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Abstract

This paper proves convergence to stationarity of certain adap-
tive MCMC algorithms, under certain assumptions including easily-
verifiable upper and lower bounds on the transition densities and a
continuous target density. In particular, the transition and proposal
densities are not required to be continuous, thus improving on the
previous ergodicity results of Craiu et al. [7].

1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms are very widely used
to analyze complex probability distributions (see e.g. [6]). Adaptive MCMC
algorithms adjust the Markov chain transition probabilities on the fly, in an
attempt to improve efficiency, based on the past and/or current information
from the chain. Adaptive MCMC algorithms can be quite effective in practice
(see e.g. [13, 12, 19, 11, 24, 23]), but the chain usually loses the Markovian
property so that convergence to the target (stationary) distribution is no
longer guaranteed (see e.g. [20]). Many papers present conditions which as-
sure this convergence (e.g. [13, 12, 11, 24, 4, 2, 1, 18, 8]), but these conditions
are usually difficult to verify in practice. By contrast, the results of [7] pro-
vide more easily checkable conditions that guarantee convergence of adaptive
MCMC algorithms, however they require continuity of all of the transition
densities which makes their application somewhat limited in practice.

It was shown in [18] that the convergence of an adaptive MCMC algorithm
is implied by the two conditions of Diminishing Adaption and Containment

∗Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
M5S 3G3. Email: jeff@math.toronto.edu and jinyoung.yang@mail.utoronto.ca

1



(explained herein). In practice, Diminishing Adaption is easily satisfied sim-
ply by constructing the adaptive mechanism appropriately. Unfortunately,
the Containment condition is a lot harder to establish (see e.g. [5]). [7]
introduced several simple assumptions about upper and lower bounds on
transition densities which, assuming continuity, guarantee the Containment
condition and thus make ergodicity much easier to verify.

In this paper, we relax one of the assumptions in [7] which is required to
guarantee the Containment of an adaptive MCMC algorithm. The results
of [7] require the transition kernel densities (or proposal kernel densities for
the Metropolis-Hastings algorithm) of an adaptive MCMC algorithm to be
jointly continuous in x, y and γ. We here show that the joint continuity
assumption on the kernel densities can be relaxed to a weaker assumption
which we call “combocontinuity”, for x and γ jointly, which includes the usual
piecewise-continuity assumption as a special case, and which allows for e.g.
truncated densities. For simplicity, we still assume that the target density π
is continuous and positive throughout the state space. We prove our result
by generalising Dini’s Theorem (about uniform convergence of compactly-
supported functions) to the combocontinuous case, and then applying that
theorem to the case of combocontinuous transition densities.

Below, Sections 2 and 3 present background about Adaptive MCMC and
about combocontinuity. Sections 4 and 5 present our general result, whose
proof uses Section 7 which generalises Dini’s Theorem, and Section 8 which
proves a lemma about combocontinuity. Section 6 presents an accessible
special case of our new algorithm, called Bounded Adaption Metropolis or
“BAM”, whose validity is proved in Section 9. Finally, Section 10 illustrates
our results with two numerical examples of adaptive Metropolis-Hastings
algorithms with combocontinuous proposal kernel densities.

2 Background about Adaptive MCMC

Consider a general state space X with σ-algebra F , on which is defined a
target probability distribution π. (In our applications below, we will also re-
quire a metric η on X , and F will then be the corresponding Borel σ-algebra.)
Suppose that for each γ in some index set Y , Pγ is a valid MCMC algorithm,
i.e. a time-homogeneous Markov chain kernel which leaves π stationary and
is Harris ergodic so that limn→∞ ‖P n

γ (x, ·)− π(·)‖ = 0 for each fixed x ∈ X .
(Here ‖P n

γ (x, ·) − π(·)‖ := supA∈F |P n
γ (x,A) − π(A)| is the total variation

distance to the target distribution π after n iterations of Pγ.)
An adaptive MCMC algorithm {Xn} uses some specified rule to select an

index value Γn at each iteration, based on current and/or past information
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from the chain and/or auxiliary randomness. It then updates Xn according
to the Markov kernel PΓn , so that for each x ∈ X and A ∈ F ,

P[Xn+1 ∈ A | Xn = x,Γn = γ,X0, . . . , Xn−1,Γ0, . . . ,Γn−1] = Pγ(x,A) .

