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Abstract. We connect known results about diffusion limits of Markov chain
Monte Carlo (MCMC) algorithms to the computer science notion of algorithm
complexity. Our main result states that any weak limit of a Markov process
implies a corresponding complexity bound (in an appropriate metric). We
then combine this result with previously-known MCMC diffusion limit results
to prove that under appropriate assumptions, the Random-Walk Metropolis
(RWM) algorithm in d dimensions takes O(d) iterations to converge to sta-
tionarity, while the Metropolis-Adjusted Langevin Algorithm (MALA) takes
O(d1/3) iterations to converge to stationarity.

1. Introduction.

In the computer science literature, algorithms are often analysed in terms of “complexity”

bounds. In the Markov chain Monte Carlo (MCMC) literature, algorithms are sometimes

understood in terms of diffusion limits. The purpose of this note is to connect these two

approaches, and in particular to show that diffusion limits (and other weak limits) can imply

algorithm complexity bounds.

Complexity results in computer science go back at least to Cobham (1964), and took

on greater focus with the pioneering NP-complete work of Cook (1971). In the Markov

chain context, computer scientists have been bounding convergence times of Markov chain

algorithms since at least Jerrum and Sinclair (1989), focusing largely on spectral gap bounds

for Markov chains on finite state spaces. More recently, attention has turned to bounding

spectral gaps of modern Markov chain algorithms on general (e.g. uncountable) state spaces,

again primarily via spectral gaps (e.g. Woodard et al., 2009a, 2009b). These bounds often

focus on the order of the convergence time in terms of some particular parameter, such as

the dimension d of the corresponding state space.

Meanwhile, in statistics, MCMC algorithms are extremely widely used and studied (see

e.g. Brooks et al., 2011, and the many references therein), and their running times are an

extremely important practical issue. They have been studied from a variety of perspectives,
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including directly bounding the convergence in total variation distance (see e.g. Rosenthal,

1995b, 1996, 2002; Jones and Hobert, 2001, 2004; and references therein), convergence “diag-

nostics” via statistical analysis of the Markov chain output (e.g. Gelman and Rubin, 1992),

and most notably by proving weak convergence limits of sped-up versions of the algorithms

to diffusion limits (e.g. Roberts et al., 1997; Roberts and Rosenthal, 1998).

Direct total variation bounds for MCMC are sometimes presented in terms of the conver-

gence order (e.g. see Rosenthal, 1995a, for order bounds for a Gibbs sampler for a variance

components model). And, the MCMC diffusion limits often involve speeding up the original

algorithm by a certain order, and then proving weak convergence to a fixed process which

converges in O(1) iterations, thus giving them the flavour of complexity order bounds too.

However, these MCMC results are typically not stated precisely in terms of convergence time

complexity results, and (perhaps because of this) they are often overlooked by the computer

science complexity community.

In this paper, we attempt to connect these two streams of Markov chain convergence

time bounds. In particular, we establish (Theorem 1) that results about weak limits do

directly imply corresponding complexity bounds (using an appropriate convergence metric

as described below). We then apply our theorem to previous results about diffusion limits

of MCMC algorithms (Section 3), to establish running time complexity order bounds for

such MCMC algorithms as the Random-Walk Metropolis algorithm (Theorem 2) and the

Metropolis-adjusted Langevin algorithm (Theorem 3).

2. Assumptions and Main Result.

In this section, we state our general result about obtaining convergence complexity

bounds from weak limits. To set it up, let (X ,F , ρ) be a general measurable metric space,

i.e. a non-empty (and possibly uncountable) set X endowed with a metric ρ which induces a

Borel σ-algebra F of measurable subsets. We wish to bound the convergence of a stochastic

process {Xt} on (X ,F) to its stationary probability distribution π. To measure the distance

to stationarity, on finite state spaces one often (see e.g. Aldous and Fill, 2002, Section 2.4.1)

uses the total variation distance defined by

‖Lx(Xt)− π‖TV := sup
|f |≤1

∣∣∣Ex[f(Xt)]− π(f)
∣∣∣

where the supremum is taken over all measurable functions f : X → R with |f(x)| ≤ 1 for

all x ∈ X . Here Lx(Xt) is the law of Xt conditional on starting at X0 = x, and Ex[f(Xt)]

is the expected value of f with respect to this law, and π(f) =
∫
f(x) π(dx) is the expected
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value of f with respect to π.

