosen to still be time-homogeneous Markov.)

To complete the construction, we choose {βk} and {ak} and {bk} so that
∑

k ak rk <∞

but
∑

k bk rk =∞. For example, we can do this by first choosing βk so that rk k
−k → 1, and

then letting ak ∝ (2k)−k and bk ∝ (k/2)−k.

It then follows that for the Markov chain P (governed by the {ak}) the expected return

time to O from O is finite, and hence the chain has a unique stationary probability measure

π. On the other hand, for the adversarial process {Xn} (governed by the {bk}) the expected

return time to O from O is infinite. Hence, the adversarial process is null recurrent, so it will

move to larger and larger Sk as time progresses. In particular, the adversarial process will

not be bounded in probability, even though the transition probabilities P are continuous.

Remark. Example #2 is only defined on a countable state space X , but if desired it

could be “extended” to a counterexample on all of R2. For instance, we could let δ = 10−6,

and replace π(·) by the convolution π(·) ∗ N(O, δ2) with a tiny normal distribution, and

replace P (x, ·) by the convolution P (x, ·) ∗N(O, δ2) for each x ∈ X , and then continuously

interpolate new transition probabilities P (x, ·) at all x ∈ R2 \ X such that P (x, ·) is a
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probability measure for each x ∈ R2, and the mapping x 7→ P (x,A) is continuous over

x ∈ R2 for each fixed A ∈ F . This could be done in such a way that (5) would still be

satisfied, but (4) would still fail, thus providing a counter-example even on the continuous

state space R2.

Finally, in a rather different direction, we consider what happens if the process is allowed

to be anticipatory, i.e. to make moves based on future randomness, with (3) replaced by the

weaker condition that P(Xn+1 ∈ A |Xn = x) = P (x,A) but without conditioning on the

previous history X0, . . . , Xn−1. It turns out that, under this subtle change, our theorems no

longer hold:

Example #3. Let X = [0,∞) ⊆ R. Define Markov chain transitions P as follows. For

x ≤ 1, P (x, ·) = Uniform[0, 2]. For 1 < x ≤ 3, P (x, ·) = Uniform[x−1, x+1]. For 3 < x ≤ 4,

P (x, ·) = Uniform[4, 5]. For x > 4, P (x, ·) = 1
2
δx+1(·) + 1

2
Uniform[x− 2, x− 1], where δx+1

is a point-mass at x + 1. Then P is φ-irreducible, with negative drift for x > 4, so P must

be positive recurrent with some stationary probability distribution π to which it converges

as in (1). Also, P never moves more than a distance D = 2 as in (2).

We next define the adversarial process {Xn}. Let K = [0, 2], so KD = [0, 4] and K2D =

[0, 6]. Let {Bi}∞i=0 be iid with P(Bi = 0) = P(Bi = 1) = 1/2, and let {Ui}∞i=0 be iid

∼ Uniform[0, 1], and let a∗ = 4 +
∑∞

i=1Bi 2
−i. For any r ∈ X , let r[i] be the coefficient

of 2i in the non-terminating binary expansion of r, so that r =
∑

i∈Z r[i] 2i. Conditional

on Xn, we construct Xn+1 by: (a) if Xn ≤ 1 then Xn+1 = 2Un; (b) if 1 < Xn ≤ 3

then Xn+1 = Xn − 1 + 2Un; (c) if 3 < Xn ≤ 4 then Xn+1 = a∗; (d) if Xn > 4 then

Xn+1 = In(Xn + 1) + (1− In)(Xn− 1−Un), where In = 1Xn[−n]=Bn is the indicator function

of whether the coefficient of 2−n in the binary expansion of Xn is equal to Bn.

Then it is easily checked that {Xn} follows the one-step transitions P for all x ∈ X

(including x ∈ K), in the sense that P(Xn+1 ∈ A |Xn = x) = P (x,A) for all A (but

without also conditioning on X0, . . . , Xn−1). Furthermore, (A1) holds with M = 1 and
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µ∗ = Uniform[4, 5]. Also, (A2) holds for the same µ∗ due to P ’s negative drift for x > 4.

On the other hand, by construction a∗ has the property that a∗[−n] = Bn for all n ∈ N.

Hence, once the chain hits the interval (3, 4], then it will move to a∗, and from there it will

always add 1 with probability 1. Therefore, Xn → ∞ with probability 1, so {Xn} is not

bounded in probability, so (4) does not hold. This process thus provides a counterexample

to Theorem 4 if we assume only that P(Xn+1 ∈ A |Xn = x) = P (x,A), without also condi-

tioning on the previous history X0, . . . , Xn−1 as in (3).

5. Proof of Theorem 4 and Proposition 2.

We begin by letting {Yn} be a “cemetery process” which begins in the distribution µ∗ at

time 0, and then follows the fixed transition kernel P , and then dies as soon as it hits KD.

Assumption (A2) then says that this cemetery process {Yn} has finite expected lifetime. For

L > `0 := sup{η(x,0) : x ∈ KD}, let BL = {x ∈ X : η(x,0) ≥ L}, and let NL denote

the cemetery process’s total occupation time of BL (i.e., the number of iterations that {Yn}

spends in BL before it dies). We then have:

Lemma 8. Let {Xn} be the adversarial process as defined previously. Then assuming

(A1), for any n ∈ N, and any L > `0, and any x ∈ K, we have

P(Xn ∈ BL |X0 = x) ≤ M E(NL) ,

where NL is the occupation time of BL for the cemetery process {Yn} defined above.

Proof. Let σ be the last return time of {Xn} to KD by time n (which must exist since

X0 ∈ KD), and let µk be the (complicated) law of Xk when starting from X0 = x0. Then

letting I = KD \K (“inside”) and O = K2D \KD (“outside”), we have

P(Xn ∈ BL |X0 = x0) =
n−1∑
k=0

P(Xn ∈ BL, σ = k |X0 = x0)
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=
n−1∑
k=0

∫
y∈I

∫
z∈O

P(Xk ∈ dy, Xk+1 ∈ dz, Xn ∈ BL, σ = k |X0 = x0)

=
n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy) P (y, dz) P(Xn ∈ BL, σ = k |X0 = x0, Xk = y, Xk+1 = z)

≤
n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy) M µ∗(dz) P(Xn ∈ BL, σ = k |X0 = x0, Xk = y, Xk+1 = z)

≤
n−1∑
k=0

∫
y∈I

∫
z∈O

µk(dy) M µ∗(dz) P(Yn−k−1 ∈ BL |Y0 = z)

[by letting Yn = Xn+k+1, and noting that if σ = k then the process did not return to KD by

time n so it behaved like the cemetery process between times n− k − 1 and n]

≤ M
n−1∑
k=0

∫
z∈O

P(Yn−k−1 ∈ BL |Y0 = z) µ∗(dz)

≤ M
∞∑
j=0

∫
z∈O

P(Yj ∈ BL |Y0 = z) µ∗(dz) .

But this last sum is precisely the expected total number of iterations that the cemetery

process {Yn} spends in BL when started from the distribution µ∗.

