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1 Introduction

Markov chain Monte Carlo (MCMC) is very a powerful tool for estimating and sampling

from complicated high-dimensional distributions (see e.g. Brooks et al., 2011 and the many

references therein). MCMC algorithms help researchers in a wide spectrum of fields, ranging

from Bayesian statistics to finance to computer science to physics.

One of the biggest challenges when implementing MCMC algorithms is to evaluate

the error of the estimate, which is crucial for generating accurate results, and can also

help when deciding how many iterations of the chain should be run. The majority of

the existing results for quantifying MCMC accuracy rely heavily on the Markov chain

Central Limit Theorem (CLT). However, this CLT is only known to be valid under specific

conditions like geometric ergodicity or reversibility, which do not always hold and can be

difficult to verify (see e.g. Häggström and Rosenthal (2007); Ibragimov and Linnik (1971);

Jones (2004); Latuszyński et al. (2013)). In the reversible case, Kipnis and Varadhan

(1986) established the existence of a CLT for all reversible Markov chains which have finite

asymptotic estimator variance. However, without reversibility, CLTs are more challenging.

Tóth (1986) generalized the results from Kipnis and Varadhan (1986) to the non-reversible

case, but only under additional conditions which are very difficult to verify. And, Häggström

(2005) shows that CLTs might not exist for non-reversible chains under conditions where

CLTs would be guaranteed in the reversible case.
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There have also been extensive investigations of confidence intervals in the steady-state

literature. These techniques can be split into three subcategories, outlined in Law and Kel-

ton (1984). The most common approach includes replication and batch means. Replication

runs the simulation numerous times, while batch means divides one long simulation into

batches. Both treat individual runs or batches as independent and identically distributed

random variables. By assuming each individual group as normally distributed, a confidence

interval can be derived from classical statistical inference (see details from Alexopoulos

and Seila, 1996). Another approach is to model the autoregressive structures within the

stochastic process and estimate parameters needed for the confidence interval from the

model. Assuming the process is covariance stationary, Fishman (1971) derives a pth order

autoregressive model as the variance estimator, while an alternative variance estimator is

proposed by Heidelberger and Welch (1981) using spectral analysis. Lastly, the regeneration

cycles method, first introduced in Crane and Iglehart (1975), identifies points during the

simulation at which the process “restarts” probabilistically. Afterwards, the regeneration

epochs are viewed as independent random variables in order to derive the confidence in-

terval. However, all of these methods require assumptions or calculations which can make

them difficult to implement in practice.

The recent paper Rosenthal (2017) derived a simple MCMC confidence interval which

does not require a CLT, using only Chebychev’s inequality. That result required certain

assumptions about how the estimator bias and variance grow with the number of iterations

n, in particular that the bias is o(1/
√
n). This assumption seemed mild, since it is generally

believed that the estimator bias will be O(1/n) and hence o(1/
√
n) (see e.g. page 21 of

Geyer, 2011). However, questions were raised (Betancourt, 2020) about how to verify this

assumption, and indeed we show herein (Section 4) that it might not always hold.

2



This paper seeks to simplify and weaken the assumptions in Rosenthal (2017), to make

MCMC confidence intervals without CLTs more widely applicable. In Section 2, we derive

a conservative asymptotic Markov chain confidence interval (Theorem 1) assuming only

a finite asymptotic estimator variance as in Kipnis and Varadhan (1986), without requir-

ing any bias assumption nor reversibility nor stationarity nor a CLT; at significance level

α = 0.05 it is just 2.3 times as wide as the confidence interval that would follow from a

CLT. In Section 3, we instead fix the number of iterations n, and obtain corresponding

non-asymptotic confidence intervals without CLT under slightly stronger assumptions. In

Section 4, we consider the question of when the MCMC bias is or is not o(1/
√
n), and show

that this property does not always hold but is ensured by a polynomial ergodicity condition.

In Section 5, we complete the proof of Theorem 1 by extending to non-stationary chains.