This total variation distance can also be used on general state spaces in many instances

(see e.g. Rosenthal, 1995). However, it is not appropriate for bounding the weak convergence

which arises in the diffusion context, since it may not go to zero for processes which converge

only weakly to stationarity, so we do not use it here. Instead, we let

Lip1
1 =

{
f : X → R, |f(x)− f(y)| ≤ ρ(x, y) ∀x, y ∈ X , |f | ≤ 1

}
be the set of all functions from X to R with Lipschitz constant ≤ 1 and with |f(x)| ≤ 1 for

all x ∈ X , and use the distance function

‖Lx(Xt)− π‖KR := sup
f∈Lip11

∣∣∣Ex[f(Xt)]− π(f)
∣∣∣ .

(Here “KR” stands for “Kantorovich-Rubinstein”; see the proof of Proposition 6 below.) The

distance ‖ · · · ‖KR is similar to, but more restrictive than, the total variation distance, and

as discussed below (see Proposition 6), it metrises weak convergence and so is appropriate

for our purposes.

We also note that many approaches to stationary instead directly bound the spectral gap

of the corresponding Markov operator (e.g. Woodard et al., 2009b). However, on general state

spaces, the spectral gap is zero for Markov chains which are not “geometrically ergodic” (see

e.g. Theorem 2 of Roberts and Rosenthal, 1997), even if they do converge to stationarity.

Furthermore, many MCMC algorithms are not geometrically ergodic (e.g. the Random-

Walk Metropolis algorithm on target distributions with heavier-than-exponential tails, see

Theorem 3.3 of Mengersen and Tweedie, 1996). They also are often not reversible, which

makes spectral gaps harder to study or interpret. For these reasons, we do not wish to

restrict attention to spectral gaps, which is another reason that we use the metric ‖ · · · ‖KR.

A related issue is what initial states X0 should be considered. On finite state spaces,

one often (e.g. Jerrum and Sinclair, 1989, Section 2) considers the worst case, by taking a

supremum over all initial states x, i.e. using something like supx∈X ‖Lx(Xt) − π‖TV . But

this supremum is also frequently inappropriate on general state spaces. For instance, if X
is unbounded, then as t increases one can start from worse and worse states X0 so that the

supremum might never go to 0. Instead, we need to specify more precisely which initial

state(s) X0 to consider. As a concrete choice, we will take the π-average of the distances to

stationarity from all initial states X0 in X . That is, for any Markov chain {Xt} on (X ,F)

with stationary distribution π, we measure the distance to stationarity at time t by the

distance function

EX0∼π‖LX0(Xt)− π‖KR :=

∫
x∈X

π(dx) ‖Lx(Xt)− π‖KR .
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Using this distance function, we can state our main result, about bounding convergence

to stationarity using weak convergence of a sequence of processes to another fixed process.

To avoid technicalities, we assume that this limiting process is càdlàg, i.e. has sample paths

which are continuous on the right with limits on the left. (In our MCMC examples, the

limiting process will in fact be a diffusion with continuous sample paths, so this is not a

problem.)

Theorem 1. Let X(d) = {X(d)
t }t≥0 be a stochastic process on (X ,F , ρ), for each

d ∈ N, which converges weakly in the Skorokhod topology as d → ∞ to a càdlàg process

X(∞) = {X(∞)
t }t≥0, i.e. X(d) ⇒ X(∞). Assume these processes all have the same station-

ary probability distribution π, and that X(∞) converges (either weakly or in total variation

distance) to π. Then for any ε > 0, there are D <∞ and T <∞ such that

E
X

(d)
0 ∼π
‖L

X
(d)
0

(X
(d)
t )− π‖KR < ε , t ≥ T, d ≥ D .

Theorem 1 may be summarised as saying that if a sequence {X(d)} of Markov processes

converges weakly to a limiting ergodic process, then we can bound the convergence of the

sequence of processes uniformly over all sufficiently large d, i.e. the processes converge in O(1)

iterations with respect to d. We will next apply this result to previously known diffusion

limits of common MCMC algorithms.

