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1. Introduction.

Tanner and Wong [TW] have defined an iterative process for obtaining closer and closer

approximations to the (Bayes) posterior distribution of certain parameters given certain

data. Their approach, which they call Data Augmentation, is closely related to the Gibbs

Sampler algorithm as developed by Geman and Geman [GG]. It is used in the following

situation. Suppose we observe data ~Y , and wish to compute the posterior of a parameter ~θ

give ~Y . Suppose further that there is some some other data ~X which is not observed, but

such that the posterior of ~θ given both ~X and ~Y is fairly simple. Furthermore, suppose

the conditional distribution of ~X given ~Y and ~θ is also simple. Under these conditions, the

Data Augmentation algorithm provides a straightforward way to obtain better and better

approximations of the true posterior of ~θ given ~Y . The idea is to augment the data ~Y with

“simulated” values of the unknown ~X.

Tanner and Wong study convergence properties of the Data Augmentation algorithm.

Specifically, they show that under mild conditions, the iterative process will converge in

total variation distance to the true posterior. However, they do not obtain a useful estimate

for the rate of convergence.

In this paper, we examine this rate of convergence more carefully. We restrict our

attention to the case where ~X and ~Y take values in a finite set. Thus, we imagine coin-

tossing or the rolling of a finite die. Our set-up is that ~X = (X1, . . . , Xn) are n independent,

unobserved results of a coin-toss or finite die. While we do not observe ~X, we do observe

~Y = (Y1, . . . , Yn). Here Yi depends only on Xi, in a known way. (For example, if the

Xi represent whether or not the i’th subject has a certain disease, the Yi might be the

observed results of an imperfect medical test.) We wish to compute the posterior for the

distribution of the Xi, given only the “imperfect” data ~Y . The idea is to augment the Yi

by “fake” values of Xi at each step, and then update our estimate for the posterior using

these fake values of Xi. This provides an iterative procedure for obtaining successively

better approximations to the desired posterior.

The main result of this paper states that under certain assumptions, such a process

on a finite sample space will converge to the true posterior after O(log n) steps. Thus, the

number of steps required to approach the true posterior does not grow too quickly with
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the amount of observed data. This suggests the feasibility of running this iterative process

when given a large but finite amount of data. In [R], similar results are obtained for a

more complicated model, namely the variance component models as discussed in [GS].

The plan of this paper is as follows. In Section 2 we review the definition of the Data

Augmentation algorithm, and state the key lemma to be used in proving convergence

results. In Section 3 we prove the convergence result for the case of coin-tossing (i.e. when

Xi and Yi only take values 0 and 1). In Section 4 we examine the general finite case (i.e.

when Xi and Yi take on an arbitrary finite number of values). Section 4 includes an analysis

of a Dynamical System on the K-simplex that arises in the study of Data Augmentation

in this case. We prove the convergence of this dynamical system under certain conditions,

but the general question remains open.

2. Preliminaries.

To define the Data Augmentation algorithm as we shall study it, let X1, X2, . . . , Xn be

iid random variables taking values in a set X , with unknown distribution G. For 1 ≤ i ≤ n,

let Yi be a random variable, also taking values in the set X , which is a (known) random

function of the corresponding Xi. Specifically, we assume there is a family of distributions

Hx such that

L(Yi | X1, . . . , Xn, Y1, . . . , Yi−1, Yi+1, . . . , Yn) = L(Yi | Xi) = HXi
.

We suppose that we observe Y1, Y2, . . . , Yn but not X1, X2, . . . , Xn, and we are interested

in the posterior distribution µ of G, conditional on the observed values of the Yi, and

relative to some prior distribution ν. (Here µ and ν are probability distributions on the

set M1(X ) of all probability distributions on X : µ, ν ∈ M1(M1(X )).)

The Markov chain is defined as follows. Given a probability distribution θk ∈ M1(X ),

choose θk+1 ∈ M1(X ) by (a) choosing x
(k)
1 , . . . , x

(k)
n independently according to θk condi-

tional on the observations Y1, . . . , Yn:

x
(k)
i ∼ θk( · |Y1, . . . , Yn)

and then (b) choosing θk+1 from the posterior distribution of G conditional on the newly

produced values x
(k)
1 , . . . , x

(k)
n (and relative to the same prior distribution ν).
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Formally, the transition probabilities are given by

K(θk, dθk+1) =
∫
Xn

θk(d~x|~y) Bν(dθk+1|~x)

where ~x stands for the possible values (x(k)
1 , . . . , x

(k)
n ) ∈ Xn, ~y stands for the observed data

(Y1, . . . , Yn), and Bν( · |~x) means the posterior distribution on M1(M1(X )) conditional on

the observations ~x and relative to the prior ν.

The following Proposition is from [TW]. (See also [GS] for a survey of the relevant

literature.) We include a proof for completeness.

Proposition 1. The above description defines a time-homogeneous Markov chain on

M1(X ) with stationary distribution given by µ, the posterior distribution of G conditional

on the observed data ~y = (Y1, . . . , Yn).

Proof. The time-homogeneity is immediate since the prior distribution ν does not vary

with time. The statement about stationarity follows from the computation

P (θk+1 ∈ S | θk ∼ µ) =
∫

M1(X )

µ(dθk)
∫
Xn

θk(d~x|~y) Bν(S|~x)

=
∫
Xn

 ∫
M1(X )

µ(dθk) θk(d~x|~y)

Bν(S|~x)

=
∫
Xn

Pν(d~x|~y) Bν(S|~x)

= µ(S) .

Proposition 1 provides the motivation for the Data Augmentation algorithm. The

algorithm provides a recipe for a Markov chain whose stationary distribution is the desired

posterior distribution. Of particular interest is the question of convergence of the Markov

chain to its stationary distribution. The main result of this paper is the following.