In Section 6, we present some numerical examples to illustrate our results, and we close in

Section 7 with a brief summary.

2 Asymptotic MCMC Confidence Intervals

Let {Xn} be a φ-irreducible ergodic Markov chain on the state space X , with stationary

distribution π(·). Let h : X → R be a measurable function, let π(h) =
∫
x∈X h(x)π(x) dx be

the (finite) expression we wish to estimate, and let en := 1
n

∑n
i=1 h(Xi) be our estimate. At

significance level α, we wish to find a conservative 1−α confidence interval, i.e. an interval

which contains π(h) with probability at least 1− α. Using only a variance bound, we show

the following:

Theorem 1: If lim supn→∞ nV ar(en) ≤ B2 for some B > 0, then for any 0 < α < 1 and

ε > 0, and π-a.e. initial state X0 = x ∈ X , the interval

In :=
(
en − (1 + ε)n−1/2α−1/2B, en + (1 + ε)n−1/2α−1/2B

)
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is an asymptotic conservative 1− α confidence interval for π(h), i.e.

lim inf
n→∞

P [π(h) ∈ In] ≥ 1− α.

Proof. First assume the chain starts in stationarity, so E(en) = π(h) for all n ∈ N. Then

for any an > 0, we have from Chebychev’s inequality that

P
(
|en − π(h)| ≥ an

)
= P

(
|en − E(en)| ≥ an

)
≤ V ar(en)

/
a2n.

Therefore, setting an = B/
√
nα > 0 gives

lim sup
n→∞

P
(
|en − π(h)| ≥ an

)
≤ lim sup

n→∞

(
V ar(en)/a2n

)
≤ lim sup

n→∞

(
V ar(en)

nα

B2

)
≤ lim sup

n→∞
(B2 α

B2
) = α.

Then, taking complements gives

lim inf
n→∞

P
(
|en − π(h)| < n−1/2α−1/2B

)
= lim inf

n→∞
P
(
|en − π(h)| < an

)
≥ 1− α.

This proves the result (with ε = 0) assuming the chain starts in stationarity.

Finally, applying Theorem 5 from Section 5 below, with ε > 0 and r = 1/2 and C =

ε α−1/2B, we obtain the result for π-a.e. X0 = x ∈ X .

Theorem 1 says that any Markov chain satisfying lim supn→∞ nV ar(en) ≤ B2 for some

B > 0 immediately has a specified asymptotic confidence interval, without requiring any

CLT. It does not require any bias bound, so it provides a partial response to Betancourt

(2020). It does still require a variance bound. Asymptotic variance estimators can be

obtained in many different ways, including repeated runs, integrated autocorrelation times,

batch means, window estimators, regenerations, and more (see e.g. Section 3 of Geyer, 1992),
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but they often require challenging conditions to ensure consistency (Glynn and Whitt, 1972;

Hobert et al., 2002; Jones et al., 2006; Flegal and Jones, 2010). Alternatively, the variance

bound can be consistently estimated directly from simulations by sampling M independent

copies of the chain and computing the sample variance of the resulting en values (see the

examples in Section 6 below).

For example, at the usual significance level α = 0.05, taking ε = 0.001, Theorem 1 yields

the asymptotic 95% confidence interval

(en − 4.48B/
√
n, en + 4.48B/

√
n).

By contrast, if we knew that a CLT held and that limn→∞ nV ar(en) = B2, then we could

derive the 95% confidence interval

(en − 1.96B/
√
n, en + 1.96B/

√
n).

The width of the first confidence interval is 2.3 times the second, but it does not require

reversibility, nor the actual convergence of nV ar(en) as n→∞.

Remark. Our theorems provide conservative confidence intervals, which might be larger

than necessary, and have coverage probabilities larger than 1−α, and lead to running more

MCMC iterations than necessary. However, we do not consider this to be a major problem.