Proof of Theorem 4. For each A ∈ F , let ν(A) be the above cemetery process’s expected

occupation measure, i.e. the expected number of iterations that the cemetery process {Yn}

spends in the subset A. Then the total measure ν(X ) equals the expected lifetime of the

cemetery process, and is thus finite by (A2). Hence, by the usual Continuity of Measures,

lim
L→∞

ν(BL) = ν
(⋂

L

BL

)
= ν(∅) = 0 .

This shows that E(NL) → 0 as L → ∞. Hence, by Lemma 8, limL→∞ supn∈N P(Xn ∈

BL |X0 = x0) ≤ M limL→∞E(NL) = 0, so {Xn} is bounded in probability.

We now turn our attention to discrete chains as in Proposition 2. We begin with a lemma.

(Here and throughout, Ex(· · ·) means expected value conditional on the process starting at

the initial state x ∈ X .)
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Lemma 9. For an irreducible Markov chain on a discrete state space with stationary

probability distribution π, for any two states x and y, we have Ex(τy) < ∞, i.e. the chain

will move from x to y in finite expected time.

Proof. If this were not the case, then it would be possible from y to travel to x and then

take infinite expected time to return to y. This would imply that Ey(τy) =∞, contradicting

the fact that we must have Ey(τy) = 1/π(y) <∞ by positive recurrence.

Proof of Proposition 2. Since X is countable and P is irreducible, π(x) > 0 for all

x ∈ X . Let O = K2D \KD, and assume that π(O) > 0 (otherwise increase D to make this

so, which can be done unless π(KD) = 1 in which case the statement is trivial).

Since K2D is finite, assumption (A1) with µ∗ = π|K2D\KD follows immediately with e.g.

M = (maxx,z∈K2D
P (x, z)) / (minz∈K2D

π(z)) < ∞.

Next, note that Ex(τKD) <∞ for each individual x ∈ O; indeed, this follows by applying

Lemma 9 with any one specific y ∈ KD (which must exist since we assume K is non-empty).

But then Eµ∗(τKD) =
∑

x∈O µ∗(x) Ex(τKD), which must also be finite since O is finite. Hence,

(A2) also holds. The result thus follows from Theorem 4.

6. Two additional probability lemmas.

In this section, we prove two probability results which we will use in the following section.

We first consider expected hitting times. Lemma 9 above shows that discrete ergodic

Markov chains always have Ex(τy) <∞. On a general state space, one might think by anal-

ogy that for any positive-recurrent φ-irreducible Markov chain with stationary distribution π,

if π(A) > 0 and π(B) > 0, then we must have Eπ|A(τB) <∞, where τB is the hitting time of

B. However, this is false. For example, consider a birth-death chain on the positive integers
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having stationary distribution π(j) ∝ j−2. Then if B = {1} and A = {J, J + 1, J + 2, . . .}

for any J > 1, then Eπ|A(τB) ≥
∑∞

j=J π(j) (j − 1) ∝
∑∞

j=J j
−2 (j − 1) =∞.

On the other hand, this result is true in the case A = B. Indeed, we have:

Lemma 10. Consider a Markov chain with stationary probability distribution π, and let

A ∈ F with π(A) > 0. Then

(i) Eπ|A(τA) = 1/π(A) <∞, where τA is the first return time to A.

(ii) For all k ∈ N, Eπ|A(τ
(k)
A ) = k/π(A) <∞, where τ

(k)
A is the kth return time to A.

Proof. Part (i) is essentially the formula of Kac [14]. Indeed, using Theorem 10.0.1 of [17]

with B = X , we obtain

1 = π(X ) =

∫
x∈A

π(dx) Ex

[ τA∑
n=1

1Xn∈X

]
=

∫
x∈A

π(dx) Ex[τA] = π(A) Eπ|A[τA] ,

giving the result.

For part (ii), we expand the original Markov chain to a new Markov chain on X ×

{0, 1, . . . , k − 1}, where the first variable is the original chain, and the second variable is

the count (mod k) of the number of times the chain has returned to A. That is, each time

the original chain visits A, the second variable increases by 1 (mod k). Then the expanded

chain has stationary distribution π × Uniform{0, 1, . . . , k − 1}. Hence, by part (i), if we

begin in (π|A)× δ0, then the expected return time of the expanded chain to A× {0} equals

1 / [π(A) × (1/k)] = k/π(A). But the first return time of the expanded chain to A × {0}

corresponds precisely to the kth return time of the original chain to A.

We also require the following generalisation of Wald’s Equation.

Lemma 11. Let {Wn} be a sequence of non-negative random variables each with finite

mean m <∞, and let {In} be a sequence of indicator variables each with P(In = 1) = p >

0. Assume that the pairs sequence {(Wn, In)} is iid (i.e., the sequence {Zn} is iid where

Zn = (Wn, In)). Let τ = inf{n : In = 1}, and let S =
∑τ

i=1Wi. Then E(S) = m
p
<∞.
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Proof. We can write S =
∑∞

i=1 Wi 1τ≥i. Now, the event {τ ≥ i} is equivalent to the

event that I1 = I2 = . . . = Ii−1 = 0. Hence, it is contained in σ(Z1, . . . , Zi−1), and is thus

independent of Wi by assumption. Also, τ is distributed as Geometric(p) and hence has

mean 1/p. We then compute that

E(S) = E

(
∞∑
i=1

Wi 1τ≥i

)
=

∞∑
i=1

E(Wi 1τ≥i)

=
∞∑
i=1

E(Wi) E(1τ≥i) =
∞∑
i=1

mP(τ ≥ i) = m E(τ) = m/p ,

as claimed.

7. Proof of Theorem 5.

The key to the proof is the following fact about Markov chain hitting times.

Lemma 12. Consider a φ-irreducible Markov chain on a state space (X ,F) with transition

kernel P and stationary probability distribution π. Let B,C ∈ F with π(B) > 0 and

π(C) > 0, and let µ be any probability measure on (X ,F). Suppose C is a small set for P

with minorising measure µ, i.e. there is ε > 0 and n0 ∈ N such that P n0(x,A) ≥ ε µ(A)

for all states x ∈ C and all subsets A ∈ F . Let τB be the first hitting time of B. Then

Eµ(τB) <∞.

Proof. It suffices to consider the case where n0 = 1, since if not we can replace P by P n0

and note that the hitting time of B by P is at most n0 times the hitting time of B by P n0 .

We use the Nummelin splitting technique [19, 17]. Specifically, we expand the state space

to X × {0, 1}, where the second variable is an indicator of whether or not we are currently

regenerating according to µ.

Let α = X ×{1}. Then α is a Markov chain atom (i.e. the chain has identical transition

probabilities from every state in α), and it has stationary measure π(α) = ε π(C) > 0. So,
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by Lemma 10(i) above, if the expanded chain is started in α (corresponding to the original

chain starting in µ), then it will return to α in finite expected time 1/π(α) <∞.

We now let Wn be the number of iterations between the (n − 1)st and nth returns to

α, and let In = 1 if this nth tour visits B, otherwise In = 0. Then P[In = 1] > 0 by the

φ-irreducibility of P . Hence, {(Wn, In)} satisfies the conditions of Lemma 11.

Therefore, by Lemma 11, the expected number of iterations until we complete a tour

which includes a visit to B is finite. Hence, the expected hitting time of B is finite.

Corollary 13. (A3) with ν∗ = µ∗ implies (A2).

