
Convergence Rates of Attractive-Repulsive MCMC Algorithms

by (in alphabetical order)

Yu Hang Jiang, Tong Liu, Zhiya Lou, Jeffrey S. Rosenthal,

Shanshan Shangguan, Fei Wang, and Zixuan Wu

Department of Statistical Sciences, University of Toronto

(December, 2020; last revised September 1, 2021)

Abstract: We consider MCMC algorithms for certain parti-
cle systems which include both attractive and repulsive forces,
making their convergence analysis challenging. We prove that
a version of these algorithms on a bounded state space is uni-
formly ergodic with explicit quantitative convergence rate. We
also prove that a version on an unbounded state space is still
geometrically ergodic, and then use the method of shift-coupling
to obtain an explicit quantitative bound on its convergence rate.

1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms are an indispensable
tool for researchers and scientists across a wide spectrum of fields, rang-
ing from machine learning and Bayesian inference to systems biology and
mathematical finance, to sample from complicated distributions in high di-
mensions. When running MCMC, one important question is the number of
steps the Markov chain requires to converge. There are various approaches
to analyzing this difficult problem. In this paper, we describe a challenging
MCMC example, and show ways of deriving a quantitative mathematical
bound using techniques related to coupling.

1.1 Background about MCMC

Markov Chain Monte Carlo (MCMC) algorithms such as the Metropolis-
Hastings algorithm [27, 18] and the Gibbs sampler [15, 13] have become
extremely popular in statistics. They provide a feasible way to sample
from complicated probability distributions in high dimensions, and play a
crucial role in Bayesian inference as posterior distributions are usually too
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complicated to compute analytically. Moreover, the application of MCMC
algorithms is not limited to statistical contexts. Indeed, the Metropolis al-
gorithm, one of the most popular MCMC algorithms, arose in physics and
was designed to simulate the behavior of large systems of interacting par-
ticles [27]. MCMC algorithms were then widely applied in computational
physics [5, 37]. They are now an indispensable tool for researchers and
scientists in many other fields, including computer science [36, 3], systems
biology [39, 40], mathematical finance [22, 19], and more (e.g. [16, 6]).

Specifically, suppose we are given a possibly-unnormalized density func-
tion π(·) on a state space X , e.g. a posterior density in Bayesian statistics.
Then, the posterior mean of any functional f is given by

π(f) =

∫
X f(x)π(x)dx∫
X π(x)dx

.

In most cases, it is infeasible to directly compute this integral (either an-
alytically or numerically), especially when X is high-dimensional and π(·)
is complicated. An alternative way is to repeatedly sample from π(·), and
estimate π(f) by the sample average. However, if π(·) is complicated, then
it may be impossible even to draw samples directly from π(·). MCMC algo-
rithms were invented to solve this problem. They construct a Markov chain
which can be easily run on a computer, which has π(·) as its stationary dis-
tribution. It follows under mild conditions that if we run the Markov chain
for a long time, the distribution of Xn will converge to π(·).

In this paper, we will focus on the Metropolis-Hastings algorithm, one
of the simplest and most well-known MCMC algorithms. Let π(·) be an
unnormalized density function on X , and let q(x, ·) be an unnormalized
density for each x ∈ X . The Metropolis-Hastings Algorithm proceeds as
follows. First we choose some X0 from some initial distribution µ(·). Then,
for n = 0, 1, 2, . . ., given Xn, we generate a proposal Yn+1 ∼ q(Xn, ·). With
probability α(Xn, Yn+1) we set Xn+1 = Yn+1 where

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
is the acceptance rate; otherwise we set Xn+1 = Xn. This acceptance prob-
ability is chosen precisely to make the Markov chain reversible with respect
to π(·), from which it follows that π(·) is a stationary distribution, and under
mild conditions the chain will converge in distribution to π(·) [27, 18].

The knowledge that MCMC will eventually converge to π(·) raises the
question of how long it takes to converge. There are various approaches to
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analyzing this problem. One widely-used method is to apply diagnostic tools
to the output produced by the algorithm [14, 7, 9]. For example, we can
monitor the ergodic averages of selected scalar quantities of interest (e.g.
first and second moments). Another popular approach is to theoretically
derive a bound in terms of the total variation distance [33, 31, 20], though
this usually involves difficult calculations and the resulting bounds are often
quite conservative. In this paper, we describe a challenging MCMC example,
show ways of deriving a quantitative mathematical bound using techniques
related to coupling, and compare our theoretical results to diagnostic bounds
from actual computer simulations.

1.2 The Attractive-Repulsive Model

We shall focus on the following model. Suppose we have n particles
randomly located in the R2 plane (so the state space X = R2n), and the
unnormalized density of each configuration is given by

π(x) = exp
(
−
[
c1

n∑
i=1

||xi||+ c2
∑
i<j

||xi − xj ||−1
])
, (1)

where c1, c2 are positive constants and || · || is the usual Euclidean (L2)
norm on R2. Since the density is fairly complicated, it is hard to compute
expected values with respect to this distribution, such as the average dis-
tance of the particles to the origin. Therefore, a more feasible solution is to
simulate this distribution using an MCMC algorithm. We shall use compo-
nentwise versions of the Metropolis-Hastings algorithm [27, 18], in which the
multiple particles are updated one at a time in a sequential order, each with
a proposal followed by an accept/reject step. (For a graphical illustration
of this algorithm on these densities, see [35].) By running the algorithm for
many iterations, we can approximately sample from π, and thus find good
estimates of its expected values.

The density function (1) is designed so the first summation “pulls” the
particles towards the origin, while the second summation “pushes” them
away from each other. Hence, we call this an attractive-repulsive particle
system. The combination of attractive and repulsive forces mean that the
MCMC algorithm does not satisfy simple monotonicity or other properties
which would simplify its convergence analysis, so that more careful tech-
niques are required. Nevertheless, for certain special cases of this density,
we will derive both qualitative and quantitative convergence bounds herein.

We note that there is a long history of using MCMC to study interacting
particle models. For example, Alder and Wainwright [1] used Monte Carlo
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to simulate the dynamics of molecules; Hammersley [17] and Liggett [24]
applied stochastic atomic lattice models to solid-state physics particle sys-
tems; Speagle [38, Section 8] studied a purely attractive model (where a
particle is more likely to move inwards than outwards) using a Metropolis
algorithm with Gaussian proposal distributions; and Krauth [23] used local
non-reversible MCMC algorithms to simulate dynamic hard-spheres. The
model (1) is similar in spirit to these other dynamics, though it was chosen
primarily for illustrative purposes (e.g. it is not stochastically monotone; see
below).

1.3 Background about Minorization and Drift Conditions

We are interested in bounding the total variation distance

‖Pn(x, ·)−π(·)‖ := sup
S⊆X
|Pn(x, S)−π(S)| = sup

S⊆X
|P (Xn ∈ S |X0 = x)−π(S)|

between the n-step distribution Pn(x, ·) and the stationary distribution π(·)
of a Markov chain, where the supremum is taken over all measurable subsets
S. One method involves coupling via minorization and drift conditions.
A Markov chain with a state space X and transition probabilities P (x, ·)
satisfies a minorization condition if there is a measurable subset C ⊆ X , a
probability measure Q on X , a constant ε > 0, and a positive integer n0,
such that

Pn0(x, ·) ≥ εQ(·), x ∈ C. (2)

We call such C a small set, and refer to it (n0, ε, Q)-small. In particular,
if C = X (i.e., C is the entire state space), then we say the Markov chain
satisfies a uniform minorization condition, also referred to as Doeblin’s con-
dition (see [12]). It then follows (see e.g. [28, 30]) that the chain is uniformly
ergodic, i.e. there are fixed ρ < 1 and M <∞ such that

‖Pn(x, ·)− π(·)‖ ≤ M ρn, n ∈ N, x ∈ X ,

and in fact a precise convergence bound is available:

Proposition 1: If a Markov chain with stationary distribution π(·) has
the property that the entire state space X is (n0, ε, Q)-small, then the chain
is uniformly ergodic, with

‖Pn(x, ·)− π(·)‖ ≤ (1− ε)b
n
n0
c
, n ∈ N .
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In Section 2, we prove uniform ergodicity for a bounded version of our
algorithm. Unfortunately, many Markov chains are not uniformly ergodic.
A Markov chain with stationary distribution π(·) is geometrically ergodic if
there are fixed ρ < 1 and π-a.e.-finite function M : X → [0,∞] such that

‖Pn(x, ·)− π(·)‖ ≤ M(x) ρn, n ∈ N, x ∈ X ,

i.e. if the multiplier M can depend on the initial state x. Also, a Markov
chain with a small set C satisfies a univariate drift condition if there are
constants 0 < λ < 1 and b <∞, and a π-a.e.-finite function V : X → [1,∞]
such that

PV (x) := E[V (X1) |X0 = x] ≤ λV (x) + b1C(x), x ∈ X . (3)

The minorization condition (2) and drift condition (3) together guarantee
that the chain is geometrically ergodic (e.g. [28, Theorem 15.0.1]):

Proposition 2: If a φ-irreducible, aperiodic Markov chain with stationary
distribution π(·) and small set C ⊂ X satisfies the minorization condition (2)
for some n0 ∈ N and ε > 0 and C ⊆ X and probability measure Q(·) on X ,
and the drift condition (3) for some π-a.e.-finite function V : X → [0,∞]
and λ < 1 and b <∞, then it is geometrically ergodic.

Geometric ergodicity is a helpful property, since it implies the chain
converges geometrically quickly, and also implies certain other results such
as central limit theorems (see e.g. [30]). We establish it for an unbounded
version of our algorithm in Section 3. Unfortunately, qualitative bounds
such as uniform or geometric ergodicity can still be quite weak in many
cases, and do not necessarily imply that the Markov chain converges in a
short time. For example, if X = {0, 1}, with X0 = x = 1 and

P =

(
1 0

1− z z

)
for some fixed z ∈ (0, 1), then π = (1, 0), and the chain satisfies a uniform
minorization condition with ε = 1−z and Q = (1, 0). So, it is both uniformly
and geometrically ergodic, and in fact ‖Pn(x, ·)− π(·)‖ = zn. However, it
converges arbitrarily slowly for z near 1, indicating that geometric ergodicity
does not really imply fast convergence. Due to these limitations, it is best
to find a quantitative bound, i.e. explicit bounds on ‖Pn(x, ·)− π(·)‖ which
provide a value of n that guarantees that this distance will be sufficiently
small. We consider this problem for an unbounded version of our attractive-
repulsive processes in Section 4 below.

5



1.4 Organisation of the Paper

This paper is organised as follows. In Section 2, we consider a version
of our algorithm within a bounded domain, and show that it is uniformly
ergodic by means of an explicit uniform minorization condition. In Sec-
tion 3, we expand the state space to all of R2, and show that a version of
our algorithm is still geometrically ergodic since it satisfies an explicit uni-
variate drift condition. In Section 4, we discuss the challenges of computing
a quantitative convergence bound for our algorithm, and use a shift coupling
construction to overcome these problems and obtain an explicit quantitative
bound. In Section 5, we compare our theoretical results to observed conver-
gence behaviour from actual computer simulations. In Section 6, we provide
proofs of all of the theorems in this paper.

2 Particles in a Square: Uniform Ergodicity

In this section, we study the attractive-repulsive particle system den-
sity (1) in a compact setting. Suppose we have n = 3 particles randomly
located in the square U = [0, 1]2 ⊂ R2, with the particle positions denoted
by x = (xi)i=1,2,3 = (xi1, xi2)i=1,2,3, so the state space X = [0, 1]6.

We use a componentwise Metropolis algorithm with systematic scan, in
which we repeatedly update the n = 3 particles in order (see e.g. [27, 6, 35]).
Specifically, given a configuration Xn = x, we first “propose” a new location
for the first particle x1 from the uniform (Lebesgue) measure on X , to
obtain a new particle location y1, and hence a new proposed configuration
y = (y1, x2, x3). Then with probability α(x,y) = min

[
1, π(y)π(x)

]
, we “accept”

this proposal and update x1 to y1. Otherwise, we “reject” this proposal and
leave the original x1 unchanged. We then similarly update x2 and then x3.
That entire procedure represents one iteration of our algorithm, which we
then repeat n times to obtain a final configuration Xn.

For this algorithm, we show (all theorems are proved in Section 7):

Theorem 1. The above Markov Chain (a componentwise Metropolis al-
gorithm with uniform proposals and systematic scan, for the unnormalised
density (1) on [0, 1]6 with n = 3 particles for some constants c1, c2 > 0)
is uniformly ergodic, and satisfies a uniform minorization condition with
n0 = 1 and ε = (0.48)e−c1(8.49)−c2(19.76).

For example, if c1 = c2 = 1/10, then we can take ε = 0.028. By Propo-
sition 1, we have ‖Pn(x, ·) − π(·)‖ ≤ (0.972)n. This proves that after 163
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steps, the total variation distance between the n-step distribution and the
stationary distribution π(·) of this Markov chain will be within 0.01.

Remark. The above model and algorithm could also be considered for
n > 3 particles, and the convergence rate could probably be bounded in
that case too by similar methods, but the computations become messier, so
here we stick to n = 3 particles for ease of analysis.

3 One particle in R2: Geometric Ergodicity

We now extend our state space to the entire R2 plane, but with just
n = 1 particle. Specifically, suppose we have a particle randomly located at
R2, denoted by x = (x1, x2), with unnormalized density given by

π(x) = e−H(x), where H(x) = ||x||+ 1

||x||
:= rx +

1

rx
, (4)

where rx := ||x|| is again the L2 norm. Note that this model (4) can be
considered to be a special case of our main model (1), in which c1 = c2 = 1
and n = 2, where one particle is at x1 := x, and a second particle is always
fixed to be at the origin x2 := 0.

We use the following Metropolis-Hastings algorithm on this distribution.
For any x = (x1, x2) ∈ R2, let

Bx = {z ∈ R2 : |rx − 1| < ‖z‖ < rx + 1} .

Thus, Bx is an annulus of width 2 min(rx, 1), which contains x unless rx <
0.5; see Figure 1. And, vol(Bx) = π(rx + 1)2 − π|rx − 1|2 = 4πrx. We then
let the proposal density q(x, ·) be the uniform distribution on Bx, i.e.

q(x, dy) = 1Bx(y)
dy

4πrx
, x, y ∈ R2 .

Note that y ∈ Bx if and only if x ∈ By (since for rx, ry ≤ 1 this is
equivalent to rx + ry < 1; and for rx < 1 < ry or ry < 1 < rx this is
equivalent to min[rx, ry] < max[rx, ry]+1; and for rx, ry ≥ 1 this is equivalent
to |rx − ry| < 1). Hence, these q(x, dy) are valid proposal distributions for
a Metropolis-Hastings algorithm. The corresponding acceptance rate is

α(x, y) = min

{
1,

πu(y) q(y, x)

πu(x) q(x, y)

}
= min

{
1,

eH(x) rx

eH(y) ry

}
.

7



●

−2 0 2 4

−
2

0
2

4

x1

x2

x

●

−2 0 2 4

−
2

0
2

4

x1

x2

x

Figure 1: Illustration of the region Bx for the model of Section 3, in two
different cases: when rx = 2 (left) or rx = 0.3 (right).

This algorithm is somewhat related to the algorithm of Section 2, except
with just one particle to move so there is no “scan” of different particles,
and with a more complicated proposal distribution since the state space X
is unbounded.