Let X be finite. Then, under certain assumptions about the data {Yi} and about the

dependence of Yi on Xi, and with a uniform prior ν, the Data Augmentation algorithm
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converges in total variation distance after O(log n) steps, where n is the number of observed

data.

Remarks.

1. The convergence results in this paper are all stated using the O(·) notation, or in

terms of unspecified constants. However, the proofs allow for a specific determination

of the constants involved. Thus, a result such as the above actually states that given

ε > 0, there is a computable constant Aε such that for any n, after Aε log n steps the

total variation distance is less than ε.

2. We consider only uniform priors throughout most of this paper. However, the results

go through quite generally; this is explored to some extent in the paper’s final remark.

3. The posteriors considered in this paper are all for finite sample spaces, and can all be

computed by other, non-iterative methods. Thus, the main thrust of the current pa-

per is not that Data Augmentation should be used in these cases, but rather that the

convergence results obtained here may provide some insight into using Data Augmen-

tation and Gibbs Sampler in more complicated examples, such as those considered in

[GS] and [GHRS]. We intend to consider some of those examples elsewhere [R]. Also,

the methods used here may be applicable to many other Markov chain problems.

The main tool used in proving the above result will be the following “Upper Bound

Lemma”, inspired by the discussion on page 151 of [A]. It is closely related to the notions

of Doeblin and Harris-recurrence (see [A], [AN], [AMN], [N], [Do]). In fact, a very similar

(but less quantitative) result appears as Theorem 6.15 in [N]. But since this Lemma will

be crucial to what follows, we include a complete proof.

Lemma 2. Let P (x, ·) be the transition probabilities for a time-homogeneous Markov

chain on a general state space X . Suppose that for some probability distribution Q( · ) on

X , some positive integer k0, and some ε > 0,

P k0(x, ·) ≥ ε Q( · ) for all x ∈ X ,

where P k0 represents the k0-step transition probabilities. Then for any initial distribution
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π0, the distribution πk of the Markov chain after k steps satisfies

‖πk − π‖ ≤ (1− ε)bk/k0c

where ‖ · ‖ is total variation distance, π is any stationary distribution, and brc is the

greatest integer not exceeding r. (In particular, the stationary distribution is unique.)

Proof. The proof shall be by a coupling argument. (For background on coupling,

see, e.g., [P] or chapter 4E of [Di].) We let {Xk} be the Markov chain beginning in the

distribution π0, and let {Yk} be the Markov chain beginning in the distribution π. We

realize each Markov chain as follows. At time k = 0, we choose the positions at time

k = k0 by (a) with probability ε letting them both go to a point p ∈ X chosen according

to Q( · ), and (b) with probability 1 − ε letting them move independently according to

the distributions 1
1−ε (P (X0, · )− εQ( · )) and 1

1−ε (P (Y0, · )− εQ( · )), respectively. We

then fill in the values X1, X2, . . . , Xk0−1 [resp. Y1, Y2, . . . , Yk0−1] conditionally on X0 and

Xk0 [resp. Y0 and Yk0 ]. Having done so, we similarly choose the values of Xk0+1, . . . , X2k0

and Yk0+1, . . . , Y2k0 . Continuing in this manner, we choose {Xk} and {Yk} for all k.

It is easily checked that the above recipe realizes {Xk} and {Yk} according to the

transition probabilities P ( · , · ). The coupling time T is the first time we choose option

(a) above. This happens with probability ε every k0 steps. Thus,

Prob(T > k) ≤ (1− ε)bk/k0c .

The result now follows from the coupling inequality

‖L(Xk)− L(Yk)‖ = ‖πk − π‖ ≤ Prob(T > k) .

Remarks.

1. It is in fact not necessary that the Markov chain be time-homogenous. The proof

above works with very minor changes for a general Markov chain, provided we have

P t,t+k0(x, ·) > εQ( · ) for all x ∈ X and for all times t, and provided that π(·) is

stationary for each P t,t+1(·, ·).
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2. Lemma 2 is similar in appearance to the Strong Stopping Times of Aldous and Diaconis

(see [Di], Chapter 4A). However, in Lemma 2 the measure Q(·) is arbitrary, while in

the case of Strong Stopping Times Q(·) is required to be a stationary distribution for

the chain. This difference is significant since in many cases the stationary distribution

is unknown or difficult to work with.

3. A generalization of Lemma 2, more suitable for unbounded spaces X , is presented in

[R].

3. The case of a two-element state space.

In this section we let X = {0, 1} have two elements only. (The extension to the case

X = {1, 2, . . . ,K} is treated in the next Section.) Thus the random walk takes place

on M1(X ) = [0, 1], the unit interval, with θ ∈ [0, 1] identified with the distribution on

X giving mass θ to 1, and mass 1-θ to 0. The random variables X1, . . . , Xn take values

in {0, 1} according to some unknown distribution G ∈ [0, 1]. For each i, Yi is a random

function of the value of Xi, and the observed data Y1, . . . , Yn are all in {0, 1}. We let the

prior distribution ν be Lebesgue measure on [0, 1], and we are interested in the posterior

distribution µ of G given the observations {Yi}.

We let pab (a, b ∈ {0, 1}) be the probability that Yi = b given that Xi = a. We set

p10 = s, p01 = t, p11 = 1 − s, and p00 = 1 − t. We further let γ be the proportion of the

data {Yi} which are 1:

γ = (number of i for which Yi = 1)/n .

(As an example, the Yi might be the results of a medical test for a certain disease in

n subjects. The Xi would indicate whether the i’th subject actually had the disease. In

this case, γ would be the proportion of positive test results, while s and t would be the

probabilities of false negatives and false positives, respectively.)

In this setting, the Markov chain {θk} (where θk ∈ [0, 1]) may be described as follows.

