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Abstract

This paper considers data from an aphid infestation on a sugar cane plantation, and illus-
trates the use of an individual-level infectious disease model for making inference on the
biological process underlying these data. The data are interval censored, and the practical
issues involved with the use of Markov Chain Monte Carlo algorithms with models of this
sort are explored and developed. As inference for spatial infectious disease models is com-
plex and computationally demanding, emphasis is put on a minimal, parsimonious model
and speed of code execution.

With careful coding we are able to obtain highly efficient MCMC algorithms based on a
simple random-walk Metropolis-within Gibbs routine. An assessment of model fit is provided
by comparing the predicted numbers of weekly infections from the data to the trajectories of
epidemics simulated from the posterior distributions of model parameters. This assessment
shows the data have periods where the epidemic proceeds more slowly and more quickly than
the (temporally homogeneous) model predicts.
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1 Introduction

Individual-level models (ILM) are a conceptually attractive way of quantifying and making
inference on the characteristics of an infectious disease outbreak. The key feature of an
ILM is that a susceptible individual has a probability of contracting the disease from each
one of the infectious individuals. Statistical inference for ILMs is complicated by the fact
that the infection events are not independent of one another, as individual i becoming
infected increases the disease risk for those individuals whom i might transmit the infection
to. This inherent dependence in infectious disease data is particularly problematic when
inference is made on incompletely observed data, such as interval censored or aggregated
observations. An explicit evaluation of the likelihood function would require integrating
over all the unknown infection times, with each infection time affecting the distribution
of the others. This is often impractical, and efficient algorithms for making inference on
model parameters from interval censored event times is the crux of the problem in practical
applications of ILMs.

This paper is motivated by a desire to understand the propagation and time evolution
of an insect infestation among 1742 sugar cane plants on a particular experimental field on
the Caribbean island of Guadeloupe, with the aim of yielding insights into possible con-
trol strategies. The goal has been to develop a computationally efficient and undemanding
algorithm for performing statistical inference on an ILM with this dataset, with resulting
emphases on parsimony of the model and comparing various implementations of the model-
fitting algorithm. We find that by carefully improving and optimising the MCMC algorithm
used, we are able to accurately estimate parameters and thus obtain a clear picture of the
plant infection dynamics. Further insights are gained by assessing the fit of this parsimonious
model to the observed data, and ways in which the biological process departs from the strict
homogeneity assumptions of the model are identified.

1.1 The data and model

The insects present on the Guadeloupe plantation are aphids, small flying insects which
can lay large numbers of eggs (or more properly nymphs) on stems and the underside of
leaves. An egg on a sugar cane will take roughly 3 weeks to develop to an adult, following
which it will lay eggs for another 3 weeks (Nuessly, 2005). The plants were inspected at
week 0, 6, 10, 14, 19, 23, and 30, with the infection status of each plant recorded. Once
a plant is infected, it remains infected (and alive) for the remainder of the study period.
Figure 1a shows the locations of sugar canes on this Guadeloupe field, and Figure 1b shows
the cumulative number of plants observed to be infected as the experiment progressed.
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Figure 1: Location of 1742 sugar canes which are infected (•) or uninfected (•) at the end
of the study period, along with cumulative number of infections over time.

A two stage susceptible-infected model is the most basic of ILMs, and in its simplest
form consists of a single parameter θ, being the rate of the Poisson process for an infected
individual passing the infection to an individual who is susceptible. While this model is
oversimplistic for most real-world applications, the fact that plants never recover from or die
as a result of an aphid infection makes the model a reasonable starting point for the sugar
cane data. The diffusion of the epidemic in space, with infected plants having a tendency
to pass the infection to the plants closest to them, is key aspect of the research question
considered and invites an enhancement to the model to accommodate spatial dependence.
Doing so can be accomplished with a single additional parameter, σ, which combined with
a parametric dispersion kernel f(d;σ) gives the rate at which an infected plant located at xi

infects a susceptible plant at xj as θf(||xi − xj||;σ). These parameters can be interpreted
as θ being the rate at which an infected plant produces adult aphids and σ relating to the
distance an aphid is likely to travel during its lifetime.

A third parameter µ is added to the model as the rate of the Poisson process whereby
a susceptible plant contracts the infection spontaneously and irrespective of the infection
status of nearby plants. This parameter has been described in, for example, Meyer et al.
(2011) as an endemic component whereas θ reflects the epidemic component of the infection
transmission mechanism. The use of both θ and µ enhances the model’s ability to inform
control strategies as a large θ relative to µ would suggest propagation can be abated by
adjusting plant spacing or treating infected plants. Conversely, a large µ would indicate
infections are largely due to external factors and are less amenable to control measures.
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This spatial infectious disease model for plants is fairly standard in the ecological literature,
and is described in Chapter 7 of Keeling & Rohani (2008).