For the above algorithm, we shall prove the following quantitative con-
ditions:

Theorem 2. The Markov chain constructed above (a Metropolis-Hastings
algorithm with proposals uniform on Bx, for the unnormalised density (4)
on R2 with one particle) satisfies:
(a) the minorization condition

P 2(x, ·) ≥ (3.5× 10−5)Q(·), x ∈ C,

for some Q(·), where C = {x ∈ R2, 1
4 ≤ ||x|| ≤ 4} ⊆ X .

(b) the univariate drift condition

PV (x) ≤ 0.995V (x) + (e2.7 − 0.995)1C , x ∈ X ,

where V (x) = e
1
2
H(x). Furthermore, supx∈C PV (x) ≤ e2.7.

In particular, by Proposition 2, this chain is geometrically ergodic.

Remark. The above model and algorithm could also be considered for
n > 1 particles, and it is possible that the convergence rate could probably be
bounded in that case too, but the analysis becomes much more challenging,
so here we stick to just 1 particle for ease of analysis.
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4 Quantitative Bounds and Shift Coupling

We next consider quantitative bounds for the algorithm in the previous
section. There are many potential ways to obtain quantitative bounds for
MCMC algorithms. However, not all methods are feasible for our attractive-
repulsive process.

One common approach uses minorization conditions and bivariate drift
conditions (e.g. [33, 21]). Theorem 3 already provides a minorization condi-
tion and a univariate drift condition, and there are ways to derive a bivariate
drift condition from a univariate one if certain conditions are satisfied (see
e.g. Proposition 11 of [30]). However, to obtain a bivariate drift condition
for our processes, we would have to prove a multi-step minorization condi-
tion on a much larger subset, which would be very challenging and lead to
extremely weak bounds.

Alternatively, minorization and univariate drift conditions give good
quantitative bounds for Markov chains which are stochastically monotone,
meaning that there is some stochastic ordering 4 on X which is probabilis-
tically preserved [11, 8, 25, 32]). More formally, P (x1, By) ≥ P (x2, By) for
all x1, x2, y ∈ X with x1 4 x2, where By = {z ∈ X : z 4 y}. Indeed, if
we considered a purely attractive version of our model, by setting c2 = 0
in (1), then our Markov chain would indeed be stochastic monotone under
the partial order defined by x 4 y if and only if ‖x‖ ≤ ‖y‖. However, with
c1, c2 > 0, the attractive-repulsive nature of our model (1) seems to preclude
any stochastic monotonicity condition, so the improved convergence bounds
for stochastically monotone Markov chains cannot be applied.

Instead, we shall use a particular coupling method called shift coupling [2,
29] to derive a quantitative bound for the particle system. This construction
only requires a univariate drift condition (not a bivariate one), and does not
require aperiodicity. In the shift coupling construction, just like ordinary
coupling, we will jointly define two Markov chains to obtain a bound on the
rate of convergence. The key point in which shift coupling differs from the
ordinary method is that we allow the chains to couple at different times.

Let P (·, ·) be the transition probabilities for a Markov chain on a state
space X . Assume the chain is φ-irreducible, with stationary distribution
π(·). Let {Xk}∞k=0 and {X ′k}∞k=0 be two different copies of the chain, defined
jointly. Suppose T and T ′ are two random variables taking values in Z≥0 ∪
{∞}, such that for any non-negative integer n, XT+n = XT ′+n. Ordinary
coupling requires T = T ′, but shift coupling allows the two Markov chains
to become equal at different times, thus making it easier for the chains to
couple. We can then combine this shift-coupling bound with minorization
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and univariate drift conditions, leading to the following (which generalizes
Theorem 4 of [29] to the case n0 > 1):

Theorem 3: Suppose a Markov chain on a state space X , with initial
distribution ν(·), transition probabilities P (·, ·), and stationary distribution
π(·), satisfies the minorization condition (2) for some n0 ∈ N and ε > 0
and C ⊆ X and probability measure Q(·) on X , and the drift condition (3)
for some π-a.e.-finite function V : X → [0,∞] and λ < 1 and b < ∞,
such that C = {x ∈ X : V (x) ≤ d} for some fixed d ≥ 0. Then setting
A := supx∈C E(V (X1)|X0 = x) (so A ≤ λd+ b), for any 0 < r < 1 such that
λ(1−n0r)Ar < 1, we have∥∥∥∥ 1

n

n∑
k=1

P (Xk ∈ ·)− π(·)
∥∥∥∥

≤ 1

n

[
2(1− ε)r

1− (1− ε)r
+
λ−n0+1−n0rAr

1− λ1−n0rAr

(
Eν(V ) +

b

1− λ

)]
.

We now apply this shift-coupling bound to the attractive-repulsive par-
ticle systems of Section 3. By Theorem 2, we can take ε = 3.5 × 10−5,
n0 = 2, λ = 0.995, b = e2.7 − 0.995, d = e17/8, and A = e2.7. Assume
the chain starts from the point (1, 0), so Eν(V ) = V ((1, 0)) = e

1
2
(1+ 1

1
) = e.

Choosing r = 0.0016, we have λ(1−n0r)Ar
.
= 0.9993 < 1, and we compute

from Theorem 3 that∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ .)− π(.)

∥∥∥∥ ≤ 39, 900, 000

n
.

This bound is certainly far from tight. However, it does show that shift-
coupling can provide explicit quantitative bounds on the distance to station-
arity, even for the attractive-repulsive processes that we consider herein.

Finally, we note that the left-hand side of the bound in Theorem 3 differs
from the conventional total variation distance between the n-step distribu-
tion and the stationary distribution. This raises the question of the meaning
of the quantity we are bounding. An interpretation is given by the following
result.

Theorem 4: Let {Xk} be a Markov chain on a state space X , with tran-
sition probabilities P (·, ·) and stationary distribution π(·). For n ∈ N and
measurable S ⊆ X , let Fn(S) := E

[
1
n #{i : 1 ≤ i ≤ n, Xi ∈ S}

]
be the

expected fraction of time from 1 to n that the chain is inside S. Then

sup
S⊆X
|Fn(S)−π(S)| =

∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)−π(·)
∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥∥∥P(Xk ∈ ·)−π(·)
∥∥∥∥.
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Theorem 4 provides context for Theorem 3. It shows that the bound of
Theorem 3 in turn provides an upper bound on the difference between the
expected occupation fraction of S and the target probability π(S), uniformly
over choice of subset S. So, if the bound is small, then the chain spends
approximately the target fraction of time in every subset, on average.

Theorem 4 also gives us a way to relate the shift coupling result to
more conventional results. In particular, note that ||P(Xk ∈ ·) − π(·)|| is
the usual total variation distance discussed in previous sections. Hence,
1
n

∑n
k=1 ||P(Xk ∈ ·) − π(·)|| is the average of the total variation distances

between the k-step distribution and the stationary distribution, averaged
over k = 1, 2, . . . , n. However, due to the inequality, | 1n

∑n
k=1P(Xk ∈ ·) −

π(·)| does not provide an upper bound for 1
n

∑n
k=1 |P(Xk ∈ ·)− π(·)|.

5 Simulations – Convergence Diagnostics

In this section, we run the MCMC algorithms discussed in Sections 2
and 3 above, and apply the MCMC convergence diagnostic tools of [14, 7] to
estimate their convergence times by comparing between- and within-chain
variances of multiple runs of the algorithm when starting from an over-
dispersed starting distribution. We then compare these estimated times
with the theoretical bounds derived in the previous sections.

5.1 Three particles in a square

We begin with the model of Section 2, i.e. the componentwise Metropolis
algorithm with uniform proposals and systematic scan for the unnormalised
density (1) on [0, 1]6 with n = 3 particles for some constants c1, c2 > 0.
We use the uniform distribution on [0, 1]6 as our over-dispersed starting
distribution. To proceed, following [14, 7], we draw m = 5 initial samples
from this starting distribution, and then run m = 5 different chains in
parallel, each for n = 60 iterations.