Set

η(θ) = P (Yr = 1) = (1− s)θ + t(1− θ) ,

7



and let

q1(θ) = P (Xr = 1 | Yr = 1) =
(1− s)θ

η(θ)

q0(θ) = P (Xr = 1 | Yr = 0) =
s θ

1− η(θ)
.

Given θk, we choose x
(k)
1 , . . . , x

(k)
n ∈ {0, 1} where the probability that x

(k)
r = 1 is given by

P (x(k)
r = 1) =

{
q1(θ), Yr = 1

q0(θ), Yr = 0

Then choose θk+1 from the beta distribution β(Sk + 1, n− Sk + 1) where Sk =
n∑

r=1
x

(k)
r is

the number of x
(k)
r which equal 1.

With this notation, our assumptions can be stated. We assume that s, t, and γ remain

fixed as n increases. (The observant reader will object that γ must always be an integer

multiple of 1/n, and therefore cannot remain fixed for all n. However, this difficulty can be

avoided by allowing γ to vary by an amount which is less than 1/n. Such small changes will

not affect the arguments which follow, and shall not be considered further.) We further

assume that

0 < s <
1
2
; 0 < t <

1
2
;

these assumptions merely state that Xr and Yr are positively correlated.

Under the above assumptions, we shall prove

Theorem 3. For the Data Augmentation process corresponding to X = {0, 1}, there

exist positive numbers Λ and α (depending on s, t, and γ, but not depending on n) such

that for any initial distribution π0, the distribution πk of the Markov chain after k steps

satisfies

‖πk − µ‖ ≤ (1− α)bk/Λ log nc

where ‖ · ‖ is total variation distance, µ is the posterior distribution given the observed

data Y1, . . . , Yn, and bxc is the greatest integer not exceeding x.

Theorem 3 says that after O(log n) steps, the Markov chain is close in total variation

distance to its stationary distribution µ.
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Remark. In the case X = {0, 1}, it is easy to see directly that the posterior distribution

µ is absolutely continuous with respect to Lebesgue measure, with density proportional to

η(θ)nγ(1 − η(θ))n(1−γ), where η(θ) = (1 − s)θ + t(1 − θ) is the probability that Yr = 1.

Thus, µ has a peak (of width O(1/
√

n)) near η(θ) = γ, i.e. near θ = γ−t
1−s−t . The quantity

γ−t
1−s−t will re- appear as the quantity F below.

To prove Theorem 3, we shall make use of Lemma 2. We must first examine the

Markov chain in question more carefully. In particular, let us consider the distribution of

θk+1 given θk. Recall that given θk, we compute θk+1 by flipping nγ “q1(θk)-coins”, and

n(1 − γ) “q0(θk)-coins”, and then choosing θk+1 from β(Sk + 1, n − Sk + 1) where Sk is

the number of “heads” we obtained in the n coin flips. Now, the distribution of Sk will

be peaked within O(1/
√

n) of nγq1(θk) + n(1− γ)q0(θk) with width of order 1/
√

n. Then

the distribution of θk+1 will be peaked around Sk+1
n+2 with width again of order 1/

√
n. We

conclude that L(θk+1 | θk) will be peaked around e(θk) with width O(1/
√

n), where

e(θ) = γq1(θ) + (1− γ)q0(θ)

= γ
(1− s)θ

(1− s)θ + t(1− θ)
+ (1− γ)

sθ

1− (1− s)θ − t(1− θ)
.

This last observation gives us a picture of how things “ought to proceed”. Aside from

a small amount of “spreading”, the values {θk} will follow the deterministic prescription

θk+1 = e(θk) .

This suggest studying the “dynamical system” given by θk+1 = e(θk), and using this to

infer information about our original Markov chain. We emphasize that the dynamical

system is merely a useful approximation, and that its properties do not coincide with

those of the Markov chain. On the other hand, we note that e(θ) does not depend on n,

which simplifies the analysis.

The equation θk+1 = e(θk) is easily seen to have three fixed points θk+1 = θk: when

θk is 0, 1, or

F = F (s, t, γ) =
γ − t

1− s− t
.

We shall assume for convenience (see Remark 2 at the end of this section) that t < γ < 1−s,

i.e. that the proportion of 1’s observed is not “exceptionally high” or “exceptionally low”.
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This assumption ensures that 0 < F < 1, and that the fixed points 0 and 1 are unstable:

if θk is “near” to 0 (say), then θk+1 will tend to be a bit further away. The fixed point F ,

on the other hand, is stable: {θk} will tend to get closer and closer to F at an exponential

rate.

We now return our attention to the Markov chain itself. The above analysis suggests

that after O(log n) steps, θk for the Markov chain ought to be within, say, 1/
√

n of F .

Then, since the binomial distributions above tend to “spread” things by O(1/
√

n), we

expect that after one more step, θk will have a reasonable chance of going to any point

within (say) 1/
√

n of F . Hence, if in Lemma 2 we make Q( · ) roughly uniform on

[F − (1/
√

n), F + (1/
√

n)], and set k0 = Λ log n for some Λ, we should be able to choose ε

independent of n, proving Theorem 3.

To make the above argument more precise, we need the following lemma. It says that

after one step the Markov chain is at least a little bit away from 0 and 1, that A log n steps

after that the Markov chain is far away from 0 and 1, and that B1 log n + B2 steps after

that the Markov chain is within about 1/
√

n of F , all with probabilities bounded below

independently of n.

