A Random Walk Through the Big Metropolis (Couples Welcome)

> Jeffrey S. Rosenthal University of Toronto jeff@math.toronto.edu http://probability.ca/jeff/

(CRM-SSC Prize talk, London, Ontario, May 31, 2006)

Random Processes

Random processes ... stochastic processes ... Markov chains ... random walks ... what are they?

- Probabilistic rules for "what to do next".
- Rules are re-applied over and over again.
- In the long run, even simple rules lead to interesting behaviour.
- Applications to gambling (e.g. "Gambler's Ruin"), sampling algorithms ("Markov chain Monte Carlo"), and more.

First Example: Simple Random Walk

Repeatedly make \$1 bets. Each time, win \$1 with prob p, or lose \$1 with prob 1 - p. (0 [APPLET]

More formally:

Start at some integer X_0 (initial fortune).

Then iteratively, for $n = 1, 2, ..., X_n$ is either $X_{n-1} + 1$ (prob p) or $X_{n-1} - 1$ (prob 1 - p).

Equivalently, $X_n = X_0 + Z_1 + Z_2 + \ldots + Z_n$, where $\{Z_i\}$ are i.i.d. with $\mathbf{P}[Z_i = +1] = p = 1 - \mathbf{P}[Z_i = -1]$.

Simple Random Walk (cont'd)

Even this simple example has many interesting properties:

- Distribution: $\frac{1}{2}(X_n X_0 + n) \sim \text{Binomial}(n, p)$
- Limiting Distribution: $\frac{1}{\sqrt{n}}(X_n X_0 n(2p-1)) \approx \text{Normal}(0, 1)$ (*n* large) (CLT)
- Recurrence: $\mathbf{P}[\exists n \ge 1 : X_n = X_0] = 1$ iff <u>symmetric</u>, i.e. p = 1/2 (also true in dim = 2, but not in dim ≥ 3)
- Fluctuations: if p = 1/2, the process will eventually hit <u>any</u> sequence a_1, a_2, \ldots, a_ℓ .

• Martingale: if p = 1/2, then $\mathbf{E}(X_n | X_0, \dots, X_{n-1}) = X_{n-1}$, i.e. the process stays the same on average. If $p \neq 1/2$, then true of $\{((1-p)/p)^{X_n}\}$.

(3/16)

Gambler's Ruin

What is prob of e.g. doubling your initial fortune (I) before going broke, say with p = 0.492929 as in craps? [APPLET]

No "direct computation" solution (since time unbounded).

Instead, can solve using difference equations, or martingales:

Game:	Symmetric	Craps	Roulette
I = 1	p = 50%	p = 244/495 = 49.29%	p = 18/38 = 47.7%
I = 10	50%	42.98%	25.85%
I = 100	50%	5.58% (1 in 18)	0.0027% (1 in 37,000)
I = 500	50%	1 in 1.4 million	$1 \text{ in } 10^{23}$
I = 1,000	50%	$1 \text{ in } 10^{16}$	$1 \text{ in } 10^{48}$

Law of Large Numbers at work!

Distributional Convergence

Consider again simple symmetric (p = 1/2) random walk, but restricted to a finite state space (say, $\mathcal{X} = \{0, 1, \dots, 6\}$) by simply "ignoring" moves off of \mathcal{X} .

That is: if process tries to jump off \mathcal{X} , then the move is <u>rejected</u> and instead we simply set $X_n = X_{n-1}$.

What happens in the long run? [APPLET]

The chain's empirical distribution (black bars) converges to the "target" Uniform(\mathcal{X}) distribution (blue bars).

Interesting! Useful??