3. Application to MCMC.

Our primarily interest is in the use of Theorem 1 to bound the complexity of MCMC al-

gorithms. We begin with the most popular MCMC algorithm, the Random-Walk Metropolis

(RWM) algorithm. This algorithm proceeds, given a positive target probability density πd

on the state space Rd, by running a Markov chain {Zdn}∞n=0 as follows. Given the value Zdn, a

proposed new state Yd
n+1 ∼MVN(Zdn, σ

2
d) is chosen from a multivariate normal distribution

centered at Zdn, and then with probability min[1, πd(Y
d
n+1)/πd(Z

d
n)] the proposal is accepted

and Zdn+1 = Yd
n+1, otherwise with the remaining probability the proposal is rejected and

Zdn+1 = Zdn. This algorithm is easily seen to be irreducible and aperiodic and to leave πd

stationary, so it will converge asymptotically to πd. The question then becomes how quickly

it will converge, and what choice of proposal variance σ2
d is optimal.

In this context, Roberts et al. (1997) proved the result that Ud ⇒ U as d → ∞, where

Ud
t = Zdbdtc, 1 is the first coordinate of the RWM algorithm sped up by a factor of d, and

U is a limiting ergodic Langevin diffusion, and ⇒ indicates weak convergence in the usual

Skorokhod topology. They proved this result under certain strong technical assumptions,
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namely that πd takes on the special product form πd(x) =
∏d

i=1 h(xi) for some fixed function

h : R → (0,∞) with h′/h Lipschitz continuous, and (A1)
∫

[h′(x)/h(x)]8h(x)dx < ∞, and

(A2)
∫

[h′′(x)/h(x)]4h(x)dx < ∞. They also assumed the processes Zd are in stationarity,

and that σ2
d = `2/(d− 1) for some fixed ` > 0.

This theorem of Roberts et al. (1997) allowed them to study the limiting diffusion U as

a function of the proposal variance parameter `, and optimise it to prove that the algorithm

converges fastest when its asymptotic acceptance rate is equal to 0.234. . . (see also Roberts

and Rosenthal, 2001). Furthermore, since their process Ud involved speeding up the original

algorithm by a factor of d, their results seemed to imply that RWM required O(d) iterations

to converge. However, a precise statement of such a complexity bound was not provided.

In light of Theorem 1 above, we are now able to use the diffusion limit of Roberts

et al. (1997) to give an actual complexity bound on the RWM algorithm. We need one

slight technical extension, namely to replace (A1) and (A2) above by the slightly stronger

conditions (A1*)
∫

[h′(x)/h(x)]12h(x)dx < ∞ and (A2*)
∫

[h′′(x)/h(x)]6h(x)dx < ∞. We

then have the following result, proved in Section 5 below.

Theorem 2. Let Z(d) be a RWM algorithm satisfying the above technical assumptions

of Roberts et al. (1997), except with (A1) and (A2) replaced by (A1*) and (A2*). Then for

any ε > 0, there is D <∞ and T <∞ such that

E
Z

(d)
0,1∼h
‖L

Z
(d)
0,1

(Z
(d)
bdtc,1)− h‖KR < ε , t ≥ T, d ≥ D .

(Here L
Z

(d)
0,1

(Z
(d)
bdtc,1) represents the probability distribution of the first coordinate of Z(d) at

iteration number equal to the greatest integer not exceeding dt, conditional on the process

starting with its first coordinate equal to the specified state Z
(d)
0,1 , and with all other coordi-

nates of Z
(d)
0 chosen independently according to the density h.) Hence, the RWM algorithm

takes O(d) iterations to converge to within ε of stationarity in its first (or any one) coordinate.

We believe this to be the first precise general result about the complexity order of the

RWM algorithm. It does require strong technical assumptions, but it still applies to a fairly

general collection of densities on Rd. Furthermore, empirical studies (see e.g. Roberts and

Rosenthal, 2001) indicate that even when RWM algorithms do not satisfy the technical

assumptions, they still exhibit similar limiting behaviour.

Another MCMC diffusion limit concerns the Metropolis-Adjusted Langevin Algorithm

(MALA). This algorithm is similar to the above Random-Walk Metropolis algorithm, except

that now the proposal state Yd
n+1 ∼ MVN(Zdn + 1

2
σ2
d∇ log πd(Z

d
n), σ2

d) is chosen from a
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multivariate normal distribution centered at Zdn + 1
2
σ2
d∇ log πd(Z

d
n) (to better approximate

πd), and the above acceptance probability is modified by the ratio of the corresponding

proposal normal distributions. In this context, Roberts and Rosenthal (1999) proved that

Ud ⇒ U , where Ud
t = Zdbd1/3tc, 1 is the first coordinate of the MALA algorithm sped up by

a factor of d1/3, and U is again a limiting ergodic Langevin diffusion. This result again

required strong technical assumptions, this time that πd(x) =
∏d

i=1 h(xi) for some fixed

function h : R → (0,∞) with polynomially-bounded log-derivatives of all orders, and finite

moments of all orders, with h′/h Lipschitz continuous. They also assumed the processes Zd

are in stationarity, and that σ2
d = `2 d−1/3 for some fixed ` > 0.

