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Random Processes

Random processes . . . stochastic processes . . . Markov chains . . .
random walks . . . what are they?

• Probabilistic rules for “what to do next”.

• Rules are re-applied over and over again.

• In the long run, even simple rules lead to interesting behaviour.

• Applications to gambling (e.g. “Gambler’s Ruin”), sampling al-
gorithms (“Markov chain Monte Carlo”), and more.
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First Example: Simple Random Walk

Repeatedly make $1 bets. Each time, win $1 with prob p, or lose
$1 with prob 1− p. (0 < p < 1) [APPLET]

More formally:

Start at some integer X0 (initial fortune).

Then iteratively, for n = 1, 2, . . ., Xn is either Xn−1 + 1 (prob p)
or Xn−1 − 1 (prob 1− p).

Equivalently, Xn = X0 +Z1 +Z2 + . . .+Zn, where {Zi} are i.i.d.
with P[Zi = +1] = p = 1−P[Zi = −1].

(2/16)



Simple Random Walk (cont’d)

Even this simple example has many interesting properties:

• Distribution: 1
2(Xn −X0 + n) ∼ Binomial(n, p)

• Limiting Distribution: 1√
n(Xn−X0−n(2p−1)) ≈ Normal(0, 1)

(n large) (CLT)

• Recurrence: P[∃ n ≥ 1 : Xn = X0] = 1 iff symmetric, i.e.
p = 1/2 (also true in dim = 2, but not in dim ≥ 3)

• Fluctuations: if p = 1/2, the process will eventually hit any
sequence a1, a2, . . . , a`.

• Martingale: if p = 1/2, then E(Xn |X0, . . . , Xn−1) = Xn−1,
i.e. the process stays the same on average.
If p 6= 1/2, then true of {((1− p)/p)Xn}.
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Gambler’s Ruin

What is prob of e.g. doubling your initial fortune (I) before going
broke, say with p = 0.492929 as in craps? [APPLET]

No “direct computation” solution (since time unbounded).

Instead, can solve using difference equations, or martingales:

Game: Symmetric Craps Roulette
I = 1 p = 50% p = 244/495 = 49.29% p = 18/38 = 47.7%
I = 10 50% 42.98% 25.85%
I = 100 50% 5.58% (1 in 18) 0.0027% (1 in 37,000)
I = 500 50% 1 in 1.4 million 1 in 1023

I = 1,000 50% 1 in 1016 1 in 1048

Law of Large Numbers at work!
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Distributional Convergence

Consider again simple symmetric (p = 1/2) random walk, but
restricted to a finite state space (say, X = {0, 1, . . . , 6}) by simply
“ignoring” moves off of X .

That is: if process tries to jump off X , then the move is rejected
and instead we simply set Xn = Xn−1.

What happens in the long run? [APPLET]

The chain’s empirical distribution (black bars) converges to the
“target” Uniform(X ) distribution (blue bars).

Interesting! Useful??
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Other Target Distributions

To converge to other distributions, π(·), besides Uniform(X ):

From Xn−1, if trying to move to Yn, then accept this only with
probability min[1, π(Yn)/π(Xn−1)], otherwise reject it and set
Xn = Xn−1. (“Metropolis Algorithm”) [APPLET]

Then for large enough B (“burn-in time”), XB, XB+1, . . . are
approximate samples from π(·). So e.g. for large m:

Eπ(h) ≈ 1

m

B+m−1∑
i=B

h(Xi) .

“Markov Chain Monte Carlo” (MCMC).

Extremely popular in statistics, physics, computer science, finance,
and more: 661,000 Google hits.
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Evaluating MCMC Algorithms

e.g. Java applet example, with π{2} = 0.0001. [APPLET]

Still converges, but very slowly: difficult crossing state 2.

Alternately, from Xn−1 = x, could select proposed next state by:

Yn ∼ Uniform{x− γ, . . . , x− 1, x + 1, . . . , x + γ} ,

for other γ ∈ N (besides γ = 1). [APPLET]

Research Questions:

1. How long until convergence? (i.e., how large should B be?)

2. How to select γ? (i.e., which MCMC algorithm is best?)

Easy enough in this simple example, but what about a . . .
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Typical Statistical Application

Might wish to sample from e.g. this density on RK+3:

f (σ2
θ , σ

2
e , µ, θ1, . . . , θK) =

C e−b1/σ
2
θσ2

θ
−a1−1

e−b2/σ
2
eσ2

e
−a2−1

e−(µ−µ0)2/2σ2
0

×
K∏
i=1

[e−(θi−µ)2/2σ2
θ/σθ]×

K∏
i=1

J∏
j=1

[e−(Yij−θi)2/2σ2
e/σe] ,

where K, J large, {Yij} data (given), a1, a2, b1, b2, µ0, σ
2
0 are fixed

prior parameters (given), and C > 0 is normalizing constant.