Lemma 4. Let F be as above, and assume that t < γ < 1− s. Then there are constants

A,B1, B2,M1,M2,m1,m2 and m3, depending on s, t, and γ but all independent of n, such

that for all sufficiently large n, if

R1 = [M1/n, 1− (M1/n)] ,

R2 = [F/4, (F + 3)/4] ,

and R3 = [F − (M2/
√

n), F + (M2/
√

n)] ,

then

(1) Prob(θ1 ∈ R1) ≥ m1 > 0;

(2) Prob(θT+A log n ∈ R2 | θT ∈ R1) ≥ m2 > 0;

(3) Prob(θT+B1 log n+B2 ∈ R3 | θT ∈ R2) ≥ m3 > 0;

Proof. We let f(θ) = e(θ) − θ. It is easily seen that f(0) = f(F ) = f(1) = 0, that

f(θ) > 0 for 0 < θ < F , and that f(θ) < 0 for F < θ < 1. (For example, as θ → 0,

10



e(θ)
θ → γ 1−s

t + (1− γ) s
1−t , and this last expression is easily seen to be greater than 1 since

γ > t.) Furthermore, f has non-zero derivative at each of 0, 1, and F . Thus we can define

C1 = min
(

inf
θ<F/4

f(θ)
θ

, inf
θ<F/4

−f(θ)
1− θ

)
> 0 ;

C2 = 1 +
C1

2
> 1 ;

C3 = max
(

sup
0<θ<1

q1(θ)
θ

, sup
0<θ<1

1− q0(θ)
1− θ

, 1 +
3C1

4

)
= max

(
1− s

t
,
1− t

s
, 1 +

3C1

4

)
;

M1 =
96C3

(C1)2(1− 1
C2

)
;

We state these definitions here to emphasize their independence of n. With these defini-

tions, we proceed to the proofs.

For (1), we note that Prob(θ1 ∈ R1) is smallest when θ0 = 0 (or equivalently when

θ0 = 1). If θ0 = 0, then θ1 is chosen from β(n + 1, 1), so

Prob(θ1 ∈ R1 | θ0 = 0) = (n + 1)

1−(M1/n)∫
M1/n

θndθ

= (1− (M1/n))n+1 − (M1/n)n+1

≥ e−2M1 (say),

for n sufficiently large, proving (1) with m1 = e−2M1 > 0.

For (2), we set T = 0 for simplicity, and we set A1 = log(F/4)
log C2

, A2 = log((F+3)/4)
log C2

. Then

Prob(θA1 < F/4) is largest (for θ0 ∈ R1) when θ0 = M1/n. Now,

Prob(θA1 < F/4 |θ0 = M1/n) ≤
A1∑
k=1

Prob(θk+1 < (M1/n)(C2)k+1 |θk ≥ (M1/n)(C2)k)

≤
A1∑
k=1

Prob(θk+1 < (M1/n)(C2)k+1 |θk = (M1/n)(C2)k) .

Also

Prob
(
θk+1 < (M1/n)(C2)k+1 | θk = (M1/n)(C2)k

)
≤ Prob1 + Prob2

where Prob1 is the probability that starting from θk = (M1/n)(C2)k, the “binomial part”

of the Markov chain mechanism gets us a proportion Sk/n of 1’s less than (M1/n)(C2)k(1+
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3C1
4 ), and where Prob2 is the probability that starting from Sk/n = (M1/n)(C2)k(1+ 3C1

4 ),

the “beta part” of the Markov chain mechanism results in a value of θk+1 which is less

than (M1/n)(C2)k+1.

Now, starting from θk = (M1/n)(C2)k, Sk/n is a random variable with mean ≥

(M1/n)Ck
2 (1 + C1) and variance equal to

(γq1(θk)(1− q1(θk)) + (1− γ)q0(θk)(1− q0(θk))) /n

≤ max(q0(θk), q1(θk))/n

= q1(θk)/n

≤ C3θk/n

= (M1/n2)C3C
k
2 .

Thus, by Chebychev’s inequality,

Prob1 ≤
(M1/n2)C3C

k
2(

(M1/n)Ck
2 (C1/4)

)2 =
16C3

M1C2
1Ck

2

≤ 1
6
(1− 1

C2
)(C2)−k .

Similarly, starting from Sk/n = (M1/n)(C2)k(1 + 3C1
4 ), the result of the “beta part” is a

random variable β(Sk + 1, n− Sk + 1) with mean (M1/n)Ck
2 (1 + 3C1

4 ) and variance

(Sk + 1)(n− Sk + 1)
(n + 2)2(n + 3)

≤ (Sk/n2) ≤ (M1/n2)(C2)k(1 +
3C1

4
) ≤ (M1/n2)C3(C2)k ,

so that also

Prob2 ≤
1
6
(1− 1

C2
)(C2)−k .

Thus

Prob(θk+1 < (M1/n)(C2)k+1 | θk = (M1/n)(C2)k) ≤ 1
3
(1− 1

C2
)(C2)−k .

Hence,

Prob(θA1 < F/4 | θ0 = M1/n) ≤
A1∑
k=0

1
3
(1− 1

C2
)(C2)−k < 1/3 .

Similarly, Prob(θA2 > (F + 3)/4) is largest when θ0 = 1 − (M1/n). A computation

very similar to the above then shows that

Prob
(
θA2 > (F + 3)/4 | θ0 = 1− (M1/n)

)
< 1/3 .
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Now, it is easily checked that once θk is in R2, its chances of leaving R2 on any one step

are O(e−n). Hence, if we set A = max(A1, A2), then

Prob(θA /∈ R2) ≤ 1/3 + 1/3 + O(A e−n) = 2/3 + O(e−n log n) ≤ 3/4 (say),

for n sufficiently large, so that

Prob(θA ∈ R2) ≥ 1/4 ,

proving (2).

The computation for (3) is similar but easier. We again set T = 0, and we set

C5 = min
(

inf
F/4<θ<F

f(θ)
F − θ

, inf
F<θ<(F+3)/4

−f(θ)
θ − F

)
> 0 ;

C6 = 1 +
C5

2
> 1 ;

C7 = max
(

3F

4
,
3(1− F )

4

)
;

B1 =
1

2 log C6
; B2 =

log
(

1
8C2

5C2
7 (1− 1

(C6)2
)
)

2 log C6
.

