
Random Race Starter Timer to Reduce Anticipation

by

Jeffrey S. Rosenthal1

(Version of: August 20, 2021)

1. Introduction.

Athletics competitions have the concern that a runner could “anticipate” the starter gun

to gain a slight advantage. To prevent this, they judge any runner starting within 0.1 seconds

of the starter gun to have committed a false start and thus be disqualified. This runs the

risk of unfairly penalising a competitor for simply having a very fast reaction time.

It has been proposed2 to replace this rule by a computer-generated randomised start time,

to avoid anticipation3. In this paper, we investigate how random start times can reduce the

anticipation advantage.

2. Set-Up.

Suppose that, under a fair and equal start, a given runner has probability p of winning (or

otherwise “succeeding”) in a race. However, they might choose to start at some particular

time t even before hearing the starter gun. If the gun then fires within their reaction time δ,

i.e. between times t and t+ δ, then their win probability is multiplied by some factor r > 1,

i.e. becomes rp. On the other hand, if the gun does not fire by time t+ δ, then they commit

a false start and are disqualified (so their win probability becomes 0).

1Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3. Email:
jeff@math.toronto.edu. Web: http://probability.ca/jeff/ Supported in part by NSERC of Canada.

2See the article at probability.ca/starart, and pages 190–1 of the book at probability.ca/sbl.
3In addition, the computer sound could be played through multiple speakers near all the running lanes,

thus avoiding delays due to sound taking about 0.01 seconds to travel each 3.4 meters or 2.8 lanes.
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Let f(x) be the probability density function for the start time X (in seconds, perhaps

after a fixed get-set period of e.g. one second). Suppose for some t ≥ 0, the given runner

has decided to use the strategy of starting when they hear the gun or at time t, whichever

comes first. And suppose all other runners simply start upon hearing the gun. Then the

given runner’s success probability is given by

W = pP[X ≤ t] + r pP[t < X ≤ t+δ] + 0 P[X > t+δ] = p

∫ t

0

f(x) dx+r p

∫ t+δ

t

f(x) dx .

This can also be written as

W = pF (t) + r p[F (t+ δ)− F (t)] = p[1 + A]

where F (x) = P(X ≤ x), and

A = A(t) = F (t)− 1 + r[F (t+ δ)− F (t)] = (r − 1)[(1− F (t)]− r[1− F (t+ δ)]

is the “anticipation advantage”.

Or as

W = p[1−G(t)] + r p[G(t)−G(t+ δ)] = p
[
1 + (r − 1)G(t)− rG(t+ δ)

]
= p[1 + A]

where G(x) = P(X > x), and A = A(t) = (r − 1)G(t) − rG(t + δ) is the “anticipation

advantage”.

Our goal is to minimise suptA(t), the maximum possible anticipation advantage.

3. Exponential Case.

Suppose now that X ∼ Exp(λ), i.e. f(x) = λe−λx1x>0 and F (x) = 1− e−λx. Then

W = p(1− e−λt) + rp[(1− e−λ(t+δ))− (1− e−λt)] = p
[
1 + e−λt

(
− 1 + r(1− e−λδ

)]
.

This anticipation advantage can be easily controlled:

Theorem. If X ∼ Exp(λ), then provided that r < 1/(δλ), we will always have W < p, i.e.

there is no possible anticipation advantage.
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Proof. Recall that ez ≥ 1 + z for any z ∈ R. So, 1− ez ≤ −z. It follows that

W ≤ p
[
1 + e−λt

(
− 1 + rλδ

)]
.

If r < 1/(δλ), then −1 + rλδ < 0, so W < p, as claimed.

For example, if the reaction time is δ = 0.1 seconds, and the start time distribution has

λ = 1, then provided that the win probability multiplier satisfies r < 10, then no anticipation

advantage can be had, which is good.

4. Bounded Distributions.

The above exponential distribution is an excellent solution, except that the distribution

of X is not bounded. This means that there is no limit on how long the runners might have

to wait in “set” position before the race begins, which could be problematic4.

To avoid this problem, we suppose from now on that the start times are bounded, i.e.

there is M <∞ with P(X ≤M) = 1. In this case, the situation is not as good as before:

Theorem. If the start time distribution is bounded, then there is always some positive

anticipation advantage.

Proof. Since the start time distribution is bounded, we must have L := sup{x ≥ 0 : G(x) >

0} <∞. But then with t = L− δ, we have A(L− δ) = (r − 1)G(M − δ) > 0, so there is a

positive anticipation advantage.