The main challenge of MCMC is to obtain a final answer together with a guarantee that it is

sufficiently accurate. (For example, Jones and Hobert, 2001 seek some number of iterations

n′ for which the chain is within 0.01 of stationarity, not necessarily the smallest such n′.)

And, conservative confidence intervals do provide such guarantees. As long as the required

iterations can still be run in a reasonable time, there is no major disadvantage to running

MCMC for somewhat longer than is actually required.
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3 Non-asymptotic MCMC Confidence Intervals

The confidence intervals from Theorem 1 are only valid asymptotically as n→∞. That

limitation is quite common for most MCMC confidence intervals, since large n is required

for a CLT to hold. However, since we are not using any CLT in our analysis, it is possible

to obtain a precise non-asymptotic interval, in terms of an upper bound on the bias, as

follows.

Theorem 2: Suppose for some fixed n ∈ N, the chain satisfies the variance bound

nV ar(en) ≤ B2 for some B > 0, and also the bias bound |E(en)−π(h)| ≤ C for some C ≥ 0.

Then for any significance level α ∈ (0, 1), setting δ = C
B√
nα

+C
∈ [0, 1) and an = B√

nα(1−δ) ,

the fixed-n interval

In := (en − an, en + an)

is a non-asymptotic conservative 1− α confidence interval, i.e.

P [π(h) ∈ In] ≥ 1− α, n ∈ N.

Proof. We first compute that

δ

1− δ
=

C
B√
nα

+ C

/ B√
nα

B√
nα

+ C
=

C
√
nα

B
,

and hence

δan =
δ

1− δ
B√
nα

=
C
√
nα

B

B√
nα

= C.

Thus |E(en − π(h))| ≤ C = δan, and hence an − |E(en)− π(h)| ≥ an − C = (1− δ)an > 0.

Therefore, using the triangle inequality and then Chebyshev’s inequality, we have that

P

(
|en − π(h)| ≥ an|

)
= P

(
|en − E(en) + E(en)− π(h)| ≥ an

)

6



≤ P
(
|en − E(en)|+ |E(en)− π(h)| ≥ an

)

= P

(
|en − E(en)| ≥ an − |E(en)− π(h)|

)
≤ V ar(en)

/ (
an − |E(en)− π(h)|

)2
≤ V ar(en)

/ (
(1− δ)an

)2
= V ar(en)

(nα
B2

)
≤ B2 α

B2
= α.

Taking complements gives P [π(h) ∈ In] ≥ 1− α, as claimed.

If the chain is in stationarity, or at least reaches stationarity within n iterations, then

the bias is zero, and we obtain:

Corollary 1: Let n ∈ N be a fixed time such that the chain is in stationarity after n steps.

Then if nV ar(en) ≤ B2 for some B > 0, then for any significance level 0 < α < 1, the

interval

In := (en − n−1/2α−1/2B, en + n−1/2α−1/2B)

is a non-asymptotic conservative 1− α confidence interval, i.e.

P [π(h) ∈ In] ≥ 1− α.

Proof. By the stationarity assumption, |E(en)−π(h)| = 0, so we can apply Theorem 2 with

C = 0. It follows that δ = 0 and an = n−
1
2α−1/2B. The result then follows immediately

from Theorem 2.

The assumptions for the non-asymptotic bound in Theorem 2 and Corollary 1 are

stronger than for the asymptotic bound of Theorem 1, since they require a bound on the

bias or for the chain to be at stationarity after n iterations. However, we will see in the
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next section that we can sometimes utilize properties such as polynomial ergodicity to help

us establish a bound on bias. Also, in practice, MCMC users often approximately verify

stationarity through a plethora of convergence diagnostics such as plots and renewal theory

and non-parametric tests; see e.g. Mengersen et al. (1999) for a review.

Next, we present a result which does not assume stationarity, nor require a bound on

the bias, nor require a bound on the variance. But as a trade-off, it assumes a bound on

an absolute first moment, which might be harder to verify. It could still be useful if e.g.

the first moment condition can be linked to another property that is easier to satisfy, which

could be explored in future research.