We wish to compute the probability that |F − θk| ≤ C7(C6)−k for 0 ≤ k ≤ B, where

B = B1 log n + B2. For k = 0 it follows from the assumption that θ0 ∈ R2. As above,

Prob
(
|F − θk+1| ≤ C7(C6)−k−1

∣∣ |F − θk| ≤ C7(C6)−k
)

≤ Prob
(
|F − θk+1| ≤ C7(C6)−k−1

∣∣ |F − θk| = C7(C6)−k
)

≤ Prob1 + Prob2 ,

where Prob1 and Prob2 are the probabilities that the “binomial part” and the “beta part”,

respectively, are more than C7(C6)−k−1(C5/4) away from their means. Now, it is easily

checked that the variances of the “binomial part” and the “beta part” are each bounded

by 1
4n . Thus by Chebychev’s inequality

Prob1, P rob2 ≤
1
4n

(C7(C6)−k−1(C5/4))2
=

4
C2

5C2
7n

C2k
6 .
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Hence,

Prob
(
|F − θB | ≤ C7(C6)−B

∣∣ θ0 ∈ R2

)
≥ 1 −

B∑
k=0

Prob
(
|F − θk+1| ≤ C7(C6)−k−1

∣∣ |F − θk| ≤ C7(C6)−k
)

≥ 1 −
B∑

k=0

(Prob1 + Prob2)

≥ 1 −
B∑

k=0

2
4

C2
5C2

7n
C2k

6

≥ 1 − (C6)2B 8
C2

5C2
7n

∞∑
k=0

(C6)−2k

= 1 − 8(C6)2B

C2
5C2

7n(1− 1
(C6)2

)

=
1
2

(by construction of B) .

Thus with probability ≥ 1
2 ,

|F − θB1 log n+B2 | ≤ C7(C6)−B1 log n−B2 = C7

√
1
8
C2

5C2
7 (1− 1

C2
6

)
√

n .

This completes the proof of (3), with m3 = 1
2 and M2 = C7

√
1
8C2

5C2
7 (1− 1

C2
6
).

Lemma 4 shows that after (A + B1) log n + B2 + 1 steps, the Markov chain will be in

R3 (so that |θk − F | ≤ M2/
√

n) with probability at least m1m2m3 > 0.

Let us now consider Sk+1, the result of the “binomial part” of the Markov chain on

the next step. Given θk ∈ R3, we note that Sk+1 will be binomially distributed, with

Sk+1/n having mean also inside R3 (because F is attractive), and having variance within

O(1/n
√

n) of C8/n (where C8 = γq1(F )(1− q1(F )) + (1− γ)q0(F )(1− q0(F ))). It follows

from the Central Limit Theorem that for sufficiently large n, if i is an integer within O(
√

n)

of Fn, then the probability that Sk+1 = i will be at least m4 = e−2(M2+1)2/C8 (say). In

other words, Sk+1/n will have O(1/
√

n) spread around the set R3 and therefore about the

point F .

Once Sk is chosen, recall that L(θk+1 | Sk+1) = β(i + 1, n− i + 1).
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Now set

Q( · ) =
1

2
√

n

Fn+
√

n∑
i=Fn−

√
n

β(i + 1, n− i + 1) ,

a linear combination of these beta distributions with means near F . It follows from the

above that for sufficiently large n,

P (θ, · ) ≥ m4Q( · ) for all θ ∈ R3 .

In other words, once the Markov chain is in R3 it will tend to “spread out” over all of the

interval [F − (1/
√

n), F + (1/
√

n)] in one more step.

Combining the above reasoning with Lemma 4, we see that we can use Lemma 2 with

k0 = (A+B1) log n+B2 +2, and with ε = m1m2m3m4, to complete the proof of Theorem

3 (with Λ = A + B1 + max(B2, 0) + 2, and with α = ε).

Remarks.

1. We note that the result of Theorem 3 is “tight” in the sense that it really does take

O(log n) steps to approach stationarity in total variation distance. Indeed, let the

Markov chain begin in some initial state θ0 6= F , say θ0 < F . Set

C9 = inf
0<θ<F

F − e(θ)
F − θ

.

Thus C9 is a measure (up to O(1/
√

n) errors) of the smallest fraction by which θk

likely gets closer to F in a single step. Note that C9 > 0 since as θ → F this ratio

approaches the derivative of the function f(θ) at F , i.e. (1−s)t
γ + s(1−t)

1−γ − 1 which is

positive since t < γ < 1 − s. We now set C10 = C9/2, a ratio strictly smaller (for

sufficiently large n) than the smallest fraction by which θk likely gets closer to F .

Specifically, the probability that θk will get closer to F by a ratio smaller than this is

exponentially small as a function of n.

We now set Γ = − 1
4 log C10 > 0. Then if k = Γ log n, then except for events of

exponentially small probability, we will have

|F − θk| ≥ |F − θ0|(C10)k = |F − θ0|n−
1
4 .
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But by the remark after Therem 3, the stationary distribution µ is exponentially

peaked near F for large n, with width of order 1√
n
. This shows that L(θk) is essentially

disjoint from µ for large n, so for such n we will have

‖L(θk)− µ‖ ≈ 1 .

2. The assumption that t < γ < 1−s, despite its “reasonableness”, is not at all necessary.

Indeed, if γ ≤ t, we simply replace F by 0 in the above proof, while if γ ≥ 1 − s we

simply replace F by 1. The entire proof goes through with only minor modifications.

The main differences are that now instead of getting close to a point in the middle

of the interval [0,1], the Markov chain will get close to one of the endpoints; also,

the “errors” in setting E(θk+1 | θk = θ) equal to e(θ) are now O(1/n), instead of

O(1/
√

n), once we get close to 0 or 1 (so that Q(·) should now be taken to be roughly

uniform on an interval of length about 1/n instead of 1/
√

n).

