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1. Introduction.
Let S denote the set of all univalent (i.e. one-to-one) analytic functions f defined

in the disk |z| < 1, with f(0) = 0 and f ′(0) = 1. Such functions may be written in
the form

f(z) = z + a2z
2 + a3z

3 + ..., |z| < 1.

One example of a function in S is the Koebe function

k(z) =
1
4

(
1 + z

1− z

)2

− 1
4

=
z

(1− z)2
= z + 2z2 + 3z3 + ..., |z| < 1.

Since the function z 7→ 1+z
1−z is univalent with image the right half plane, we see that

z 7→
(

1+z
1−z

)2

is univalent, so k ∈ S, and the image of k is the entire complex plane

except for real numbers ≤ −1
4 . In 1916, L. Bieberbach [Bi] conjectured that the

Koebe function was maximal with respect to the absolute value of the coefficients
of its power series. More precisely, he conjectured the following:

The Bieberbach Conjecture. For each function f ∈ S, we have |an| ≤ n, for
n = 2, 3, 4, .... Furthermore, equality occurs for any one n only when f is a rotation
of the Koebe function, i.e. when f(z) = β−1k(βz), for some complex constant β
with |β| = 1.

The Bieberbach conjecture was proved in 1984 by L. de Branges [dB1, dB2]; see
also [dB3]. The proof was simplified slightly by C.H. FitzGerald and Ch. Pom-
merenke [FP]. Before presenting a proof, we begin with some history.

Bieberbach proved his conjecture only for n=2. In 1923, K. Löwner [Lö2] de-
veloped a representation of functions in S which enabled him to prove the conjec-
ture for n=3. In 1925, J.E. Littlewood [Li] proved that |an| < en for all n, where
e = 2.718..., and in 1951 I.E. Bazilevich [Ba] showed that |an| < en/2+1.51 for all n.
This was improved by I.M. Milin [Mi1, Mi3] to |an| < 1.243n. C.H. FitzGerald [Fi]
used the Goluzin inequalities [Go] to get |an| <

√
7/6 n < 1.081n, and D. Horowitz

[Ho] tightened this to |an| <
(

209
140

)1/6
n < 1.0691n. In 1955, P.R. Garabedian and

M. Schiffer [GS1] gave a difficult proof that |a4| ≤ 4, and in 1960 Z. Charzyński
and M. Schiffer [CS] used the Grunsky inequalities [Gru] to give a more elemen-
tary proof. In 1968 and 1969, R.N. Pederson [Pe] and M. Ozawa [Oz] independently
proved that |a6| ≤ 6. In 1972, R.N. Pederson and M. Schiffer [PS] used a strengthen-
ing of the Grunsky inequalities by Garabedian and Schiffer [GS2] to prove |a5| ≤ 5.
The Bieberbach conjecture was proved long ago for starlike functions in S [Lö1,
Ne], and for functions in S with real coefficients [Di, Rog, Sz]. In 1955, Hayman
[Ha1, Ha2] proved the asymptotic result that for each f ∈ S, limn→∞

|an|
n ex-

ists and is less than 1 except for rotations of the Koebe function. Good historical
1
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articles are found in [BDDM] and [Du1]; much of the background mathematics is
presented in [Du2].

This paper is organized as follows. In section 2, we present Bieberbach’s proof
of his conjecture for n=2, using the area theorem. (The equality part of the n=2
case is required in section 6.) In section 3, we present the conjectures of Robertson
[Rob] and Milin [Mi3], and show using a Lebedev-Milin inequality [LM, Mi2, Mi3]
that

Milin Conj. =⇒ Robertson Conj. =⇒ Bieberbach Conj.

In section 4, we discuss topological considerations, and reduce the problem to con-
sideration of single-slit mappings. In section 5, we present de Branges’s proof of
the inequality of the Milin conjecture, following [FG]. The proof relies heavily upon
Löwner’s representation [Lö2], and uses some special functions introduced by de
Branges in his proof, as well as an inequality of Askey and Gasper [AG]. In section
6 we show that equality holds only for rotations of the Koebe function.

2. The second coefficient. The area theorem.
Related to S is the class Σ of all univalent analytic functions g defined in the

annulus |z| > 1, with Laurent expansion of the form

g(z) = z + b0 + b1z
−1 + b2z

−2 + ..., |z| > 1.

The following important theorem was proved by T.H. Gronwall in 1914.

The Area Theorem. If g(z) = z+b0+b1z−1+b2z−2+... ∈ Σ, then
∑∞

n=1 n|bn|2 ≤
1.

Proof. For r > 1, let Cr be the image under g of the circle |z| = r. The Cr is a
simple, closed curve since g is univalent. By Green’s Theorem, the area of Cr is
given by

area(Cr) =
1
2i

∫
Cr

(ix dy − iy dx)

=
1
2i

(∫
Cr

(ix dy − iy dx) +
∫

Cr

(x dx+ y dy)
)

=
1
2i

∫
Cr

(x− iy)(dx+ idy)

=
1
2i

∫
Cr

w dw

=
1
2i

∫
|z|=r

g(z)g′(z) dz

=
1
2i

∫
|z|=r

(
z + b0 +

∞∑
n=1

bnz−n

)(
1−

∞∑
n=1

nbnz
−n−1

)
dz

=
1
2i

∫ 2π

0

(
re−iθ + b0 +

∞∑
n=1

bnr
−neinθ

)(
1−

∞∑
n=1

nbnr
−n−1e−i(n+1)θ

)
ireiθ dθ

= π

(
r2 −

∞∑
n=1

n|bn|2r−2n

)
.
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But the area of Cr is non-negative, so we have

r2 −
∞∑

n=1

n|bn|2r−2n ≥ 0, r > 1.