Other Target Distributions

To converge to <u>other</u> distributions, $\pi(\cdot)$, besides Uniform(\mathcal{X}):

From X_{n-1} , if trying to move to Y_n , then accept this only with probability min[1, $\pi(Y_n)/\pi(X_{n-1})$], otherwise <u>reject</u> it and set $X_n = X_{n-1}$. ("Metropolis Algorithm") [APPLET]

Then for <u>large enough</u> B ("burn-in time"), X_B , X_{B+1} , ... are approximate <u>samples</u> from $\pi(\cdot)$. So e.g. for large m:

$$\mathbf{E}_{\pi}(h) \approx \frac{1}{m} \sum_{i=B}^{B+m-1} h(X_i).$$

"Markov Chain Monte Carlo" (MCMC).

Extremely popular in statistics, physics, computer science, finance, and more: 661,000 Google hits.

(6/16)

Evaluating MCMC Algorithms

e.g. Java applet example, with $\pi\{2\} = 0.0001$. [APPLET] Still converges, but very <u>slowly</u>: difficult crossing state 2. Alternately, from $X_{n-1} = x$, could select proposed next state by: $Y_n \sim \text{Uniform}\{x - \gamma, \dots, x - 1, x + 1, \dots, x + \gamma\}$, for other $\gamma \in \mathbf{N}$ (besides $\gamma = 1$). [APPLET]

Research Questions:

- 1. How long until convergence? (i.e., how large should B be?)
- 2. How to select γ ? (i.e., which MCMC algorithm is <u>best</u>?)

Easy enough in this simple example, but what about a ...

(7/16)

Typical Statistical Application

Might wish to sample from e.g. this density on \mathbf{R}^{K+3} :

$$f(\sigma_{\theta}^{2}, \sigma_{e}^{2}, \mu, \theta_{1}, \dots, \theta_{K}) = \\C e^{-b_{1}/\sigma_{\theta}^{2}} \sigma_{\theta}^{2^{-a_{1}-1}} e^{-b_{2}/\sigma_{e}^{2}} \sigma_{e}^{2^{-a_{2}-1}} e^{-(\mu-\mu_{0})^{2}/2\sigma_{0}^{2}} \\\times \prod_{i=1}^{K} [e^{-(\theta_{i}-\mu)^{2}/2\sigma_{\theta}^{2}}/\sigma_{\theta}] \times \prod_{i=1}^{K} \prod_{j=1}^{J} [e^{-(Y_{ij}-\theta_{i})^{2}/2\sigma_{e}^{2}}/\sigma_{e}],$$

where K, J large, $\{Y_{ij}\}$ data (given), $a_1, a_2, b_1, b_2, \mu_0, \sigma_0^2$ are fixed prior parameters (given), and C > 0 is normalizing constant.

[Posterior for Variance Components Model.]

Can't do numerical integration . . . nor even compute C.

Can use Metropolis, with e.g. $Y_n \sim \text{Normal}(X_{n-1}, \sigma^2)$.

But for what σ^2 ? And what burn-in B??

Bounding Convergence Through Coupling

Suppose that together with $\{X_n\}$, have a second process $\{X'_n\}$ with $X'_n \sim \pi(\cdot)$ for all n.

Then <u>coupling inequality</u> says

$$|\mathbf{P}(X_n \in A) - \pi(A)| \leq \mathbf{P}(X_n \neq X'_n).$$

So, if can force $X'_n = X_n$ with high probability, then can bound convergence.

Simplest case: $\{X'_n\}$ <u>independent</u> of $\{X_n\}$ until the first time T with $X'_T = X_T$. After that the two processes proceed together, i.e. $X'_n = X_n$ for all $n \ge T$, so $\mathbf{P}(X_n \ne X'_n) = \mathbf{P}(T > n)$.

Problem: T may be very large, or even infinite. Bad!

(9/16)

Coupling via Minorisation Conditions

Suppose can find a "minorisation" (overlap) decomposition:

$$\mathcal{L}(X_n | X_{n-1} = x) = \epsilon \nu(\cdot) + (1 - \epsilon) R_x(\cdot),$$

$$\mathcal{L}(X'_n | X'_{n-1} = x') = \epsilon \nu(\cdot) + (1 - \epsilon) R_{x'}(\cdot).$$

Then given $X_{n-1} = x$ and $X'_{n-1} = x'$, can construct (X_n, X'_n) by: (a) with probability ϵ , $X_n = X'_n \sim \nu(\cdot)$; or (b) with probability $1 - \epsilon$, $X_n \sim R_x(\cdot)$ and $X'_n \sim R_{x'}(\cdot)$.