4. The case of a general finite state space.

We now turn our attention to the case of general finite X . We set X = {1, 2, . . . ,K},

where K = |X | is regarded as fixed. We set pab = P (Yr = b | Xr = a) for 1 ≤ a, b ≤ K,

and we set

γa = (number of i for which Yi = a)/n .

We write ~γ for (γ1, . . . , γK).

The Markov chain takes place on the (K−1)-dimensional simplex

SK−1 = {~θ = (θ1, . . . , θK) | θi ≥ 0,
K∑

i=1

θi = 1} .

The procedure is as follows. Set

ηb(~θ) = P (Yr = b|Xr ∼ ~θ) =
K∑

a=1

pabθa , 1 ≤ b ≤ K ,

and set

qab(~θ) = P (Xr = a|Yr = b) =
pabθa

ηb(~θ)
, 1 ≤ a, b ≤ K .
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Given ~θk = (θk,1, . . . , θk,K), choose x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ∈ {1, . . . ,K} where

P (x(k)
r = a) = qab(~θ) (where b = Yr) .

Then choose ~θk+1 from the Dirichlet distribution D(Sk,1 +1, Sk,2 +1, . . . , Sk,K +1), where

Sk,a is the number of r with x
(k)
r = a.

As in the case X = {0, 1}, we assume that pab and γa do not vary with n. Under

these assumptions we prove that, at least with certain restrictions on pab and on γa, the

Data Augmentation algorithm converges (in total variation distance) in O(log n) steps.

As in the case X = {0, 1}, we begin the analysis by noting that

E(θk+1,a | ~θk = ~θ) = ea(~θ) + O(1/
√

n) errors) ,

where

ea(~θ) =
K∑

b=1

γbqab(~θ) = θa

K∑
b=1

γb
pab

ηb(~θ)
.

Hence, up to O(1/
√

n), the values of ~θk should follow the deterministic prescription

(∗) θk+1,a = ea(~θk) .

This situation is very similar to the case X = {0, 1}: the Markov chain follows a dynamical

system except for random errors of about 1/
√

n. The main difference here is that the

dynamical system takes place on the (K − 1)-dimensional simplex SK−1 instead of simply

on the interval [0, 1]. This makes the dynamical system (∗) more difficult to analyze, and

prevents a complete solution. The following Theorem reduces the study of the Markov

chain to the study of the related dynamical system, and we subsequently obtain results

about the dynamical system under certain more restrictive assumptions.

Theorem 5. Suppose that, for given values of {pab} and {γa}, the dynamical system

given by (∗) has the following property: there is a point ~f on the simplex SK−1 such that

if the dynamical system is started at any point on the simplex SK−1 except for a finite

number of “exceptional” points, it will converge to ~f exponentially quickly. Then the Data

Augmentation algorithm for X = {1, . . . ,K} corresponding to those values of pab and γa

will converge in total variation distance to the true posterior in O(log n) steps, where n is

the number of observed data.
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Remarks.

1. Here “exponentially quickly” convergence means that there is a constant A such that

for any ε > 0, if we start at least ε away from all exceptional points (in, say, the L∞

norm), then after A log(1/ε) steps we will be within ε of ~f . Equivalently, if we are

close to ~f [resp. to an exceptional point], we can get twice as close [resp. twice as far

away] in a constant number of steps.

2. The “exceptional points” here correspond to the points 0 and 1 in the case X = {0, 1};

they are possible unstable fixed points of the dynamical system. For example, the K

extreme points of the simplex SK−1 are all seen to be fixed points of (∗), for any pab

and γa (though whether or not they are stable does depend on pab and γa). Note that

we cannot simply throw away the boundary of the simplex, because that boundary

may contain a stable fixed point in addition to various exceptional points.

3. While Theorem 4 does not definitively settle the question of whether the Data Aug-

mentation algorithm will converge in O(log n) steps, it does reduce the study of a

Markov chain to the (simpler) study of an associated dynamical system.

4. It appears (for example from computer simulations) that provided paa is not too

small, the hypothesis of Theorem 4 always holds, i.e. that the dynamical system (∗)

always converges exponentially quickly to a unique stable fixed point. (Note, however,

that this unique stable fixed point may have some coordinates equal to zero in some

cases.) However, we are unable to prove this in general; see Propositions 6 and 9 for

some partial results. In a particular case (i.e. for particular values of pab and γa), it

shouldn’t be difficult to check the convergence properties of (∗).

Proof of Theorem 5. The proof is of a similar flavour to that of Lemma 4. However,

this Theorem is easier because we assume the dynamical system has certain convergence

properties which had to be proved in Lemma 4.

Here, as there, the key idea is that the Markov chain approximately follows a deter-

ministic prescription which takes it exponentially quickly to a particular fixed point. As in

Lemma 4 part (1), after one step the Data Augmentation Markov chain will be about 1/n

away from the exceptional points, with probability bounded away from 0. This follows

from the O(1/n) standard deviation “spreading” of the Dirichlet, just as in Lemma 4.
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Then, similar to Lemma 4 parts (2) and (3), the exponential convergence of the dynamical

system takes over. For sufficiently large n, with high probability the Markov chain will get

close to ~f at a fixed exponential rate chosen to be slightly slower than the rate of the dy-

namical system. By the assumption of exponential convergence, we see that after C log n

steps (for a constant C independent of n), the Markov chain will be within, say, 1/
√

n

of ~f , with probability bounded below independently of n. This follows just as in Lemma

4, from noting that as n → ∞, the dynamical system (∗) becomes a better and better

approximation, with higher and higher probability, to the Markov chain itself. Hence, the

probability that the Markov chain fails to converge to ~f at a rate slightly slower than the

dynamical system rate becomes exponentially small.