Now, if we had
∞∑

n=1

n|bn|2 > 1,

then we could find a positive integer N , and α > 0, such that

N∑
n=1

n|bn|2 = 1 + α.

Choose r > 1 such that

r−2N >
1 + α/2
1 + α

,

and
r2 < 1 + α/4.

Then

r2 −
∞∑

n=1

n|bn|2r−2n ≤ r2 −
N∑

n=1

n|bn|2r−2n

≤ r2 − r−2N
N∑

n=1

n|bn|2

< (1 + α/4)− 1 + α/2
1 + α

(1 + α)

= −α/4
< 0,

contradicting the above result. �

Corollary. |b1| ≤ 1, and |b1| = 1 if and only if g(z) = z+ b0 +α/z, where |α| = 1.

The above theorem allows us to prove Bieberbach’s conjecture for the second
coefficient, as proved by Bieberbach [Bi] in 1916.

Theorem (Bieberbach). Let f(z) = z + a2z
2 + a3z

3 + ... ∈ S. Then |a2| ≤ 2,
and |a2| = 2 only when f is a rotation of the Koebe function.

Proof. Let g(z) be the unique odd function analytic in |z| > 1 such that

g(z) = z + b1z
−1 + b3z

−3 + ...,

and
g(z)2 =

1
f(1/z2)

, |z| > 1.
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(Such a function exists since f(1/z2) is non-zero and even.) We can write

g(z) =
1√

f(1/z2)

provided we choose the appropriate branch of the square root at each z. Now, g
is univalent since if g(z1) = g(z2), then f(1/z2

1) = f(1/z2
2), so since f is univalent,

z1 = ±z2. But then the oddness of g implies z1 = z2, since g is non-zero. Hence,
g ∈ Σ, so by the Area Theorem, |b1| ≤ 1.

Now,
f(1/z2) = z−2 + a2z

−4 + ...,

so
1

f(1/z2)
= z2 − a2 + ...

But
g(z)2 = z2 + 2b1 +

(
2b3 + b21

)
z−2 + ...,

so we must have b1 = −a2/2. Thus, |b1| ≤ 1 implies |a2| ≤ 2.
If |a2| = 2, then |b1| = 1, so by the above corollary

g(z) = z + α/z, for some α ∈ C with |α| = 1.

Then

f(z) =
1

g(1/
√
z)2

=
1

(1/
√
z + α

√
z)2

=
z

(1 + αz)2
= −α−1k(−αz),

a rotation of the Koebe function. �

3. The Robertson and Milin conjectures.
In 1936, M.S. Robertson [Rob] conjectured the following.

The Robertson Conjecture. Let p(z) = z + c3z
3 + c5z

5 + ... ∈ S be odd. Then
(letting c1 = 1), we have |c1|2 + |c3|2 + ... + |c2n−1|2 ≤ n, for n = 2, 3, 4, ....
Furthermore, equality occurs for any one n only when p satisfies p(z)2 = r(z2),
where r is a rotation of the Koebe function.

Theorem. For each n = 2, 3, 4, ..., the Robertson conjecture for n implies the
Bieberbach conjecture for n.

Proof. Assume that the Robertson conjecture holds for n, and let

f(z) = z + a2z
2 + a3z

3 + ... ∈ S.

Let p(z) be the unique odd function analytic in |z| < 1 such that

p(z) = z + c3z
3 + c5z

5 + ...,

and such that
p(z)2 = f(z2).
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We may write
p(z) =

√
f(z2)

provided we choose the appropriate branch of the square root for each z. Now,
p is univalent, for if p(z1) = p(z2), then f(z2

1) = f(z2
2), so since f is univalent,

z1 = ±z2. But then the oddness of p implies z1 = z2 (if p(z1) = p(z2) = 0, then
z1 = z2 = 0 by the univalence of f). Hence, p is an odd function in S, and the
Robertson conjecture applies.

Since
f(z2) = p(z)2,

comparing coefficients shows

an = c1c2n−1 + c3c2n−3 + ...+ c2n−1c1,

so

|an| ≤ |c1| |c2n−1|+ |c3| |c2n−3|+ ...+ |c2n−1| |c1|,
= v · w,

where
v = (|c1|, |c3|, ..., |c2n−1|) ,

and
w = (|c2n−1|, |c2n−3|, ..., |c1|) .

Hence, by the Cauchy-Schwartz inequality,

|an| ≤ ‖v‖ ‖w‖
= ‖v‖2

= |c1|2 + |c3|2 + ...+ |c2n−1|2.
The Robertson conjecture thus implies that |an| ≤ n. Furthermore, if |an| = n,
then |c1|2 + |c3|2 + ... + |c2n−1|2 = n, so the Robertson conjecture implies that
p(z)2 = r(z2), where r is a rotation of the Koebe function. But then f(z2) = r(z2),
so comparing power series shows f(z) = r(z), and f is a rotation of the Koebe
function. �

Given a function f ∈ S, we define its logarithmic coefficients {γn} by

log
f(z)
z

= 2
∞∑

n=1

γnz
n, |z| < 1.

(Note that, letting g(z) = f(z)
z , we have

g(z) = 1 + a2z + a3z
2 + ...,

so g(0) = 1 6= 0. Furthermore, g(z) is not zero elsewhere in |z| < 1 by the univalence
of f . Hence, we may formally define log f(z)

z as the integral from 0 to z of g′(z)/g(z),
which is single-valued. The integral is independent of path since the disk |z| < 1 is
simply connected. Thus log f(z)

z is analytic in |z| < 1.) The logarithmic coefficients
of the Koebe functions are easily computed. We have

log
k(z)
z

= log(1− z)−2 = −2 log(1− z) = 2
(
z +

z2

2
+
z3

3
+ ...