Proof. This follows immediately by applying Lemma 12 with C = K2D\KD, and B = KD,

and µ = µ∗ = ν∗.

Proof of Theorem 5. Under the assumption (a) that ν∗ = µ∗, the result (4) follows by

combining Corollary 13 with Theorem 4. Under the assumption (b) that P is reversible and

µ∗ = πK2D\KD , it follows from the Appendix (Section 13 below) that (A3) also holds with

ν∗ = π|K2D\KD = µ∗. Hence, assumption (a) still applies, so (4) again follows.

Remark. One might wonder if it suffices in Theorem 5 to assume (A1) with any dis-

tribution µ∗, and (A3) with any distribution ν∗, without requiring that either ν∗ = µ∗ or

µ∗ = π|K2D\KD . Under these assumptions, it would still follow from Lemma 10(ii) that the

return times to K2D all have finite expectation. And it would still be true that if we regen-

erate from ν∗ in finite expected time, then we will eventually hit KD in finite expected time.

The problem is that the expected time to first regenerate from ν∗ might be infinite. Indeed,

conditional upon visiting K2D but repeatedly failing to regenerate, the chain could perhaps
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move to worse and worse states from which it would then take longer and longer to return to

K2D. (It is tempting to apply Lemma 11 here where Wn is the time between consecutive vis-

its to K2D and In = 1 if we regenerate otherwise 0, but unfortunately in that case {(Wn, In)}

are not iid, and conditional on non-regeneration the values of E[Wn | I1 = . . . = In = 0] could

grow unboundedly.)

8. Proof of Proposition 6.

Let A ⊆ Rd be the ball centered at the origin of radius 1, and let B ⊆ Rd be the ball

centered at the point (3/2, 0, 0, . . . , 0) of radius 1. Then A ∩ B has non-empty interior, so

vd := Leb(A ∩B) > 0. In terms of this, we have:

Lemma 14. Let A,B ⊆ Rd be two balls with radii r ≤ R, such that their centres are a

distance w ≤ 3r/2 + (R− r) apart. Then Leb(A ∩B) ≥ rd vd.

Proof. If r = R = 1 then this is just the definition of vd. If one of the balls is stretched

by a factor R > 1 while moving its center a distance R − r further away, then the new ball

contains the old ball, so Leb(A∩B) can only increase. Finally, if each of w and r and R are

multiplied by the same constant a > 0, then the entire geometry is scaled by a factor of a,

so Leb(A ∩B) is multiplied by ad. Combining these facts, the result follows.

Lemma 15. Let P be a Markov chain on an open subset X ⊆ Rd. Let J be a rectangular

subset of X , of the form J = (a1, b1) × . . . × (ad, bd) ⊆ X , where ai < bi are extended real

numbers (i.e. we might have ai = −∞ and/or bi =∞ for some of the i). Suppose there are

δ > 0 and ε > 0 satisfying the condition (6) that P (x, dy) ≥ εLeb(dy) whenever x, y ∈ J

with |y − x| < δ. Then for each n ∈ N, there is βn > 0 such that P n(x, dy) ≥ βn Leb(dy)

whenever x, y ∈ J with |y − x| < δ(n+ 1)/2.
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Proof. We first consider the case where ai = −∞ and bi =∞ for all i. The result for n = 1

follows by assumption. Suppose the result is true for some n ≥ 1. Let |y − x| < δ(n+ 1)/2,

let A be the ball centered at x of radius δ(n + 1)/2, and let B be the ball centered at y of

radius δ. Then applying Lemma 14 with r = δ and R = δ(n+ 1)/2 and w = δ(n+ 2)/2, we

see that Leb(A ∩B) ≥ δd vd. The result now follows from the calculation

P n+1(x, dy) =

∫
z∈X

P n(x, dz)P (z, y) ≥
∫
z∈A∩B

P n(x, dz)P (z, y)

≥
∫
z∈A∩B

βn Leb(dz) εLeb(dy) ≥ Leb(A ∩B) βn εLeb(dy)

≥ δd vd βn εLeb(dy) =: βn+1 Leb(dy) .

For the general case, by shrinking δ as necessary, we can assume that δ < 1
2

mini(bi−ai).

Then in the above calculation we can only use those parts of A ∩B which are still inside J .

But here J must contain at least half of A∩B in each coordinate, i.e. at least 1/2d of A∩B

overall. Hence, Leb(A ∩ B ∩ J) ≥ (1/2d) Leb(A ∩ B). So, the above calculation still goes

through, except now with βn+1 multiplied by an extra factor of 1/2d.

Proof of Proposition 6. Let z = Diam(J) <∞. Find n0 ∈ N such that δ(n0 + 1)/2 > z.

Then it follows from Lemma 15 that there is εn0 > 0 such that P n0(x, dy) ≥ εn0 Leb(dy) for

all x, y ∈ J ⊇ K2D \KD. Hence, (A3) holds for this n0 with ν∗ = Uniform(K2D \KD) and

ε = εn0 Leb(K2D \KD).

9. Some facts about geometric ergodicity.

To prove Theorem 7, we need to understand the implications of the geometric ergodicity

assumption (A4). The following proposition shows that we can always find a geometric drift

function of a certain form. To state it, let PV (x) =
∫
y∈X V (y)P (x, dy) be the action of the

Markov kernel P on a function V , and let τC = inf{n ≥ 1 : Xn ∈ C} be the first hitting time
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of C by a Markov chain {Xn} following the transitions P . Also, say that V is a geometric

drift function if

PV (x) ≤ λV (x) + b1C(x) (7)

for some small set C ∈ F and some real numbers λ < 1 and b <∞.

Proposition 16. If P is geometrically ergodic as in (A4), then there is a small set C ⊆ X

with π(C) > 0, and a real number κ > 1, such that the function V : X → R defined by

V (x) = Ex(κ
τC ) is π-a.e. finite, and r := supx∈C V (x) <∞, and the geometric drift equation

(7) holds with this C for some b < ∞ and with λ = κ−1 < 1. Furthermore, there is ρ < 1

and c <∞ such that ‖P n(x, ·)− π‖ ≤ c V (x) ρn for all n ∈ N and x ∈ X .

Proof. Let AM = {x ∈ X : ξ(x) ≤ M}. Since π{x ∈ X : ξ(x) < ∞} = 1, we can find

M < ∞ with π(AM) > 0. The existence of some small set C ⊆ AM with π(C) > 0 follows

from e.g. [20] (where they are called “C-sets”) or [19] or Theorem 5.2.2 of [17]. The fact that

C ⊆ AM then implies condition (15.1) of [17] for this C (with P∞(C) = π(C) and MC = M

and ρC = ρ). The existence of a (possibly different) small set C and κ > 1 with π(C) > 0

and r := supx∈C Ex(κ
τC ) <∞. then follows from Theorem 15.0.1(ii) of [17].

Let V (x) = Ex(κ
τC ). We compute directly that if {Wn} follows P , then for x 6∈ C,

V (x) = E(κτC |W0 = x) = E
[
E(κτC |W1)

∣∣∣W0 = x
]

=

∫
y∈X

E(κτC |W1 = y) P (x, dy) =

∫
y∈X

E(κτC+1 |W0 = y) P (x, dy)

=

∫
y∈X

κ E(κτC |W0 = y) P (x, dy) = κ

∫
y∈X

V (y) P (x, dy) = κPV (x) ,

which shows that PV (x) = κ−1 V (x) for x 6∈ C.