On the other hand, if X ≤M , then it follows that for t ≥M − δ, A(t) = (r − 1)G(t) is

a non-increasing function of t. Hence, we can assume that t ≤M − δ.

Our goal is to minimise sup{A(t) : 0 ≤ t ≤ M − δ}, by choosing appropriate bounded

distributions for X on [0,M ]. Intuitively, we want X to be more likely to be in the lower

part of that interval, but still have some chance of being in the higher part too.

4Personal communication from Carl Georgevski, track coach at the University of Toronto.
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4.1. Uniform Case (Unif).

Suppose first that X ∼ Uniform[0,M ]. Then

W = p(t/M) + rp(1/M)δ = (p/M)
[
t+ rδ

]
.

If t = M − δ, then this becomes

W = (p/M)
[
M − δ + rδ

]
= p

[
1 + δ

r − 1

M

]
.

Since r > 1, this leads to W > p, i.e. to an anticipation advantage.

For example, if δ = 0.1 and r = 2 and M = 0.2 (which might be approximately the case

for a typical starter gun), then we get W = p[1 + (0.1)(2 − 1)/0.2] = 1.5 p, increasing the

win probability by an extra 50%.

However, this advantage decreases as M increases. For example, if δ = 0.1 and r = 2

and M = 3, then we get W = p[1 + (0.1)(2−1)/3] = 1.0333 p, increasing the win probability

by only an extra A = 1/30.

4.2. Truncated Exponential Case (TEλ).

Suppose now that X ∼ min[Exp(λ), M ], i.e. an exponential distribution except trun-

cated at M , so F (x) = 1− e−λx for 0 ≤ x < M but F (M) = 1.

Then for t < M − δ, W is the same as in the full Exponential Case above, with negative

anticipation advantage over a wide range of δ and r.

However, when t = M − δ, we compute that

W = p(1− e−λ(M−δ)) + rp[1− (1− e−λ(M−δ))] = p
[
1 + (r − 1)e−λ(M−δ)] .

In this case, we always haveW > p, so as expected there is a (small) anticipation advantage at

t = M−δ. For example, if the reaction time is δ = 0.1 seconds, and the start time distribution

has λ = 1, with maximum M = 3, and anticipation factor r = 2, then W = 1.05502 p. This

is slightly worse than the uniform case.
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4.3. Conditional Exponential Case (CEλ).

Suppose now that X ∼ Exp(λ)
∣∣
X≤M , i.e. an exponential distribution conditional on

being ≤M , so F (x) = (1− e−λx)
/

(1− e−λM) for 0 ≤ x ≤M . Then

W = p
1− e−λ(M−δ)

1− e−λM
+ rp

1− (1− e−λ(M−δ))

1− e−λM
.

This distribution comes closest to mimicking the unbounded distribution Exp(λ) above,

so it seems the most promising, as we shall see below.

5. Numerical Comparisons.

We now compare the performance of the above various bounded densities. We fix the

maximum delay time at M = 3 seconds, and consider various reaction times δ = 0.1 or 0.25,

and anticipation multipliers r = 2 or 3. In each case, we compute sup{A(t) : 0 ≤ t ≤M−δ},

where A(t) is the anticipation advantage at time t as above. Our results are as in Figure 1.

6. Conclusion.

As can be seen from Figure 1, the Truncated Exponential with λ = 2 (TE2), and the

Conditional Exponential with λ = 2 (CE2), both perform well unless both the reaction time

δ and the anticipation multiplier r get large.

By contrast, the Conditional Exponential with λ = 1 (CE1) performs quite well over a

wide range of values of δ and r.

We thus recommend the CE1 distribution for the Random Race Start Timer. Indeed,

this is the distribution that we have implemented in our online version5. (The online version

also adds a one-second get-set period to the beginning of the delay time, so its total delay

time is 1 + X seconds where X ∼ CE1 is conditional on M ≤ 3, i.e. its total delay time is

always between 1 and 4 seconds.)

5Available at: probability.ca/starter
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Figure 1: Numerical comparison of the maximum anticipation advantage for var-
ious different bounded delay time distributions, with maximum delay M = 3,
anticipation time δ = 0.1 (top) or 0.25 (bottom), and anticipation multiplier r = 2
(left) or 3 (right), showing that CE1 is the most consistently small.
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