The assumptions behind this three parameter model are compatible with the sugar cane
data in a number of respects: once infected plants remain so; topography of the field is flat
and infection rates can plausibly be expected to depend only on distance between plants
and not their locations; and infections are detectable nearly immediately following their
occurrence via inspecting young leaves for nymphs. However, there are numerous ways in
which the biological process would not be expected to conform to the model assumptions.
First, a plant’s infectivity is assumed to be constant over time following its infection. It
might be expected that infectivity will increase over time as the colonisation of the plant
progresses, due to either aphids arriving from other plants or as a result of nymphs on
this plant maturing and reinfecting their host. Second, the the process is homogeneous
in time, and it might be expected that weather and seasonal progression would affect the
ability of nymphs to mature and aphids to disperse. Finally, there may be lags between a
plant’s exposure to infection (when the first egg is laid), an infection being observable on the
plant, and the aphids resulting from that infection maturing and the plant being infectious.
Diagnostic plots will be used to assess the validity of the model assumptions in light of the
concerns above, and the feasibility of possible remedies is discussed.

1.2 Inference

Mathematical modelling of the spatial propagation of infectious diseases is a well established
and active research area, engaging in simulation studies and in deriving the stationary dis-
tributions of increasingly complex individual-level infectious disease models (see Keeling &
Rohani, 2008). Statistical inference for infectious disease models is a much smaller and less
developed discipline, and early considerations of parameter estimation include Becker (1989)
and Haber et al. (1988). Much of this early work considered non-spatial models where ILMs
can be reduced to the distribution of case counts at fixed intervals. McKinley et al. (2009)
compare computationally intensive Bayesian inference involving the full likelihood to approx-
imate inference based on matching the case counts from simulated outbreaks to the observed
case counts. They conclude that the latter is very effective when the data are completely
observed and can still be informative under various types of missing data scenarios.

Inference for spatial models, where transmission probabilities depend on distances be-
tween individuals, was considered by Gibson (1997). Infection status at two time points
were available to Gibson (1997), with Monte Carlo integration over the (unknown) order of
infections used to approximate the likelihood function, and they note that an extension to
multiple observation times is straightforward. Diggle (2006) uses a partial likelihood which
considers only the ordering of events and not event times, the infection times are not interval
censored but rather observed after a (constant) reporting delay. Deardon et al. (2010) use
linear approximations to the infection kernel f to make full Bayesian or likelihood-based
inference practical when infection times are observed, even when the datasets considered are
large.

Here we consider a Markov Chain Monte Carlo (MCMC) algorithm for performing
Bayesian inference on a spatial individual-level infectious disease model with interval-censored
data. MCMC provides a natural and statistically efficient procedure for accounting for
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interval-censored data by treating the unknown infection times as latent variables for which
posterior samples are drawn at each iteration. MCMC for infectious disease models was
pioneered by O’Neill et al. (2000), and has since been used for models of increasing com-
plexity as MCMC algorithms and processing power have improved. Jewell et al. (2009) use
an MCMC for fitting a complex model involving a large number of parameters relating the
probability of transmission of a disease between two farms to farm-level covariates. When
the number of infected individuals is large, MCMC becomes computationally burdensome
as the sampling of each of the infection times at every iteration can be time consuming.
Developing an efficient implementation of an MCMC algorithm for the sugar cane data, able
to perform inference in a reasonable amount of time on a workstation computer, is a central
aim of this paper.

2 Methods

2.1 Model and Likelihood

We will begin by describing the model an likelihood for the scenario where the infection times
τi are directly observed. This likelihood is then used in Section 3.2 to make inference on the
model parameters using the interval censored data present in the sugar cane application.

Recall that at time t a susceptible plant located at s receives spontaneous infections with
rate µ, and an infections from each of plant j infected prior to t with rate θf(s − xj;σ).
The intensity λ(s, t) of all infections arriving at s at time t is the sum of these individual
intensities. Writing τi as the infection time for plant i = 1 . . . 1742, the rate of infection is

λ(xi, t) = µ+
∑
j;τj<t

θf(xi − xj; σ). (1)

The infection rate is increasing in time, with increasing t resulting in a greater number of
infected plants contributing to the intensity. Although the Poisson process assumption can
result in multiple infections occurring in a plant, the first of these infections which moves
the plant from the susceptible to the infected state and any subsequent infections are not
observable.

The likelihood of observing a set of infection times τ = {τ1 . . . τN} can be thought of as
the product of 1) the probability of not observing infections during each plant’s time in the
susceptible state, and 2) the probability (or density) of observing infections at each of the
τi. The Poisson process assumption dictates that the number of infections in a time interval
is Poisson distributed with mean equal to the intensity function integrated over the period.
Hence the first term in plant i’s likelihood, the probability that no infections occur in the
interval from zero to τi, is

exp

[
−
∫ τi

0

λ(xi, u)du

]
.