To prove the geometric drift condition, it remains only to prove that b := supx∈C PV (x)

is finite. For this we use some addition results from [17]. We first compute that in the special

case f ≡ 1, we have that

sup
x∈C

Ex

( τC−1∑
k=0

f(Wk)κ
k
)

= sup
x∈C

Ex

( τC−1∑
k=0

κk
)
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= sup
x∈C

Ex

(κτC − 1

κ− 1

)
=

supx∈C Ex(κ
τC )− 1

κ− 1
=

r − 1

κ− 1
< ∞ .

This means that C is an “f -Kendall set” for f ≡ 1, as defined on p. 368 of [17]. Hence, by

Theorem 15.2.4 of [17], the function G(x) := G
(κ)
C (x, f) which equals 1 inside C and equals

Ex

( τC∑
k=0

f(Wk)κ
k
)

= Ex

( τC∑
k=0

κk
)

=
Ex(κ

τC+1)− 1

κ− 1
=

κV (x)− 1

κ− 1
(8)

outside of C, satisfies its own geometric drift condition, say PG(x) ≤ λGG(x) + bG1C(x)

where λG < 1 and bG < ∞. In particular, since G(x) = 1 for x ∈ C, this means that

supx∈C PG(x) ≤ λG+bG <∞. Now, by (8), for x 6∈ C we have V (x) = 1
κ

[1 + (κ− 1)G(x)] ≤

1 +G(x). Since V (x) ≤ r for x ∈ C, it follows that for all x ∈ X , we have V (x) ≤ r+G(x).

Therefore, PV (x) ≤ r + PG(x). This shows, finally, that

b := sup
x∈C

PV (x) ≤ r + sup
x∈C

PG(x) ≤ r + λG + bG < ∞ .

The above two facts together show that PV (x) ≤ κ−1V (x) + b1C(x) with b <∞.

The bound on ‖P n(x, ·)− π‖ then follows from Theorem 16.0.1 of [17].

We next establish some bounds based on geometric-drift-type inequalities.

Lemma 17. Let {Zn} be any stochastic process. Suppose there are 0 < λ < 1 and b <∞

such that for all n ∈ N, we have E(Zn |Z0, . . . , Zn−1) ≤ λZn−1 + b . Then for all n ∈ N,

E(Zn |Z0) ≤ λnZ0 +
b

1− λ
≤ Z0 +

b

1− λ
.

Proof. We claim that for all n ≥ 0,

E(Zn |Z0) ≤ λnZ0 + (1 + λ+ . . .+ λn−1) b . (9)

Indeed, for n = 0 this is trivial, and for n = 1 this is equivalent to the hypothesis of the

lemma. Suppose now that (9) holds for some value of n. Then

E(Zn+1 |Z0) = E
(
E(Zn+1 |Z0, . . . , Zn)

∣∣∣Z0

)
≤ E

(
λZn + b

∣∣∣Z0

)
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≤ λ
(
λnZ0 + (1 + λ+ . . .+ λn−1) b

)
+ b = λn+1Z0 + (1 + λ+ . . .+ λn−1 + λn) b ,

so (9) holds for n+ 1. Hence, by induction, (9) holds for all n ≥ 0.

The result now follows since 1 + λ+ . . .+ λn−1 = 1−λn
1−λ ≤

1
1−λ .

Proposition 18. If P is geometrically ergodic with stationary probability distribution π

and π-a.e. finite geometric drift function V satisfying PV (x) ≤ λV (x) + b where 0 ≤ λ < 1

and 0 ≤ b <∞, then Eπ(V ) ≤ b/(1− λ) < ∞ .

Proof. Choose any x ∈ X with V (x) <∞ (which holds for π-a.e. x ∈ X ). Then applying

Lemma 17 to Zn = P nV (x) gives P nV (x) ≤ V (x) + b
1−λ , and in particular P nV (x) 6→ ∞.

But Theorem 14.3.3 of [17] with f = V states that if π(V ) =∞, then P nV (x)→∞ for all

x ∈ X . Hence, by contraposition, we must have π(V ) <∞.

Finally, we have by stationarity that π(V ) = π(PV ). So, taking expectations with re-

spect to π of both sides of the inequality PV ≤ λV + b and using that π(V ) <∞, we obtain

that π(V ) ≤ λπ(V ) + b, whence π(V ) ≤ b/(1− λ).

Remark. If P is uniformly ergodic, meaning that (A4) holds for a constant function

V < ∞, then it follows from Theorem 16.0.2(vi) of [17] that U := supx∈X Ex(τKD) < ∞,

which implies that Eµ∗(τKD) ≤ U <∞, so (A2) must hold.

10. Proof of Theorem 7.

The key to the proof is a uniform bound on certain powers of P :

Lemma 19. Assuming (A4) and (A5), with V as in Proposition 16, sup
x∈KD

sup
n≥0

P nV (x) <∞.
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Proof. For x ∈ KD, PV (x) = Ey∼P (x,·)V (y) ≤ M Ey∼πV (y) = M π(V ) <∞ by (A5) and

Proposition 18. Then applying Lemma 17 to Zn = P nV (x) gives P nV (x) ≤ M π(V ) + b
1−λ .

In particular, supx∈KD supn≥1 P
nV (x) <∞.

Furthermore, for x ∈ KD, V (x) = Ex(κ
τC ) = κEP (x,·)(κ

τC ) ≤ κM Eπ(κτC ) = κM π(V ) <

∞ by Proposition 18, so the above “sup” can be extended to include n = 0 too.

Remark. For Metropolis algorithms on continuous state spaces, usually P (x, {x}) > 0 for

most x ∈ X , so (A5) usually won’t hold (though (A1) often will; see Section 11). On the

other hand, if P (x, ·) = r(x) δx(·) + (1 − r(x))R(x, ·) where δx is a point-mass at x and

0 ≤ r(x) ≤ 1 and R satisfies (A5), then it is easily seen that if κ r(x) ≤ B < 1 for all

x ∈ KD, then Lemma 19 still holds with supx∈KD V (x) ≤ κM π(V )/(1− B) <∞, and the

rest of the proof of Theorem 7 then goes through without change.

Proposition 20. Assuming (A4) and (A5), the random sequence {V (Xn)} is bounded in

probability.

Proof. Lemma 19 with n = 0 says that U := supx∈KD V (x) <∞. Since the adversary can

only adjust the values of {Xn} within KD, it follows that the adversary can only change the

“next value of V (Xn)” by at most U , so {Xn} will still satisfy a drift condition similar to

(7), for the same C and λ but with b replaced by b+ U <∞. (Of course, C might not be a

small set for the adversarial process.) More precisely, it follows from (7) that the adversarial

process {Xn} satisfies that E[V (Xn) |X0, X1, . . . , Xn−1] ≤ λV (Xn−1)+ b+U . Hence, apply-

ing Lemma 17 to Zn = V (Xn) says that {Ex0 [V (Xn)]} is bounded in probability, i.e. that

ζ := supx∈KD supn≥0 E[V (Xn) |X0 = x0] < ∞. It then follows by Markov’s inequality that

Px0 [V (Xn) ≥ R] ≤ ζ/R for all n and all R > 0. Hence, {V (Xn)} is bounded in probability.