This increases $\mathbf{P}(X_n = X'_n)$, and thus reduces convergence bound.

Can sometimes be applied to complicated statistical examples. But not easy ... best years of my life ...

Another Approach: Adaptive MCMC

Consider again the Java applet example with $\mathcal{X} = \{1, 2, \dots, 6\}$. For each $\gamma \in \mathbf{N}$, have a Metropolis algorithm P_{γ} . Which one is best? converges fastest? How to tell?? [APPLET]

<u>Idea</u>: Get the computer to modify the chain <u>adaptively</u>, i.e. choose a sequence $\{\Gamma_n\}$ of values for γ "on the fly".

Hopefully, computer can "learn" good MCMC algorithms for us.

But easier said than done ...

Adaptive MCMC (cont'd)

Helpful observations about Java applet example (and beyond):

• If γ too small (say, $\gamma = 1$), then usually accept, but don't move very far – bad!

- If γ too large (say, $\gamma = 50$), then hardly ever accept bad!
- Best is a "moderate" value of γ , like 3 or 4, so step sizes and acceptance probs are both non-small. ["Goldilocks principle"]

<u>Conclude</u>: If the chain almost always accepts, then γ may be too <u>small</u> and should be <u>increased</u>.

But if the chain almost always rejects, then γ may be too <u>large</u> and should be <u>reduced</u>.

12/16

(Optimal acceptance rate?!?)

Adaptive MCMC (cont'd)

Then let <u>computer</u> search for "moderate" values of γ :

- Start with γ set to $\Gamma_0 = 2$ (say).
- Each time proposed move is <u>accepted</u>, set $\Gamma_n = \Gamma_{n-1} + 1$ (so γ increases, and acceptance rate decreases).
- Each time proposed move is <u>rejected</u>, set $\Gamma_n = \max(\Gamma_{n-1}-1, 1)$ (so γ decreases, and acceptance rate increases).

Logical, natural adaptive scheme, which uses the computer to perform a "search" for a good γ , on the fly.

But does it work?? [APPLET]

NO IT DOESN'T!!

The chain eventually gets stuck with $X_n = \Gamma_n = 1$ for long stretches of time. [Asymmetric: entering $\{X_n = \Gamma_n = 1\}$ much easier than <u>leaving</u> it.]

Chain doesn't converge to $\pi(\cdot)$ at all.

The adaption has RUINED the algorithm.

Disaster!!

When Does Adaptive MCMC Preserve Convergence?

Various theorems (joint with G.O. Roberts) ensure that Adaptive MCMC will converge under certain <u>conditions</u>.

In Java example, suffices that $\mathbf{P}[\Gamma_n \neq \Gamma_{n-1}] \to 0$, i.e. probability of modifying γ goes to 0. ("Diminishing Adaptation")

We have applied these theorems to e.g.

• The "Adaptive Metropolis" (AM) algorithm, which attempts to adapt Metropolis algorithm proposal distributions to target.

• Metropolis-Hastings algorithms in which the proposal distribution from x is $Normal(x, \sigma_x^2)$, where σ_x^2 is some function of x.

Seems promising; more examples coming soon!

Summary

Random processes / Markov chains are interesting and powerful.

- Complicated behaviour arises from repeating simple rules.
- $\bullet\,$ Distributions, limits, recurrence, fluctuations, martingales, gambler's ruin, \ldots
- MCMC (Metropolis etc.): approximate samples (after convergence).
- Can bound convergence time using coupling & minorisations.
- Which algorithm? Can get computer to choose, if <u>careful</u>.

Lots of difficult research problems to keep us all busy!