)
,

so the Koebe function satisfies γn = 1/n, for n = 1, 2, 3, ...
In 1971, Milin [Mi3] made the following conjecture.
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The Milin Conjecture. For each function f ∈ S, its logarithmic coefficients
satisfy

n∑
m=1

m∑
k=1

(
k|γk|2 −

1
k

)
≤ 0,

or equavilantly
n∑

k=1

(n− k + 1)
(
k|γk|2 −

1
k

)
≤ 0,

for n = 1, 2, 3, .... Furthermore, we have equality for any one n only when f is a
rotation of the Koebe function.

We wish to show that the Milin conjecture implies the Robertson (and hence
the Bieberbach) conjecture. We require the following very general inequality from
[LM, Mi2, Mi3]. Our proof follows [Du2, §5.1].

The Lebedev-Milin Exponentiation Inequality. Let

φ(z) = α1z + α2z
2 + α3z

3 + ...

be any complex power series with radius of convergence R > 0. Write

eφ(z) = 1 + β1z + β2z
2 + ..., |z| < R.

Then for n = 1, 2, 3, ..., we have (letting β0 = 1)

1
n+ 1

n∑
k=0

|βk|2 ≤ exp

(
1

n+ 1

n∑
m=1

m∑
k=1

(
k|αk|2 −

1
k

))
.

Proof. Letting ψ(z) = eφ(z), we have ψ′(z) = φ′(z)ψ(z), i.e.

∞∑
k=1

kβkz
k−1 =

( ∞∑
k=1

kαkz
k−1

)( ∞∑
k=0

βkz
k

)
,

so comparing coefficients yields

kβk =
k−1∑
j=0

βj(k − j)αk−j , k = 1, 2, 3, ...

Hence

|kβk| ≤
k−1∑
j=0

|(k − j)αk−j | |βj |

= v · w,

where
v = (k|αk|, (k − 1)|αk−1|, ..., |α1|),
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and

w = (|β0|, |β1|, ..., |βk−1|).

Hence, by the Cauchy-Schwartz inequality,

k2|βk|2 ≤ ‖v‖2 ‖w‖2

=

 k∑
j=1

j2|αj |2
k−1∑

j=0

|βj |2
 .

Let

Ak =
k∑

j=1

j2|αj |2, and Bk =
k∑

j=0

|βk|2.

Then the above equation becomes

k2|βk|2 ≤ AkBk−1.

Hence,

Bn = Bn−1 + |βn|2

≤ Bn−1 +
1
n2
AnBn−1

= Bn−1

(
1 +

An

n2

)
= Bn−1

(
n+ 1
n

)(
n

n+ 1
+

An

n(n+ 1)

)
= Bn−1

(
n+ 1
n

)(
1 +

An − n

n(n+ 1)

)
≤ Bn−1

(
n+ 1
n

)
exp

(
An − n

n(n+ 1)

)
.

But B0 = |β0|2 = 1, so using induction, we have

Bn ≤
n∏

k=1

(
k + 1
k

)
exp

(
Ak − k

k(k + 1)

)

= (n+ 1) exp

(
n∑

k=1

(
Ak − k

k(k + 1)

))

= (n+ 1) exp

(
n∑

k=1

Ak

k(k + 1)
−

n∑
k=1

1
k + 1

)
.
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Now,
n∑

k=1

Ak

k(k + 1)
=

n∑
k=1

Ak

(
1
k
− 1
k + 1

)

=
n∑

k=1

(
1
k
− 1
k + 1

) k∑
j=1

j2|αj |2

=
n∑

j=1

j2|αj |2
n∑

k=j

(
1
k
− 1
k + 1

)

=
n∑

j=1

j2|αj |2
(

1
j
− 1
n+ 1

)

=
n∑

j=1

j

(
1− j

n+ 1

)
|αj |2

=
1

n+ 1

n∑
j=1

(n+ 1− j)j|αj |2.

Also
n∑

k=1

1
k + 1

=
n+1∑
k=2

1
k

=
n∑

k=1

1
k
− 1 +

1
n+ 1

=
n∑

k=1

1
k
− n

n+ 1

=
n∑

k=1

1
k
−

n∑
k=1

1
n+ 1

=
n∑

k=1

(
1
k
− 1
n+ 1

)

=
1

n+ 1

n∑
k=1

n+ 1− k

k
.

Hence,

Bn ≤ (n+ 1) exp

(
1

n+ 1

n∑
k=1

(n+ 1− k)k|αk|2 −
1

n+ 1

n∑
k=1

(
n+ 1− k

k

))

= (n+ 1) exp

(
1

n+ 1

n∑
k=1

(n+ 1− k)
(
k|αk|2 −

1
k

))

= (n+ 1) exp

(
1

n+ 1

n∑
m=1

m∑
k=1

(
k|αk|2 −

1
k

))
,

which gives the result. �
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Theorem. For each n = 1, 2, 3, ..., the Milin conjecture for n implies the Robertson
conjecture for n+ 1.

Proof. Assume the Milin conjecture holds for n, and let h ∈ S be odd. Then h(z)2

is even, so
h(z)2 = f(z2)

for some function f analytic in |z| < 1. Furthermore, f is univalent, for if f(z1) =
f(z2), then choosing ζ1, ζ2 with ζ2

1 = z1 and ζ2
2 = z2, we have f(ζ2

1 ) = f(ζ2
2 ),

so h(ζ1)2 = h(ζ2)2. Then the univalence and oddness of h implies ζ1 = ±ζ2, so
z1 = z2. Hence, f ∈ S. Let {γn} be its logarithmic coefficients, so that

log
f(z)
z

= 2
∞∑

n=1

γnz
n.