The second component of the likelihood, the density for the infection time τi, is simply
λ(xi, τi). Plants which are not infected by the final observation time T contribute a proba-
bility of pr(τi > T ) to the likelihood, without the second term. The product over all plants

5



results in the likelihood function

L(µ, θ, σ|τ1 . . . τN) =

( ∏
i;τi≤T

exp

[
−
∫ τi

0

λ(xi, t)dt

]
λ(xi, τi)

)
( ∏

i;τi>T

exp

[
−
∫ T

0

λ(xi, t)dt

])
. (2)

Substituting in the intensity function from (1) gives

− logL(µ, θ, σ|τ1 . . . τN) =
∑
i;τi≤T

τiµ+
∑

j;τj<τi

(τi − τj)θf(xi − xj;σ)

+

∑
i;τi>T

Tµ+
∑

j;τj<T

(T − τj)θf(xi − xj; σ)

−

∑
i;τi≤T

log

µ+
∑

j;τj<τi

θf(xi − xj;σ)

 . (3)

It remains to specify a parametric form for the infection kernel f(d;σ), and we have
chosen a radially symmetric bivariate Gaussian density with

f(d;σ) = (1/2πσ2) exp(−||d||2/2σ2).

The use of the Gaussian kernel motivated by the Gaussian being the stationary distribution
of a Brownian motion. Writing Ak(t) as the location of aphid k at time t, we assume that
movements within a short time interval of length ϵ are normally distributed with var[A(t+
ϵ) − A(t)] = ν2ϵ. An aphid born at time t0 and location s0 will have pr[Ak(t1) = a] =
f [a − s0, ν

2(t1 − t0)], with σ2 above being the stationary variance after one week of aphid
movements. Introducing a further parameter to allow for heavier or lighter tails in the
dispersion kernel, by generalising f to be a multivariate t-distribution, is also considered.

2.2 Prior Distributions

Weakly informative Gamma priors are used for the three parameters as follows: µ ∼
Gamma(0.7, 0.004) and θ ∼ Gamma(0.8, 10) (measured as infections per week), and σ ∼
Gamma(0.5, 100) (in meters). Interpreting these prior distributions is helped by the follow-
ing prior 95% prediction intervals:

µ: the expected number of spontaneous infections is between 1 and 630 over the study period,
recalling that the total number of infections observed is 583.

θ: an infected plant surrounded by susceptible plants has an average time to its first infection
between 1 day and 16 months.
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σ: 95% of aphids will have traveled less than 10cm at the 2.5% quantile of the prior distri-
bution and 500m at the 95.5% quantile of the prior.

Having µ and θ at the lower end of their prior distributions would result in very few
plants being infected over the 30 weeks, whereas values at the upper end of the priors would
result in the entire plantation being infected within days. The range σ at the lower end
of the prior would result in the infection being unable to spread between plants (which are
50cm apart). A value near the upper end would make the distribution of aphids flat over
the 50 meter long plantation and the model would be effectively non-spatial. These priors
thus allow for all parameter values which could create a plausible epidemic.

2.3 Inference

Recall that the infection times τi are unobserved, with the observed data Y = {Yi; i =
1 . . . N} consisting of vectors Yi being plant i’s status at each of the 6 occasions on which the
plantation was surveyed. The τi are therefore interval censored, with each plant’s infection
occurring somewhere within the last occasion on which plant i was observed as susceptible
and the first occasion where it was observed as infected. Closed form expressions for the
likelihood of the observed Yi are available in survival models which assume independence
between observations, obtained by integrating out the τi. With infectious disease models
each τi affects the distribution of every other τj, as evidenced by the double sums in (3), and
the likelihood of the interval censored data is intractable.

Bayesian inference using MCMC is well suited to data of this sort, with the τi being
treated as latent variables and accommodated through data augmentation (see e.g. Jewell
et al., 2009). Prior distributions pµ(·), pθ(·), and pσ(·) are specified for the three model
parameters, and an MCMC algorithm produces samples from the posterior distribution
π(µ, θ, σ, τ |Y). A random-walk Metropolis algorithm is used here to update each parameter
and latent variable in sequence, using the following general algorithm.

1. Initialize the algorithm at iteration r = 0 with initial values τ
(0)
i , µ(0), σ(0), θ(0);

2. At iteration r initially set τ
(r)
i = τ

(r−1)
i , µ(r) = µ(r−1), σ(r) = σ(r−1), θ(r) = θ(r−1),

3. Simulate a proposal µ∗ ∼ N(µ(r−1), νµ).

4. Set µ(r) = µ∗ with probability

pr(µ(r) = µ∗) = min

[
1,

L(τ
(r)
1 . . . τ

(r)
N ;µ∗, θ(r), σ(r))pµ(µ

∗)

L(τ
(r)
1 . . . τ

(r)
N ;µ(r), θ(r), σ(r))pµ(µ(r))

]
. (4)

otherwise set µ(r) is unchanged from µ(r−1).