This theorem of Roberts and Rosenthal (1999) allowed them to optimise the limiting

diffusion U as a function of `, and to prove that the algorithm converges fastest when

its asymptotic acceptance rate is equal to 0.574. . . . Also, since their process Ud involved

speeding up the original algorithm by a factor of d1/3, their results seemed to imply that

MALA required O(d1/3) iterations to converge. Once again, we can use Theorem 1 above to

obtain the following more formal complexity bound (proved in Section 5 below).

Theorem 3. Let Z(d) be a MALA algorithm on a product density in d dimensions

satisfying the above technical assumptions of Roberts and Rosenthal (1999). Then for any

ε > 0, there is D <∞ and T <∞ such that (with notation as in Theorem 2)

E
Z

(d)
0,1∼h
‖L

Z
(d)
0,1

(Z
(d)

bd1/3tc,1)− h‖KR < ε , t ≥ T, d ≥ D .

Hence, the MALA algorithm takes O(d1/3) iterations to converge to within ε of stationarity

in its first (or any one) coordinate.

Finally, we note that a number of other diffusion limits have been proven for MCMC

algorithms in other contexts. For example, Bédard (2007, 2008) and Sherlock and Roberts

(2009) have extended the original RWM diffusion limit to more general target distributions;

Roberts (1998) and Neal and Roberts (2006, 2008, 2011) and Jourdain et al. (2013a, 2013b)

have extended it to other related cases; and Neal et al. (2012) have established diffusion

limits for RWM algorithms on discontinuous target densities. Each of these diffusion limit

results could also be combined with Theorem 1 above to yield complexity order bounds in

new contexts.
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4. Proof of Theorem 1.

In this section, we prove Theorem 1. Along the way, we establish that ‖ · · · ‖KR metrises

weak convergence (Proposition 6), and that EX0∼π‖LX0(X
(d)
t ) − π‖KR is a non-increasing

function of t (Lemma 11). We first establish that ‖ · · · ‖KR is a norm:

Lemma 4. Let S be any non-empty collection of functionals X → R which is symmetric

(i.e. if f ∈ S then −f ∈ S). Let ‖µ‖ = sup
f∈S

µ(f). Then ‖ . . . ‖ is a (possibly infinite) norm

function on the set of all signed measures on (X ,F). In particular, ‖ · · · ‖KR is a norm.

Proof. It is immediate that ‖0‖ = 0, and that ‖a µ‖ = a ‖µ‖ for a > 0. The symmetry of

S implies that ‖ − µ‖ = ‖µ‖. Finally, for the triangle inequality, we check that

‖µ+ ν‖ = sup
f∈S

(
µ(f) + ν(f)

)
≤
(

sup
f∈S

µ(f)
)

+
(

sup
f∈S

ν(f)
)

= ‖µ‖+ ‖ν‖ .

Hence, ‖ . . . ‖ is a norm. The claim about ‖ · · · ‖KR then follows by taking S = Lip1
1.

We next show that truncating the metric ρ does not change Lip1
1:

Lemma 5. Let ρ∗ = min(2, ρ). Then

Lip1
1 = {f : X → R, |f(x)− f(y)| ≤ ρ∗(x, y) ∀x, y ∈ X , |f | ≤ 1} .

Proof. This is immediate since we always have |f(x)− f(y)| ≤ 2 for f ∈ Lip1
1.

Proposition 6. The metric ∆(µ, ν) := ‖µ−ν‖KR metrises weak convergence of probability

measures on (X ,F , ρ). That is, if {µt} and µ are probability measures on (X ,F , ρ), then

{µt} ⇒ µ if and only if limt→∞∆(µt, µ) = 0.

Proof. Let ρ∗ be as in Lemma 5. We first note that since ρ and ρ∗ agree for distances ≤ 2,

they give rise to precisely the same open subsets. Therefore, (X , ρ∗) induces the same Borel

σ-algebra F that (X , ρ) does, and thus gives rise to the same Skorokhod topology. Hence,

weak convergence on (X ,F , ρ) is precisely equivalent to weak convergence on (X ,F , ρ∗).
Furthermore, by Lemma 5, the metric ‖ · · · ‖KR is the same on (X ,F , ρ∗) as on (X ,F , ρ).