Write
h(z) = z + c3z

3 + c5z
5 + ...

Then

h(
√
z)√
z

= 1 + c3z + c5z
2 + ...

=
∞∑

n=0

c2n+1z
n (where c1 = 1).

Now,

log
(
h(
√
z)√
z

)
= log

(√
f(z)
z

)

=
1
2

log
f(z)
z

=
∞∑

n=1

γnz
n.

Hence,
∞∑

n=0

c2n+1z
n =

h(
√
z)√
z

= exp

( ∞∑
n=1

γnz
n

)
.

The Lebedev-Milin Exponentiation Inequality then says that

1
n+ 1

n∑
k=0

|c2k+1|2 ≤ exp

(
1

n+ 1

n∑
m=1

m∑
k=1

(
k|γk|2 −

1
k

))
,

and Milin’s conjecture then implies that

1
n+ 1

n∑
k=0

|c2k+1|2 ≤ 1,
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which is the inequality of Robertson’s conjecture for n+ 1. Furthermore, if

1
n+ 1

n∑
k=0

|c2k+1|2 = 1,

then we must have
n∑

m=1

m∑
k=1

(
k|γk|2 −

1
k

)
= 0.

The Milin conjecture then implies that f is a rotation of the Koebe function, so
that

h(z)2 = f(z2),

with f a rotation of the Koebe function as required. �

4. Topological considerations. Single-slit mappings.
We endow S with the topology ∆ induced by locally uniform convergence, i.e.

uniform convergence on every compact subset of the unit disk. This topology can
be metrized (see [Po, p. 27-28]) by

d(f, g) =
∞∑

k=2

2−k arctan
(

sup
z∈Ak

|f(z)− g(z)|
)
,

where

Ak =
{
z ∈ C

∣∣∣∣ |z| ≤ 1− 1
k

}
.

Lemma 4-1. The mapping f 7→ γk from S to C taking each f ∈ S to its kth

logarithmic coefficient is continuous in the topology ∆.

Proof. Let {fn} ⊆ S be a sequence of functions converging to f in the topology
∆. Write

log
fn(z)
z

= 2
∞∑

j=1

γn,jz
j

and

log
f(z)
z

= 2
∞∑

j=1

γjz
j .

We wish to show {γn,k} → γk. Let

K =
{
z ∈ C

∣∣ |z| = 1/2
}
.

Then {
sup
z∈K

|f(z)− fn(z)|
}
→ 0,

so {
sup
z∈K

∣∣∣∣ log
f(z)
z

− log
fn(z)
z

∣∣∣∣}→ 0,
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provided we choose the branch of log in each case so that z = 0 gets mapped to
0. But then the Cauchy estimate (at r = 1/2) for the kth coefficient of the power
series expansion around zero of

log
f(z)
z

− log
fn(z)
z

shows that
{|γn,k − γk|} → 0,

as desired. �

We define a single-slit mapping to be a function analytic in the unit disk, such
that its range is equal to the entire complex plane except for a single Jordan arc
extending from a finite point to infinity. We let S′ be the set of all single-slit
mappings in S.

Theorem 4-2. S′ is dense in S with respect to the topology ∆.

Proof. Let f ∈ S. For each r ∈ R, 0 < r < 1, the function fr(z) = r−1f(rz) is in
S. Let {rn} be a sequence of positive real numbers increasing to 1. I claim that

{frn
} → f

in the topology ∆. Indeed, given any compact subset K of the unit disk, let
R = sup

z∈K
|z|, and let

T = sup
|z|≤R

|f ′(z)|,

and
U = sup

|z|≤R

|f(z)|.

Then

sup
z∈K

|frn
(z)− f(z)| = sup

z∈K
|r−1

n f(rnz)− f(z)|

≤ sup
z∈K

|r−1
n f(rnz)− f(rnz)|+ sup

z∈K
|f(rnz)− f(z)|

≤ (r−1
n − 1)U + (1− rn)T

→ 0 as rn → 1−.

Hence, it suffices to show we can approximate fr arbitrarily closely (with respect
to ∆) by functions in S′, for each 0 < r < 1. To do this, it suffices to find, for each
0 < r < 1, a sequence {gn} of functions in S′ which converges to fr with respect
to ∆.

Let 0 < r < 1. Let

J =
{
fr(z)

∣∣ |z| = 1
}

=
{
r−1f(rz)

∣∣ |z| = 1
}
.

Then J is a simple, closed curve by the univalence of f . Choose w ∈ J . Let {Γn}
be an increasing sequence of Jordan arcs contained in J each of which begins at w
and proceeds counter-clockwise, and such that

∞⋃
n=1

Γn = J.
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Let Γ be a Jordan arc from w to infinity not touching J except at w. Then Γ∪ Γn

is a Jordan arc from a finite point to infinity. For each n, let Dn be the complement
of Γ ∪ Γn, and let

D =
{
fr(z)

∣∣ |z| < 1
}

=
{
r−1f(rz)

∣∣ |z| < 1
}
.

The D is the kernel of (i.e. the largest open connected set contained in the inter-
section of) every subsequence of {Dn}. By the Riemann Mapping Theorem, for
each n we can find a univalent (and single-slit) mapping hn from the unit disk onto
Dn, such that hn(0) = 0 and h′n(0) > 0. The Carathéodory (Kernel) Convergence
Theorem (see [Du2, Theorem 3.1] or [Po, Theorem 1.8]) then implies that {hn}
converges in the topology ∆ to some univalent function η from the unit disk onto
D. But then we must have η(0) = 0 and η′(0) > 0, so the Riemann Mapping
Theorem implies that η = fr, i.e. {hn} → fr in the topology ∆. Hence {h′n(0)}
converges to 1, so for sufficiently large n we can let

gn(z) =
hn(z)
h′n(0)

to get gn ∈ S′, and {gn} → fr in the topology ∆. �

Theorem 4-3. It suffices to prove the inequality of the Milin conjecture for func-
tions in S′.

