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Abstract

In this article, a large data set containing every course taken by every undergraduate

student in a major university in Canada over 10 years is analysed. Modern machine learning

algorithms can use large data sets to build useful tools for the data provider, in this case,

the university. In this article, two classifiers are constructed using random forests. To begin,

the first two semesters of courses completed by a student are used to predict if they will

obtain an undergraduate degree. Secondly, for the students that completed a program,

their major is predicted using once again the first few courses they have registered to. A

classification tree is an intuitive and powerful classifier and building a random forest of

trees improves this classifier. Random forests also allow for reliable variable importance

measurements. These measures explain what variables are useful to the classifiers and can

be used to better understand what is statistically related to the students’ situation. The

results are two accurate classifiers and a variable importance analysis that provides useful

information to university administrations.

Keywords : Higher Education, Student Retention, Academic Success, Machine Learn-

ing, Classification Tree, Random Forest, Variable Importance
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1 Introduction

Being able to predict if a student is at risk of not completing its program is valuable for

universities that would like to intervene and help those students move forward. Predicting the

major that will be completed by students is also important in order to understand as soon

as possible which program attracts more students and allocate resources accordingly. Since

gathering data can be an expensive procedure, it would be useful being able to predict both of

these things using data the university already possesses such as student records. Understanding

which variables are useful in both of these predictions is important as it might help understand

what drives student in taking specific classes.

Formally, these two prediction problems are classification ones. To solve these, a popular

machine learning algorithm is used, a classification tree. A classification tree is an easy to inter-

pret classification procedure that naturally allows interactions of high degree across predictors.

The classification tree uses the first few courses attempted and grades obtained by students in

order to classify them. To improve this classifier, multiple trees are grown and the result is a

random forest. A random forest can also be used to assess variable importance in a reliable

manner.

The University of Toronto provided a large data set containing individual-level student

grades for all undergraduate students enrolled at the Faculty of Arts and Science at the Uni-

versity of Toronto - St. George campus between 2000 and 2010. The data set contains over 1

600 000 grades and over 65 000 students. This data set was studied by Bailey et al. (2016) and

was used to build an adjusted GPA that considers course difficulty levels. Here, random forest

classifiers are built upon this data set and these classifiers are later tested.

The contribution in this article is two-fold. First, classifiers are built and the prediction

accuracy of those classifiers exceeds the accuracy of the linear classifiers thus making them

useful for universities that would like to predict where their resources need to be allocated.

Second, the variable importance analysis contains a lot of interesting information. Among

many things, the high importance of grades in low-grading departments was noted and might

be a symptom of grade inflation.
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2 Literature review

2.1 Predicting success

In this article a statistical learning model is established to predict if a student succeeds at com-

pleting an undergraduate program and to predict what major was completed. This statistical

analysis of a higher education data set shares similarities with recent articles by Chen and

Desjardins (2008, 2010) and Leeds and DesJardins (2015) as a new statistical approach will be

introduced, a data set will be presented and policy making implications will be discussed. The

task of predicting student academic success has already been undertaken by many researchers.

Recently Kappe and van des Flier (2012) tried to predict academic success using personality

traits. In the meanwhile, Glaesser and Cooper (2012) were interested in the role of parents’

education, gender and other socio-economic metrics in predicting high school success.

While the articles mentioned above use socio-economic status and personality traits to pre-

dict academic success, many researchers are looking at academic-related metrics to predict

graduation rates. Johnson and Stage (2018) use High-Impact Practices, such as undergradu-

ate research, freshman seminars, internships and collaborative assignments to predict academic

success. Using regression models, they noted that freshman seminars and internships were

significant predictors. Niessen and al. (2016) discuss the significance of trial-studying test in

predicting student dropouts. This test was designed to simulate a representative first-year course

and student would take it before admission. The authors noted that this test was consistently

the best academic achievement predictor.

More recently, Aulck and al. (2016) used various machine learning methods to analyse a

rather large data set containing both socio-economic and academic metrics to predict dropouts.

They noted similar performances for the three methods compared; logistic regression, k-nearest

neighbours and random forests. The proposed analysis differs from the above-mentioned as it

takes on the challenge to predict academic success and major using strictly academic information

available in student records. The benefits of having classifiers built upon data they already own

is huge for university administrations. It means university would not need to force students to

take entry tests or relies on outside firms in order to predict success rate and major which is

useful in order to prevent dropout or to allocate resources among departments. As noted by

Aulck and al. (2016) machine learning analysis of academic data has potential and the uses of
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random forest in the following article aims at exploiting this potential.

2.2 Identifying important predictors

Identifying and interpreting the variables that are useful to those predictions are important

problems as well. It can provide university administrator with interesting information. The

precise effect of grades on a student motivation lead to many debates and publications over the

years (more recently (Mills & Blankstein, 2000; Ost, 2010)). Because grades should be indicators

of a student’s abilities, evaluating the predictive power of grades in various departments is

important. University administrators might want to know if grades in a department are better

predictors than grades in other departments. Continuing on the point, it is also important to

understand what makes the evaluations in a department a better indicator of students’ success.