If the adaption rule is chosen wisely, to attempt to achieve some sort of
optimality, then adaptive MCMC algorithms sometimes provide very dra-
matic speed-ups in efficiency and convergence to stationarity (e.g. [13, 2, 1,
3, 11, 24, 19]). However, allowing Γn to depend on previous values of the
{Xn} can introduce biases so that the limiting distribution of Xn, if it exists
at all, might be quite different than π (cf. [20], and Example 4 of [18]). This
raises the question of what conditions assure convergence in distribution of
{Xn} to π, i.e. ensure that

lim
n→∞

sup
A∈F
|P(Xn ∈ A)− π(A)| = 0. (2.1)

There have been many recent results about convergence of adaptive MCMC,
as mentioned in the Introduction. Here we focus on the theorem of [18] which
states that the convergence of an adaptive MCMC algorithm is ensured by
two conditions: Diminishing Adaption and Containment. Diminishing Adap-
tion requires the algorithm to adapt less and less as the chain moves along,
or more formally that

lim
n→∞

sup
x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability . (2.2)

Containment requires the convergence times of the algorithm to remain
bounded in probability, or more formally that for all ε > 0,

{Mε(Xn,Γn)}∞n=1 is bounded in probability , (2.3)

where Mε(x, γ) := inf{n ≥ 1 : ‖P n
γ (x, ·)− π(·)‖ ≤ ε} is the time required to

get to within ε of the stationary distribution π when beginning at the state
x and proceeding according to the fixed Markov chain kernal Pγ.

Now, since the adaptive rule can be specified by the user, Diminishing
Adaption can usually be ensured by suitable adaption design or modification.
On the other hand, the Containment condition is often difficult to verify in
practice, requiring substantial specialised effort (e.g. [5]). The paper [7] pro-
vided some more easily verifiable conditions to ensure Containment, however
they require awkward strong continuity assumptions as we discuss below.
The purpose of this paper is to relax those continuity assumptions, so that
Containment can be ensured more easily.
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Figure 1: Two ways of truncating a normal density: with (a) a “firm” trun-
cation (left), or (b) a “linear” truncation (right).

3 Combocontinuous Functions

The paper [7] introduced several simple assumptions about upper and
lower bounds on transition densities which, assuming strong continuity con-
ditions, guarantee the Containment condition and thus make ergodicity much
easier to verify. However, the required continuity conditions are inconvenient.
For one simple example, if using a truncated normal distribution (as is often
used in this context), it is not permitted to use a “firm” truncation (Fig-
ure 1(a)), but rather it is necessary to linearly interpolate the truncation
(Figure 1(b)), which is not difficult but which requires additional program-
ming to implement. The present paper avoids this challenge by allowing for
a more general notation of “combocontinuous” functions, a generalisation of
piecewise-continuous functions.

We define a function f on a space S to be combocontinuous if it can be
written as a finite combination of continuous functions, i.e. if f(x) = gI(x)(x)
for some m ∈ N, some (measurable) index function I : S → {1, 2, . . . ,m},
and some finite collection g1, g2, . . . , gm of continuous functions on S. Equiv-
alently, this can be written as f(x) =

∑m
i=1 gi(x)1(x ∈ Ti), where the gi are

continuous and the Ti = {x ∈ S : I(x) = i} form a partition of S.
If I is constant on intervals, e.g. I(x) = 1 for a ≤ x ≤ b and I(x) = 2 for
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b < x ≤ c, then combocontinuity reduces to the usual notion of piecewise-
continuity. In particular, firm truncations (as in Figure 1(a)) are always
combocontinuous. On the other hand, if desired, a combocontinuous function
could be much more complicated than a piecewise continuous function; for
example, if I(x) = 1 for rational x, and I(x) = 2 for irrational x, then
different proposals will be used from rational and from irrational states. In
this paper, we mostly focus on the case of truncated densities.

Note that combocontinuous functions share many properties of continu-
ous functions. For example, if the space S is compact, then a combocontin-
uous function f must be bounded above and below (since each gi is), and if
each gi is positive then also infx∈S f(x) > 0.

We will require certain extensions of combocontinuity to functions of sev-
eral variables. We shall say that a function fγ(x) is jointly combocontinuous
if fγ(x) = αγ,I(x)(x), or equivalently fγ(x) =

∑m
i=1 αγ,i(x)1(x ∈ Ti) with

Ti = {x ∈ X : I(x) = i}, where again I : X → {1, 2, . . . ,m} is a (measur-
able) indicator function, and for each fixed i the mapping (x, γ) 7→ αγ,i(x) is
a jointly continuous function of x and γ.

We will also encounter functions of the form fγ(x, y) for γ ∈ Y and x, y ∈
X , which vanish whenever η(x, y) > D for some fixed metric η and positive
constant D. For such functions, we generalise the notion of combocontinuous
slightly, by saying that such a function is truncated combocontinuous if it
can be written in the form fγ(x, y) = βγ,I(x)(x, y)1(η(x, y) ≤ D) where
I : X → {1, 2, . . . ,m} is a (measurable) index function, and for each fixed i
the mapping (x, y, γ) 7→ βγ,i(x, y) from X ×X ×Y to R is jointly continuous.
Equivalently, fγ(x, y) =

∑m
i=1 βγ,i(x, y)1(x ∈ Ti)1(η(x, y) ≤ D) where again

the Ti = {x ∈ X : I(x) = i} form a partition. (Note that this is more
general than assuming simply that fγ(x, y) = βγ,I(x)(x, y) where βγ,i(x, y) = 0
whenever η(x, y) > D, since the indicator functions 1(η(x, y) ≤ D) allow for
“firm” truncations when y is at a distance D from x.)