Proof. Given f ∈ S, choose {fn} ⊆ S′ with {fn} → f in the topology ∆. Write

log
fn(z)
z

= 2
∞∑

j=1

γn,jz
j

and

log
f(z)
z

= 2
∞∑

j=1

γjz
j .

By Lemma 4-1, {γn,k} → γk for each k. Hence, if the inequality of the Milin
conjecture holds for each fn, then it also holds for f . �

We shall require the following standard theorem (or, rather, its corollary) for a
technical reason in the next section. We do not prove it here; see [Po, Theorem 1.7]
or [Du2, p. 9].

Theorem 4-4. S is compact in the topology ∆.

From the theorem, we easily obtain

Corollary 4-5. For each k = 1, 2, 3, ..., the supremum

Mk = sup
f∈S

|γk|

is finite.

Proof. From Lemma 4-1 and Theorem 4-4, it follows that |γk| attains its maximum
in S. �
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5. de Branges’s proof of the inequality of the Milin conjecture.
We choose a function f ∈ S′ (see Theorem 4-3), and a positive integer n. We let

{γk} be the logarithmic coefficients of f :

log
f(z)
z

= 2
∞∑

k=1

γkz
k, |z| < 1.

We wish to show that

(5-1)
n∑

k=1

(n− k + 1)
(
k|γk|2 −

1
k

)
≤ 0.

The plan of the proof is as follows. We shall define a differentiable function

φ : [0,∞) → R.

We shall show that

φ(0) = 4
n∑

k=1

(n− k + 1)
(
k|γk|2 −

1
k

)
,

and that
lim

t→∞
φ(t) = 0.

We shall then show that

φ′(t) ≥ 0, t ∈ (0,∞),

to conclude that φ(0) ≤ 0, proving (5-1).
We require the following fundamental result of Löwner [Lö2], which we shall not

prove. See [Du2, Theorem 3.3] for a similar result, also from [Lö2], from which the
stated result can easily be derived.

The Löwner Representation Theorem. Let f ∈ S′. Then there is a parame-
terized family of univalent functions

g(z, t) = etz + a2(t)z2 + a3(t)z3 + ..., |z| < 1, t ∈ [0,∞)

such that
g(z, 0) = f(z),

and

(5-2) ġ(z, t) =
1 + κ(t)z
1− κ(t)z

z g′(z, t), |z| < 1, t ∈ [0,∞),

for some continuous function

κ : [0,∞) →
{
z ∈ C

∣∣ |z| = 1
}
,
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where
ġ ≡ ∂g

∂t
and g′ ≡ ∂g

∂z
.

The differential equation (5-2) is called the Löwner differential equation.
Choose a parameterized family g(z, t) for f from the Löwner Representation

Theorem. Note that for each t, the function z 7→ e−tg(z, t) is in S. Define {ck(t)}
by

log
e−tg(z, t)

z
=

∞∑
k=1

ck(t)zk, |z| < 1.

Then since g(z, 0) = f(z), we have that

(5-3) ck(0) = 2γk, k = 1, 2, 3, ...

For k = 1, 2, ..., n, let

τk(t) = k
n−k∑
j=0

(−1)j (2k + j + 1)j(2k + 2j + 2)n−k−j

(k + j)j!(n− k − j)!
e−(j+k)t,

where for a ∈ R we define (a)0 = 1 and

(a)s = a(a+ 1)(a+ 2)...(a+ s− 1), s ≥ 1.

Let

φ(t) =
n∑

k=1

(
k|ck(t)|2 − 4

k

)
τk(t), t ∈ [0,∞).

Theorem 5-1. limt→0 φ(t) = 0.

Proof. By Corollary 4-5, since the functions z 7→ etg(z, t) are in S, |ck(t)| are
bounded as functions of t. Also, directly from the definition of τ(t), we have
limt→0 τ(t) = 0. The result follows. �

Lemma 5-2. We have

(5-4) τk(t)− τk+1(t) = −τ
′
k(t)
k

−
τ ′k+1(t)
k + 1

, k = 1, 2, ..., n− 1,

and

τn(t) = −τ
′
n(t)
n

.

Proof. We have that

τk(t) = k
n−k∑
j=0

(−1)j (2k + j + 1)j(2k + 2j + 2)n−k−j

(k + j)j!(n− k − j)!
e−(j+k)t,

so

τk+1(t) = (k + 1)
n−k−1∑

j=0

(−1)j (2k + j + 3)j(2k + 2j + 4)n−k−1−j

(k + 1 + j)j!(n− k − 1− j)!
e−(j+k+1)t

= (k + 1)
n−k∑
j=1

(−1)j−1 (2k + j + 2)j−1(2k + 2j + 2)n−k−j

(k + j)(j − 1)!(n− k − j)!
e−(j+k)t.
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Let

Ak,j = (−1)j (2k + 2j + 2)n−k−j

(k + j)j!(n− k − j)!
.

Then

(5-5) τk(t) = k
n−k∑
j=0

(2k + j + 1)jAk,je
−(j+k)t

and

(5-6) τk+1(t) = −(k + 1)
n−k∑
j=1

j(2k + j + 2)j−1Ak,je
−(j+k)t,

so

τk(t)−τk+1(t) = kAk,0e
−kt+

n−k∑
j=1

(
k(2k+j+1)j+(k+1)j(2k+j+2)j−1

)
Ak,je

−(j+k)t.