We finish the proof of Theorem 5 in much the same way we finished the proof of

Theorem 3. Once the Markov chain is within 1/
√

n of ~f , then after one more step,

it will tend (by the spreading of the multinomial) to “spread out” over an area on the

simplex with sides about 1/
√

n long. Hence, we can apply Lemma 2 with Q(·) chosen to

be a uniform linear combination of Dirichlet distributions with means within 1/
√

n of ~f .

Setting k0 = C log n, we can choose ε independent of n, to get the desired result.

Theorem 5 suggests that we further analyze the dynamical system given by (∗). This

appears difficult in general. While there is a huge literature on dynamical systems (see [De],

[PdM], and references therein), including the promising theory of Liapounov functions (see

[De] p. 176) for showing convergence to fixed points, we are unable to adapt this literature

to our present purposes. Instead, we here take a direct approach, and show exponential

convergence of our dynamical system in two special cases only. The first, Proposition 6,

is a “highly symmetric” case which is very special and whose proof is omitted to save

space. The second, Proposition 9, holds for a range of parameters in which the ~Y have

high enough probability of being equal to the ~X.

Proposition 6. Suppose γa = 1/K for each a, and that for some d < 1/K, we have

pab = d for each a 6= b. Then the dynamical system given by (∗) has a unique stable fixed

point ~f given by fa = 1/K for each a. Furthermore, the system converges exponentially
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fast (in the sense of Theorem 5) to ~f .

Combining Proposition 6 with Theorem 5, we immediately obtain

Corollary 7. Under the hypothesis of Proposition 6, the Data Augmentation algorithm

will converge in O(log n) steps.

To further analyze the dynamical system given by (∗), it is necessary to determine, in

somewhat general situations, where the hoped-for stable fixed point ~f might be. To this

end, we observe that if ~θ is such that ηb(~θ) = γb for each b, then ea(~θ) = θa for each a, so ~θ

is a fixed point. (This fixed point corresponds to the point F in the case X = {0, 1}, and

with t < γ < 1 − s.) Now, it will not always be the case that such an element ~θ ∈ SK−1

exists. However, if the paa are sufficiently large, and the γa are sufficiently “balanced”,

then there will be such an element ~θ as the following Lemma shows.

Lemma 8. Let d = max
a

paa, and assume paa > 1
2 . Further, let

y = max
b

∑
a6=b

pab ; z = min
b

(pbb −
∑
a6=b

pab) ; s = max
a,b

γa

γb
;

and assume that s < z/y (and in particular that z > 0). Then there is a unique point

~f = (f1, . . . , fK) on the simplex SK−1 such that ηb(~f) = γb for each b.

Proof. We write [p] for the matrix with entries pab. It is easily checked that since [p] is

stochastic, and paa > 1
2 , [p] has no kernel and is therefore invertible. Denote its inverse by

[p]−1. Set ~f = [p]−1~γ, where ~γ = (γ1, . . . , γK). Then ~η(~f) = [p]~f = ~γ as required. Also ~f

is unique by the invertibility of [p]. Hence, we need only verify that ~f ∈ SK−1. To this end,

we observe that it is easily checked (by working in a basis contained in SK−1) that [p]−1

preserves the property of a vector’s coordinates summing to 1. Hence since
∑

γa = 1, we

have
∑

fa = 1. We need therefore only verify that fa ≥ 0 for each a.

Suppose, to the contrary, that fa < 0 for some a. We shall obtain a contradiction

to the statement that
∑

a pabfa = γb for each b. Let i be such that fi is smallest (and

negative), and let I be such that fI is largest. Let m = −fi > 0, and let M = fI > 0.

Clearly M ≥ m, for if m > M then

γi =
∑

a

paifa ≤ −mpii + M
∑
a6=i

pai < −mz < 0 ,
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which is impossible. We then have

γi =
∑

a

paifa ≤ −piim +
∑
a6=i

paiM ≤ yM .

Also

γI =
∑

a

paIfa ≥ pIIM −
∑
a6=I

paIm

≥
∑

a

paIfa ≥ pIIM −
∑
a6=I

paIM ≥ zM .

Hence

s ≥ γI

γi
≥ z

y
,

contradicting the hypothesis.

Lemma 8 guarantees the existence of a fixed point ~f ∈ SK−1. Under slightly stronger

hypothesis, we can actually show that ~θk approaches ~f exponentially quickly.

Proposition 9. Let d, y, z, and s be as in Lemma 8. For each a, let p∗a = max
a′ 6=a

pa′a,

and let

r = min
a

(1− p∗a
γapaa

); x = max
b

∑
a

pab .

Assume that d > 1
2 , that s < z/y, that r > y/d, and that

(rd− y)z > sx(1− d) .

Then the dynamical system (∗) converges exponentially quickly.

Remark. Intuitively, paa is close to 1 for each a, and pab is small for a 6= b. Hence, d is

close to 1, y is small, z is close to 1, and r is somewhat close to 1. Also, the parameters

are “balanced” so that s and x are not too much greater than 1.

Proof. By Lemma 7 there is a point ~f ∈ SK−1 with ~η(~f) = ~γ. We shall show that ~θ

approaches ~f exponentially quickly. To that end, we fix ε > 0. We assume that initially

θa > ε for all a. We let ~θ progress according to (∗).

For technical reasons, we begin by replacing r by a slightly smaller r′, so that the

hypotheses of the Proposition still hold. We break the proof up into three claims.
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Claim 1. After O(log(1/ε)) steps, θa ≥ r′γa for all a.

Indeed, if 0 < θa < r′γa for some a, then

ηa(~θ) =
∑
a′

pa′aθa′ ≤ paaθa + p∗a(1− θa)

≤ paar′γa + p∗a < paaγa ,

by the definition of r. Hence

ea(~θ)
θa

=
∑
a′

pa′a
γa′

ηa′(~θ)
≥ paa

γa

ηa(~θ)
> 1 .