Our goal is to see if the chain has converged after n∗ = 30 iterations,
i.e. if iterations n∗ + 1 through n (i.e., 31 through 60) are approximately in
stationarity. To investigate this, for iterations n∗ + 1 through n and initial
test functional

ψ : R6 → R by ψ(x) =
√
x211 + x212 +

√
x221 + x222 +

√
x231 + x232 ,

we calculate the between-chain variance B and the within-chain variances
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W :

B :=
n− n∗
m− 1

m∑
j=1

(ψj − ψ)2,

W :=
1

m

m∑
i=1

s2i =
1

m(n− n∗ − 1)

m∑
j=1

n∑
t=n∗+1

(ψjt − ψj)2,

where n = 60, n∗ = 30, m = 5, ψjt = ψ(Xjt) is the value of ψ on the
tth iteration of chain j, ψj = 1

n−n∗
∑n

t=n∗+1 ψ(Xjt) is the sample mean

of ψ in chain j over iterations n∗ + 1 through n, and ψ = 1
m

∑m
j=1 ψj =

1
m(n−n∗)

∑m
j=1

∑n
t=n∗+1 ψ(Xjt) is the mean of the m different ψj values (i.e.

the mean of all m(n− n∗) post-burn-in simulated values).
In our simulations, we obtained the values

B = 0.4899, W = 0.19.

We then estimate the target variance by a weighted average of B and W :

σ̂2 :=
B

n
+
n− 1

n
W = 0.200.

We also compute the pooled posterior variance estimate

V̂ := σ̂2 +
B

mn
= 0.2033.

Finally we compute the potential scale reduction factor (PCRF), as

R :=
d+ 3

d+ 1
· V̂
W

= 1.07,

where d is the degrees of freedom of the corresponding t-distribution (so
(d+ 3)/(d+ 1) ≈ 1). This produced the value R = 1.07. Since this value is
< 1.2, that fact provides some indication [14, 7] that the chain might have
approximately converged after n∗ = 30 iterations (though this diagnostic
does not directly estimate the total variation distance; see Section 6).

We also consider some other test functionals. Let

φ1 : R6 → R by φ1(x) = x11 + x12 + x21 + x22 + x31 + x32,

and

φ2 : R6 → R by φ2(x) = x11 · x12 + x21 · x22 + x31 · x32.
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Following the same steps as above, we compute the corresponding PCRFs:

R1 = 1.092, R2 = 1.091.

These values are again < 1.2. Hence, these test results all provide some
indication that the chain might have approximately converged after n∗ =
30 iterations. If so, then this is somewhat quicker than the theoretical
bound (163 iterations) derived in Section 2, suggesting that our bound is
overly conservative. However, there is a clear benefit in having definitive,
guaranteed (though conservative) theoretical bounds, rather than relying on
convergence diagnostics which can sometimes be misleading (cf. [26, 10]).

5.2 One particle in R2

We next consider the model of Section 3, i.e. the Metropolis-Hastings
algorithm with proposals uniform on Bx, for the unnormalised density (4)
on R2 with one particle. For our over-dispersed starting distribution we take
the uniform distribution on [−10, 10]2. We draw m = 10 samples from it, as
the starting states for 10 different chains, each run for n = 600 iterations.

Our goal is to see if the chain has converged after n∗ = 300 iterations,
i.e. if iterations n∗ + 1 through n (i.e., 301 through 600) are approximately
in stationarity. We then run our m = 10 different chains in parallel, each
for n = 600 iterations, and investigate iterations n∗ + 1 through n. For our
test function, we begin with

ψ(x) : R2 → R by ψ(x) = ||x||.

For this function, we calculate the between-chain variance B and the within-
chain variance W as above, to obtain:

B = 60.5, W = 2.048.

We then compute the corresponding pooled variance and PCRF values to
be:

V̂ = 2.283, R = 1.115.

We again have R < 1.2, which provides some indication that the chain might
have approximately converged n∗ = 300 iterations.

To investigate further, we consider the two additional test functions

φ1 : R2 → R by φ1(x) = |x1|+ |x2|,
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and

φ2 : R2 → R by φ2(x) =

{
1, 0.5 ≤ ||x|| < 1.5

0, otherwise

For these test functions, we compute the corresponding PCTF values to be

R1 = 1.115, and R2 = 1.061.

These values are all < 1.2, so all of these test results again provide some
indication that the chain might have approximately converged after n∗ = 300
iterations. Once again, this is much quicker than the overly-conservative
theoretical bounds derived in Section 4 above. However, there is again
potential benefit in having guaranteed theoretical bounds, rather than just
suggestive convergence diagnostics.

6 Simulations – Total Variation Distance

For more direct comparison with our theoretical results, we now attempt
to estimate the actual total variation distance between the stationary distri-
bution and the simulated Markov chain distribution after different numbers
of iterations. Recall [30, Proposition 3(b)] that one of the many equivalent
definitions between two probability distributions ν1(·), ν2(·) is

||ν1(·)− ν2(·)||TV =
1

b− a
sup

f :X→[a,b]

∣∣∣∣∫ fdν1 −
∫
fdν2

∣∣∣∣ ,
where a < b are real numbers. We shall apply this definition with different
choices of functional f to estimate the total variation distance to stationarity.

6.1 Three particles in a square

We first consider the model of Section 2, i.e. the componentwise Metropo-
lis algorithm with uniform proposals and systematic scan for the unnor-
malised density (1) on [0, 1]6 with n = 3 particles for some constants c1, c2 >
0. We apply different functionals to estimate the total variation distance.
We begin with the functional

f : [0, 1]6 →
[
0, 3
√

2
]

by f(x) =
3∑
i=1

√
x2i1 + x2i2 .
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For this functional f , we run our Markov chain 5000 separate times, each
from the fixed initial state

x0 = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5) ,

for 500 iterations each. We then estimate E[f(Xi)] by the average f(Xi)
of the values of the functional after i iterations, averaged over the 5000
separate chains. Since we have proven that the total variation distance is
less than 0.01 after 163 iterations, the averages after 500 iterations are good
estimates of the stationary value, so we estimate using our simulations that

Eπ[f ] ≈ f(X500) ≈ 2.23959 .

On the other hand, after i = 30 iterations, we estimate that

E[f(X30)] ≈ f(X30) ≈ 2.27200.

Then, since the range of f is [0, 3
√

2], we can estimate the total variation
distance (based on this one functional f) by

1

3
√

2

∣∣∣Eπ[f ]− f(X30)
∣∣∣ ≈ 0.007638 < 0.01.

This suggests that, based on the functional f at least, the chain has approx-
imately converged after 30 iterations. Figure 2 shows the estimated total
variation distance based on f over different numbers of iterations.

We also consider the following additional test functionals:

g : [0, 1]6 → [0, 1] by g(x) = x11;

h : [0, 1]6 →
[
0,
√

2
]
, by h(x) = ||(x11, x12)− (x21, x22)||;

p : [0, 1]6 →
[
1, e
√
2
]

by p(x) = exp(||(x31, x32)||);

` : [0, 1]6 →
[
0,
√

2
]

by `(x) = max
(
||(x11, x12)||, ||(x21, x22)||, ||(x31, x32)||

)
.

The estimated total variation distances based on each of these four function-
als, as a function of the number of Markov chain iterations, are displayed in
Figure 3. These results again suggest that total variation distance is already
below 0.01 after just 30 iterations (though they do not show this conclusively
since the total variation distances requires a supremum over all functionals).
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Figure 2: Estimated total variation distance based on the functional f , for
the model of Sections 2 and 6.1, versus number of Markov chain iterations.