Hence, it suffices to prove the result on the truncated space (X ,F , ρ∗).
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Now, since (X ,F , ρ∗) is a bounded metric space, it is known (see e.g. Givens and Shortt,

1984, Proposition 4) that weak convergence on (X ,F , ρ∗) is metrised by the Wasserstein

metric W1 on (X , ρ∗), defined by

W1(µ, ν) := inf E[ρ∗(X, Y )]

where the infimum is taken over all pairs (X, Y ) of random variables on (X ,F) such that

L(X) = µ and L(Y ) = ν. On the other hand, again since (X ,F , ρ∗) is a bounded metric

space, it is known (Kantorovich and Rubinstein, 1958; see e.g. Givens and Shortt, 1984,

p. 233) that for probability measures µ and ν on (X ,F , ρ∗), the Wasserstein metric W1(µ, ν)

is precisely equal to ‖µ− ν‖KR. Combining these two facts, the result follows for (X ,F , ρ∗),
and hence also for (X ,F , ρ).

Lemma 7. If X(∞) converges to π, either weakly or in total variation distance, then for

all x ∈ X and ε > 0 there is T <∞ such that ‖Lx(X(∞)
T )− π‖KR ≤ ε/2 for all t ≥ T .

Proof. If the convergence is weak, then this follows from Proposition 6. If the convergence

is in total variation distance, then this still follows since ‖ . . . ‖KR ≤ ‖ . . . ‖TV .

We are now in a position to prove convergence of X
(d)
T for certain fixed times T :

Proposition 8. Under the assumptions of Theorem 1, for any x ∈ X and ε > 0, there is

D <∞ and T <∞ such that

‖Lx(X(d)
T )− π‖KR < ε , d ≥ D .

Proof. Using Lemma 4, we have by the triangle inequality that

‖Lx(X(d)
t )− π‖KR ≤ ‖Lx(X(d)

t )− Lx(X(∞)
t )‖KR + ‖Lx(X(∞)

t )− π‖KR . (1)

To continue, we recall that since X(d) converges weakly to X(∞), it follows that X
(d)
t con-

verges weakly to X
(∞)
t for all fixed times t > 0 such that X(∞) has probability 0 of jumping

at time t, i.e. for all but at most a countable number of times t (since X(∞) is càdlàg).

By Lemma 7, there is T < ∞ such that ‖Lx(X(∞)
T ) − π‖KR ≤ ε/2, and by increasing T

as necessary we can assume that X(∞) has probability 0 of jumping at time T . Then X
(d)
T

converges weakly to X
(∞)
T , so by Proposition 6 there is D < ∞ such that for all d ≥ D,

‖Lx(X(d)
T )− Lx(X(∞)

T )‖KR < ε/2. The result then follows from (1).
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Remark 9. If the weak convergence of X(d) to X(∞) is assumed to be uniform over

bounded time intervals, then we can strengthen Proposition 8 to say that for any x ∈ X and

ε > 0 and S < ∞, there are D < ∞ and T < ∞ such that ‖Lx(X(d)
t ) − π‖KR < ε for all

t ∈ [T, T + S].

Corollary 10. Under the assumptions of Theorem 1, for any ε > 0, there is D <∞ and

T <∞ such that

EX0∼π‖LX0(X
(d)
T )− π‖KR < ε , d ≥ D .

Proof. We first let

Am = {x ∈ X : ‖Lx(X(∞)
t )− π‖KR < ε/4 ∀t ≥ m} .

Then Am+1 ⊇ Am by inspection, and
⋃
mAm = X by Lemma 7. Hence, by continuity of

probabilities (see e.g. Proposition 3.3.1 of Rosenthal, 2000), limm→∞ π(Am) = 1. We can

therefore find T < ∞ such that π(AT ) ≥ 1 − (ε/8). As in the proof of Proposition 8, by

increasing T as necessary we can assume that X(∞) has probability 0 of jumping at time T .

Next, for this fixed T , let

Bm = {x ∈ X : ‖Lx(X(d)
T )− Lx(X(∞)

T )‖KR < ε/4 ∀d ≥ m} .

