Les marches aléatoires et les algorithmes MCMC

Jeffrey S. Rosenthal
University of Toronto
jeff@math.toronto.edu
http://probability.ca/jeff/
(CRM, Montréal, Jan 12, 2007)

Un processus stochastique

Qu'est-ce que c'est?

- Une collection des instructions probabilistiques pour « quoi faire la prochaine fois ».
- Les instructions sont suivues en répétition.
- Après plusieurs répétitions, même des instructions simples peuvent produire des resultats très interessants.
- Plusieurs applications aux jeux, algorithmes aléatoires, et beaucoup plus.

Premier exemple : marche aléatoire simple

Tu paris \$1, en répétition. Chaque fois, tu gagnes \$1 avec probabilité p, ou perds \$1 avec probabilité 1-p. (0

C'est-à-dire:

Tu commences avec une fortune initiale X_0 .

Puis, pour $n = 1, 2, ..., X_n$ est égale à $X_{n-1} + 1$ avec prob p, ou $X_{n-1} - 1$ avec prob 1 - p.

Équivalence : $X_n = X_0 + Z_1 + Z_2 + \ldots + Z_n$, où les $\{Z_i\}$ sont indépendants, avec $\mathbf{P}[Z_i = +1] = p = 1 - \mathbf{P}[Z_i = -1]$.

[APPLET]

Marche aléatoire simple (continué)

Même cette exemple simple est très interessante :

- Distribution : $\frac{1}{2}(X_n X_0 + n) \sim \text{Binomial}(n, p)$
- Distribution limitée : $\frac{1}{\sqrt{np(1-p)}}(X_n X_0 n(2p-1)) \approx \text{Normal}(0, 1)$ (n grand) (TLC)
- Récurrence : $\mathbf{P}[\exists n \geq 1 : X_n = X_0] = 1 \text{ ssi } p = 1/2$ (symétrique) (toujours vrai en dimension 2, mais pas en ≥ 3)
- Fluctuations : Si p = 1/2, le processus éventuelement touchera à <u>n'importe quelle</u> sequence a_1, a_2, \ldots, a_ℓ .
- Martingale : Si p = 1/2, alors $\mathbf{E}(X_n | X_0, \dots, X_{n-1}) = X_{n-1}$, c.à.d. le processus reste le même en moyenne. Si $p \neq 1/2$, alors $\{((1-p)/p)^{X_n}\}$ est martingale.

La ruine du jouer

Quelle est la probabilité que $X_n = 2X_0$ avant $X_n = 0$?

Exemple: p = 0.492929 (comme le jeux « craps »). [APPLET]

Impossible à resoudre avec des computations directes, parce que le nombre d'iterations n'est pas borné.

Mais, avec des analyses plus fort (p.e. des martingales), on trouve :

Jeux:	Symétrique	Craps	Roulette
$X_0 = 1$	50%	49.29%	47.37%
$X_0 = 10$	50%	42.98%	25.85%
$X_0 = 100$	50%	1 sur 18	1 sur 37,000
$X_0 = 500$	50%	1 sur 1.4 million	$1 \text{ sur } 10^{23}$
$X_0 = 1,000$	50%	$1 \text{ sur } 10^{16}$	$1 \mathrm{sur} 10^{48}$

Évidence claire pour la loi des grands nombres!

La convergence en distribution

Exemple : marche aléatoire simple symétrique (p = 1/2), sauf forcé à rester dans $\mathcal{X} = \{0, 1, \dots, 6\}$.

c.à.d.: si le processus essaye de quitter \mathcal{X} , alors l'étappe est <u>rejetée</u>, et le processus reste le même $(X_n = X_{n-1})$.

Qu'est-ce qui se passe après beaucoup d'iterations? [APPLET]

La distribution empirique (noir) converge vers la distribution désirée (bleu).

Interessant? Oui. Utile? En effet!