6.2 One particle in R2

We now consider the model of Section 3, i.e. a Metropolis-Hastings al-
gorithm with proposals uniform on Bx, for the unnormalised density (4) on
R2 with one particle. We again apply different functionals to estimate the
total variation distance. We first let f : R2 → [0, 1] by f(x) = exp(−||x||).
We compute by numerical integration that

Eπ[f ] =

∫
R2 f(x)π(x) dx∫

R2 π(x) dx
≈ 0.486

3.189
= 0.15240.

Similar to the previous section, we run 3000 separate chains each with initial
state x0 = (1, 0), each for 300 iterations. We then compute the mean of
f(X300) over the 3000 chains, and use it to estimate the total variation
distance after 300 iterations to be:∣∣∣Eπ[f ]− f(X300)

∣∣∣ ≈ ∣∣0.15240− 0.14978
∣∣ = 0.00262 < 0.01.

This suggests that, based on the functional f at least, the chain has approx-
imately converged after 300 iterations. Figure 4 shows the estimated total
variation distance based on f over different numbers of iterations.

16



Figure 3: Estimated total variation distance based on the functionals g, h,
p, and `, for the model of Sections 2 and 6.1, versus the number of Markov
chain iterations.

As before, we also consider some other test functionals. Let

g : R2 → [0, 1] by g(x) =
x21
||x||2

;

h : R2 → [0, 1] by h(x) = min{1, 1

||x||
};

p : R2 → [0, 1] by p(x) = min{1, |x1|};

` : R2 → [−1, 1] by `(x) = sin(||x||).

As before, we can use each of these functionals to estimate the total variation
distance to stationarity after different numbers of iterations, as shown in
Figure 5. The plots suggest that total variation distance according to each
of these functionals is below 0.01 after 300 iterations.

In summary, both MCMC convergence diagnostic tools and total varia-
tion distance estimation suggest that the chains of Section 2 and Section 3
both converge significantly more quickly than the theoretical upper bounds
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Figure 4: Estimated total variation distance based on the functional f , for
the model of Sections 3 and 6.2, versus number of Markov chain iterations.

derived in Sections 2 and 4. This is not surprising, since theoretical conver-
gence bounds tend to be very conservative. However, as discussed above,
there is benefit in having guaranteed theoretical convergence bounds rather
than just suggestive computer simulations which might not accurately mea-
sure the chain’s true convergence.

7 Theorem Proofs

In this section, we prove all of the previously-stated results.

7.1 Proof of Theorem 1

Let

X ′ = {(x1, x2, x3) ∈ X : ∀1 ≤ i < j ≤ 3, ‖xi − xj‖ ≥ 1/4}.

(The value “1/4” is used so that X ′ still includes most of the mass of X ,
but avoids states where two particles are very close thus making ‖xi−xj‖−1
extremely large.) Since X ′ is compact, and π(·) is continuous and positive
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Figure 5: Estimated total variation distance based on the functionals g, h,
p, and `, for the model of Sections 3 and 6.2, versus number of Markov chain
iterations.

on X ′, therefore π must achieve its minimum ratio m := minx,y∈X ′
π(y)
π(x) > 0

on X ′. Then for any x = (x1, x2, x3) ∈ [0, 1]6 and measurable A ⊆ X ,

P (x, A) =

∫
A
P (x, dy)

≥
∫
A
P1((x1, x2, x3), dy1)P2((y1, x2, x3), dy2)P3((y1, y2, x3), dy3)

≥
∫
A∩X ′

min

[
1,
π(y1, x2, x3)

π(x1, x2, x3)

]
min

[
1,
π(y1, y2, x3)

π(y1, x2, x3)

]
min

[
1,
π(y1, y2, y3)

π(y1, y2, x3)

]
dy,

where P1((x1, x2, x3), B) = P ((x1, x2, x3), B×{x2}× {x3}) for any measur-
able B ⊂ [0, 1]2 (and similarly for P2 and P3). Denote the three acceptance
probabilities by α1, α2, α3 respectively.

If α1 = 1, then α1α2α3 = α2α3 ≥ m2. Similarly, if α2 = 1 or α3 = 1,
then again α1α2α3 ≥ m2. On the other hand, if αi < 1 for i = 1, 2, 3, then
α1α2α3 = π(y1,y2,y3)

π(x1,x2,x3)
≥ m ≥ m2 (since m ≤ 1). So

P (x,A) ≥
∫
A∩X ′

m2 dx = m2 Leb(A ∩ X ′),
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where Leb is Lebesgue measure on R2. It follows that our algorithm sat-
isfies a uniform minorization condition, with ε = m2 Leb(X ′) and Q(A) =
Leb(A∩X ′)
Leb(X ′) . Hence, by Proposition 1, this chain is uniformly ergodic.

To obtain a quantitative bound, we need to compute m2 and Leb(X ′).
For any x ∈ X ′, we must have 0 ≤ |xi| ≤

√
2 and 1/4 ≤ |xi−xj | ≤

√
2, thus

0 ≤
∑
i

|xi| ≤ 3
√

2, and
3√
2
≤
∑
i<j

|xi − xj |−1 ≤ 12.

Then

m =
minX ′ π(·)
maxX ′ π(·)

≥ e−c1(3
√
2)−c2(12)

e−c1(0)−c2(3/
√
2)

= e−c1(3
√
2)−c2(12−3/

√
2).

Thus

m2 ≥
(
e−c1(3

√
2)−c2(12−3/

√
2)
)2
≥ e−c1(8.49)−c2(19.76).

Lastly we need to compute Leb(X ′). To make (x1, x2, x3) ∈ X ′, we can
choose any x1 ∈ [0, 1]2 (with area 1), then any x2 ∈ [0, 1]2 \B(x2, 1/4) (with
area ≥ 1 − 3.14(1/4)2), then any x3 [0, 1]2 \ (B(x1, 1/4) ∪ B(x2, 1/4))(with
area ≥ 1− 3.14(1/4)2 − 3.14(1/4)2). Hence

Leb(X ′) ≥ (1)
(

1− π

16

)(
1− π

8

)
≥ 0.48.

Therefore
ε = m2Leb(X ′) ≥ (0.48)e−c1(8.49)−c2(19.76).

7.2 Proof of Theorem 2 (a)

Recall that

α(x, y) = min

{
1,
eH(x)rx

eH(y)ry

}
= min

{
1,
f(rx)

f(ry)

}
,

where f : R→ R by f(x) = xex+
1
x . We then have

f ′(x) = ex+
1
x + x(1− 1

x2
)ex+

1
x = (x− 1

x
+ 1)ex+

1
x ,

so that

f ′(x) = 0 ⇐⇒ x =
−1±

√
5

2
,
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and hence f(x) is decreasing on (0,
√
5−1
2 ) and increasing on (

√
5−1
2 ,∞).

Next, let
C1 = {x ∈ C : 1/4 ≤ rx ≤ 2},

C2 = {x ∈ C : 2 ≤ rx ≤ 4},

D = {x ∈ R2, 2 ≤ rx ≤ 9/4},

E1 = {x ∈ R2, 1 ≤ rx ≤ 5/4},

and
E2 = {x ∈ R2, 3 ≤ rx ≤ 13/4}.

We shall show that P 2(x, ·) has an overlap on D for all x ∈ C. In particular,
we will consider the case when the x first jumps into E1 and then enters D
for x ∈ C1 (similarly for E2).

We know

α(x, y) = min

{
1,
f(rx)

f(ry)

}
,

and we have shown f takes its minimum at
√
5−1
2 and is increasing on

(
√
5−1
2 ,∞). Therefore

m1 := min
C1×E1

α(x, y) =
f(
√
5−1
2 )

f(54)
≥ 0.59, m2 := min

C2×E2

α(x, y) =
f(2)

f(134 )
≥ 0.21,

m′1 := min
E1×D

α(x, y) =
f(1)

f(94)
≥ 0.22, m′2 := min

E2×D
α(x, y) = min{ f(3)

f(94)
, 1} = 1.