Random forest mechanisms lead to variable importance assessment techniques that will be useful

to understand the predictive power of grades variables.

Understanding the importance ranking of grades in various departments can also enlighten

us regarding the phenomenon of grade inflation. This problem and some of its effect has been

already discussed in many papers ((Sabot & Wakeman-Linn, 1991; V. E. Johnson, 2003; Bar,

Kadiyali, & Zussman, 2009) ) and it is consensual that this inflation differs from one department

to another. According to Sabot and Wakeman-Linn, (1991) this is problematic since grades

serve as incentives for course choices for students and now those incentives are distorted by the

grade inflation. As a consequence of the different growths in grades, they noted that in many

universities there exist a chasm in grading policies creating high-grading departments and low-

grading departments. Economics, Chemistry and Mathematics are examples of low-grading

departments while English, Philosophy and Political Science are considered high-grading.

As Johnson mentions (V. E. Johnson, 2003), students are aware of these differences in

grading, openly discuss them and this may affect the courses they select. This inconsistency in

course difficulty is also considered by Bailey and al. (2016) as they built an adjusted GPA that

considers course difficulty levels. The accuracy of that adjusted GPA in predicting uniform test

result is a great demonstration that courses do vary in difficulty. If some departments suffer

from grade inflation, the grades assigned in that department should be less tied to the actual

student ability and therefore they should be less predictive of student success. A thorough

variable importance analysis will be performed in order to test this assumption.
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Understanding which predictors are important can also provide university administrators

with feedback. For example, some of the High-Impact Practices identified by Randall Johnson

and King Stage (2018) are part of the University of Toronto’s program. The variable importance

analysis could be a useful tool to assess the effect of such practices.

3 Methodology

3.1 Data

The data set provided by the University of Toronto contains 1 656 977 data points, where each

observation represents the grade of one student in one course. A data point is a 7 dimen-

sions observation containing the student ID, the course title, the department of the course, the

semester, the credit value of the course and finally the numerical grade obtained by the student.

As this is the only data obtained, some pre-processing is required in order for algorithms to be

trained. The first research question is whether it is possible to design an algorithm which

accurately predicts whether or not a student will complete their program. The second re-

search question is whether it is possible to design an algorithm which accurately predicts, for

students who complete their program, which major they will complete. These two predictions

will be based upon first-year student records.

The data has been pre-processed for the needs of the analyses. At the University of Toronto,

a student must complete 20 credits in order to obtain an Honours B.A. or B.Sc (University of

Toronto, 2017). A student must also either complete 1 Specialist, 2 Majors or 1 Major and 2

Minors. The first five credits attempted by a student roughly represent one year of courses.

Therefore, for each student every semester until the student reaches 5 attempted credits are used

for prediction. It means that for some students, the predictors represent exactly 5 attempted

credits and for some other students, a bit more. The set of predictors consists of the number

of credits a student attempted in every department and the average grade across all courses

taken by the student in each department. Since courses were taken by students in 71 different

departments, the predictor vector is of length 142. Of course, many other predictors could also

be computed from the data set, but these are the most appropriate ones for the purpose of the

variable importance analysis.

To answer the first research question, a binary response indicating whether or not a student
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completed their program is needed. Students that completed 18 credits were labelled as students

who completed their program. Students who registered to 5 credits worth of courses, succeeded

at fewer than 18 credits worth of courses and stopped taking courses for 3 consecutive semesters

are considered students who began a program but did not complete it. All other students were

left out of the analysis. Since some students take classes in other faculties or universities, 18

credits was deemed a reasonable threshold. It is possible that some students did not complete

their program even though they completed 18 credits, but it is more likely that they took courses

in other faculties or universities. To be considered dropouts, only students who registered to at

least 5 credits worth of courses were considered. It was assumed that students that registered

to fewer credits were registered in another faculty, campus, university or were simply auditing

students. After this pre-processing was performed, the data set contains 38 842 students of

which 26 488 completed an undergraduate program and 12 294 did not.

To answer the second research question a categorical response representing the major com-

pleted by the student is required. To do so, the 26 448 students who completed a program are

kept. The response will represent the major completed by the student. Since this information

is not available in the data set, the department in which the student completed the largest

number of credits is considered the program they majored in. Therefore, the response variable

is a categorical variable that can take 71 possible values. This formatting choice might be a

problem for students who completed more than 1 major. Some recommendations to fix that

problem can be found in the conclusion.