[Posterior for Variance Components Model.]

Can’t do numerical integration . . . nor even compute C.

Can use Metropolis, with e.g. Yn ∼ Normal(Xn−1, σ
2).

But for what σ2? And what burn-in B?? (8/16)



Bounding Convergence Through Coupling

Suppose that together with {Xn}, have a second process {X ′n}
with X ′n ∼ π(·) for all n.

Then coupling inequality says

|P(Xn ∈ A)− π(A)| ≤ P(Xn 6= X ′n) .

So, if can force X ′n = Xn with high probability, then can bound
convergence.

Simplest case: {X ′n} independent of {Xn} until the first time T
with X ′T = XT . After that the two processes proceed together,
i.e. X ′n = Xn for all n ≥ T , so P(Xn 6= X ′n) = P(T > n).

Problem: T may be very large, or even infinite. Bad!
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Coupling via Minorisation Conditions

Suppose can find a “minorisation” (overlap) decomposition:

L(Xn |Xn−1 = x) = ε ν(·) + (1− ε)Rx(·) ,

L(X ′n |X ′n−1 = x′) = ε ν(·) + (1− ε)Rx′(·) .

Then given Xn−1 = x and X ′n−1 = x′, can construct (Xn, X
′
n) by:

(a) with probability ε, Xn = X ′n ∼ ν(·); or
(b) with probability 1− ε, Xn ∼ Rx(·) and X ′n ∼ Rx′(·).
This increases P(Xn = X ′n), and thus reduces convergence bound.

Can sometimes be applied to complicated statistical examples.

But not easy . . . best years of my life . . .
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Another Approach: Adaptive MCMC

Consider again the Java applet example with X = {1, 2, . . . , 6}.
For each γ ∈ N, have a Metropolis algorithm Pγ.

Which one is best? converges fastest? How to tell?? [APPLET]

Idea: Get the computer to modify the chain adaptively, i.e. choose
a sequence {Γn} of values for γ “on the fly”.

Hopefully, computer can “learn” good MCMC algorithms for us.

But easier said than done . . .
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Adaptive MCMC (cont’d)

Helpful observations about Java applet example (and beyond):

• If γ too small (say, γ = 1), then usually accept, but don’t move
very far – bad!

• If γ too large (say, γ = 50), then hardly ever accept – bad!

• Best is a “moderate” value of γ, like 3 or 4, so step sizes and
acceptance probs are both non-small. [“Goldilocks principle”]

Conclude: If the chain almost always accepts, then γ may be too
small and should be increased.

But if the chain almost always rejects, then γ may be too large
and should be reduced.

(Optimal acceptance rate?!?)
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Adaptive MCMC (cont’d)

Then let computer search for “moderate” values of γ:

• Start with γ set to Γ0 = 2 (say).

• Each time proposed move is accepted, set Γn = Γn−1 + 1 (so γ
increases, and acceptance rate decreases).

• Each time proposed move is rejected, set Γn = max(Γn−1−1, 1)
(so γ decreases, and acceptance rate increases).

Logical, natural adaptive scheme, which uses the computer to per-
form a “search” for a good γ, on the fly.

But does it work?? [APPLET]
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NO IT DOESN’T!!

The chain eventually gets stuck with Xn = Γn = 1 for long
stretches of time. [Asymmetric: entering {Xn = Γn = 1} much
easier than leaving it.]

Chain doesn’t converge to π(·) at all.

The adaption has RUINED the algorithm.

Disaster!!
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When Does Adaptive MCMC Preserve Convergence?

Various theorems (joint with G.O. Roberts) ensure that Adaptive
MCMC will converge under certain conditions.

In Java example, suffices that P[Γn 6= Γn−1]→ 0, i.e. probability
of modifying γ goes to 0. (“Diminishing Adaptation”)

We have applied these theorems to e.g.

• The “Adaptive Metropolis” (AM) algorithm, which attempts to
adapt Metropolis algorithm proposal distributions to target.

• Metropolis-Hastings algorithms in which the proposal distribu-
tion from x is Normal(x, σ2

x), where σ2
x is some function of x.

Seems promising; more examples coming soon!
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Summary

Random processes / Markov chains are interesting and powerful.

• Complicated behaviour arises from repeating simple rules.

• Distributions, limits, recurrence, fluctuations, martingales, gam-
bler’s ruin, . . .

• MCMC (Metropolis etc.): approximate samples (after conver-
gence).

• Can bound convergence time using coupling & minorisations.

• Which algorithm? Can get computer to choose, if careful.

Lots of difficult research problems to keep us all busy!
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