For any x ∈ C1, y ∈ D, take My = {z ∈ R2, ry − 1 ≤ rz ≤ 5/4} ⊂ E1.
Then for any z ∈My, rz ≤ 5/4 ≤ rx+ 1 and rz ≥ 2−1 = 1 ≥ |rx−1|. Thus
My ⊂ Bx, and then

P 2(x, dy) =

∫
Bx

P (x, dz)P (z, dy) ≥
∫
My

P (x, dz)P (z, dy)

=
1

4π|x|

(∫
My

α(x, z)α(z, y)q(y, z)dz

)
dy

≥ 1

8π

(∫
My

m1m
′
1 ·

1

4π|z|
dz

)
dy

=
m1m

′
1

8π

(
2π

∫ 5
4

ry−1

1

4π
dr

)
dy

=
m2m

′
2

16π
(
9

4
− ry)dy ≥

0.13

16π
(
9

4
− ry)dy.
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For any x ∈ C2, y ∈ D, take Ny = {z ∈ R2, 3 ≤ rz ≤ ry + 1} ⊂ E2.
Similarly we have

P 2(x, dy) =

∫
Bx

P (x, dz)P (z, dy) ≥
∫
My

P (x, dz)P (z, dy)

=
1

4π|x|

(∫
My

α(x, z)α(z, y)q(y, z)dz

)
dy

≥ 1

16π

(∫
My

m2m
′
2 ·

1

4π|z|
dz

)
dy

=
m1m

′
1

32π
(ry − 2)dy ≥ 0.1

16π
(ry − 2)dy.

Then

P 2(x, dy) ≥ 1D
1

16π
min

{
0.13(

9

4
− ||y||), 0.1(||y|| − 2)

}
dy,

where the size ε ≥ 3.5 ∗ 10−5.

7.3 Proof of Theorem 2 (b)

Since H and V only depend on rx, we will regard them as functions of
rx ∈ R throughout this proof. We consider three different cases.

Case 1: rx > 4.
Then ry > 4 − 1 >

√
5−1
2 for any y ∈ Bx. So f is increasing on (rx −

1, rx + 1). For any y ∈ Bx, we have α(x, y) = 1 if and only if ry ≤ rx. Let
Ax = B(0, rx) \B(0, rx − 1) (the inner part of the annulus). Then

PV (x) =

∫
R2

V (y)P (x, dy)

=
1

4πrx
(

∫
Ax

V (y)dy +

∫
Bx\Ax

V (y)
f(rx)

f(ry)
+

∫
Bx\Ax

V (x)(1− f(rx)

f(ry)
)dy

=
1

4πrx
(

∫
Ax

V (y)dy +

∫
Bx\Ax

(V (x) + (V (y)− V (x))
f(rx)

f(ry)
)dy).

Let

I(x, y) = V (x) + (V (y)− V (x))
f(rx)

f(ry)
= V (x)(1 + (

V (y)

V (x)
− 1)

f(rx)

f(ry)
)

= V (x)(1 + (e
1
2
(H(y)−H(x)) − 1)

eH(x)rx

eH(y)ry
).
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Let u = H(y)−H(x), and set

I(x, y) = V (x)(1 + (e
1
2
u − 1)e−u

rx
ry

).

Then∫
Bx\Ax

I(x, y)dy = V (x)

(∫
Bx\Ax

dy +

∫
Bx\Ax

(e
1
2
u − 1)e−u

rx
ry
dy

)

= V (x)(vol(Bx \Ax) + rx

∫
Bx\Ax

(e−
1
2
u − e−u)

1

ry
dy).

Since u is a function of ry (i.e. u only depends on the magnitude of y),∫
Bx\Ax

(e−
1
2
u−e−u)

1

ry
dy =

∫ 2π

0

∫ rx+1

rx

(e−
1
2
u−e−u)

1

r
rdrdθ = 2π

∫ rx+1

rx

(e−
1
2
u−e−u)dr.

Since rx ≤ ry ≤ rx + 1, u = H(y)−H(x) = ry − rx + 1
ry
− 1

rx
≤ ry − rx ≤ 1.

Note that (e−
1
2
u − e−u) is increasing for u ∈ (0, 1). So∫ rx+1

rx

(e−
1
2
u − e−u)dr ≤

∫ rx+1

rx

(e−
1
2
(r−rx) − e−(r−rx))dr

=

∫ 1

0
(e−

1
2
t − e−t)dt = 1 + e−1 − 2e−

1
2 .

Denote (1 + e−1 − 2e−
1
2 ) by m1. Then∫

Bx\Ax

I(x, y)dy ≤ V (x)(vol(Bx \Ax) + 2πm1rx) = 2πV (x)(rx +
1

2
+m1rx).

(since vol(Bx \ Ax) = π(rx + 1)2 − πr2x = π(2rx + 1)). Now consider the
other part.∫

Ax

V (y)dy = 2π

∫ rx

rx−1
e

1
2
(r+ 1

r
)rdr = 2πV (x)

∫ rx

rx−1
e

1
2
(r−rx+ 1

r
− 1

rx
)rdr.

Note

r − rx +
1

r
− 1

rx
= r − rx +

rx − r
rrx

≤ r − rx +
rx − r

12
=

11

12
(r − rx).
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(the inequality follows from the fact that rrx ≥ (rx− 1)rx ≥ (4− 1)4 = 12).
So ∫

Ax

V (y)dy ≤ 2πV (x)

∫ rx

rx−1
e

11
24

(r−rx)rdr = 2πV (x)

∫ 0

−1
e

11
24
t(t+ rx)dt

= 2πV (x)(

∫ 0

−1
te

11
24
tdt+rx

∫ 0

−1
e

11
24
tdt) = 2πV (x)(

840e−
11
24 − 576

121
+

24(1− e−
11
24 )

11
rx).

Denote this by 2πV (x)(m2rx +m3). Then

PV (x) ≤ 1

4πrx
(2πV (x)(rx +

1

2
+m1rx) + 2πV (x)(m2rx +m3))

=
V (x)

2
(1 +

1

2rx
+m1 +m2 +

m3

rx
)

≤ 1

2
(1 +

1

8
+m1 +m2 +

m3

4
)V (x) (as rx > 4)

< 0.995V (x).

Case 2: rx < 1/4.
In this case |rx−1| = 1−rx > 1−1/4 = 3/4, and (rx+1) < 1/4+1 = 5/4.

So Bx ⊂ (B(0, 54) \B(0, 34)). Note

max
y∈Bx

H(y) ≤ max{H(
3

4
), H(

5

4
)} = max{3

4
+

4

3
,
4

5
+

5

4
} =

25

12
.

And

H(x) ≥ 1

4
+ 4 =

17

4
.

So for any y ∈ Bx,

V (y)/V (x) = e
1
2
(H(y)−H(x)) ≤ e

1
2
( 25
12
− 17

4
) = e−

13
12 .

Then we will show the acceptance rate is always 1. Recall

α(x, y) = min{1, πu(y)q(y, x)

πu(x)q(x, y)
} = min{1, f(rx)

f(ry)
}.

We showed f(x) is decreasing on (0,
√
5−1
2 ) and is increasing on (

√
5−1
2 ,∞).

Since 1
4 <

√
5−1
2 < 3

4 , we have

f(rx) ≥ f(
1

4
) =

1

4
e

17
4 , f(ry) ≤ f(

5

4
) =

5

4
e

41
20 .
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So
f(rx)

f(ry)
≥

1
4e

17
4

5
4e

41
20

>
e2

5
> 1, y ∈ Bx.

Therefore

PV (x) =

∫
Bx

q(x, y)V (y)dy ≤
∫
Bx

q(x, y)e−
13
12V (x)dy = e−

13
12V (x) < 0.995V (x).