Regarding the various grading policies of this university it was noticed that Mathematics,

Chemistry and Economics are the three departments with the lowest average grades. As grades

do vary widely across the data set there is no statistically significant difference between the

departments but it is still interesting to observe that departments that were defined as low-

grading departments in many papers do appear as the lowest grading departments in this data

set too. Finally, the data set was divided in three parts as is it usually done. The algorithm

is trained upon the training set, which contains 90% of the observations in order to learn from

a large portion of the data set. 5% of the data set is assigned to the validation set which is

utilized to select various optimization parameters. Finally, the rest of the data set is assigned

to the test set, which is a data set totally left aside during training and later used to test the

performances of the trained classifier.
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3.2 Classification Tree

A typical supervised statistical learning problem is defined when the relationship between a

response variable and an associated set of predictors (used interchangeably with inputs) is of

interest. The response is what needs prediction, such as the program completion, and the

predictors, such as the grades, are used to predict the response. When the response variable is

categorical, this problem is defined as a classification problem. One challenge in classification

problems is to use a data set in order to construct a classifier. A classifier is built to emit a class

prediction for any new observation with unknown response. In this analysis, classifiers are built

upon the data set described in section 3.1 to predict if a new student will complete its program

and what major will be completed using information related to its first year of courses.

A classification tree (Breiman, Friedman, Olshen, & Stone, 1984) is a model that classifies

new observations based on set of conditions related to the predictors. For example, a classifi-

cation tree could predict a student is on its way to complete a program because it attempted

more than 2 Mathematics courses, obtained an averaged grade in Mathematics above 80 and

attempted fewer than 2 Psychology courses. The set of conditions established by a decision

tree partitions in multiple regions the space defined by possible predictors values. Intuitively, a

classification tree forms regions defined by some predictors values and assign a response label

for new observations that would belong in those regions. Figure 1 illustrates an example of a

predictor space partition, its associated regions and its associated classification tree for obser-

vations defined by two predictors. The final set of regions can be defined as leaves in a tree as

represented in Figure 1, hence the name classification trees.
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Now that the model has been established, an algorithm that creates the classification tree

using a training set of labelled observations needs to be defined. The algorithm creates the

regions by recursively establishing the conditions. It aims at building regions that contains a

high concentration of observations of the same class. Usually a measure of impurity is defined;

the further the region is from containing only observations with the same label, the bigger this

measure is. Intuitively, it is desired to obtain a set of conditions under which all students either

completed their programs or not. Therefore, the algorithm analyses how mixed are the labels

according to all possible conditions and selects the condition that minimizes the measure of

impurity. For example, the algorithm will look at all conditions of the form : ”did the student

attempt more or less than 1 Mathematics course ?” and select the condition that best divides

students that completed a program from students that did not.

Once a condition is selected, the training observations are effectively divided in two sets

of training observations based upon the condition. The process is repeatedly applied on the

two resulting training sets. The algorithm divides the training observations in smaller sets

until each resulting set contains few observations. When the partitioning process is completed,

each region is labelled with the class representing the majority of observations respecting the

conditions defining the region. A more formal definition of the algorithm is included in the

appendix.

3.3 Random Forest

By constructing a decision tree, a powerful and easy to interpret classifier is obtained. As will

be demonstrated in this section, one way to improve this classifier is to build a set of classifiers

using samples of the training set.

Suppose there is a way to obtain a set of classifiers. The goal is to find a technique that uses

the entire set of classifiers to get a new classifier that is better than any of them individually.

One method of aggregating the class predictions is by voting : the predicted class for a new

observation is the most picked class among individual classifier. A critical factor in whether

the aggregating procedure will improve the accuracy or not is the stability of the individual

classifiers. If a small variation in the training set has almost no effect on the classifier, this

classifier is said to be stable, and utilizing a set of classifiers based upon similar training sets

will result in a set of almost identical classifiers. For unstable procedures, the classifiers in
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the set are going to be very different from one another. For such classifiers, the aggregation

will greatly improve both the stability and accuracy of the procedure. Procedure stability was

studied by Breiman (1996b); classification trees are unstable.

Bootstrap aggregating (bagging) was introduced by Breiman (1996a) as a way to improve

unstable classifiers. In bagging, each classifier in the set is built upon a different bootstrap

sample of the training set. A bootstrap sample is simply a random sample of the original training

sets. Each of the samples are drawn at random with replacement from the original training set

and are of the same size. Doing so will produce a set of different training sets. For each of

these training set a decision tree is fitted and together they form a random forest. Overfitting

is a problem caused when a classifier identifies a structure that corresponds too closely to the

training set and generalizes poorly to new observations. By generating multiple training sets,

fitting multiple trees and building a forest out of these tree classifiers it greatly reduces the

chances of overfitting. Breiman (2001) defines a random forest as a classifier consisting of a set

of tree-structured classifiers where each tree casts a unit vote for the most popular class at one

input.

Breiman introduced in 2001 random forests with random inputs (Breiman, 2001) which is

the most commonly used random forest classifier. The novelty of this random forest model is

in the tree-growing procedure. Instead of finding the best condition among all the predictors,

the algorithm will now randomly select a subset of predictors and will find the best condition

among these, this modification greatly improved the accuracy of random forests.

Random forests are easy to use and are stable classifiers with many interesting properties.

One of these interesting properties is that they allow for powerful variable importance compu-

tations that evaluate the importance of individual predictors throughout the entire prediction

process.