Differentiating (5-5) and (5-6) yields

τ ′k(t) = −k
n−k∑
j=0

(j + k)(2k + j + 1)jAk,je
−(j+k)t

and

τ ′k+1(t) = +(k + 1)
n−k∑
j=1

(j + k)j(2k + j + 2)j−1Ak,je
−(j+k)t,

so

−τ
′
k(t)
k

−
τ ′k+1(t)
k + 1

= kAk,0e
−kt+

n−k∑
j=1

(
(j+k)(2k+j+1)j−(j+k)j(2k+j+2)j−1

)
Ak,je

−(j+k)t.

Hence, equation (5-4) will follow from showing that

(j+k)(2k+j+1)j−(j+k)j(2k+j+2)j−1 = k(2k+j+1)j +(k+1)j(2k+j+2)j−1,

which is the same thing as

j(2k + j + 1)j = j(2k + j + 1)(2k + j + 2)j−1,

a trivial identity. Lastly, from (5-5), τn(t) = nAn,0e
−nt, so τ ′n(t) = −nτn(t), proving

the second statement. �

We let P (α,β)
j (x) be the Jacobi polynomials, defined by

(5-7) P
(α,β)
j (x) =

(α+ 1)j

j!

j∑
s=0

(−j)s(j + α+ β + 1)s

s!(α+ 1)s

(
1− x

2

)s

.

Recall that
P

(α,β)
j (x) = (−1)jP

(β,α)
j (−x),

and that

P
(α,β)
j (1) =

(
j + α

j

)
.

It follows immediately that

P
(α,0)
j (−1) = (−1)j .
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Lemma 5-3. We have

τ ′k(t) = −ke−kt
n−k∑
j=0

P
(2k,0)
j

(
1− 2e−t

)
, k = 1, 2, ..., n.

Proof. We have that

n−k∑
j=0

P
(2k,0)
j (1− 2e−t) =

n−k∑
j=0

(2k + 1)j

j!

j∑
s=0

(−j)s(j + 2k + 1)s

s!(2k + 1)s

(
e−t
)s

=
n−k∑
s=0

n−k∑
j=s

(2k + 1)j

j!
(−j)s(j + 2k + 1)s

s!(2k + 1)s

(
e−t
)s

=
n−k∑
s=0

n−k−s∑
j=0

(2k + 1)j+s

(j + s)!

(
− (j + s)

)
s
(j + s+ 2k + 1)s

s!(2k + 1)s
e−st

=
n−k∑
s=0

(2k + 1)2s

s!(2k + 1)s
(−1)se−st

n−k−s∑
j=0

(2s+ 2k + 1)j

j!
,

the last equality following from the fact that

(2k + 1)j+s

(
-(j + s)

)
s
(j + s+ 2k + 1)

(j + s)!

=
(2k + 1)...(2k + j + s)

(
-(j + s)

)
...
(
-(j + 1)

)
(j + s+ 2k + 1)...(j + 2s+ 2k)

(j + s)!

=
(−1)s(j + 1)s(2k + 1)2s+j

(j + s)!

=
(−1)s(2k + 1)2s+j

j!

=
(−1)s(2k + 1)...(2k + 2s)(2k + 2s+ 1)...(2k + 2s+ j)

j!

=
(−1)s(2k + 1)2s(2s+ 2k + 1)j

j!
.

Hence,

(5-8)
n−k∑
j=0

P
(2k,0)
j

(
1− 2e−t

)
=

n−k∑
s=0

(2k + 1)2s

s!(2k + 1)s
(−1)se−st

n−k−s∑
j=0

(2s+ 2k + 1)j

j!
.

Now, from the identity (
p

q

)
+
(

p

q + 1

)
=
(
p+ 1
q + 1

)
we obtain

N∑
j=0

(
a+ j − 1

j

)
=
(
a+N

N

)
, a ∈ N,
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i.e.
N∑

j=0

(a)j

j!
=

(a+ 1)N

N !
, a ∈ N.

(In fact, since this last equation involves polynomials in a, it is valid for all real
a, but we don’t need that fact here.) Using this in (5-8) with N = n − k − s and
a = 2s+ 2k + 1 yields

n−k∑
j=0

P
(2k,0)
j

(
1− 2e−t

)
=

n−k∑
s=0

(2k + 1)2s

s!(2k + 1)s
(−1)se−st (2s+ 2k + 2)n−k−s

(n− k − s)!

=
n−k∑
s=0

(2k + s+ 1)s

s!
(−1)se−st (2s+ 2k + 2)n−k−s

(n− k − s)!
.

Hence,

−ke−kt
n−k∑
j=0

P
(2k,0)
j

(
1− 2e−t

)
= −k

n−k∑
s=0

(−1)s (2k + s+ 1)s(2k + 2s+ 2)n−k−s

s!(n− k − s)!
e−(k+s)t,

and this expression is equal to τ ′k(t) directly from the definition of τk(t). �

Theorem 5-4. We have

φ(0) = 4
n∑

k=0

(n− k + 1)
(
k|γk|2 −

1
k

)
.

Proof. Using equation (5-3), we have that

φ(0) =
n∑

k=1

(
k|ck(0)|2 − 4

k

)
τk(0)

= 4
n∑

k=1

(
k|γk|2 −

1
k

)
τk(0),

so it suffices to show that τk(0) = n − k + 1, for k = 1, 2, ..., n. By definition,
τn(0) = n/n = 1. By Lemma 5-3,

τ ′k(0)
−k

=
n−k∑
j=0

P
(2k,0)
j (−1)

=
n−k∑
j=0

(−1)j

=
{ 1, n− k even

0, n− k odd

Lemma 5-2 then implies that τk(0) − τk+1(0) = 1, for k = 1, 2, ..., n − 1, and the
result now follows by “descending induction”. �

We require the following deep inequality of R. Askey and G. Gasper [AG, The-
orem 3], which we shall not prove.
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The Askey-Gasper Inequality. If α > −2, and N is any non-negative integer,
then

N∑
j=0

P
(α,0)
j (x) > 0, −1 < x ≤ 1.