Theorem 3: Suppose for some fixed n ∈ N we have E(|en− π(h)|) ≤ γn for some constant

γn > 0. Then for any significance level α ∈ (0, 1), the interval

In := (en − γnα−1, en + γnα
−1)

is a non-asymptotic conservative 1− α confidence interval, i.e.

P [π(h) ∈ In] ≥ 1− α.

Proof. Setting an = γn/α > 0, we have by Markov’s inequality that

P (|en − π(h)| ≥ an) ≤ E(|en − π(h)|)
/
an

= E(|en − π(h)|) α
γn

≤ (γn
α

γn
) = α.

Taking complements,

P [π(h) ∈ In] = P
(
|en − π(h)| ≤ γnα−1

)
= P

(
|en − π(h)| ≤ an

)
≥ 1− α.
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In particular, if the γn converge monotonically to zero, then we obtain a confidence

interval which shrinks to a point as n approaches infinity.

4 The Order of MCMC Bias

Since we are estimating the quantity π(h) =
∫
x∈X h(x)π(x) dx by the Markov chain

estimator en := 1
n

∑n
i=1 h(Xi), the bias after n iterations is given by Bias(en) := E(en) −

π(f). As previously mentioned, the results in Rosenthal (2017) assumed this bias was

o(1/
√
n) since it is generally believed to be O(1/n) (see e.g. p. 21 of Geyer, 2011). However,

this is not always the case:

Example 1: Consider the Markov chain with state space X = {0, 1, 2, 3, . . . }, and transition

probabilities given by p0,0 = 1, and for all n ≥ 1, pn,0 = 1 −
√
n√
n+1

and pn,n+1 =
√
n√
n+1

.

Then the chain is φ-irreducible (and aperiodic) with π(x) = φ(x) = δ0(x), i.e. π(0) = 1 and

π(x) = 0 for all x 6= 0. Assume X0 = 1. We then compute that, for n = 1, 2, 3, . . .,

P [Xn 6= 0] = P [Xn = n+ 1] =

n∏
i=1

√
i√

i+ 1
=

1√
n+ 1

.

Thus,

lim
n→∞

P [Xn 6= 0] = lim
n→∞

1√
n+ 1

= 0.

So, the chain will converge to π(·) (from any initial distribution).

Next, consider the function on X defined by f(0) = 0, and f(x) = 1 for x ≥ 1. Then

π(f) = f(0) = 0. It follows that

Bias(en) = E(en)− π(f) = E(en) =
1

n

n∑
j=1

E[h(Xj)]

=
1

n

n∑
j=1

[
f(j + 1)P (Xj = j + 1) + f(0)P (Xj = 0)

]
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=
1

n

n∑
j=1

1√
j + 1

≥ 1

n

n∑
j=1

1√
n+ 1

=
1√
n+ 1

.

On the other hand,

Bias(en) =
1

n

n∑
j=1

1√
j + 1

≤ 1

n

∫ n

0
x−

1
2 dx

=
1

n
2x

1
2

∣∣∣x=n
x=0

=
1

n
(2
√
n) =

2√
n
.

That is, 1√
n+1
≤ Bias(en) ≤ 2√

n
. In particular, the bias is O(1/

√
n), but is not O(1/n) nor

even o(1/
√
n).

Example 1 raises the question of what conditions guarantee the bias to be o(1/
√
n). We

shall derive such a result for a class of Markov chains that are polynomially ergodic, defined

as follows (see e.g. Jarner and Tweedie (2003), Jones (2004)):

Definition: Let {Xn} be a Markov chain with stationary distribution π(·), and let || · || be

total variation distance. Then the chain is polynomially ergodic if there exists a function

M : X → [0,∞) such that:

||Pn(x, ·)− π(·)|| ≤ M(x)n−m, x ∈ X , x ∈ N;

here m > 0 is the order of the polynomial ergodicity.