3.4 Variable Importance in Random Forests

A variable importance analysis aims at understanding the effect of individual predictors on

the classifier output. A predictor with a great effect is considered an important predictor.

A random forest provides multiple interesting variable importance computations. The Gini

decrease importance sums the total impurity measure decrease caused by partitioning upon a

predictor throughout an entire tree and then computes the average of this measure across all
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trees in a forest. This technique is tightly related to the construction process of the tree itself

and is pretty easy to obtain as it is non-demanding computationally.

The permutation decrease importance was introduced by Breiman (2001). Intuitively if a

predictor has a significant effect on the response, the algorithm should lose a lot of prediction

accuracy if the values of that predictor are mixed up in the data set. One way to disrupt the

predictors values is by permutations. The procedure computes the prediction accuracy on the

test set using the true test set. Then, it permutes the values of one predictor, j, across all

observations, run this permuted data through the forest and compute the new accuracy. If the

input j is important, the algorithm should lose a lot of its prediction accuracy by permuting

the values of j in the test set. The process is repeated for all predictors, then it is averaged

across all trees and the averaged prediction accuracy decreases are compared. The larger the

decrease in accuracy the more important the variable is considered.

Storbl & al. (2007) recently published an article where these techniques are analysed and

compared. According to this paper, the selection bias of the decision tree procedure might

lead to misleading variable importance. Numerous papers (Breiman et al., 1984; Kim & Loh,

2001; Kononenko, 1995) noticed a selection bias within the decision tree procedure when the

predictors are of different nature. The simulation studies produced by Storbl & al. (2007)

show that the Gini decrease importance is not a reliable variable importance measure when

predictors are of varying types. The Gini decrease importance measure tends to overestimate

the importance of continuous variables.

It is also shown (Strobl et al., 2007) that the variable importance techniques described above

can give misleading results due the replacements when drawing bootstrap samples. It is rec-

ommended that researchers build random forests with bootstrap samples without replacements

and use an unbiased tree-building procedure (Loh & Shih, 1997; Kim & Loh, 2001; Loh, 2002;

Hothorn, Hornik, & Zeileis, 2006). If a classic tree-building procedure is used, predictors should

be of the same type or only the permutation decrease importance is reliable.

3.5 Algorithms

A classification tree using the Gini impurity as split measurement was coded in the C++

language using the Rcpp library (Eddelbuettel & Francois, 2011). The code is available upon
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request from the first author. The algorithm proceeds as explained in Section 3.2, the tree it

produces is unpruned and training sets are partitioned until they contain only 50 observations.

Three versions of the random forest algorithm are going to be used. Even though one of these

models will outperform to two other in terms of prediction accuracy, the variable importance

analysis of all three models will be considered and aggregate. For clarity and conciseness

purposes, only the best model’s performance will be assessed. Random forest # 1 consists

of 200 trees and can split upon every variable in each region. Bootstrap samples are drawn

without replacement and contain 63% of the original training set. Random forest # 2 fits

200 trees but randomly selects the variable to be partitioned upon in each region.

Finally, the popular R RandomForest package (Liaw & Wiener, 2002) was also used. It is

an easy to use and reliable package that can fit random forests and produce variable importance

plots. Using this package, random forest # 3 was built. It contains 200 trees. Once again,

bootstrap samples are drawn without replacement and contain about 63% of the size of the

original training set. By default, this algorithm randomly selects a subset of inputs for each re-

gion. Regarding the impurity measure, the Gini impurity was selected because it has interesting

theoretical properties, such as being differentiable, and has been performing well empirically.

Linear models were trained for both of the classification problems serving as benchmarks. In

order for the comparison to be as direct as possible, the linear model classifiers were constructed

upon the same set of predictors; it may be possible to improve both the random forest and the

linear model with different predictors. As the problems are two classification ones, the linear

models selected were logistic regression models and details regarding their parametrizations are

included in the appendix.

4 Results

4.1 First research question : Predicting program completion

Random forest # 3 produced the best accuracy on the test set. Among the students who

completed their program in the test set, the classifier achieves a 91.19% accuracy. Out of the

418 students who did not complete their program, the classifier achieves a 52.95% accuracy.

The combined result it a 78.84% accuracy over the complete test set.
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Obviously this is higher accuracy than if all students would be classified as students who

competed their program, which would result in a 68.08% accuracy. The random forest accuracy

is also slightly higher than the 74.21% accuracy achieved with a logistic regression based upon

the same predictors. These predictions can be useful for university administrations that would

like to predict the number of second-year students and prepare accordingly with a sufficient

margin. About 75% of students identified as dropouts by the random forest classifier are true

dropouts. Therefore students identified as dropouts by the algorithm could be considered higher-

risk students and these predictions could be useful in order to target students in need of more

support to succeed. The relatively high accuracy of the classifier is also an indicator that the

variable importance analysis is reliable.