Furthermore, since we replaced r by the smaller r′, ea(~θ)
θa

is actually bounded away from 1.

Hence, θa will increase at an exponential rate (similar to Lemma 4 (2)) until it is at least

r′γa. Finally, since ea(~θ) is “monotonic in θa” in an appropriate sense, it follows that once

θa ≥ r′γa, it will remain at least r′γa thereafter. Claim 1 follows.

We now replace r′ by a still smaller r′′, such that the hypotheses of the Proposition

remain true.

Claim 2. Once Claim 1 is true, then after a constant number of steps θa ≤ Rγa for each

a, where R = r′′d
r′′d−y .

The proof is similar to that for Claim 1. By Claim 1 we have ηb(~θ) ≥ pbbθb ≥ pbbγbr
′.

Then if θa > Rγa for some a, then

ea(~θ)
θa

≤ paa
γa

ηa(~θ)
+

∑
a′ 6=a

pa′a

max
b

γb

ηb(~θ)

≤ paa
γa

paaθa
+ y max

b

γb

pbbγbr′
< (1/R)y

1
dr′

< 1 ,

by the definition of R. Furthermore, since we replaced r′ by the smaller r′′, ea(~θ)
θa

is

bounded away from 1. Also by Claim 1, θa is bounded away from 0. Hence θa will

decrease independently of ε until it is less than Rγa. Finally, as with Claim 1, once Claim

2 is true it remains true by “monotonicity”.

Claim 3. Once Claims 1 and 2 are true, then after O(log(1/ε)) steps we will have

max
a

|θa − fa| < ε .
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Indeed, by Claims 1 and 2, we have that r′ ≤ θa

γa
≤ R, for each a. This implies that

max
a,b

θa

θb
≤ sR

r′
.

Hence,

(∗∗) max
a,b

ηa(~θ)
∑
a′

pa′b

ηb(~θ)
≤ sRx

r′
,

by the definition of ηa(~θ).

Now, suppose |θa − fa| takes its maximum at a = i. Assume |θi − fi| > 0. (If θa = fa

for all a, then there is nothing to be proved.) For definiteness suppose θi > fi (the case

θi < fi is entirely similar). Let D = θi − fi > 0. Then

ei(~θ)
θi

− 1 =
∑

b

pib

(
γb

ηb(~θ)
− 1

)
=
∑

b

pib
γb − ηb(~θ)

ηb(~θ)

= pii
γi − ηi(~θ)

ηi(~θ)
+
∑
b 6=i

pib
γb − ηb(~θ)

ηb(~θ)
.

Now,

γi − ηi(~θ) =
∑

a

pai(fa − θa)

≤ −paiD +
∑
a6=i

paiD ≤ −zD .

Also γb − ηb(~θ) ≤ D
∑
a

pab for b 6= i. Using (∗∗), we obtain that

ei(~θ)
θi

− 1 ≤ pii
−zD

ηi(~θ)
+

∑
b 6=i

pib

 D sRx
r′

ηa(~θ)

≤ D

ηa(~θ)

(
−dz + (1− d)

sRx

r′

)
.

This last expression is strictly negative by the hypothesis and the definition of R. Hence,

the value of θi − fi will decrease. Furthermore, an identical proof to the above shows

that each |θa − fa| will be less, on the next step, then the bound on θi − fi proved above.

Hence, max
a

|θa − fa| will decrease exponentially quickly. This proves Claim 3, and hence

establishes the Proposition.

Combining Proposition 9 with Theorem 5, we immediately obtain
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Corollary 10. Under the hypothesis of Proposition 9, the Data Augmentation algorithm

will converge in O(log n) steps.

We conclude with a remark about priors other than the uniform prior.

Remark. Other priors. The results in this paper have all been stated in terms of using

a uniform prior for the Data Augmentation algorithm. However, the proofs actually work

much more generally. In particular, they work for any prior (independent of n) which is

bounded above and below by a positive constant times a conjugate (i.e. beta or Dirichlet)

prior.

To see this, consider the X = {0, 1} case, and suppose first that we have a β(a1, a2)

prior (with a1, a2 independent of n). This affects the Data Augmentation as follows. The

law of θk+1 given Sk+1 will now be β(Sk+1 + a1, n − Sk+1 + a2) instead of of β(Sk+1 +

1, n−Sk+1 +1). Hence the mean will be Sk+1+a1
n−Sk+1+a2

instead of Sk+1+1
n−Sk+1+1 , and the variance

will be similarly affected. However, all that was needed in the proof of Theorem 3 (and

Lemma 4) was that this law would be peaked (exponentially as a function of n) within

O(1/
√

n) of Sk+1/n, with width O(1/
√

n). By inspection, this property is preserved, so

the proof of Theorem 3 goes through essentially without change. Identical comments apply

to a D(a1, a2, . . . , aK) prior in Theorem 5.

Now suppose instead that the prior has density z(x) satisfying mβ(a1, a2;x) ≤ z(x) ≤

Mβ(b1, b2;x) for some m,M > 0 (and with the prior again independent of n). Then, the

law of θk+1 given Sk+1 will have density β(Sk+1 + 1, n − Sk+1 + 1; x) z(x) which may

be rather complicated. On the other hand, the density at any point x will be between

mβ(Sk+1 + a1, n−Sk+1 + a2;x) and Mβ(Sk+1 + b1, n−Sk+1 + b2;x). Since m,M > 0 are

independent of n, for sufficiently large n we see that this density will still be peaked within

O(1/
√

n) of Sk+1/n, and will still have width O(1/
√

n). Thus, once again the proof of

Theorem 3 goes through essentially without change. And, once again, similar comments

apply to Theorem 5, using a prior bounded above and below by Dirichet distributions.
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