5. Repeat steps 3 and 4 for θ and σ.

6. For each i = 1 . . . N , propose a new τ ∗i and accept with probability

pr(τ
(r)
1 = τ ∗1 ) = min

[
1,

L(τ
(r)
1 . . . τ

(r)
i−1, τ

∗
i , τ

(r)
i+1 . . . τ

(r)
N ;µ(r), θ(r), σ(r))

L(τ
(r)
1 . . . . . . τ

(r)
N ;µ(r), θ(r), σ(r))

]
. (5)
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7. Return to step 2.

The θ, µ and σ have proposal distributions which are normally distributed, with mean
equal to their previous value, and with standard deviations given by 0.005, 0.0005 and 0.05
respectively. New values τ ∗i are proposed from the proposal distribution N(τ

(r)
i , 1). The

standard deviations of these proposal distributions were selected following visual assessment
of chain mixing during a number of trial runs of the algorithm.

2.4 Implementation

There are 583 plants infected by the end of the study period and 583 unknown infection times
to account for. The most straightforward implementation of the algorithm above would re-
quire calculating the likelihood function 586 times at each iteration (one likelihood for each
of the 3 parameters and once for each of the 583 unknown infection times). Implementing
the algorithm in this way is likely to result in unfeasibly long computational times, especially
considering the long chains and heavy thinning often required to reduce the dependence in
random-walk Metropolis MCMC of this type. A central aim of this paper is to explore
the feasibility of several variations on this basic algorithm, investigating the possibility of
exploiting computational efficiencies as an alternative to more sophisticated MCMC algo-
rithms. These efficiencies include: pre-calculating and storing quantities used repeatedly;
more efficient calculation of the likelihood ratio; truncating the kernel f ; and performing
as many calculations as possible in parallel. A detailed description of the algorithms used
follows, and the C code for each of the algorithms appears on the journal web site.

2.4.1 Basic algorithm

The first algorithm is essentially as described above, direct evaluation of the likelihoods,
though the two most obvious efficiencies are exploited. First, the distances between plants
||xi − xj|| are pre-computed and stored, saving the time it would take to re-calculate these
distances each time the likelihood is evaluated. Second, a number of terms in the likelihood
ratios in (5) for updating the τi are identical in the numerator and denominator. Cancelling
these terms results in a simplified expression for the likelihood ratio, as described in Appendix
A, and resulted in much faster running times.

2.4.2 Parallel Algorithm

This algorithm involves using multiple computer cores to update the τi simultaneously to the
greatest extent possible. The term involving i and j in the likelihood ratio in Appendix A
for the updating of τ

(r)
i involves only τ ∗i − τ

(r)
i and not τ

(r)
j unless the proposal τ ∗i would

change the order of infection of i and j. When τi and τj are known to occur in different
time intervals (having been first observed as infected at different times), any proposal which

changes their ordering would be rejected and any changes to τ
(r)
k during the updating will not

affect the updating of τ
(r)
i . It is therefore possible to update infection times simultaneously

when they occur in different intervals, and this parallel algorithm runs four parallel sets of
updatings. The first three observation periods (which together have fewer infections than

8



any of the subsequent three periods) are updated on one core, with each of the final three
observations periods on separate cores (using four cores in total).

2.4.3 Improved Parallel Algorithm

This algorithm exploits two further efficiencies. First, the likelihood ratio for µ(r) in (4)
simplifies considerably, as described in Appendix A. Second, the values of f(xi − xj;σ

(r))
are pre-computed and stored as they are used multiple times at each iteration. Unlike
the distances ||xi − xj||, these values change at each iteration (or every iteration where σ
changes), and the values are re-computed and stored periodically. Note that f(xi − xj;σ

(r))
only appears in the likelihood if one of i and j are infected during the study period. Thus
only 600 · (1742− 600) values must be computed rather than 17422, and this computation is
done in parallel on 4 cores.

2.4.4 Truncated Algorithm

Whereas the two parallel algorithms are mathematically equivalent to the Basic Algorithm,
the Truncated Algorithm approximates the likelihood ratios in the hopes that the resulting
loss of accuracy is negligible. The kernel f(d; σ) is truncated with f(d;σ) = 0 when ||d|| > 4σ,
with the result that terms involving i and j in the likelihood are zero if ||xi − xj|| > 4σ.
The truncated approximation to the likelihood ratio can be computed quickly by computing
and storing, for each plant i, the order from smallest distance to greatest distance of each
of the other plants. Each double summation in the likelihood ratio proceeds with increasing
distances between plants and ceases once a distance greater than 4σ is reached. The value
at which f is truncated can of course be varied, a value of 4σ was chosen because the values
set to zero are always less than 10−4.