4 Set-Up and Assumptions

Let (X , η) be a metric space, and let F be the corresponding Borel σ-
algebra. Assume there is some “origin” point 0 ∈ X . Let P be a fixed
transition kernel for a time-homogeneous Markov chain on X , which is Harris
ergodic to a stationary probability distribution π. Consider a stochastic
process {Xn} on X with the following properties:

(a) The process {Xn} never moves more than some fixed finite distance D >
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0 in any one step, i.e. the kernel P satisfies that

P
(
x, {y ∈ X : η(x, y) ≤ D}

)
= 1, x ∈ X .

(b) The process {Xn} moves by the fixed transition kernel P whenever the
current state Xn = x is outside of a fixed compact subset K ⊂ X , i.e.
P[Xn+1 ∈ A |Xn = x,Xn−1, . . . , X0] = P (x,A) for x 6∈ K. Inside of K,
the process can move arbitrarily in a non-anticipating way, subject only
to measurability, to anywhere within KD, where Kr is defined to be the
set of ∀x ∈ X within a distance r > 0 of K.

(c) The fixed kernel P is bounded above by P (x, dy) ≤ Mµ∗(dy) for some
finite constant M > 0, for all x ∈ KD\K and all y ∈ K2D\KD, where µ∗
is any probability measure concentrated on K2D\KD.

(d) The fixed kernel P is bounded below by P n0(x,A) ≥ εν∗(A) (P n0 is a
n0-step transition probability.) for some probability measure ν∗ on X ,
some n0 ∈ N, and some constant ε > 0, for all x ∈ K2D\KD and all
A ∈ F . ν∗ must be either (1) ν∗ = µ∗ or (2) ν∗ can be any probability
measure on X if P is reversible with respect to π and µ∗ = π|K2D\KD

.
(µ∗ here is the µ∗ in (c) above.)

(Note that assumption (d) implies that K2D\KD is n0-small for P . Also, in
the case of a Metropolis-Hastings algorithm, if the corresponding proposal
kernels Qγ and Q satisfy the assumptions (a), (b) and (c), then Pγ and P
automatically satisfy them too.)

By Theorem 5 of [7], if a stochastic process {Xn} satisfies the above
conditions, then it is bounded in probability, i.e.

lim
L→∞

sup
n∈N

P(η(Xn, 0) > L |X0 = x0) = 0.

Furthermore, by Proposition 6 of [7], if X is an open subset of Rd, then
condition (d) above, with ν∗ = Uniform(K2D\KD), is implied by the following
condition (d’):

(d’) The fixed kernel P is bounded below by P (x, dy) ≥ εLeb(dy) (Leb is the
Lebesgue measure) whenever x, y ∈ J with |y − x| < δ for some ε > 0
and δ > 0, where J is any bounded rectangle with J ⊃ K2D\KD.

To prove Containment for an adaptive MCMC algorithm, an additional
condition is needed besides {Xn} being bounded in probability. One way to
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proceed is in terms of density functions. We shall assume that with respect
to some reference measure λ(·) on X , π has a density g so that π(dy) =
g(y)λ(dy), and furthermore either each kernel Pγ has a density pγ with respect
to λ(·) so Pγ(x, dy) = pγ(x, y)λ(dy), or each Pγ is a Metropolis-Hastings
algorithm whose proposal kernel Qγ has a density qγ with respect to λ(·) so
that Qγ(x, dy) = qγ(x, y)λ(dy). We assume the reference measure λ(·) gives
finite measure to every bounded set and for any x ∈ X and any D > 0,
λ({y ∈ X |η(x, y) = D}) = 0.

In terms of these assumed densities and reference measure, we introduce
an additional assumption (e) as follows.

(e) g is a continuous positive density function for π, and furthermore, either:

(e1) The mapping (x, γ) 7→ pγ(x, y) is truncated combocontinuous, i.e.
pγ(x, y) = αγ,I(x)(x, y)1(η(x, y) ≤ D) for some index function I :
X → {1, 2, . . . ,m} for some m ∈ N, where each αγ,i(x, y) is jointly
continuous in x and γ for each fixed y. Furthermore, the αγ,i(x, y)
are uniformly bounded, so that pγ(x, y) is also uniformly bounded.