Then Bm+1 ⊇ Bm by inspection, and
⋃
mBm = X since X

(d)
T ⇒ X

(∞)
T , so again by continuity

of probabilities we can find D ∈ N such that π(BD) ≥ 1− (ε/8).

We then compute that for this fixed T and D, and for any d ≥ D,

EX0∼π‖LX0(X
(d)
T )− π‖KR

= EX0∼π

(
1X0∈AT∩BD

‖LX0(X
(d)
T )− π‖KR

)
+ EX0∼π

(
1X0 6∈AT∩BD

‖LX0(X
(d)
T )− π‖KR

)
≤ [(ε/4) + (ε/4)] + [(ε/8) + (ε/8)]× 2 = ε ,

where for the first term we have used the triangle inequality, and for the second term we

have used the fact that by definition we always have ‖Lx(X(d)
T )− π‖KR ≤ 2 for any x and d.

This gives the result.

Corollary 10 is nearly what we need to prove Theorem 1. However, for Theorem 1 we

want the convergence to be within ε for all t ≥ T , not just for one fixed T (nor just for

all t in some bounded time interval, as in Remark 9). Unfortunately, ‖Lx(X(d)
t ) − π‖KR

might not be a non-increasing function of t (though ‖Lx(X(d)
t ) − π‖TV always is, see e.g.

Proposition 3(c) of Roberts and Rosenthal, 2004). On the other hand, fortunately the

quantity EX0∼π‖LX0(X
(d)
t )− π‖KR is indeed non-increasing:
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Lemma 11. Let ‖ . . . ‖ be any norm function on signed measures on (X ,F). Let P t(x, ·)
be the transition probabilities for a Markov chain on (X ,F) with stationary probability

distribution π. Let dist(t) = EX0∼π‖P t(X0, ·)−π‖. Then dist(t) is a non-increasing function

of t. In particular, in the context of Theorem 1, EX0∼π‖LX0(X
(d)
t )−π‖KR is a non-increasing

function of t.

Proof. We compute by stationarity that for s, t > 0,

dist(s+ t) = EX0∼π‖P s+t(X0, ·)− π‖

= EX0∼π

∥∥∥∥∫
y∈X

P s(X0, dy) P t(y, ·)− π
∥∥∥∥

≤ EX0∼π

∫
y∈X

P s(X0, dy)
∥∥∥P t(y, ·)− π

∥∥∥
= EY0∼π‖P t(Y0, ·)− π‖ = dist(t) ,

thus proving the first claim. The claim about Ex∼π‖Lx(X(d)
t )−π‖KR then follows by Lemma 4

upon setting P t(x,A) = P[X
(d)
t ∈ A |X

(d)
0 = x].

Theorem 1 then follows by combining Corollary 10 and Lemma 11.

5. Proofs of Theorems 2 and 3.

Theorems 2 and 3 nearly follow immediately by applying Theorem 1 to the diffusion

limit results of Roberts et al. (1997) and of Roberts and Rosenthal (1999), respectively.

However, there is one technical issue. The previous diffusion limit results assume that the

process begins in the stationary distribution. By contrast, Theorem 1 involves Lx(Xt), i.e.

conditioning on the stochastic processes’ first coordinate beginning at a specific state x ∈ X .

So, to prove Theorems 2 and 3, we need to establish that the diffusion limit results remain

valid even upon conditioning on the starting value of the processes.

For the RWM algorithm, this does indeed follow, at least upon strengthening (A1) and

(A2) to (A1*) and (A2*) as above:

Proposition 12. Let Z(d) be a RWM algorithm satisfying the above technical assumptions

of Roberts et al. (1997), except with (A1) and (A2) replaced by (A1*) and (A2*). Then for

π-a.e. x ∈ X , xU
d ⇒ xU as d → ∞, where xU

d
t = (Zdbdtc, 1 |Zd0,1 = x) is the first coordinate

of the RWM algorithm sped up by a factor of d, conditional on starting at the state x, and

xU is the limiting ergodic Langevin diffusion U also conditional on starting at x.
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Proof. The proof is very similar to the proof of the unconditioned diffusion limit theorem

of Roberts et al. (1997), using generators and cores (cf. Ethier and Kurtz, 1986). The only

point of departure between our proof and theirs concerns their Lemma 2.1, which states that

for each fixed t > 0,

lim
d→∞

P[Z(d)
s ∈ Fd for all 0 ≤ s ≤ t] = 1 ,

where Fd is the event that both |Ad| < d−1/8 and |Bd| < d−1/8, where

Ad :=
1

d− 1

d∑
i=2

(
((log h(xi))

′)2 − Exi∼h[((log h(xi))
′)2]
)

and

Bd :=
1

d− 1

d∑
i=2

(
(log h(xi))

′′ − Exi∼h[(log h(xi))
′′]
)
.