The Truncated Algorithm adds only the truncation approximation to the Basic Algo-
rithm, and uses none of the efficiencies of the Parallel algorithms.

2.4.5 Discrete time algorithms

Two final algorithms, included more for comparison than an expectation that it will offer
computational advantages over the other algorithms, approximate the likelihood by allowing
infections at only a finite number of time points t̃0 . . . t̃M . Using this approximation the
likelihood can be written as a product over time with

L̃(µ, θ, σ|τ1 . . . τN) =
M∏

m=1

 ∏
i;τi>tm

exp[−(tm − tm−1)λim]
∏

i;Tk<τi≤Tk+1

[1− exp(−(tm − tm−1)λim)]

 ,

(6)
where

λik = µ+ θ
∑

j;τj<tm

f(xi − xj; θ). (7)

When τ
(r)
i = tm, it is updated by proposing either τ ∗i = tm−1 or τ ∗i = tm+1 with equal

probability. The likelihood ratios for τ ∗i are simpler than the continuous-time likelihoods and

involve only the plants j with τ
(r)
j = τ

(r)
i or τ

(r)
j = τ ∗i .
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Two discrete time algorithms are implemented: a Basic Discrete Time Algorithm similar
to the Basic Algorithm; and a Truncated Discrete Time Algorithm where the truncated
kernel is used.

3 Results

3.1 Computing time

Table 1 shows the time taken for 100 MCMC iterations of each of the algorithms described
above, using a quad-core 2GHz Opteron processor. Many of the results could be foreseen,
with parallelizing reducing the time taken to update the τ substantially and improving
the parallel algorithm by storing the f(xi − xj; σ

(r)) results in further time savings. The
untruncated discrete time approximation is, unsurprisingly, considerably more computation-
ally intensive than the continuous-time implementation. The magnitude of the reduction in
computational time resulting from the truncation approximation is perhaps more surprising.
The continuous time algorithm is sped up by a factor of nearly 50 and the discrete time
algorithm improves from 15 minutes per 100 iterations to a more manageable 36 seconds.

Algorithm θ µ τ σ total
Basic 28.15 14.27 160.92 28.99 232.33
Parallel 25.08 12.57 29.99 25.17 92.81
Improved 2.38 0.25 10.18 12.31 25.12
Truncated 1.07 1.07 1.76 1.13 5.03
Basic Disc 261.58 253.65 122.81 263.19 901.23
Trunc Disc 16.65 0.35 2.15 16.80 35.95

Table 1: CPU time, in seconds, for 100 iterations for the MCMC implementations listed in
Section 2.4. Times taken to update each of the parameters and latent variable τ are shown
separately with the total time appearing in the final column.

Random-walk Metropolis algorithms of the type used here often require thinning to
produce independent samples, and many hundreds or thousands of iterations can be required
to obtain accurate estimates. The results in Section 3.2 are from chains of 125,000 iterations
with 5000 samples retained after burnin and thinning, and only the three algorithms quicker
than 60 seconds per 100 iterations are able to produce a set of results in less than one day.
Appendix B shows trace plots and correlations for the improved parallel algorithm and the
other continuous-time algorithms (being mathematically equivalent or approximately so) had
very similar mixing properties.

Our initial reaction to the performance of the Basic algorithm, at over 3.5 days per 5,000
samples retained, was to conclude that conventional MCMC was not powerful enough for
this problem. We considered using far more complicated algorithms (e.g. particle MCMC,
see Andrieu et al., 2010) in an effort to overcome this problem.

Our subsequent experience with parallelization, truncation, pre-sorting, and storing ker-
nel values have led us to conclude that efficient coding results in inference on ILMs being
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possible with even the simplest of MCMC algorithms. The parallel implementation of the
untruncated model would be expected to update the τ in one quarter the time of the basic
untruncated model. The pre-sorting of plants by infection time, and having separate loops
for infected and uninfected plants rather than the basic algorithm’s single loop with a check
for each plant’s infection status, has resulted in yet further efficiency gains. All the algo-
rithms pre-compute and store the distance matrix, and the improved parallel algorithm’s
storing of the matrix of f(xi − xj; σ

(r)) produces substantial time reductions for all parame-
ters. The time taken to compute the f(xi − xj;σ

(r)) values is included in the σ column, and
even with this step being parallelized the updating of σ is more time consuming than the
updating of the τ . The improved parallel algorithm also computes the likelihood ratio for µ,
which is considerably faster than evaluating the likelihood.

Truncating and pre-sorting the plants by distance introduces an approximation to the
inference methodology, but improves the computational speed to the extent that no further
improvements or coding efficiencies seem necessary. The gains from truncation will diminish
as σ increases, however, and datasets exhibiting a large degree of spatial dependence might
require parallelization and storing the matrix of kernel evaluations in addition to truncation.