Remark. Proposition 20 immediately implies a bound on the ε-convergence times [24]
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defined by Mε(x) = inf{n ≥ 1 : ‖P n(x, ·) − π(·)‖ ≤ ε}. Indeed, by Proposition 16 we have

‖P n(x, ·) − π‖ ≤ c V (x) ρn, whence Mε(x) ≤ dlog(c V (x)/ε)/ log(1/ρ)e. Since {V (Xn)} is

bounded in probability by Proposition 20, it follows that {Mε(Xn)} is bounded in probability

too. (See also the Containment condition (15) below.)

Proof of Theorem 7. The bounded-jumps condition (2) implies that the small set C

must be bounded (in fact, of diameter ≤ 2Dn0). Let r = sup{|x| : x ∈ C} < ∞. Then if

|x| > r, it takes at least (|x| − r)/D steps to return to C from x. Hence, V (x) ≥ κ(|x|−r)/D.

Therefore, |x| ≤ r+D log(V (x))/ log(κ), so |Xn| ≤ r+D log(V (Xn))/ log(κ). But {V (Xn)}

is bounded in probability by Proposition 20. Hence, so is {Xn}.

11. Application to adaptive MCMC algorithms.

Markov chain Monte Carlo (MCMC) algorithms proceed by running a Markov chain

{Xn} with stationary probability distribution π, in the hopes that {Xn} converges in total

variation distance to π, i.e. that

lim
n→∞

sup
A∈F

|P(Xn ∈ A)− π(A)| = 0 , x ∈ X , A ∈ F . (10)

If so then for large n, the value of Xn is approximately a “sample” from π. Such algorithms

are hugely popular in e.g. Bayesian statistical inference; for an overview see e.g. [7].

Adaptive MCMC algorithms [11] attempt to speed up the convergence (10) and thus

make MCMC more efficient, by modifying the Markov chain transitions during the run (i.e.

“on the fly”) in a search for a more optimal chain; for a brief introduction see e.g. [26]. Such

algorithms often appear to work very well in practice (e.g. [25, 10, 8, 4]). However, they are no

longer Markov chains (since the adaptions typically depend on the process’s entire history),

making it extremely difficult to establish mathematically that the convergence (10) will even

be preserved (much less improved). As a result, many papers either make the artificial
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assumption that the state space X is compact (e.g. [11, 8, 4]), or prove the convergence (10)

using complicated mathematical arguments requiring strong and/or uncheckable assumptions

(e.g. [3, 1, 24, 10, 2, 28, 15]), or do not prove (10) at all and simply hope for the best. It is

difficult to find simple, easily-checked conditions which provably guarantee the convergence

(10) for adaptive MCMC algorithms.

One step in this direction is in [24], where it is proved that the convergence (10) is implied

by two conditions. The first condition is Diminishing Adaptation, which says that the process

adapts less and less as time goes on; see (14) below. The second condition is Containment,

which says that the process’s convergence times are bounded in probability; see (15) below.

The first of these two conditions is usually easy to satisfy directly by wisely designing the

algorithm, so it is not of great concern. However, the second condition is notoriously difficult

to verify (see e.g. [5]) and thus a severe limitation (though an essential condition, c.f. [16]).

On the other hand, the Containment condition (15) is reminiscent of the boundedness in

probability property (4), which is implied by our various theorems above. This suggests

that our theorems might be useful in establishing the Containment condition (15) for certain

adaptive MCMC algorithms, as we now explore.

11.1. The adaptive MCMC setup.

We define an adaptive MCMC algorithm within the context of Section 2 as follows. Let

X be an open subset of Rd for some d ∈ N, on which π is some probability distribution.

Assume that for some compact index set Y , there is a collection {Pγ}γ∈Y of Markov kernels

on X , each of which leaves π stationary and in fact is Harris-ergodic to π as in (1). The

adversary proceeds by choosing, at each iteration n, an index Γn ∈ Y (possibly depending

on n and/or the process’s entire history, though not on the future). The process {Xn} then

moves at time n according to the transition kernel PΓn , i.e.

P(Xn+1 ∈ A |Xn = x, Γn = γ, X0, . . . , Xn−1,Γ0, . . . ,Γn−1) = Pγ(x,A) .
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To reflect the bounded jump condition (2), we assume there is D <∞ with

Pγ (x, {y ∈ X : |y − x| ≤ D}) = 1 , x ∈ X , γ ∈ Y . (11)

To reflect that the adversary can only adapt inside K, we assume that the Pγ kernels are all

equal outside of K, i.e. that

Pγ(x,A) = P (x,A) , A ∈ F , x ∈ X \K , (12)

for some fixed Markov chain kernel P (x, dy) also satisfying (1). We further assume that

∃ M <∞ s.t. P (x, dy) ≤M Leb(dy) , x ∈ KD \K, y ∈ K2D \KD . (13)

We also assume the ε-δ condition (6) that P (x, dy) ≥ ε Leb(dy) whenever x, y ∈ J with

|y − x| < δ, for some bounded rectangle J with K2D \KD ⊆ J ⊆ X .

We shall particularly focus on the case where each Pγ is a Metropolis-Hastings algorithm.

This means that Pγ proceeds, given Xn, by first choosing a proposal state Yn+1 ∼ Qγ(Xn, ·)

for some proposal kernel Qγ(x, ·) having a density qγ(x, y) with respect to Leb. Then, with

probability αγ(Xn, Yn+1) := min
[
1, π(Yn+1) qγ(Yn+1, Xn)

π(Xn) qγ(Xn, Yn+1)

]
it accepts this proposal by setting

Xn+1 = Yn+1. Otherwise, with probability 1 − αγ(Xn, Yn+1), it rejects this proposal by

setting Xn+1 = Xn. That is,

Pγ(x,A) = r(x) δx(A) +

∫
y∈A

Qγ(x, dy)αγ(x, y)

where δx(·) is a point-mass at x, and r(x) = 1−
∫
y∈X Qγ(x, dy)αγ(x, y) is the overall proba-

bility of rejecting. Note that (11) and (12) and (13) are each automatically satisfied for Pγ

and P if the corresponding equations are satisfied for corresponding Qγ and Q.

11.2. An adaptive MCMC theorem.

Our theorem shall follow up on the result from [24] that the convergence (10) is implied by

the twin properties of Diminishing Adaptation and Containment. Diminishing Adaptation
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says that the process adapts less and less as time goes on, or more formally that

lim
n→∞

sup
x∈X

sup
A∈F
|PΓn+1(x,A)− PΓn(x,A)| = 0 in probability. (14)

Containment says that the process’s convergence times are bounded in probability, or more

formally that

{Mε(Xn,Γn)}∞n=1 is bounded in probability, (15)

where Mε(x, γ) = inf{n ≥ 1 : ‖P n
γ (x, ·) − π(·)‖ ≤ ε} is the ε-convergence time. The

Containment condition (unlike Diminishing Adaptation) is notoriously difficult to establish

in practice (see e.g. [5]), but the theorems herein can help. To state a clean theorem, we

assume continuous densities, as follows:

(A6) π has a continuous positive density function (with respect to Leb), and the
transition probabilities Pγ(x, dy) either (i) have densities which are continuous
functions of x and y and γ, or (ii) are Metropolis-Hastings algorithms whose
proposal kernel densities qγ(x, dy) are continuous functions of x and y and γ.