Case 3: rx ∈ [1/4, 4] (i.e., x ∈ C).
Let E = B(0, 14). Note ry ≤ 5 for all y ∈ Bx. If y /∈ E is proposed, since

1/4 ≤ ry ≤ 5 and V (1/4) = V (4) ≤ V (5),

V (Xn+1) ≤ max{V (x), V (5)} ≤ max{V (4), V (5)} = e
13
5 .

If y ∈ E is proposed, first note this requires |rx − 1| < 1
4 . So rx ∈ [34 ,

5
4 ].

Then

f(rx) ≤ f(
5

4
) =

5

4
e

41
20 , f(ry) ≥ f(

1

4
) =

1

4
e

17
4 .

So
f(rx)

f(ry)
≤

5
4e

41
20

1
4e

17
4

< 1, y ∈ E.

This implies

α(x, y) =
f(rx)

f(ry)
< 1, y ∈ E ∩Bx.

Note

PV (x) =

∫
Bx∩E

V (y)P (x, dy) +

∫
Bx\E

V (y)P (x, dy).

Clearly if rx /∈ [34 ,
5
4 ] (i.e. Bx ∩ E = ∅ ), then PV (x) ≤ V (5) = e

13
5 = e2.6 <

e2.7. Otherwise

PV (x) ≤
∫
Bx∩E

q(x, y)
f(rx)

f(ry)
V (y)dy +

∫
Bx\E

V (5)P (x, dy)

=
f(rx)

4πrx

∫
Bx∩E

e
1
2
H(y)

eH(y)ry
dy + V (5)

≤ f(rx)

4πrx
2π

∫ 1
4

0
e−

1
2
(r+ 1

r
)dr + V (5)

<
e
(rx+

1
rx) 0.001

2
+ V (5)

≤ e4+
1
4

2000
+ V (5) < e2.7.
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Therefore
PV (x) ≤ e2.7, x ∈ C.

On the other hand, we always have V (x) = e
1
2
H(x) ≥ e

1
2
(1+ 1

1
) = e. So, for

x ∈ C,
PV (x) ≤ e2.7 ≤ 0.995V (x) + (e2.7 − 0.995)1C .

7.4 Proof of Theorem 3

It was shown in [4, 2] that if two copies {Xk}∞k=0 and {X ′k}∞k=0 of a time-
inhomogeneous Markov chain have shift-coupling times T and T ′, then the
total variation distance between the ergodic averages of their distributions
can be bounded as:∥∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)−
1

n

n∑
k=1

P(X ′k ∈ ·)

∥∥∥∥∥ ≤ 1

n
E
[

min(max(T, T ′), n)
]
. (5)

Thus, Theorem 3 will follow by constructing copies {Xk} and {X ′k}, with the
latter in stationarity, in such a way that we can bound these shift-coupling
tail probabilities. To do this, we generalize the construction of {Xk} and
{X ′k} from Section 3 of [29] to the case n0 > 1.

Specifically, we proceed as follows. We begin by choosing X0 ∼ ν and
X ′0 ∼ π independently, and also generate an independent random variable
W ∼ Q(·). Then, whenever V (Xn) ≤ d, we flip an independent coin
with probability of heads equal to ε. If the coin comes up heads, we set
Xn+n0 = W and T = n + n0. If the coin comes up tails, we instead gener-
ate Xn+n0 ∼ 1

1−ε(P (Xn, ·)− εQ(·)), i.e. from the residual distribution. For
completeness we then also “fill in” the values Xn+1, . . . , Xn+n0−1 by con-
ditional probability, according to the Markov chain transition probabilities
conditional on the already-constructed values of Xn and Xn+n0 . If instead
V (Xn) > d, then we simply choose Xn+1 ∼ P (Xn, ·) as usual. We continue
this way until time T , i.e. until we get heads and set XT = W .

We construct {X ′n} and T ′ similarly, by flipping an independent ε-coin
whenever V (X ′n) ≤ d, and setting eitherX ′n+n0

= W orX ′n+n0
∼ 1

1−ε(P (X ′n, ·)−
εQ(·)) (and again we “fill in” X ′n+1, . . . , X

′
n+n0−1 by conditional probabil-

ity), up until the first head upon which we set X ′n+n0
= W and T ′ = n+n0.

This construction guarantees that XT = X ′T ′ = W ∼ Q(·). We then
continue the two chains identically from W onwards, by choosing XT+n =
X ′T ′+n ∼ P (XT+n−1, ·) for n = 1, 2, 3, . . .. Our construction ensures that
each of {Xn} and {X ′n} each marginally follow the transition probabilities
P (·, ·), and also that XT+n = X ′T ′+n for n = 0, 1, 2, . . ..
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Now, combining the inequality (5) with the assumption that P (X ′k ∈ ·) =
π(·) and the standard fact (see e.g. Proposition A.2.1 of [34]) that E(Z) =∑∞

k=1P(Z ≥ k) for any non-negative integer-valued random variable Z,
and noting that P (min[max(T, T ′), n] ≥ k) ≤ P (max(T, T ′) ≥ k), yields
the bound:∥∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)− π(·)

∥∥∥∥∥ ≤ 1

n

∞∑
k=1

P
(
max(T, T ′) ≥ k

)
. (6)

We now bound P (max(T, T ′) ≥ k) for any non-negative integer k. Let
t1, t2, . . . be the times at which we flipped a coin for {Xn}, i.e. the times
when V (Xn) ≤ d excluding the “fill in” times. Then, let

Nk = max{i : ti ≤ k}

be the number coin flips up to time k. Since each coin-flip yields probability
ε of reaching T after n0 additional steps, we have for any integer j ≥ 1 that
P(T ≥ k,Nk−n0 ≥ j) ≤ (1− ε)j . Hence,

P(T ≥ k) = P(T ≥ k, Nk−n0 ≥ j) + P(T ≥ k, Nk−n0 < j)

≤ (1− ε)j + P(Nk−n0 < j). (7)

Then since λ < 1, we have by Markov’s inequality that

P(Nk−n0 < j) = P (tj > k − n0) = P
(
λ−tj > λ−k−n0

)
≤ λk−n0 E

[
λ−tj

]
.

To continue, let τ1 = t1 and τi = ti − ti−1 for i ≥ 2. Then by Lemma 1
below,

λk−n0 E
[
λ−tj

]
= λk−n0 E

[
λ−(τ1+...τj)

]
≤ λk E[V (X0)] (λ−n0A)j−1.

Hence, from (7),

P (T ≥ k) ≤ (1− ε)[j] + λk−n0(j−1)Aj−1Eν(V ).

Similarly,
P (T ′ ≥ k) ≤ (1− ε)[j] + λk−n0(j−1)Aj−1Eπ(V ).

By Lemma 2 below, we have Eπ(V ) ≤ b
1−λ . Hence,

P(max(T, T ′) ≥ k) ≤ P(T ≥ k) + P(T ′ ≥ k)
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≤ 2(1− ε)[j] + λk−n0(j−1)Aj−1
(
Eν(V ) +

b

1− λ

)
.

Finally, choosing j = brk + 1c ≥ rk and using (6),∥∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)− π(·)

∥∥∥∥∥
≤ 1

n

∞∑
k=1

[
2(1− ε)rk + λ−n0(λ1−n0rAr)k

(
Eν(V ) +

b

1− λ

)]
.

Since (1 − ε)r < 1 and λ(1−n0r)Ar < 1, the right hand side is a geometric
sum which is equal to the claimed bound.

The above proof requires two lemmas. The first is a bound on ex-
pected values using a non-increasing expectation property, i.e. a partial
supermartingale argument (similar to Lemma 4 of [33]):

Lemma 1. In the above proof of Theorem 3,
(a) E [λ−τ1 ] ≤ E [V (X0)], and
(b) for i ≥ 2, E [λ−τi |τ1, . . . , τi−1] ≤ λ−n0A.