Variable importance is determined by the average decrease in accuracy in the test set caused

by a random permutation of the predictor. This technique has been selected since it is more

reliable as explained in Section 3.4. The top 15 variables according to the permutation decrease

were kept and ordered in Figures 2,3 and 4. Since variable importance varies from one model to

another, the three variable importance plots were included and the results will be aggregated.

PSY

ENG

ENG G

ZOO G

HIS

CHM G

ZOO

ECO G

ECO

COMPG G

CHM

ASSEM

ASSEM G

MAT

MAT G

0.00 0.05 0.10 0.15

Permutation Decrease Importance

Decrease in accuracy by permutation of predictors

Figure 2: Variables importance boxplots for the random forest # 1.

In Figures 2,3 and 4 and for all the following figures, the variable representing the number
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Figure 4: Variable importance plot produced by the RandomForest package for the random
forest # 3.
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of credits in a department is identified by the department code, i.e. the number of credits in

Chemistry is identified by CHM. The variable representing the averaged grade in a department

is identified by the department code followed by the letter G, i.e CHM G represents the averaged

grade in Chemistry.

To begin, it was also noted that the variance for the grade variables were larger. Across all

three random forests, the grades in Mathematics (MAT), Finance (COMPG), Economics (ECO)

are consistently among the most important grade variable. These departments are considered

low-grading departments and perhaps the strict marking of these departments helps to better

distinguish students among themselves. A possible explanation is that the grade inflation that

suffered the high-grading departments caused the grades to be no longer a reliable tool to

distinguish students among themselves which could be a symptom of grade inflation as suggested

in section 2.2. Other factors could have caused this phenomenon such as less sequential courses

in Human Science fields, larger classes size, reduced access to a professor or other factors. It

is impossible to claim for sure that these results are caused by the grade inflation problem,

but these results could indicate such thing. Therefore, universities could use such technique to

verify if grades in a department have more predictive power than grades in other departments

and act accordingly since grades should represent students’ abilities.

It is also important to notice the importance of ASSEM in the three variable importance

plots. The ASSEM code represents a special type of first year seminar course. It seems that

the students that registers in theses courses are easy to classify as both grades and the number

of credits are considered important. This result agrees with the result obtained by Johnson

and Stage (2018) about the importance of first year seminar courses. The first year seminar

courses (ASSEM) were brand new at the University of Toronto and the analysis performed

provided evidence of the merit of such courses in order to establish a student’s profile and

to predict success. In other words, such variable importance analysis could help university

administrations assess the usefulness of new programs and courses.

4.2 Second research question : Predicting the major

The second task at hand is to build a random forest that predicts the student’s major. Once

again, from a prediction accuracy perspective, random forest # 3 offered better performances

14



with a 47.41% accuracy in predicting the major completed. This appears slightly lower than

expected, but considering there are 71 different programs, being able to pin down the right

program for about half of the students seems successful. This is a better result than the

meager 4.75% obtained by assigning majors with probabilities weighted by the proportion of

the majors completed. The 47.41% accuracy of the random forest is also above the 42.63%

accuracy obtained by the multinomial logistic regression benchmark. For classification purposes,

these classifiers could help individual departments predict the number of students registering

to second, third or fourth year courses and graduate programs. Predicting the major could also

help university administrations to allocate the financial resources among the departments or to

decide the programs that require more advertisements.

Variable importance is also interesting for that research questions. Here is the variable

importance analyses produced by the three random forests; once again, the 15 most important

predictors are displayed. The importance of a predictor is determined by the average decrease

in accuracy in the test set caused by a random permutation of the predictor.
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Figure 5: Variables importance boxplots for the random forest # 1.

A decrease in importance for the grades variable is noted in Figure 5,6 and 7. This was to
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Figure 6: Variables importance boxplots for the random forest # 2.
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Figure 7: Variable importance plot produced by the RandomForest package for the random
forest # 3.
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be expected because of how the data was formatted. Since the department in which the highest

amount of credit was obtained is considered the major completed by the student, these variable

importance measures are not surprising. Actually, if all the courses were included, instead of

only the first year, the amount of credit in every department precisely defines the response

variable. Considering this weakness in the data formatting, the grades still have a relatively

high importance. It seems hard to see any effect of grading policies in the predictive power of

grades regarding that research question.

It seems like for some departments, such as English (ENG) and Computers Sciences (CSC),

it is easy to predict students that will complete a major in those departments by almost solely

looking at the number of courses attempted in those departments during the first year. This is

caused by the fact that a vast majority of students that take courses in Computers Science or

English during their first year end up completing an undergraduate program in these depart-

ments respectively. From a policy-making perspective, departments could use this information

as they might want to adapt the content of their first-year courses now that they know more

about the audience of these courses.

5 Conclusion

The first year’s worth of courses and grades were used to build two classifiers; one that predicts

if a student will complete their undergraduate program, the other that predicts the major

of a student who completed a program. Random forests were used to build those classifiers.