In terms of the above setup, we have:

Theorem 21. Consider an adaptive MCMC algorithm as in Section 11.1, on an open

subset X of Rd, such that the kernels Pγ (or the proposal kernels Qγ in the case of adaptive

Metropolis-Hastings) have bounded jumps as in (11), and no adaption outside of K as in (12),

with the fixed kernel P (or a corresponding fixed proposal kernelQ) bounded above as in (13).

We further assume the ε-δ condition (6) for P , and the continuous densities condition (A6).

Then the algorithm satisfies the Containment condition (15). Hence, assuming Diminishing

Adaptation (14), the algorithm converges in distribution to π as in (10).

Theorem 21 is proved in Section 11.3 below. Clearly, similar reasoning also applies with

alternative assumptions, and to other versions of adaptive MCMC including e.g. adaptive

Metropolis-within-Gibbs algorithms (with P replaced by P d for random-scan), c.f. [15].

Theorem 21 requires many conditions, but they are all easy to ensure in practice, as

illustrated by the following type of adaptive MCMC algorithm:
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The Bounded Adaption Metropolis (BAM) Algorithm. Let X = Rd, let K ⊆ X be

bounded, let π be a continuous positive density on X , and let D > 0. Let Y be a compact

collection of d-dimensional positive-definite matrices, and let Σ∗ ∈ Y be fixed. Define a

process {Xn} as follows: X0 = x0 for some fixed x0 ∈ K. Then for n = 0, 1, 2, . . ., given Xn,

we generate a proposal Yn+1 by: (a) if Xn ∈ Kc, then Yn+1 ∼ N(Xn, Σ∗); (b) if Xn ∈ K

with dist(Xn, K
c) ≥ 1, then Yn+1 ∼ N(Xn, Σn+1), where the matrix Σn+1 ∈ Y is selected

in some fashion, perhaps depending on Xn and on the chain’s entire history; (c) if Xn ∈ K

but dist(Xn, K
c) = u with 0 ≤ u < 1, then Yn+1 ∼ (1 − u)N(Xn, Σ∗) + uN(Xn, Σn+1).

Once Yn+1 is chosen, then if |Yn+1 − Xn| > D, the proposal is rejected so Xn+1 = Xn.

Otherwise, if |Yn+1 − Xn| ≤ D, then with the Metropolis-Hastings acceptance probability

min[1,
π(Yn+1) qΓn (Yn+1,Xn)

π(Xn) qΓn (Xn,Yn+1)
] the proposal is accepted so Xn+1 = Yn+1, or with the remaining

probability the proposal is rejected so Xn+1 = Xn.

Remark. In the above BAM algorithm, if Xn and Yn+1 are both in Kc, or are both a

distance ≥ 1 from Kc, then qΓn(Yn+1, Xn) = qΓn(Xn, Yn+1), so those factors cancel in the

formula for the acceptance probability.

Remark. One good choice for the proposal covariance matrix Σn+1 in part (b) of the

BAM algorithm is (2.38)2Vn/d where Vn is the empirical covariance matrix of X0, . . . , Xn

from the process’s previous history (except restricted to some compact set Y), since that

choice approximates the optimal proposal covariance; see the discussion in Section 2 of [25].

Proposition 22. The above BAM algorithm satisfies Containment (15). Hence, if the

selection of the Σn satisfies Diminishing Adaptation (14), then convergence (10) holds.

Proof. The BAM algorithm satisfies all of the conditions of Theorem 21. Indeed, bounded

jumps (11), and no adaption outside of K (12), are both immediate. Here the fixed kernel

Q is bounded above (13) by the constant M = (2π)−d/2 |Σ∗|−1/2, and the ε-δ condition (6)
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holds by the formula for Q together with the continuity of the density π (which guarantees

that it is bounded above and below on any compact rectangle J containing the compact set

K2D). Furthermore the continuous densities condition (A6) holds by construction. Hence,

the result follows from Theorem 21.

11.3. Proof of Theorem 21.

We begin with a result linking the boundedness property (4) for {Xn} with the Contain-

ment condition (15) for {Mε(Xn,Γn)}, as follows:

Proposition 23. Consider an adaptive MCMC algorithm as in Section 11.1, Suppose (4)

holds, and for each n ∈ N the mapping (x, γ) 7→ ∆(x, γ, n) := ‖P n
γ (x, ·)−π(·)‖ is continuous.

Then the Containment condition (15) holds.

Proof. Since each Pγ is Harris ergodic, limn→∞∆(x, γ, n) = 0 for each fixed x ∈ X

and γ ∈ Y . Also, since π is a stationary distribution for Pγ, the mapping n 7→ ∆(x, γ, n)

is non-increasing (see e.g. Proposition 3(c) of [23]). If the mapping (x, γ) 7→ ∆(x, γ, n) is

continuous, then it follows by Dini’s Theorem (e.g. [27], p. 150) that for any compact subset

C ⊆ X , since Y is compact,

lim
n→∞

sup
x∈C

sup
γ∈Y

∆(x, γ, n) = 0 .

Hence, given C and ε > 0, there is n ∈ N with supx∈C supγ∈Y ∆(x, γ, n) < ε. It follows

that supx∈C supγ∈YMε(x, γ) <∞ for any fixed ε > 0.

Now, if {Xn} is bounded in probability as in (4), then for any δ > 0, we can find a

large enough compact subset C such that P (Xn 6∈ C) ≤ δ for all n. Then given ε > 0, if

L := supx∈C supγ∈YMε(x, γ), then L < ∞, and P (Mε(Xn,Γn) > L) ≤ δ for all n as well.

Since δ was arbitrary, it follows that {Mε(Xn,Γn)}∞n=0 is bounded in probability.
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We then need a lemma guaranteeing continuity of ∆(x, γ, n):

Lemma 24. Under the continuous density assumptions (A6), for each n ∈ N, the mapping

(x, γ) 7→ ∆(x, γ, n) is continuous.

Proof. Assuming (A6)(ii), this fact is contained in the proof of Corollary 11 of [24]. The

corresponding result assuming (A6)(i) is similar but easier.

Proof of Theorem 21. The bounded jumps condition (11), together with no adap-

tion outside of K (12), ensure that the algorithm {Xn} fits within the setup of Section 2.

Since the densities of P (x, dy) are bounded above by (13), it follows that (A1) holds with

µ∗ = Uniform(K2D \ KD). Also, using the ε-δ condition (6), it follows from Proposition 6

that (A3) holds for ν∗ = µ∗. Hence, by Theorem 5(a), {Xn} is bounded in probability,

i.e. (4) holds. In addition, using the continuity assumption (A6), it follows from Lemma 24

that ∆(x, γ, n) is a continuous function. Containment (15) thus follows from Proposition 23.

The final assertion about convergence (10) then follows from [24].