Theorem 4: Let {Xn} be a polynomially ergodic Markov chain of order m > 1
2 , with

stationary distribution π(·). Suppose for some D ∈ [0,∞) and f : X → R, we have

|f(x)| ≤ D. Then for any fixed initial state X0 = x, the absolute bias |Bias(en)| is o(n−1/2)

as n→∞.

Proof. Let X0 = x. We compute that

|Bias(en)| = |E(en)− π(f)|
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≤ 1

n

n∑
i=1

|E[f(Xi)]− π(f)|

≤ 1

n

n∑
i=1

sup
g:X→R, |g(x)|≤D

|E[g(Xi)]− π(g)|

≤ 1

n

n∑
i=1

2D ||P i(x, ·)− π(·)||

≤ 1

n

n∑
i=1

2DM(x) i−m

=
2DM(x)

n

n∑
i=1

i−m.

Case 1: 1
2 < m < 1. Then

|Bias(en)| ≤ 2DM(x)

n

n∑
i=1

i−m

≤ 2DM(x)

n

∫ n

0
x−mdx

=
2DM(x)

n
· 1

1−m
(n1−m − 01−m)

=
2DM(x)

n
· 1

1−m
(n1−m)

Therefore

n1/2|Bias(en)| ≤ 2DM(x)

1−m
n1/2−m,

which → 0 as n→∞ since m > 1/2 and 1−m > 0 and D, M(x) <∞.

Case 2: m ≥ 1. Find some β such that 1/2 < β < 1 ≤ m. Then since
∑n

i=1 i
−m ≤∑n

i=1 i
−β, it follows as above that

lim
n→∞

n1/2|Bias(en)| ≤ lim
n→∞

2DM(x)

1− β
n1/2−β = 0.

Remark: This result says the bias is o(1/
√
n) for any polynomially ergodic chain of order

more than 1/2. In the context of Theorem 2, this means that we can always find a constant
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C such that |E(en)−π(h)| ≤ C = δan, since an is O(1/
√
n). Furthermore, if we can calculate

an explicit value for M(x), then we can obtain a value for C. As a specific example, if a chain

has polynomial order 3/4 =: m, with initial state X0 =: x satisfying M(x) = 2, and variance

bound nV ar(en) ≤ 4 =: B2, and functional bound |f(x)| ≤ 5 =: D, then after n = 100

iterations we will have |Bias(en)| ≤ 2DM(x)
n

1
1−m n1−m = (20/n)(4)(n1/4)

.
= 2.53 =: C, so

we can apply Theorem 2 at significance level α = 0.05 to find that δ = 2.53
(2/
√
5)+2.53

.
= 0.74

and an = 2/(
√

5 (1− 0.74))
.
= 3.44, giving the 95% confidence interval (en− 3.44, en + 3.44)

after 100 iterations.

5 Extending to Non-Stationary Chains

Theorem 1 above was initially proved assuming the chain started in stationarity. How-

ever, in practice MCMC is hardly ever started in stationarity, so accuracy bounds without

this assumption are much more useful. We now prove a general result which says that

asymptotic confidence intervals from stationarity can always be enlarged slightly to become

asymptotic confidence intervals from arbitrary initial states.

Theorem 5: Consider an ergodic Markov chain {Xn} on a state space X with sta-

tionary distribution π(·), functional h, and usual estimator en. Suppose the sequence

(en + an, en + bn) is an asymptotic conservative 1 − α confidence interval for π(h) when

started in stationarity, i.e.

lim inf
n→∞

P
(
an < π(h)− en < bn

)
≥ 1− α, X0 ∼ π(·).

Then for any c > 0 and 0 < r < 1, and π-a.e. initial state x ∈ X , the sequence (en + an −

cn−r, en + bn + cn−r) is an asymptotic conservative 1− α confidence interval for the chain
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when started from the initial state X0 = x, i.e.

lim inf
n→∞

P
(
an − cn−r < π(h)− en < bn + cn−r

)
≥ 1− α, X0 = x.