Random forests are easy to use with most statistical computing languages, fast to train, and they

outperform linear logistic models in terms of prediction accuracy. For practitioners, random

forests could be an alternative to typical linear models for various prediction tasks; to predict

the number of students registered in second-year courses, the distribution of students across the

many programs or to identify students at risk of failing or dropping out.

Evaluating the importance of each predictor is also something that offers random forest in

comparison to the benchmark model. In this study, it was observed in Section 4 that grades were

important for predicting if a student will complete their program. Grades in departments that

were considered low-grading departments in some grades inflation research articles like Math-

ematics, Economics and Finance are consistently among the most important variables. These

results indicate that a strong relationship exists between the grades in low-grading departments
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and the chance of succeeding at an undergraduate program, although this does not necessarily

indicate a causal connection. Grades were somewhat less important predictors for predicting

the students’ major but even though they were less important, grades in Mathematics, Finance,

Economics and Psychology (PSY) were still frequently significantly important.

Finally, for potential improvements in the data analysis, it is to be noted that some students

might have completed more than one major or specialization. This might explain the relatively

low accuracy for major choice prediction. Allowing for multiple major choices is a potential im-

provement for this model. This is in fact a multi-label classification problem and some solutions

have already been proposed to adapt decision trees to accommodate this more complicated

problem (Clare & King, 2001; Y.-L. Chen, Hsu, & Chou, 2003; Chou & Hsu, 2005). Some

departments also share a great deal of similarities and might be considered equivalent by the

university, thus combining some of them might increase the prediction accuracy. The missing

values in the predictors were also problematic. Ideally, the algorithm would consider splitting

on the grade variables for a certain department only to classify students who took courses in

that department. Developing a new decision tree algorithm where new variables are added to

the pool of potential split variables depending on previous partitioning should be a great way

to improve the actual model in certain scenarios. Overall, implementing a new tree-building

procedure where variable are added or discarded based upon previous partitioning and consid-

ering a multi-label classifier like suggested by Chen & al. (2003) could be great improvements

for future work on that data set.

Acknowledgement

We are very grateful to Glenn Loney and Sinisa Markovic of the University of Toronto for

providing us with students grade data. The authors also gratefully acknowledge the financial

support from the NSERC of Canada.

References

Aulck, L., Velagapudi, N., Blumenstock, J., & West, J. (2016, June). Predicting Student

Dropout in Higher Education. ArXiv e-prints.

18



Bailey, M. A., Rosenthal, J. S., & Yoon, A. H. (2016). Grades and incentives: assessing

competing grade point average measures and postgraduate outcomes. Studies in Higher

Education, 41 (9), 1548-1562. Retrieved from http://dx.doi.org/10.1080/03075079

.2014.982528 doi: 10.1080/03075079.2014.982528

Bar, T., Kadiyali, V., & Zussman, A. (2009). Grade information and grade inflation: The

cornell experiment. Journal of Economic Perspectivs, 23 (3), 93–108.

Breiman, L. (1996a). Bagging predictors. Machine Learning , 24 (2), 123–140. Retrieved from

http://dx.doi.org/10.1007/BF00058655 doi: 10.1007/BF00058655

Breiman, L. (1996b, 12). Heuristics of instability and stabilization in model selection.

Ann. Statist., 24 (6), 2350–2383. Retrieved from http://dx.doi.org/10.1214/aos/

1032181158 doi: 10.1214/aos/1032181158

Breiman, L. (2001). Random forests. Machine Learning , 45 (1), 5–32. Retrieved from http://

dx.doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression

trees. Belmont, California, U.S.A.: Wadsworth Publishing Company.

Chen, R., & DesJardins, S. L. (2008, Feb 01). Exploring the effects of financial aid on the

gap in student dropout risks by income level. Research in Higher Education, 49 (1),

1–18. Retrieved from https://doi.org/10.1007/s11162-007-9060-9 doi: 10.1007/

s11162-007-9060-9

Chen, R., & DesJardins, S. L. (2010). Investigating the impact of financial aid on student

dropout risks: Racial and ethnic differences. The Journal of Higher Education, 81 (2),

179–208. Retrieved from http://www.jstor.org/stable/40606850

Chen, Y.-L., Hsu, C.-L., & Chou, S.-C. (2003). Constructing a multi-valued and multi-labeled

decision tree. Expert Systems with Applications, 25 (2), 199 - 209. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0957417403000472 doi: http://dx

.doi.org/10.1016/S0957-4174(03)00047-2

Chou, S., & Hsu, C.-L. (2005, May). MMDT: A multi-valued and multi-labeled decision tree

classifier for data mining. Expert Syst. Appl., 28 (4), 799–812. Retrieved from http://

dx.doi.org/10.1016/j.eswa.2004.12.035 doi: 10.1016/j.eswa.2004.12.035

Clare, A., & King, R. D. (2001). Knowledge discovery in multi-label phenotype data. In

L. De Raedt & A. Siebes (Eds.), Principles of data mining and knowledge discovery:

5th european conference, pkdd 2001, freiburg, germany, september 3–5, 2001 proceedings