12. A detailed statistical MCMC example: RCA.

Relying on the theoretical advances in this paper, we shall now demonstrate the effec-

tiveness of a general adaptive strategy which we call Regime Change Algorithm (RCA) that

can be implemented in a wide number of practical instances. Specifically, during the initial-

ization period the chain is run using a transition kernel that can provide some information

about the target. We do not assume that this initial kernel is optimal in any way, just that it

would be a reasonable initial choice for an MCMC algorithm. After the initialization period,

inside a chosen compact set, the initial kernel is slowly replaced by an adaptive kernel that

is shown to exhibit better mixing. In a statistical example below, we shall see that this
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Table 1: The number of latent membranous lupus nephritis cases (numerator), and the total
number of cases (denominator), for each combination of the values of the two covariates, for
the 55 lupus patients in the data set described in Section 12.1.

IgA
∆IgG 0 0.5 1 1.5 2
−3.0 0/1 – – – –
−2.5 0/3 – – – –
−2.0 0/7 – – – 0/1
−1.5 0/6 0/1 – – –
−1.0 0/6 0/1 0/1 – 0/1
−0.5 0/4 – – 1/1 –

0 0/3 – 0/1 1/1 –
0.5 3/4 – 1/1 1/1 1/1
1.0 1/1 – 1/1 1/1 4/4
1.5 1/1 – – 2/2 –

regime change dramatically increases the algorithm efficiency, since the adaptive kernel is

increasingly more suitable for sampling the target inside the compact. Our regime change

idea is in the same general vein as the two-stage adaptation proposed by Giordani and Kohn

[10]. However, their theoretical justification follows a rather different approach from ours.

12.1. Model and Data.

We shall consider a Bayesian probit regression model applied to a well-known collection

of lupus patient data originally supplied by Haas [12] and later simplified in [29]. The data,

shown in Table 1, contain disease status for 55 patients of which 18 have been diagnosed

with latent membranous lupus, together with two clinical covariates, IgA and ∆IgG (which

is equal to IgG3 − IgG4 in the lupus context), which are computed from their levels of

immunoglobulin of type A and of type G, respectively. We consider a probit regression (PR)

model, i.e. for each patient 1 ≤ i ≤ 55, and we model the disease indicator variables as

independent

Yi ∼ Bernoulli(Φ(xTi β)),
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where Φ(·) is the CDF of N(0, 1), xi = (1,∆IgGi, IgAi) is the vector of covariates, and β is

a 3× 1 vector of parameters which is assigned a flat prior p(β) ∝ 1. The posterior is thus

πPR(~β|~Y , ~IgA, ~∆IgG)

∝
55∏
i=1

[
Φ(β0 + ∆IgGiβ1 + IgAiβ2)Yi× × (1− Φ(β0∆IgGiβ1 + IgAiβ2))(1−Yi)

]
.

We wish to design effective algorithms to sample from this posterior distribution πPR.

12.2. The best previous algorithm: PX-DA.

The current state-of-the-art most efficient algorithm to sample from the above posterior

distribution πPR is the parameter expanded data augmentation (PX-DA) algorithm developed

by van Dyk and Meng [29]. The PX-DA transition kernel for updating β(t) is defined by the

following steps:

• Draw

φ
(t+1)
i ∼

{
N+(xTi β

(t), 1), if Yi = 1
N−(xTi β

(t), 1), if Yi = 0
,

where N+(µ, σ2) and N−(µ, σ2) are normal distributions with mean µ and variance σ2

that are truncated to (0,∞) and (−∞, 0), respectively. Set φ(t+1) = (φ
(t+1)
1 , . . . , φ

(t+1)
n ).

• Let β̃t+1 = (XTX)−1XTφ(t+1) and define R(t+1) =
∑n

i=1(φ
(t+1)
i − xTi β̃(t+1))2

• Sample Z ∼ N(0, 1), W ∼ χ2
n and set β(t+1) =

√
W

R(t+1) β̃
(t+1) + Chol[(XTX)−1]Z

12.3. A new algorithm: RCA.

The Regime Change Algorithm (RCA) is initialized by running the PX-DA chain for M

iterations. Based on the samples obtained, we determine a compact subset K and a distance

bound D which remain fixed for the rest of the simulation. The algorithm then proceeds by

constructing a Gaussian approximation of the target inside K that continuously evolves as

the samples are collected, thus allowing for better and better proposal values.
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To proceed, for n ≥M we define

µn :=
〈X0〉+ 〈X1〉+ . . .+ 〈Xn−1〉

n
,

and

Σn := Cov(〈X0〉, 〈X1〉, . . . , 〈Xn−1〉) + ε Id ,

where Cov is the empirical covariance function, and 〈r〉 is the shrunken version of r ∈ Rd

with each coordinate shrunk into the interval [−L,L], i.e. 〈r〉i = max[−L, min(L, ri)]. We

then define K to be the ball centred at µM , of radius max1≤i≤d (ΣM)
1/2
ii (i.e., the largest

sample standard deviation on the diagonal of ΣM). And, we let D be any suitably large

distance bound (e.g. D = 20).

We then consider the Independence Metropolis (IM) transition kernel Pµn,Σn , with pro-

posal distribution given (independently of the current state of the process) by the Gaussian

distribution N(µn,Σn), except truncated (in a continuous manner; see Remark 25 below) to

remain in the compact K and to never move more than a distance D. We also let PPX(x, y)

be the PX-DA algorithm described above, also truncated in a continuous manner to remain

in the compact K and to never move more than a distance D.

In terms of these definitions, the update for the RCA follows these steps:

1. If Xn ∈ Kc, then Xn+1 ∼ PPX(Xn, ·).

2. If Xn ∈ K and d(Xn, K
c) > 1, then

Xn+1 ∼ λn+1 Pµn,Σn(Xn, ·) + (1− λn+1)PPX(Xn, ·) ,

with λn = min[max(θn, 0.2), 0.8], where θn is the empirical acceptance rate of all of

the IM proposals made so far between time M + 1 and time n − 1 (or we simply set

λn = 1/2 if there have been no such proposals).

3. If Xn ∈ K and d(Xn, K
c) = u with 0 ≤ u ≤ 1, then

Xn+1 ∼ u [λn+1 Pµn,Σn(Xn, ·) + (1− λn+1)PPX(Xn, ·)] + (1− u)PPX(Xn, ·) ,
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with λn as above.

That is, letting γn = (µn,Σn, λn) be the complete adaptive parameter, we can say that when

d(Xn, K
c) > 1 the chain moves according to the adaptive kernel

PK,γn(Xn, ·) = λn+1 Pµn,Σn(Xn, ·) + (1− λn+1)PPX(Xn, ·) ,

and when Xn ∈ Kc the chain follows the transition PPX(Xn, ·), with a linear interpolation

near the boundary of K to satisfy the continuous densities condition (A6).

Remark 25. In our description of RCA above, we required certain Gaussian distributions

to be restricted to certain subsets. If this is done naively then it will result in a discontinuous

density, which may violate (A6). However, this issue can be easily avoided if we make the

density continuous by smoothing the edge via a linear interpolation. For example, to restrict

a univariate normal density with mean µ and variance σ2 to the range (a, b) for a < b, one

can choose small υ > 0 and define

fυ(x |µ, σ, a, b) =
(2πσ2)−1/2 exp

[
− (x−µ)2

2σ2

]
Φ(b− υ)− Φ(a+ υ)

,

and then use the density function proportional to

g(x |µ, σ, a, b, υ) =


fυ(x |µ, σ, a, b), if a+ υ ≤ x ≤ b− υ

fυ(b− υ |µ, σ, a, b) (b− x)/υ, if b− υ < x < b
fυ(a+ υ |µ, σ, a, b) (x− a)/υ, if a < x < a+ υ.