Proof. By ergodicity, for π-a.e. x ∈ X , we have limn→∞ ||Pn(x, ·) − π(·)|| = 0. Hence, for

fixed ε > 0 and x ∈ X , we can find m ∈ N such that ||Pm(x, ·) − π(·)|| ≤ ε. Let {Xn} be

our original chain with X0 = x, and let {X ′n} be a second copy of the chain in stationarity,

i.e. with X ′0 ∼ π(·) and hence X ′n ∼ π(·) for all n. By Proposition 3(g) of Roberts and

Rosenthal (2004), we can couple {Xn} and {X ′n} such that P (H) ≥ 1− ε, where

H = {Xn = X ′n for all n ≥ m}.

Now, let en = 1
n

∑n
i=1 h(Xi), and e′n = 1

n

∑n
i=1 h(X ′i) be the estimators from the two

chains, so by assumption we have

lim inf
n→∞

P
(
an < π(h)− e′n < bn

)
≥ 1− α.

Then on the event H, for any n ≥ m we have∣∣∣(π(h)− en
)
−
(
π(h)− e′n

)∣∣∣ =
1

n

∣∣∣ m∑
i=1

(
h(X ′i)− h(Xi)

)∣∣∣ =:
1

n
|Z|,

where Z =
∣∣∑m

i=1

(
h(X ′i) − h(Xi)

)∣∣. Hence, if H holds and an < π(h) − e′n < bn and

1
n |Z| ≤ cn

−r, then an−cn−r < π(h)−en < bn+cn−r. Furthermore, Z is a fixed finite random

variable, so there is A < ∞ with P (|Z| > A) ≤ ε. It follows that for n ≥ (A/c)1/(1−r), we

have

P
( 1

n
|Z| > cn−r

)
= P

(
|Z| > cn1−r

)
≤ P

(
|Z| > A

)
≤ ε.

We conclude that for all n ≥ max[m, (A/c)1/(1−r)],

P
(
{an − cn−r < π(h)− en < bn + cn−r}C

)
≤ P

(
{an < π(h)− e′n < bn}C

)
+ P (HC) + P (|Z| > A)

≤ P
(
{an < π(h)− e′n < bn}C

)
+ ε + ε,
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i.e.

P
(
an − cn−r < π(h)− en < bn + cn−r

)
≥ P

(
an < π(h)− e′n < bn

)
− 2 ε.

Then, taking lim inf gives

lim inf
n→∞

P
(
an − cn−r < π(h)− en < bn + cn−r

)
≥ α− 2 ε.

Since this is true for any ε > 0, we must actually have

lim inf
n→∞

P
(
an − cn−r < π(h)− en < bn + cn−r

)
≥ α,

giving the result.

6 Numerical Examples

In this section, we apply Theorem 1 to various non-reversible examples, to obtain con-

fidence intervals directly without the need to establish a CLT nor any convergence rates.

6.1 A Cyclical Non-Reversible Chain

Define a Markov chain on the state space X = N, as follows. Fix 0 < r < 1. For all

x > 1, let p1,x = rx−2 (1 − r), and px,x−1 = 1, with px,y = 0 otherwise. It is easily verified

that this chain has stationary distribution given by:

π(1) = π(2) =
1− r

r2 − 2r + 2
,

π(x) =
( 1− r
r2 − 2r + 2

)
rx−1, x > 2.

Furthermore, this chain is irreducible and aperiodic. Hence, the chain will converge asymp-

totically to π, and furthermore en will converge to π(h) whenever π|h| < ∞. However, it

is not trivial to establish a confidence interval for π(h) in terms of en by means of a CLT,
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since this chain is clearly non-reversible, and establishing a condition like geometric ergod-

icity would require careful drift function arguments. Instead, we use our method. Take

X0 = 1, r = 0.75, and h(x) = x0.5. For different numbers of iterations n, we run M = 100

replications to estimate nVar(en) and en. Our results are as follows:

n n V̂ ar(en) ên

1,000 2.840 1.91171
2,000 3.413 1.90454
5,000 4.054 1.90518
10,000 2.557 1.90171
20,000 3.299 1.90384
50,000 2.611 1.90501
100,000 3.514 1.90434
200,000 4.323 1.90414
500,000 3.040 1.90433

1,000,000 3.596 1.90416

These replications indicate that nVar(en) ≤ 5 for all n. Hence, we can take B =
√

5.