19



(pp. 42–53). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from http://

dx.doi.org/10.1007/3-540-44794-6 doi: 10.1007/3-540-44794-6

Eddelbuettel, D., & Francois, R. (2011). Rcpp: Seamless R and C++ integration. Journal

of Statistical Software, 40 (1), 1–18. Retrieved from https://www.jstatsoft.org/index

.php/jss/article/view/v040i08 doi: 10.18637/jss.v040.i08

Glaesser, J., & Cooper, B. (2012). Gender, parental education, and ability: their inter-

acting roles in predicting gcse success. Cambridge Journal of Education, 42 (4), 463-

480. Retrieved from https://doi.org/10.1080/0305764X.2012.733346 doi: 10.1080/

0305764X.2012.733346

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd

ed.). Springer.

Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional

inference framework. Journal of Computational and Graphical Statistics, 15 (3), 651-

674. Retrieved from http://dx.doi.org/10.1198/106186006X133933 doi: 10.1198/

106186006X133933

Johnson, S. R., & Stage, F. K. (2018). Academic engagement and student success: Do high-

impact practices mean higher graduation rates? The Journal of Higher Education, 0 (0), 1-

29. Retrieved from https://doi.org/10.1080/00221546.2018.1441107 doi: 10.1080/

00221546.2018.1441107

Johnson, V. E. (2003). Grade inflation : A crisis in college education. Springer.

Kappe, R., & van der Flier, H. (2012, Dec 01). Predicting academic success in higher education:

what’s more important than being smart? European Journal of Psychology of Education,

27 (4), 605–619. Retrieved from https://doi.org/10.1007/s10212-011-0099-9 doi:

10.1007/s10212-011-0099-9

Kim, H., & Loh, W.-Y. (2001). Classification trees with unbiased multiway splits. Journal

of the American Statistical Association, 96 , 589–604. Retrieved from http://www.stat

.wisc.edu/~loh/treeprogs/cruise/cruise.pdf

Kononenko, I. (1995). On biases in estimating multi-valued attributes. In Proceedings of

the 14th international joint conference on artificial intelligence - volume 2 (pp. 1034–

1040). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=1643031.1643034

Leeds, D. M., & DesJardins, S. L. (2015, Aug 01). The effect of merit aid on enrollment: A re-

20



gression discontinuity analysis of iowa’s national scholars award. Research in Higher Edu-

cation, 56 (5), 471–495. Retrieved from https://doi.org/10.1007/s11162-014-9359-2

doi: 10.1007/s11162-014-9359-2

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. R News, 2 (3),

18-22. Retrieved from http://CRAN.R-project.org/doc/Rnews/

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and interaction detec-

tion. Statistica Sinica, 12 , 361–386. Retrieved from http://www.stat.wisc.edu/~loh/

treeprogs/guide/guide02.pdf

Loh, W.-Y., & Shih, Y.-S. (1997). Split selection methods for classification trees. Statistica

Sinica, 7 , 815–840. Retrieved from http://www3.stat.sinica.edu.tw/statistica/

j7n4/j7n41/j7n41.htm

Mills, J. S., & Blankstein, K. R. (2000). Perfectionism, intrinsic vs extrinsic motivation,

and motivated strategies for learning: a multidimensional analysis of university students.

Personality and Individual Differences, 29 (6), 1191 - 1204. Retrieved from http://www

.sciencedirect.com/science/article/pii/S0191886900000039 doi: http://dx.doi

.org/10.1016/S0191-8869(00)00003-9

Niessen, A. S. M., Meijer, R. R., & Tendeiro, J. N. (2016, 04). Predicting performance in higher

education using proximal predictors. PLOS ONE , 11 (4), 1-14. Retrieved from https://

doi.org/10.1371/journal.pone.0153663 doi: 10.1371/journal.pone.0153663

Ost, B. (2010). The role of peers and grades in determining major persistence in sciences.

Economics of Education Review(29), 923–934.

Sabot, R., & Wakeman-Linn, J. (1991). Grade inflation and course choice. Journal of Economic

Perspectives, 5 , 159-170.

Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable

importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8 (1),

25. Retrieved from http://dx.doi.org/10.1186/1471-2105-8-25 doi: 10.1186/1471

-2105-8-25

University of Toronto. (2017). Degree requirements (h.b.a., h.b.sc., bcom). Retrieved 2017-08-

30, from http://calendar.artsci.utoronto.ca/Degree Requirements (H.B.A., H.B

.Sc., BCom).html

21



A Appendix

The following section contains some mathematical notations and definitions for readers who are

interested in more a thorough explanation of sections’ 3.2 and 3.3 content. Full understanding

of the appendix is not needed in order to grasp the essential of the article but it serves as a brief

but precise introduction to the mathematical formulation of decision trees and random forests.