Proof. Let

gi(k) =

{
λ−k V (Xk), k ≤ ti
0, k > ti

For (a), we know that Xk /∈ C for any k < t1, so the drift condition
implies that g1(k) has non-increasing expectation as a function of k, and
hence

E
[
λ−τ1

]
= E

[
λ−t1

]
≤ E

[
λ−t1V (Xt1)

]
= E [g1(t1)] ≤ E [g1(0)] = E [V (X0)] .

For (b), for any i ≥ 2 we know that Xk /∈ C if ti−1 + n0 ≤ k < ti, so
the drift condition implies that gi(k) has non-increasing expectation as a
function of k for k ≥ ti−1 + n0. Hence,

E
[
λ−τi |Xti−1

]
= E

[
λ−(ti−ti−1)|Xti−1

]
≤ E

[
λti−1λ−tiV (Xti)|Xti−1

]
= E

[
λti−1gi(ti)|Xti−1

]
≤ E

[
λti−1gi(ti−1 + n0)|Xti−1

]
≤ λ−n0E

[
V (ti−1 + n0)|Xti−1

]
≤ λ−n0 sup

x∈C
E [V (X1)|X0 = x] .
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We also require a lemma which bounds π(V ), i.e. Eπ(V ).

Lemma 2: Suppose a φ-irreducible Markov chain on a state space X , with
transition probabilities P (·, ·) and stationary distribution π(·), satisfies the
drift condition (3) for some function V and subset C and constants λ < 1
and b < ∞. Then the expected value of V with respect to the distribution
π satisfies the inequality Eπ(V ) ≤ b/(1− λ).

Proof. The drift condition (3) implies that our chain satisfies [28, Theo-
rem 14.0.1, condition (iii)], with the choice f(x) = (1− λ)V (x). Then, [28,
Theorem 14.0.1, condition (i)] implies that Eπ(f) <∞, i.e. Eπ[(1−λ)V ] <
∞. (The result [28, Theorem 14.0.1] is actually stated assuming aperiod-
icity, but it still holds in the periodic case by passing to the lazy chain
P = 1

2(I + P ), which is φ-irreducible and aperiodic, and has the same
stationary distribution π(·), and satisfies the drift condition (3) with the
constants b = b/2 and λ = (1 + λ)/2.) It follows that Eπ(V ) <∞.

On the other hand, (3) implies that PV ≤ λV +b. Since Eπ(V ) <∞ and
π P = π, we can take expected values with respect to π of both sides of this
inequality to conclude that Eπ(V ) ≤ λEπ(V )+b. Hence, (1−λ)Eπ(V ) ≤ b,
so Eπ(V ) ≤ b/(1− λ), as claimed.

Remark: Lemma 2 can also be derived from Theorem 14.3.7 of [28], with
the choices f(x) = (1−λ)V (x), and s(x) = b, after verifying that the chain
is positive recurrent using their Theorem 14.0.1.

7.5 Proof of Theorem 4

For any measurable subset S,

|Fn(S)− π(S)| =
∣∣∣E[fraction of time from 1 to n that the chain is in S]− π(S)

∣∣∣
=

∣∣∣∣E[ 1

n

n∑
k=1

1Xk∈S

]
− π(S)

∣∣∣∣ =

∣∣∣∣ 1n
n∑
k=1

P(Xk ∈ S)− π(S)

∣∣∣∣.
Thus

sup
S⊆X
|Fn(S)−π(S)| = sup

S

∣∣∣ 1
n

n∑
k=1

P(Xk ∈ S)−π(S)
∣∣∣ =

∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)−π(·)
∥∥∥,

by definition of total variation distance. Also, by the triangle inequality,∥∥∥∥ 1

n

n∑
k=1

P(Xk ∈ ·)− π(·)
∥∥∥∥ ≤ 1

n

n∑
k=1

∥∥P(Xk ∈ ·)− π(·)
∥∥.
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This completes the proof.
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nique, 2(77–105):78–80, 1938.

[13] Alan E. Gelfand and Adrian F.M. Smith. Sampling-based approaches
to calculating marginal densities. Journal of the American statistical
association, 85(410):398–409, 1990.

[14] Andrew Gelman and Donald B. Rubin. Inference from iterative simu-
lation using multiple sequences. Statistical Science, 7(4):457–472, 1992.

[15] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of images. IEEE Transactions
on pattern analysis and machine intelligence, 6(5–6):721–741, 1984.

[16] C.J. Geyer. Practical Markov chain Monte Carlo. Statistical science,
7:473–483, 1992.

[17] J. M. Hammersley. Stochastic models for the distribution of particles
in space. Advances in Applied Probability, 4:47–68, 1972.

[18] W.K. Hastings. Monte Carlo sampling methods using Markov chain
Monte Carlo. Biometrika, 57:97–109, 1970.

[19] Ajay Jasra and Pierre Del Moral. Sequential Monte Carlo methods
for option pricing. Stochastic analysis and applications, 29(2):292–316,
2011.

[20] Galin L. Jones and James P. Hobert. Sufficient Burn-in for Gibbs
Samplers for a Hierarchical Random Effects Model. The Annals of
Statistics, 32(2):784–817, 2004.

[21] G.L. Jones and J.P. Hobert. Honest exploration of intractable probabil-
ity distributions via Markov chain Monte Carlo. Statist. Sci., 16(4):312–
334, 2001.

[22] Arthur G Korteweg. Markov chain Monte Carlo methods in corporate
finance. Available at SSRN 1964923, 2011.

[23] Werner Krauth. Event-chain Monte Carlo: foundations, applications,
and prospects, arXiv 2102.07217, 2021.

31



[24] T.M. Liggett. Random invariant measures for Markov chains, and inde-
pendent particle systems. Z. Warhschemlichkeitstheorie verw. Gebiete,
45:297–313, 1978.

[25] R.B. Lund, S.P. Meyn, and R.L. Tweedie. Computable exponential
convergence rates for stochastically ordered Markov processes. Ann.
Appl. Probab., 6(1):218–237, 1996.

[26] P. Matthews. A slowly mixing Markov chain with implications for Gibbs
sampling. Statistics and Probability Letters, 17:231–236, 1993.

[27] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[28] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability.
Springer Science & Business Media, 2012.

[29] G.O. Roberts and J.S. Rosenthal. Shift-coupling and convergence rates
of ergodic averages. Stochastic Models, 13(1):147–165, 1997.

[30] G.O. Roberts and J.S. Rosenthal. General state space Markov chains
and MCMC algorithms. Probability Surveys, 1:20–71, 2004.

[31] G.O. Roberts and R.L. Tweedie. Geometric convergence and cen-
tral limit theorems for multidimensional hastings and metropolis al-
gorithms. Biometrika, 83(1):95–110, 1996.

[32] G.O. Roberts and R.L. Tweedie. Rates of convergence of stochastically
monotone and continuous time Markov models. Journal of Applied
Probability, 37(2):359–373, 2000.

[33] J.S. Rosenthal. Minorization conditions and convergence rates for
Markov chain Monte Carlo. Journal of the American Statistical As-
sociation, 90:558–566, 1995.

[34] J.S. Rosenthal. A First Look at Stochastic Processes. World Scientific
Publishing Co., 2019.

[35] J.S. Rosenthal. Point process MCMC JavaScript simulation, 2020.
Available at: probability.ca/pointproc.

[36] Ruslan Salakhutdinov. Learning deep Boltzmann machines using adap-
tive MCMC. ICML 2010 - Proceedings, 27th International Conference
on Machine Learning, pages 943–950, July 2010.

32



[37] Sanjib Sharma. Markov chain Monte Carlo methods for bayesian data
analysis in astronomy. Annual Review of Astronomy and Astrophysics,
55(1):213–259, 2017.

[38] Joshua S. Speagle. A conceptual introduction to Markov chain Monte
Carlo methods. arXiv 1909.12313, 2020.

[39] Gloria I Valderrama-Bahamóndez and Holger Fröhlich. MCMC tech-
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