Generalisation

Soit $\pi(\cdot)$ une distribution (cas discret) où densité (cas continue) sur une espace \mathcal{X} . [Avant : $\pi(\cdot)$ = Uniform $\{1, 2, 3, 4, 5, 6\}$.]

De X_{n-1} , proposer Y_n (symétriquement). Accepter $(X_n = Y_n)$ avec probabilité min $[1, \pi(Y_n)/\pi(X_{n-1})]$. Sinon, rejeter $(X_n = X_{n-1})$. ("Algorithme Metropolis", 1953) [APPLET]

Alors, "probablement", si B et M sont grand, alors $X_B \approx \pi(\cdot)$, et

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{M} \sum_{i=B}^{B+M-1} h(X_i).$$

"Markov Chain Monte Carlo" (MCMC). Très populaire en statistique, physique, science informatique, finance, et plus. La preuve?

788,000 pages web en Google!

Comment évaluer les algorithmes MCMC?

e.g. exemple de l'applet, mais avec $\pi\{2\} = 0.0001$. Proposer par

$$Y_n \sim \text{Uniform}\{x - \gamma, \dots, x - 1, x + 1, \dots, x + \gamma\},\$$

$$\gamma \in \mathbf{N}$$
. [Avant : $\gamma = 1$.]

Quels γ donnent la bonne convergence? [APPLET]

 $\gamma = 1$ (comme avant): trop petit, alors ne bouge pas assez.

 $\gamma = 50$: trop grand, alors trop de rejets.

 $\gamma = 3$ ou 4 ou 5 : un compromis, qui marche très bien.

Facile, ici. Mais, comment dècider dans un exemple complex . . .

Une application statistique typique

 $\pi(\cdot)$ a la densité suivante sur \mathbf{R}^{K+3} :

$$f(\sigma_{\theta}^{2}, \sigma_{e}^{2}, \mu, \theta_{1}, \dots, \theta_{K}) = C e^{-b_{1}/\sigma_{\theta}^{2}} \sigma_{\theta}^{2^{-a_{1}-1}} e^{-b_{2}/\sigma_{e}^{2}} \sigma_{e}^{2^{-a_{2}-1}} e^{-(\mu-\mu_{0})^{2}/2\sigma_{0}^{2}} \times \prod_{i=1}^{K} [e^{-(\theta_{i}-\mu)^{2}/2\sigma_{\theta}^{2}}/\sigma_{\theta}] \times \prod_{i=1}^{K} \prod_{j=1}^{J} [e^{-(Y_{ij}-\theta_{i})^{2}/2\sigma_{e}^{2}}/\sigma_{e}],$$

où K, J grand, $\{Y_{ij}\}$ données (connues), $a_1, a_2, b_1, b_2, \mu_0, \sigma_0^2$ paramétres (connues), et C > 0 est la constante de nomalisation.

[Posterieur pour le modèle Variance Components.]

Integration numerique : impossible (même pour calculer C).

Metropolis : Oui! Proposer p.e. $Y_n \sim \text{Normal}(X_{n-1}, \sigma^2)$.

Mais, avec quel σ^2 ?

Approche théoretique #1 : couplage

Si nous pouvons construire, <u>avec</u> $\{X_n\}$, un <u>autre</u> processus $\{X'_n\}$ pour lequel $X'_n \sim \pi(\cdot)$ pour chaque n, alors :

$$|\mathbf{P}(X_n \in A) - \pi(A)| = |\mathbf{P}(X_n \in A) - \mathbf{P}(X'_n \in A)|$$

$$\leq \mathbf{P}(X_n \neq X'_n).$$

Si la construction a la proprieté que $\mathbf{P}(X_n \neq X_n') \approx 1$ pour n grand, alors ça nous donne beaucoup d'information sur la convergence en distribution.

Possible, et il y a quelques succes avec des exemples compliqués. [R., JASA, 1995; Stat. Comput. 1996; Elec. Comm. Prob. 2002; JASA 2003; etc.]