Then, setting α = 0.05 and ε = 0.001, Theorem 1 gives an approximate conservative 95%

confidence interval for π(h) equal to:

I ≡ I1,000,000 = (1.894, 1.914) .

This is quite a small interval, of width 0.02, which provides good confidence about π(h),

without needing to establish any CLT or difficult ergodicity property.

6.2 A Diffusive Non-Reversible Chain

Consider the Markov chain with state space X = {0, 1, 2, 3, . . . }, and transition prob-

ability given by p0,0 = 0.99, p0,1 = 0.01, and for all x ≥ 1, px,x+1 =
(

x
x+1

)2
and

px,0 = 1−
(

x
x+1

)2
. This chain is easily computed to have stationary distribution:

π(0) =
1

1 + 0.01π2

6

, and π(x) =
0.01

x2
π(0) for x ≥ 1. (1)

15



This chain is again irreducible and aperiodic, so again en will converge to π(h) whenever

π|h| <∞. However, this chain is again clearly non-reversible, and it is again non-trivial to

establish a CLT to obtain a confidence interval for π(h) in terms of en. Instead, we again

use our method. Let

h(x) =

{
0, x = 0

x−1, x ≥ 1

and again take X0 = 1. For different numbers of iterations n, we run M = 1, 000 replications

to estimate en and its variance. The results are as follows:

n n V̂ ar(en) ên

100 0.0181 0.01400
200 0.0163 0.01264
500 0.0148 0.01224

1,000 0.0156 0.01196
2,000 0.0151 0.01188
5,000 0.0151 0.01195
10,000 0.0142 0.01185
20,000 0.0153 0.01184
50,000 0.0154 0.01186
100,000 0.0141 0.01182

These simulations indicate that nVar(en) ≤ 0.02 for all n, so we can take B =
√

0.02.

Then, setting α = 0.05 and ε = 0.001, Theorem 1 gives an approximate conservative 95%

confidence interval for π(h) equal to:

I ≡ I100,000 = (0.0098, 0.0138)

This is again quite a small interval, of width 0.004, again providing good confidence about

π(h), without needing to establish any CLT or difficult ergodicity property.

6.3 A Polynomial-Tailed Non-Reversible Chain

Define a Markov chain on the state space X = N, as follows. Fix s > 2. For all x > 1,

let p1,x = x−s, and px,x−1 = 1, with px,y = 0 otherwise. Let ζ(s) =
∑∞

i=1 i
−s denote
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the Riemann zeta function of s. It follows by induction that its stationary distribution π

satisfies that

π(x) =

( ∞∑
i=x

i−s

)
π(1) , x > 1.

Then, normalising the measure, we conclude that

π(1) =
1

ζ(s− 1)− ζ(s) + 1

π(x) =

∑∞
i=x i

−s

ζ(s)− ζ(s− 1) + 1
, x > 1.

This chain is again non-reversible, and is again irreducible and aperiodic so en will

converge to π(h) whenever π(|h|) <∞. The polynomial tails of px,1 and π make it difficult

to directly establish a CLT, so we again proceed through simulation. Let X0 = 1, s = 5,

and h(x) = x. For different numbers of iterations n, we run M = 1000 replications of the

chain to estimate nVar(en) and en.

n n V̂ ar(en) ên

100 0.552 1.61442
200 0.807 1.61220
500 1.013 1.61519

1,000 0.946 1.61516
2,000 0.874 1.61484
5,000 0.883 1.61500
10,000 0.774 1.61444
20,000 0.855 1.61436
50,000 0.872 1.61441
100,000 0.892 1.61458

The simulations indicate that nVar(en) ≤ 1.5 for all n. Therefore, we can take B =
√

1.5.