3.2 Inference on model parameters

We next show and interpret the posterior distributions of model parameters, and assess
the adequacy of the truncation approximation. Figure 2 shows the distribution of posterior
samples from the improved parallel algorithm and from the truncated algorithm. Chains were
run for 125,000 iterations, with the first 1000 iterations discarded as burnin, and subsequently
thinned with one sample in 25 being kept thereafter, for a total of about 5000 iterations
being retained. Figure 2(a-c) shows the marginal prior and posterior distributions of the
three model parameters, with posterior distributions shown for both the truncated and
untruncated continuous time model. Joint bivariate posterior samples for all parameter
combinations are shown in Figure 2(d-f).
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(a) µ (b) θ (c) σ

(d) σ, µ (e) θ, µ (f) θ, σ

Figure 2: Prior and posterior distributions of: the endemic infection rate µ; the rate at
which an infected plant produces aphids σ; and the spatial range of aphid movements σ.
Shown are posterior means and 95% intervals ( — ), and bivariate confidence regions for
the truncated (Trunc or — ) and non-truncated (Full or - - - ) algorithms. Also shown are
bivariate posterior samples for the non-truncated algorithm (◦).

In Figure 2 there is some suggestion that the truncation approximation has increased θ
and σ and reduced µ. This is particularly evident in Figure 2(f). This output thus provides
some small argument against truncating, and the improved parallel untruncated continuous-
time algorithm is shown for our remaining estimates. (In addition, in Appendix B we present
trace plots and autocorrelation functions to illustrate that this algorithm is indeed mixing
adequately following thinning.)

We next consider the infection times τi. Figure 3a shows the posterior distributions of
the τi for 6 infections which occur in the first observation period, with Figure 3b doing the
same for the 256 infections which occurred in the final period. The absence of infected plants
at the start of the first period implies that the infections which do occur are ‘spontaneous’
infections due to µ, with identical posterior distributions for all 6 infections. In the final
period, the susceptible plants in closer proximity to infected plants are infected near the
start of the period (solid black lines), with the dashed black lines corresponding to plants
which were likely infected following the infections of a number of its neighbours.
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(a) First period, weeks 0 to 6 (b) Last period, weeks 23 to 30

Figure 3: Posterior densities for the time of infection for plants known to be infected during
the first inspection period and the last inspection period. Each line represents the density
of an individual plant’s infection time.

Figure 4a shows posterior samples and 95% pointwise intervals for the number of new
infections per week, conditional on the 6 observations. Figure 4b, by contrast, simulates new
epidemics for each of the posterior samples of the model parameters, without reference to the
observed infections. The black solid and dashed lines are posterior means and 95% intervals
respectively, with the remainder of samples being in grey. The grey lines are semi-transparent
with darker areas having a greater number of overlaid lines. This pair of graphs can be seen
as a form of model diagnostics, with a good model fit being demonstrated when the data-
driven samples in the former graph being similar to the model-driven samples in the latter.
There are differences between the two graphs, however, primarily the higher initial infection
activity in the unconditional simulations and the sharp discontinuity between weeks 14 and
19 in the data-driven posterior samples. Posterior means and intervals for the truncated
model are shown in red, and for the most part coincide with the untruncated model.

Figures 4c and 4d are analogous plots showing the prevalence, or cumulative number of
infections, transformed by exponentiating the counts to the power of log(30)/ log(583) ≈
0.534 and subtracting the number of weeks since the start of the study. This transform was
chosen because a horizontal line at y = 0 corresponds to prevalence increasing exponentially
to 583 infections on week 30. The number of total infections is observed directly at the 6
observation times, with the width of the 95% intervals shrinking to zero on these occasions.
The unconditional simulated epidemics in Figure 4d are, unsurprisingly, considerably more
variable than the conditional samples.

The most apparent inconsistency between the unconditional simulations and the poste-
rior distribution derived from the data is the slopes of the prevalences in Figures 4c and
4d. Exponential growth corresponds to horizontal lines, with the unconditional samples
exhibit more rapid than exponential growth during the first three weeks and roughly expo-
nential growth thereafter. The prevalence of aphids in the sugar cane dataset increases much
more slowly than exponential growth before week 10 and substantially more rapidly than
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exponential between weeks 14 and 20.

(a) Incidence, conditional on observed infections (b) Incidence, unconditional simulations

(c) Prevalence, conditional on observed infections (d) Prevalence, unconditional simulations

Figure 4: Incidence (number of new infections per week) and prevalence (cumulative number
of infections to date) as sampled from the posterior distribution conditional on the interval-
censored infection times, and unconditional simulations using the posterior samples of model
parameters. Shown are individual samples ( — ), posterior means ( — ) and 95% intervals
( - - - ) .