Theorem 5-5. We have

τ ′k(t) < 0, for all t ∈ (0,∞), k = 1, 2, ..., n.

Proof. This is immediate from Lemma 5-3 and the Askey-Gasper Inequality, since
t ∈ (0,∞) implies that −1 < 1− 2e−t < 1. �

Lemma 5-6. For k = 1, 2, ..., n, ck(t) is differentiable, and

c′k(t) = 2
k−1∑
j=1

jcj(t)κ(t)k−j + kck(t) + 2κ(t)k.

Proof. We have that

(5-9) log
e−tg(z, t)

z
=

∞∑
k=1

ck(t)zk, |z| < 1.

By equation (5-2), the function

z 7→ ∂

∂t
log

e−tg(z, t)
z

is analytic for |z| < 1, so we can write

∂

∂t

( ∞∑
k=1

ck(t)zk

)
=

∞∑
k=0

dk(t)zk,

for some functions dk(t). Comparing coefficients in zk then shows that d0(t) = 0,
and that each ck(t) is differentiable, with c′k(t) = dk(t). In other words, we can
differentiate equation (5-9) term-by-term with respect to t:

∞∑
k=1

c′k(t)zk =
∂

∂t
log

e−tg(z, t)
z

=
1

e−tg(z,t)
z

(
−e−tg(z, t)

z
+
e−tġ(z, t)

z

)
= −1 +

ġ(z, t)
g(z, t)

,

so

(5-10)
ġ(z, t)
g(z, t)

= 1 +
∞∑

k=1

c′k(t)zk.
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Differentiating (5-9) with respect to z yields

∞∑
k=1

kck(t)zk−1 =
1

e−tg(z,t)
z

(
e−tg′(z, t)

z
− e−tg(z, t)

z2

)
=
g′(z, t)
g(z, t)

− 1
z
,

so

z
g′(z, t)
g(z, t)

= 1 +
∞∑

k=1

kck(t)zk.

Combining this with (5-10) and using (5-3), we get

1 +
∞∑

k=1

c′k(t)zk =
ġ(z, t)
g(z, t)

=
1 + κ(t)z
1− κ(t)z

z
g′(z, t)
g(z, t)

=
(

1 + κ(t)z
1− κ(t)z

)(
1 +

∞∑
k=1

kck(t)zk

)

= (1 + κ(t)z)
(
1 + κ(t)z + κ(t)z2 + ...

)(
1 +

∞∑
k=1

kck(t)zk

)

=

(
1 + 2

∞∑
k=1

(κ(t)z)k

)(
1 +

∞∑
k=1

kck(t)zk

)
.

Comparing power series coefficients gives the result. �

Lemma 5-7. For t ∈ [0,∞), let b0(t) = 0, and let

bk(t) =
k∑

j=1

jcj(t)κ(t)−j , k = 1, 2, ..., n.

Then

φ′(t) = −
n∑

k=1

∣∣ bk−1(t) + bk(t) + 2
∣∣2 τ ′k(t)

k
.

Proof. We have

φ(t) =
n∑

k=1

(
kck(t)ck(t)− 4

k

)
τk(t),

so

φ′(t) =
n∑

k=1

[
k
(
c′k(t)ck(t) + c′k(t)ck(t)

)
τk(t) +

(
kck(t)ck(t)− 4

k

)
τ ′k(t)

]

=
n∑

k=1

[
k
(
2 Re c′k(t)ck(t)

)
τk(t) +

(
k|ck(t)|2 − 4

k

)
τ ′k(t)

](5-11)
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Now, note that

κ(t)k (bk(t) + bk−1(t) + 2) = κ(t)k

 k∑
j=1

jcj(t)κ(t)−j +
k−1∑
j=1

jcj(t)κ(t)−j + 2


= κ(t)k

2
k−1∑
j=1

jcj(t)κ(t)−j + kck(t)κ(t)−k + 2


= c′k(t), by Lemma 5-6.

Also (
bk(t)− bk−1(t)

)
κ(t)−k =

(
kck(t)κ(t)+k

)
κ(t)−k = kck(t).

Hence (5-11) becomes

(5-12) φ′(t) =
n∑

k=1

2 Re
[(
bk(t)− bk−1(t)

)
(bk(t) + bk−1(t) + 2)

]
τk(t)

+
n∑

k=1

(
|kck(t)|2 − 4

) τ ′k(t)
k

.

Now,

Re
[(
bk(t)− bk−1(t)

)
(bk(t) + bk−1(t) + 2)

]
= Re

(
|bk(t)|2 + bk−1(t)bk(t)− bk−1(t)bk(t)− |bk−1(t)|2 + 2bk(t)− 2bk−1(t)

)
= |bk(t)|2 − |bk−1(t)|2 + 2 Re bk(t)− 2 Re bk−1(t).