Rigorously, a typical supervised statistical learning problem is defined when the relation-

ship between a response variable Y and an associated m-dimensional predictor vector X =

(X1, ..., Xm) is of interest. When the response variable is categorical and takes k different

possible values, this problem is defined as a k-class classification problem. One challenge in

classification problems is to use a data set D = {(Yi, X1,i, ..., Xm,i); i = 1, ..., n} in order to

construct a classifier ϕ(D). A classifier is built to emit a class prediction for any new data point

X that belongs in the feature space X = X1× ...×Xm. Therefore a classifier divides the feature

space X into k disjoint regions such that ∪kj=1Bl = X , i.e. ϕ(D,X) =
∑k

j=1 j1{X ∈ Bj}.

As explained in section 3.2 a classification tree (Breiman et al., 1984) is an algorithm that

forms these regions by recursively dividing the feature space X until a stopping rule is applied.

Most algorithms stop the partitioning process whenever every terminal node of the tree contains

less than β observations. This β is a tuning parameter that can be established by cross-

validation. Let prk be the proportion of the class k in the region r, if the region r contains nr

observations then :

prk =
1

nr

∑
xi∈Rr

1{yi = k}. (1)

The class prediction for a new observation that shall fall in the region r is the majority

class in that region, i.e. if X ∈ Rr, ϕ(D,X) = argmaxk(pkr). When splitting a region into

two new regions R1 and R2 the algorithm will compute the total impurity of the new regions

; n1Q1 + n2Q2 and will pick the split variable j and split location s that minimizes that total

impurity. If the predictor j is continuous, the possible splits are of the form Xj ≤ s and

Xj > s which usually results in nr − 1 possible splits. For a categorical predictor having q

possible values, it is common to consider all of the 2q−1 − 1 possible splits. Hastie & al. (2009)

introduces many possible region impurity measurements Qr, in this project, the Gini index has

been chosen :
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Qr =
k∑

j=1

prj(1− prj). (2)

Here is a pseudo-code of the algorithm :

Algorithm : DT(D,β)

1. Starting with the entire data set D as the first set of observations r.

2. Check (nr ¿ β).

3. if (false) :

Assign a label to the node and exit.

else if :

for (j in all predictors):

for (s in all possible splits) :

Compute total impurity measure.

Select variable j and split s with minimum impurity measure and split

the set r into two children sets of observations.

Repeat steps 2 & 3 on the two resulting sets.

Since decision trees are unstable procedures (Breiman, 1996b) they greatly benefit from

bootstrap aggregating (bagging) (Breiman, 1996a). In classifier aggregating, the goal is to find

a way to use an entire set of classifiers {ϕ(Dq)} to get a new classifier ϕa that is better than any

of them individually. One method of aggregating the class predictions {ϕ(Dq,X)} is by voting :

the predicted class for the input X is the most picked class among the classifiers. More precisely,

let Tk = |{q : ϕ(Dq,X) = k}| then, the aggregating classifier becomes ϕa(X) = argmaxk(Tk).

On way to form a set of classifiers is to draw bootstrap samples of the data set D which

forms a set of learning sets {DB}. Each of the bootstrap samples will be of size n drawn at

random with replacement from the original training set D. For each of these learning set a

classifier ϕ(Db) is constructed and the resulting set of classifiers {ϕ(Db)} can be used to create

an aggregating classifier. If the classifier is an unpruned tree then the aggregating classifier is a

random forest.

A random forest classifier is more precise than a single classification tree in the sense that it

has lower mean-squared prediction error (Breiman, 1996a). By bagging a classifier, the bias will
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remain the same but the variance will decrease. One way to further decrease the variance of the

random forest is by construction trees that are as uncorrelated as possible. Breiman introduced

in 2001 random forests with random inputs (Breiman, 2001). In these forests, instead of finding

the best variable and partitioning among all the variables, the algorithm will now randomly

select p < m random covariates and will find the best condition among those p covariates.

The fitted random forest classifiers were compared to two logistic regression models. A

simple logistic model is used to predict if a student completes its program or not with the

following parametrization :

P (Yi = 1) =
exp(

∑m
i=0 βixi)

1 + exp(
∑m

i=0 βixi)
, (3)

where Yi = 1 means student i completed its program, m is the number of predictors, β′s the

parameters and x′is the predictor values. To predict the major completed, a generalization of the

logistic regression, the multinomial logistic regression is used with the following parametrization

:

P (Yi = p) =
exp(

∑m
i=0 β

(p)
i xi)

1 + exp(
∑k

l=1

∑m
i=0 β

l
ixi)

, (4)

where Yi = p means the student i completed the program p and where k is the number of

programs.

Finally, here is a short example of code to fit random forests, get predictions for new obser-

vations and produce variable importance plots using the R language :

#Importing the randomForest package

require(randomForest)

#Fitting the random forest with 200 trees

#using bootstraps without replacement.

Fit <- randomForest(x=X,y=as.factor(Y),importance=TRUE,ntree=200,

replace=FALSE,sampsize=round(0.63*nrow(X)) )

#Prediction class labels for new observations newX

predictions <- predict(Fit,newX)
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#Production variable importance plot

importance(Fit,type=1)
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