0, otherwise

The general multivariate case can be handled by similarly truncating each of the independent

univariate Gaussian variables used to construct the multivariate Gaussian. In this way, it

can be assured that even truncated Gaussians still have continuous densities.

12.4. Verification of the theoretical assumptions.

To justify the use of our new RCA algorithm, we wish to prove asymptotic convergence as

in (10). Proving such convergence of adaptive MCMC algorithms is usually very difficult, but
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we shall manage this by applying Theorem 21. To do this, we need to verify the assumptions

of Theorem 21 including those which are implicit in the set-up of Section 11.1. Fortunately,

this is not too difficult.

For the RCA algorithm, the “bounded jumps” condition (11), and the “fixed kernel

outside of K” condition (12), are both satisfied by construction.

Furthermore, the “fixed kernel bounded above by a multiple of Lebesgue” condition (13),

and the “ε-δ bounded below by a multiple of Lebesgue” condition (6), both concern the

transition probabilities outside of K, and hence they both follow since our fixed transition

probabilities are absolutely continuous with respect to Lebesgue measure with densities that

are uniformly bounded away from 0 and ∞ on compact subsets.

In addition, the continuous densities condition (A6) is satisfied since all transition ker-

nels involved in the construction of the chain are Metropolis-Hastings (MH) kernels with

proposal densities that are continuous functions of the adaption parameters and of x and y

(cf. Remark 25).

Finally, we note that RCA also satisfies the Diminishing Adaptation condition (14), since

the difference between the values of each of the adaptation parameters at iterations n and

n+ 1 is always O(n−1).

Hence, RCA satisfies all of the assumptions of Theorem 21 and Section 11.1, and also

satisfies Diminishing Adaptation (14), so we conclude:

Corollary 26. The RCA algorithm described above converges asymptotically to π as

in (10).

12.5. A simulation study.

To test our new RCA algorithm in practice, we ran* both it and the PX-DA algorithm,

each for 5,000 iterations starting with X0 equal to the Maximum Likelihood Estimate (MLE).

*The R computer program we used is available at: www.probability.ca/lupus
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We found that the RCA algorithm did indeed perform significantly more efficiently than

PX-DA did. As one measure of this, we plotted the autocorrelation function (ACF) plots

of both algorithms for each of the three parameters (Figure 3). This plot indicates that the

autocorrelations for RCA are significantly smaller than those for PX-DA, thus indicating

faster mixing and thus a more efficient algorithm. Indeed, the sums of the non-negligible

positive-lag autocorrelations for the three parameters were respectively 41.20, 40.87, and

43.87 for PX-DA, but just 10.56, 11.88, and 10.00 for RCA, and again showing much greater

efficiency of RCA.

Another way to think about this is in terms of effective sample size (ESS). This is a

measure of how many true independent samples our algorithm is equivalent to, in terms of

variance of the resulting estimator. The ESS is well-known (see e.g. [9], p. 2) to be inversely

proportional to 1 + 2S where S is the autocorrelation sum as above. By this measure, in our

simulations the ESS for RCA is larger than for PX-DA, for the three parameters respectively,

by factors of 3.77, 3.34, and 4.23. This indicates quite significant improvements in efficiency

of RCA over PX-DA for this example.

We conclude that having the possibility to sample from the IM kernel reduces the au-

tocorrelation within the samples produced by the algorithm and thus significantly increases

the effective sample size. This indicates that the RCA algorithm (as justified in Corollary 26,

by applying Theorem 21) is indeed a superior algorithm for this problem.

13. Appendix: Replacing the minorising measure by π.

Recall that Assumption (A3) requires that the set K2D \KD be small for P , with some

minorising measure ν∗. It turns out that if Assumption (A3) holds for any ν∗, and if P is

reversible, then Assumption (A3) also holds for the specific choice ν∗ = π|K2D\KD , i.e. where

ν∗(A) = π(A∩ (K2D \KD)) / π(K2D \KD), with the step size n0 replaced by 2n0. Under the

additional assumption of uniform ergodicity, this fact is Proposition 1 of [22]. For arbitrary
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Figure 3. Autocorrelation (ACF) plots for the probit regression
model simulation study of Section 12.5, comparing the PX-DA (left column) and
RCA (right column) algorithms, for each of the three parameters β0 (top), β1

(middle), and β2 (bottom), showing significantly smaller autocorrelations (and
hence better performance) for RCA than for PX-DA.
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reversible chains, this fact follows from Lemma 5.9 of the Polish doctoral thesis [18], which

for completeness we now reproduce:

Lemma 27. (Lemma 5.9 of [18]) Let P be a Markov chain transition kernel on (X ,F),

with invariant probability measure π. Let C ∈ F such that π(C) > 0. Assume that C is a

small set for P , i.e. for some n0 ∈ N and β > 0 and probability measure ν,

P n0(x,A) ≥ β 1C(x) ν(A) , A ∈ F . (16)

Then

P n0(P ∗)n0(x,A) ≥ 1

4
β2 1C(x) π(A ∩ C) , A ∈ F , (17)

where P ∗ is the L2(π) adjoint of P . In particular, if P is reversible with respect to π, so

that P ∗ = P , then

P 2n0(x,A) ≥ 1

4
β2 1C(x) π(A ∩ C) , A ∈ F .

Hence if K2D \ KD is an n0-small set with minorising measure ν, and P is reversible with

respect to π, then K2D \KD is a (2n0)-small set with minorising measure π|K2D\KD .

Proof. By replacing P by P n0 and P ∗ by (P ∗)n0 , it suffices to assume that n0 = 1. Now, the

Radon-Nikodym derivative dν
dπ

of ν with respect to π satisfies that
∫
X

dν
dπ

(x) π(dx) = ν(X ) = 1.

Hence, for every ε ∈ [0, 1], the set

D(ε) := {x ∈ X :
dν

dπ
(x) ≥ ε} (18)

has π(D(ε)) > 0. We then compute that

ν(D(ε)c) =

∫
D(ε)c

dν

dπ
(x) π(dx) ≤ ε

∫
X
π(dx) = ε

and hence

ν(D(ε)) ≥ 1− ε . (19)
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Recall also that the adjoint P ∗ satisfies

π(dx)P (x, dy) = π(dy)P ∗(y, dx) . (20)

Now let x ∈ C, and A ∈ F with A ∩ C 6= ∅. Using first (16) and then (18),

PP ∗(x,A) =

∫
z∈X

P ∗(z, A) P (x, dz) ≥ β

∫
z∈X

P ∗(z, A ∩ C) ν(dz)

≥ β

∫
z∈D(ε)

∫
y∈A∩C

P ∗(z, dy) ε π(dz) .

To continue, use (20), and then (16) again, and finally (19), to obtain

PP ∗(x,A) ≥ β ε

∫
z∈D(ε)

∫
y∈A∩C

π(dy)P (y, dz)

≥ β2 ε ν(D(ε)) π(A ∩ C) ≥ β2 ε(1− ε) π(A ∩ C) .

Setting ε = 1/2 yields (17).
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