Finally, we turn to the question of longer-term prediction. Figures 9(a-d) forecast the
epidemic past the 30 weeks for which data are observed, showing each plant’s probability
of being infected by weeks 35, 40, 50 and 60. Notice the plants close to infected plants are
forecast to become infected first, and by week 60 nearly all plants are likely to be infected.

4 Discussion

This exploration of an aphid infestation on a sugar cane plantation had the dual aims of:
using a simple ILM to yield insights into the underlying biological process; and of better
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(a) week 35 (b) week 40 (c) week 50 (d) week 60

Figure 5: Probabilities forecast at week 30 of each plant being infected by week 35, 40, 50
and 60. Probabilities are 0-19% ( ), 20-79% ( • ), 80-99% ( • ), 100% ( • )

understanding the practical issues related to the use of MCMC with ILMs. Addressing the
first aim, it has been shown that aphids can infect plants up to 2σ (on the order of two to
three meters) away from the host plant. The plants are currently spaced 0.5m apart in the
y-direction; increasing the spacing by 10% or 20% would be unlikely to have a demonstrable
effect on the aphid spread and reducing the number of plants by a factor of two or three would
likely be required before the epidemic were to be slowed substantially. The weekly number of
spontaneous infections, or more likely infections caused by long-range phenomenon, amongst
2000 susceptible plants is Poisson distributed with mean approximately 6 and unlikely to
exceed 15. A plantation of 2000 sugar canes could be kept aphid-free by having the capacity
to detect and treat 15 spontaneous infections per week sufficiently quickly that the nymphs
on these infected plants were unable to mature and spread the epidemic.

The model applied to the sugar cane data is overly simplistic, and comparing the observed
data to simulated time trajectories from the fitted model suggests this simple model is unable
to reflect the temporal dynamics of the underlying biological process. The epidemic starts
much more slowly than the fitted model would predict, as evidenced by the downward slope
in Figure 4c, followed by faster growth than the model allows for with a subsequent levelling
off from week 20. One possible cause of this phenomenon is that the assumption of time
homogeneity is incorrect, and seasonal or meteorological factors were particularly conducive
to the spread of the infestation in weeks 14 to 20. A second potential explanation is the
failure of the model to account for a possible time lag between infection of a plant and the
plant becoming infectious. An SEI model (Susceptible-Exposed-Infectious) would introduce
an additional state of ‘exposed but not yet infectious’, and a model more general still would
allow for a gradual increase in a plant’s infectivity over time as nymphs from the original
infection mature and re-infect the host plant. The slowing of the infection rate between
weeks 20 and 25 would suggest that time inhomogeneity rather than a time lag in infectivity
is more likely. SEI models do exhibit slowing of the infection rate when the number of
susceptible plants available for infection decreases, though 85% of plants are still susceptible
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in week 20 so a change in infectivity during this period is the more likely explanation.
An assessment of the spatial aspects of the model assumptions (radially symmetric Gaus-

sian infection kernel, spatial homogeneity) has not been presented, and there are no estab-
lished and widely recognised methods for accomplishing this. While the plots comparing
conditional and unconditional simulations of case counts over time can assess the assump-
tions related to the temporal dynamics, it is not clear what a spatial analog of these plots
would be. One options would be to introduce additional parameters into the infection kernel
f to allow for more general profiles. We have implemented a multivariate-t density for f to
check the robustness of the results to the very weak tails in a Gaussian kernel. This analysis
produced conditional and unconditional simulations of infection counts which were indistin-
guishable from the Gaussian kernel, though the fitted t-density kernel had heavier tails and
a sharper peak (see Figure 8). Directional effects could be assessed by using a kernel with
elliptical contours as opposed to the circular contours used here. This would involve two
additional parameters (ratio of rotation and angle of major to minor axis lengths), likely
worsening the chain mixing and requiring a higher number of iterations. A yet more com-
plex algorithm would allow the data to choose between possible kernels (perhaps including
a kernel with finite support) with a reversible jump MCMC (Green, 1995).

The outcome from the second goal of the paper, an exploration of the computational
considerations related to the use of MCMC for ILMs, is that random-walk Metropolis MCMC
is entirely feasible for use with populations of thousands of individuals (if programmed very
carefully). The initial effort at improving the simple Metropolis-within-Gibbs algorithm
involved storing the distance matrix and simplifying the acceptance probabilities for the
infection times τi, improvements which dramatically lowered the time taken per iteration
but still proved unacceptably slow. A decision had to be made between either using a more
sophisticated MCMC algorithm or creating a more efficient implementation of the existing
algorithm. The dependence structure inherent in ILMs would cause problems for many of
the more sophisticated methods for Bayesian inference: the non-Gaussian distribution of
the latent variables precludes the use of Integrated Nested Laplace Approximations (see
Rue et al., 2009); the lack of conditional independence of the observations would complicate
the calculations of manifolds for the use with Reimann Manifold Hamiltonian MCMC (see
Girolami & Calderhead, 2011); the lack of a closed form for the conditional distributions
negates some of the advantages of particle Gibbs (see Andrieu et al., 2010).