Then, setting α = 0.05 and ε = 0.001, Theorem 1 gives an approximate conservative 95%

confidence interval for π(h) equal to:

I ≡ I100,000 = (1.597, 1.632)

which is again quite a small interval, providing good confidence about π(h).
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6.4 A Discretised Irreversible Langevin Diffusion

Finally, we examine a discrete version of the Irreversible Langevin sampler for Xt ∈ R2

introduced in Rey-Bellet and Spiliopoulos (2015). Recall first the standard (reversible)

Langevin diffusion, defined by:

dXt = −∇U(Xt) dt+
√

2DdWt,

where U : R2 → R is a C1 function, D > 0 is a constant, and Wt is two-dimensional

Brownian motion. This process converges to the stationary distribution having density

π(x, y) =
e−U(x,y)/D∫

R2 e−U(x,y)/D dx dy
.

Rey-Bellet and Spiliopoulos (2015) show that the non-reversible family of diffusions

dXt =
[
−∇U(Xt) + C(Xt)

]
dt+

√
2DdWt,

also converges to this same stationary distribution π provided that the C1 vector field

C(x, y) satisfies div(Ce−2U ) = 0, and this condition is guaranteed if C(x, y) = J ∇U(x, y)

for some antisymmetric matrix J . This new process is no longer reversible, but they argue

that it will sometimes converge faster.

We now consider using this non-reversible Langevin diffusion to estimate π(h) for

some function h : R2 → R. We run a discrete-time version of this continuous-time Ir-

reversible Langevin process, replacing each dt by 0.001, and each dWt by an independent

N(0, dt) draw. We take X0 = (0, 0), U(x, y) = (x2 − 2)2 + 1
4y

2, D = 0.1, C(x, y) =[
0 10
−10 0

]
∇U(x, y), and h(x, y) = 16x2 + 9y2. We start each run at t = 0 and run until

t = T for T ∈ {10, 20, . . . , 100}. Due to the complexity of the model, we discard the results

for 0 ≤ t ≤ 5 as burn-in to minimize the effect of bias. Lastly, we define n := (T − 5)/dt,
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and run M = 100 replications for each T to estimate en and nV ar(en). Our results are as

follows:

T n n V̂ ar(en) ên

10 5,000 0.04666 32.00178
20 15,000 0.02192 32.00156
30 25,000 0.02074 32.00165
40 35,000 0.02345 32.00173
50 45,000 0.01570 32.00165
60 55,000 0.01450 32.00164
70 65,000 0.01668 32.00154
80 75,000 0.01769 32.00168
90 85,000 0.01612 32.00158
100 95,000 0.01721 32.00172

These simulations indicate that nVar(en) ≤ 0.05 for all n. Therefore, we can take B =

√
0.05. Then, setting α = 0.05 and ε = 0.001, Theorem 1 gives an approximate conservative

95% confidence interval for π(h) equal to:

I ≡ I95,000 = (31.998, 32.005),

an extremely narrow interval (width 0.007) which gives good confidence about the value of

π(h), again without proving any CLT or any challenging ergodicity property.

7 Summary

In this paper, we have derived explicit asymptotic confidence intervals for any MCMC

algorithm with finite asymptotic variance, started at any initial state, without requiring a

Central Limit Theorem nor reversibility nor any bias bound. We have also derived explicit

non-asymptotic confidence intervals assuming bounds on the bias or first moment, or alter-

natively that the chain starts in stationarity. We have related those non-asymptotic bounds

to properties of MCMC bias, and shown that polynomially ergodicity implies appropriate

bias bounds. Finally, we have applied our results to several numerical examples. It is our
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hope that these results will provide simple and useful tools for estimating errors of MCMC

algorithms when CLTs are not easily available.
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