Mais pas facile! (Minorisations, drifts, ...) [article]

Approche théoretiques #2 : échelles optimales

Il existe des théorèmes qui dissent, dans certains contextes, quelle valeur de γ (ou σ^2) est optimale :

Si la distribution désirée a des composants i.i.d., alors pour l'algorithme Metropolis, c'est optimale d'avoir un taux d'acceptance de 0.234. [Roberts, Gelman et Gilks, Ann. Appl. Prob. 1994]

Pour l'algorithme Langevin, le taux optimal est 0.574. [Roberts et R., JRSSB 1998; Stat. Sci. 2001]

Parfois ces resultats generalisent, et parfois pas. [M. Bédard, 2006]

Mais, tous ces contexts sont trop specifiques pour des « vrais » exemples. Alors, quoi faire en practique?

MCMC Adaptif

 $\underline{\text{Id\'ee}}$: Demander a l'ordinateur de trouver des bons γ pour nous.

C.à.d., à chaque iteration n, l'ordinateur va choisir une valeur $\{\Gamma_n\}$ à utiliser pour γ . Essayer de faire « apprendre » à l'ordinateur quelles valeurs sont les meilleures. Pour l'applet, par exemple :

- Chaque fois que Y_n est <u>accepté</u>, alors $\Gamma_n = \Gamma_{n-1} + 1$ (alors γ augmente, et le taux d'acceptence diminue).
- Chaque fois que Y_n est <u>rejeté</u>, alors $\Gamma_n = \max(\Gamma_{n-1} 1, 1)$ (alors γ diminue, et le taux d'acceptence augmente).

Logique, et naturale. Mais est-ce que ça marche? [APPLET]

NON! C'est un désastre!

Quand est-ce les algorithmes adaptifs convergent?

[Roberts et R., 2004, 2005]

Théorème. Un algorithme adaptif converge si

- (a) les taux de convergence sont tous bornées [condition téchnique; il suffit que \mathcal{X} est fini ou compacte]; et
- (b) l'adaptation diminue : $\mathbf{P}[\Gamma_n \neq \Gamma_{n-1}] \to 0$, ou plus generalement $\sup_{x \in \mathcal{X}} ||P_{\Gamma_{n+1}}(x,\cdot) P_{\Gamma_n}(x,\cdot)|| \to 0$.

Alors, dans l'exemple de l'applet, si on ne change Γ_n qu'avec probabilité p(n), et $p(n) \to 0$, alors ça va converger bien.

Autres exemples des algorithmes adaptifs

Autres exemples auxquels le théorème s'applique :

- Metropolis-Hastings avec $Y_n \sim MVN(X_{n-1}, v_n(X_0, \dots, X_{n-1}))$, pour des fonctiones appropriées v_n .
- Metropolis-within-Gibbs : chacune des 500 variables a sa propre variance σ_i^2 de sa propre Y_i , et l'ordinateur adapte chaque σ_i^2 sépérament. Et, ça marche!
- L'algorithme "Adaptive Metropolis" : $Y_n \sim MVN(X_{n-1}, c\Sigma_n)$, où c > 0, et Σ_n est l'estime empirique de la covariance de $\pi(\cdot)$. Ça marche, même en dimension 200 (quand Σ_n a dimension vers 20,000).

Conclusion: Souvent, les algorithmes adaptifs marchent bien! (13/14

<u>Résumé</u>

Les processus aléatoires sont très interessants, et parfois très utiles.

- La répétition des instructions (simples?) probabilistiques.
- Distributions, limites, récurrence, fluctuations, martingales, la ruine du jouer, . . .
- MCMC (Metropolis etc.) pour converger en distribution.
- Approches théoretiques : couplage, échelles optimales.
- Algorithmes adaptifs: l'ordinateur choisi pour nous. Si on fait beaucoup d'attention, ça peut marcher bien.

Beaucoup de questions récherches interressantes!