Two avenues were identified for creating an efficient and practical implementation of the
algorithm: truncation of the kernel; and parallelization. Truncation of f has a disadvantage
with respect to parallelization in that it introduces an approximation into the algorithm.
Also, the benefits from truncation will decrease as the spatial dependence parameter σ
increases and the number of pairs of plants within 4σ of one another grows. Advantages of
the truncation algorithm include its lower computational times and relative ease in coding
in comparison with the parallel algorithm. Extensions of the model with an ‘exposed but
not observed’ state could not be parallelized as implemented here, as it would not always be
known which time interval an infection event occurred. Similarly, having infectivity depend
on time since exposure would preclude parallelizing as the infectivity of a plant would depend
not only on it’s infection status at the beginning of each observation period but also on the
exact time of exposure.

The conclusion to be drawn from this paper’s comparison of different MCMC imple-
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mentations is that efficient coding and a truncation approximation enables fairly standard
MCMC methods to be used to fit spatial ILMs to moderately large datasets. There are a
number of further MCMC techniques, such as adaptive scaling (see Roberts & Rosenthal,
2009), which might perhaps, if implemented carefully, improve the mixing and convergence
of chains in problems such as these. Implementing the simple algorithms used in this paper,
however, would be feasible for a non-specialist such as a numerate and computer-literate
infectious disease epidemiologist.
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A Likelihood ratios

In this appendix, we compute log acceptance probabilities and likelihood ratios used in our
MCMC algorithms.

The likelihood ratio for updating τi to τ ∗i is

logL(µ, θ, σ, τ1 . . . τi−1, τ
∗
i , τi+1 . . . τN)− logL(µ, θ, σ, τ1 . . . τN) = µ(τi − τ ∗i )+∑

j;τj<min(τi,τ∗i )

(τi − τ ∗i )θf(xi − xj; σ) +
∑

j;τj>max(τi,τ∗i )

(τ ∗i − τi)θf(xi − xj;σ)+∑
j;τi<τj<τ∗i

(2τj − τi − τ ∗i )θf(xi − xj; σ) +
∑

j;τ∗i <τj<τi

(τi + τ ∗i − 2τj)θf(xi − xj; σ)+

∑
i;τi≤T

log

µ+
∑

j;τj<τi

θf(xi − xj;σ)

− log

µ+
∑

j;τj<τ∗i

θf(xi − xj; σ)

 .

From (3) the log of the acceptance probability for the µ updates is

logL(µ∗, θ, σ, τ)− logL(µ, θ, σ, τ) =
∑
i;τi≤T

τi(µ− µ∗) + ||{i; τi > T}||T (µ− µ∗)−

∑
i;τi≤T

log

µ+
∑

j;τj<τi

θf(xi − xj; σ)

− log

µ∗ +
∑

j;τj<τi

θf(xi − xj; σ)

 .

B MCMC Convergence

In this appendix, we present trace plots and autocorrelation functions (ACFs) for our con-
tinuous, untruncated parallel MCMC algorithm. They are produced by chains of 125,000
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iterations, discarding the first 1000 iterations as burn-in and retaining only every 25th sam-
ple thereafter. They illustrate that MCMC convergence is indeed taking place, as indicated
by both the rapid mixing of the trace plots and the rapid decay of the ACF plots.
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Figure 6: Trace plots and Autocorrelation functions for µ, σ and θ.
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Figure 7: Trace plots and ACF for infection times τi for six selected infected plants.

C t density infection kernel

The following are a summary of the results from using a multivariate-t density for the
infection kernel. Posterior distributions are shown in Table 2 with Figure 8 showing the
posterior mean and quantiles of the infection kernel θf(d; σ).

σ 100 µ θ df
mean 1.96 0.27 0.11 2.99
2.5% 1.24 0.19 0.10 2.18
50% 1.86 0.27 0.11 2.75
97.5% 3.29 0.35 0.13 4.94

Table 2: Posterior means and quantiles for the model parameters using a multivariate-t
density for the infection kernel. The final parameter ‘df’ is the degrees of freedom for the
t-density.
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Figure 8: Posterior means and 95% posterior credible intervals for the scaled infection kernel
θf(d, σ) using a Gaussian infection kernel ( — ) and multivariate t-distribution kernel ( —
).
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(a) 35 weeks
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(b) 40 weeks
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(d) 60 weeks

Figure 9: Forecast probabilities of each plant being infected by 35, 40, 50 and 60 weeks.
Probabilities are 0-19% ( • ), 20-79% ( • ), 80-95% ( • ),95-<100% ( • ), 100% ( • )
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