Therefore, the first sum in (5-12) may be written as

n∑
k=1

[
2
(
|bk(t)|2 − |bk−1(t)|2

)
+ 4 ( Re bk(t)− Re bk−1(t))

]
τk(t)

=
n∑

k=1

(
2|bk(t)|2 + 4 Re bk(t)

)
τk(t)−

n−1∑
k=1

(
2|bk(t)|2 + 4 Re bk(t)

)
τk+1(t)

=
(
2|bn(t)|2 + 4 Re bn(t)

)
τn(t) +

n−1∑
k=1

(
2|bk(t)|2 + 4 Re bk(t)

)
(τk(t)− τk+1(t))

=
−τ ′n(t)
n

(
2|bn(t)|2 + 4 Re bn(t)

)
−

n−1∑
k=1

(
2|bk(t)|2 + 4 Re bk(t)

)(τ ′k(t)
k

+
τ ′k+1(t)
k + 1

)

= −τ
′
n(t)
n

(
2|bn(t)|2 + 4 Re bn(t)

)
−

n−1∑
k=1

(
2|bk(t)|2 + 4 Re bk(t)

) τ ′k(t)
k

−
n∑

k=2

(
2|bk−1(t)|2 + 4 Re bk−1(t)

) τ ′k(t)
k

= −
n∑

k=1

(
2|bk(t)|2 + 4 Re bk(t) + 2|bk−1(t)|2 + 4 Re bk−1(t)

) τ ′k(t)
k
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Noting also that |kck(t)| = |bk(t)− bk−1(t)|, (5-12) becomes

φ′(t) = −
n∑

k=1

(
2|bk(t)|2 + 4 Re bk(t) + 2|bk−1(t)|2 + 4 Re bk−1(t)− |bk(t)− bk−1(t)|2 + 4

)
τ ′k(t)
k

= −
n∑

k=1

(
2|bk(t)|2 + 2bk(t) + 2bk(t) + 2|bk−1(t)|2 + 2bk−1(t) + 2bk−1(t)− |bk(t)|2

− |bk−1(t)|2 + bk(t)bk−1(t) + bk−1(t)bk(t) + 4
)
τ ′k(t)
k

= −
n∑

k=1

∣∣ bk−1(t) + bk(t) + 2
∣∣2 τ ′k(t)

k
. �

Theorem 5-8. We have φ′(t) ≥ 0, for all t ∈ (0,∞).

Proof. This is immediate from Theorem 5-5 and Lemma 5-7. �

From Theorems 5-1 and 5-8, we have φ(0) ≤ 0, and by Theorem 5-4 this estab-
lishes the inequality (5-1) of the Milin conjecture.

6. Equality.
In this section, we complete the proof of the Milin conjecture by showing that

equality only holds for rotations of the Koebe function. We again follow [FP].

Theorem. Let f ∈ S, and suppose f is not a rotation of the Koebe function. Then
there is strict inequality in the Milin conjecture.

Proof. Write
f(z) = z + a2z

2 + a3z
3 + ...

log
f(z)
z

= 2γ1z + 2γ2z
2 + 2γ3z

3 + ...

By Bieberbach’s Theorem (section 2), |a2| < 2. This is the only time we use the
fact that f is not a rotation of the Koebe function.

By Theorem 4-2, we can find {fm} ⊆ S′ with {fm} → f in the topology ∆. By
the Löwner Representation Theorem, for each fm we can choose a parameterized
family gm(z, t) of univalent functions such that, for each non-negative real number
t, the function

z 7→ e−tgm(z, t) = z + a2,m(t)z2 + a3,m(t)z3 + ... ∈ S,

with gm(z, 0) = fm(z), and

ġm(z, t) =
1 + κm(t)z
1− κm(t)z

zg′m(z, t)

for some continuous function

κm : [0,∞) →
{
z ∈ C

∣∣ |z| = 1
}
.

Write

log
e−tgm(z, t)

z
= c1,m(t)z + c2,m(t)z2 + ..., |z| < 1.
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Then since
log
(
1 + a2,m(t)z + ...

)
= a2,m(t)z + ...,

we have c1,m(t) = a2,m(t), for all m and for all t ∈ [0,∞).
Fix a positive integer n. We wish to show that

(6-1)
n∑

k=1

(
k|2γk|2 −

4
k

)
(n+ 1− k) < 0.

Since |a2| < 2, we can find a real number α such that

|c1,m(0) |=|a2,m(0) |< α < 2,

for all sufficiently large m. By Lemma 5-6 (with k = 1), for each m we have

|c′1,m(t) | =|c1,m(t) + 2κm(t) |
≤|c1,m(t) | +2
≤ 4

by Bieberbach’s Theorem. Hence for all sufficiently large m,

|c1,m(t) |≤|c1,m(0) | + 4t < α+ 4t.

For each m, let

φm(t) =
n∑

k=1

(
k |ck,m(t) |2 −4

k

)
τk(t).

Since limm→∞ ck,m(0) = 2γk, (6-1) will follow from showing that limm→∞ φm(0) <
0. From Lemma 5-7 and Theorem 5-5, it follows that

φ′m(t) ≥|b1,m(t) + 2 |2
(
−τ ′1(t)

1

)
=|c1,m(t)κm(t)−1 + 2 |2 (−τ ′1(t))
≥ (2− α− 4t)2 (−τ ′1(t)) ,

for sufficiently large m, provided 0 ≤ t < 2−α
4 . Then using Theorems 5-1 and 5-8,

we have φm(x) ≤ 0, and hence

φm(0) = φm

(
2− α

8

)
−
(
φm

(
2− α

8

)
− φm(0)

)
≤ −

(
φm

(
2− α

8

)
− φm(0)

)
= −

∫ 2−α
8

0

φ′m(t) dt

≤ −
∫ 2−α

8

0

(2− α− 4t)2 (−τ ′1(t)) dt

≤ −
(

2− α

2

)2 ∫ 2−α
8

0

(−τ ′1(t)) dt.
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Since α < 2, it follows from Theorem 5-5 that this last expression is negative.
Furthermore, it is independent of m. Hence, limm→∞ φm(0) < 0, proving (6-1). �
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[CS] Z. Charzyński and M. Schiffer, A new proof of the Bieberbach conjecture
for the fourth coefficient, Arch. Rational Mech. Anal. 5 (1960), 187-193.
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