To complete our proof, we need to show that this statement remains valid, even when

conditioning on starting at a specific state x ∈ X . (In fact, it would suffice to replace 1/8

by any other power α ∈ (0, 1/2), but we do not need to do that.)

To this end, fix t > 0, and let

p(d, x) = P[Z(d)
s 6∈ Fd for some 0 ≤ s ≤ t | Z(d)

0,1 = x] ,

and let r(d) = Ex∼hp(d, x) be its expected value when averaged over x in stationarity. Also,

let

vj = Exi∼h

[(
((log h(xi))

′)2 − Exi∼h[((log h(xi))
′)2]
)j]

and recall that |vj| <∞ for 1 ≤ j ≤ 6 by (A1*). Then, by expanding out the power (Ad)
6,

while omitting terms involving v1 since clearly v1 = 0, we conclude that

Eπ[(Ad)
6] = (d−1)−6

[(
d− 1

1

)
v6+(d−1)(d−2)

(
6

2

)
v2v4+

(
d− 1

2

)(
6

3

)
v23+

(
d− 1

3

)(
6

2, 2, 2

)
v32

]
= (d−1)−6

[
(d−1)v6 +15(d−1)(d−2)v2v4 +10(d−1)(d−2)v23 +15(d−1)(d−2)(d−3)v32

]
.

In particular, Eπ[(Ad)
6] = O(d−3) as d→∞. Hence, by Markov’s inequality,

Pπ(|Ad| > d−1/8) ≤ E[(Ad)
6]/(d−1/8)6 = O(d−3+(6/8)) = O(d−9/4) .

Similarly, Pπ(|Bd| > d−1/8) ≤ O(d−9/4), so that also P[Z
(d)
s 6∈ Fd] ≤ O(d−9/4).

Next, we note that there are O(dt) different RWM iterations corresponding to times s

with 0 ≤ s ≤ t. Hence, by subadditivity,

r(d) := Pπ[Z(d)
s 6∈ Fd for some 0 ≤ s ≤ t] ≤ O(dt d−9/4) = O(t d−5/4) .

11



In particular,
∑∞

d=2 r(d) <∞, which is the key.

Finally, we wish to show that limd→∞ p(d, x) = 0 with probability 1. To that end, let

ε > 0, and set Sd = {x ∈ X : p(d, x) ≥ ε}. Then writing Ph(A) for
∫
A
h(x) dx, it fol-

lows by Markov’s inequality that Ph(Sd) ≤ Eh[p(d, x)]/ε = r(d)/ε. Hence,
∑∞

d=2 Ph(Sd) ≤∑∞
d=2 r(d)/ε <∞. Hence, by the Borel-Cantelli Lemma, Ph(Sd infinitely often) = 0, i.e. the

set of x with an infinite sequence of d with p(d, x) ≥ ε has probability zero. This means that

with probability 1, lim supd→∞ p(d, x) < ε. Since this is true for all ε > 0, it follows that

with probability 1, lim p(d, x) = 0, as desired, thus completing the proof.

Theorem 2 then follows by combining Theorem 1 and Proposition 12.

Finally, we prove a similar result for the MALA algorithm. In this case, no strengthening

of the assumptions is required:

Proposition 13. Let Z(d) be a MALA algorithm on a product density in d dimensions

satisfying the above technical assumptions of Roberts and Rosenthal (1999). Then for π-a.e.

x ∈ X , xU
d ⇒ xU as d → ∞, where xU

d
t = (Zdbd1/3tc, 1 |Z

d
0,1 = x) is the first coordinate of

the RWM algorithm sped up by a factor of d1/3, conditional on starting at x, and xU is the

limiting ergodic Langevin diffusion U also conditional on starting at x.

Proof. The proof involves modifying the weak convergence proof of Roberts and Rosenthal

(1999), along lines very similar to that of Proposition 12, so we omit the details. Further-

more, since Roberts and Rosenthal (1999) assume finite moments of all polynomial orders,

there is no need to strengthen any of their assumptions as was necessary for Proposition 12.

Theorem 3 then follows by combining Theorem 1 and Proposition 13.
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