(e2) Or, in the case of a Metropolis-Hastings algorithm: The proposal
density mapping (x, γ) 7→ qγ(x, y) is truncated combocontinuous,
i.e. qγ(x, y) = βγ,I(x)(x, y)1(η(x, y) ≤ D) for some index function
I : X → {1, 2, . . . ,m} for some m ∈ N, where βγ,i(x, y) is jointly
continuous in x and γ for each fixed y, and

∫
X βγ,i(x, y)λ(dy) = 1

for i = 1, . . . ,m. Furthermore, the βγ,i(x, y) are uniformly bounded,
so that aγ(x, y) is also uniformly bounded.

Remark. If αγ,i(x, y) is jointly combocontinuous in (x, y, γ), then αγ,i(x, y)
is uniformly bounded in a compact space and so is pγ(x, y) (or qγ(x, y)).

In [7], a version of assumption (e) was used in which λ was assumed to
be Lebesgue measure, and full continuity was assumed in place of combo-
continuity, thus leading to inconvenient application as discussed in Section 3
above.

We will give a special attention to a Metropolis-Hastings algorithm ([15,
14]). The algorithm works as follows. At each iteration n, conditional
on the current state Xn, the Markov chain proposes Yn+1 from some pro-
posal subkernel Qγ(Xn, ·), whose subdensity is qγ(x, ·), with qγ(x, y) ≥ 0 and∫
y∈X qγ(x, y)λ(dy) ≤ 1. The new proposal Yn+1 is accepted with probability

a(Xn, Yn+1) = min
[
1,
π(Yn+1)qγ(Yn+1, Xn)

π(Xn)qγ(Xn, Yn+1)

]
,
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otherwise Yn+1 is rejected with probability 1 − a(Xn, Yn+1). If Yn+1 is ac-
cepted, Xn+1 = Yn+1, if not, Xn+1 = Xn. Hence, the Metropolis-Hastings
algorithm has transition kernel

Pγ(x, dy) = a(x, y)Qγ(x, dy) + r(x)δx(dy),

where r(x) = 1 −
∫
X a(x, y)Qγ(x, dy), and δx(·) is a point-mass at x. (Note

also that if qγ is symmetric, then the acceptance formula reduces to simply

a(Xn, Yn+1) = min
[
1, π(Yn+1)

π(Xn)

]
.)

It is easily checked and well known (e.g. [15, 14, 22, 17]) that the above
acceptance probability a(Xn, Yn+1) ensures that the Markov chain is re-
versible with respect to π, i.e. that π(dx)P (x, dy) = π(dy)P (y, dx), so the
Metropolis-Hastings algorithm leaves π stationary, and assuming irreducibil-
ity it is Harris recurrent. Furthermore, if π has everywhere-positive density,
then these facts are easily seen to remain true even if (as we shall do below)
we reject all jumps of distance more than D.

5 Main Result

In terms of the above conditions, we have the following theorem which
guarantees Containment, and hence also convergence provided Diminishing
Adaption is satisfied.

Theorem 1. Consider an adaptive MCMC algorithm as above. If the algo-
rithm satisfies the assumptions (a), (b), (c), (d), and (e), and if the space
Y of Markov kernel indices is compact, then the algorithm satisfies the Con-
tainment condition (2.3). Hence, if it also satisfies the Diminishing Adaption
condition (2.2), then it converges to stationarity as in (2.1).

Proof. First, by Theorem 5 of [7], we know that the process {Xn} is bounded
in probability since it satisfies conditions (a), (b), (c), and (d).

Next, it follows from Lemma 5 in Section 8 below that for each n ∈ N,
the mapping

(x, γ) 7→ ∆(x, γ, n) := ‖P n
γ (x, ·)− π(·)‖ (5.1)

is a jointly combocontinuous mapping in (x, γ), and each ‘piece’ is a non-
increasing function of n which converges to 0. Then, by applying Theorem 4
(Generalised Dini’s Theorem) in Section 7 below to the function fn(x, γ) =
∆(x, γ, n+ 1), we obtain that

lim
n→∞

sup
x∈C

sup
γ∈Y

∆(x, γ, n) = 0
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for any compact set C ⊂ X .
The rest of the proof to show the Containment condition holds is the

same as the last part of the proof of Proposition 23 in [7]. To repeat here, if
{Xn} is bounded in probability, then for any δ > 0, there is a compact subset
C such that P (Xn 6∈ C) ≤ δ for all n. With any ε > 0, we can find n such
that supx∈C supγ∈Y ∆(x, γ, n) < ε. Thus, supx∈C supγ∈YMε(x, γ) <∞ for any
ε > 0.Let L := supx∈C supγ∈YMε(x, γ). Then P (Mε(Xn,Γn) > L) ≤ δ for
all n. Therefore, the Containment condition holds, i.e. (2.3) is satisfied.

Finally, if the adaptive MCMC algorithm also satisfies the Diminishing
Adaption condition, then by [18], the algorithm converges to π in total vari-
ation distance, i.e. (2.1) holds.

It remains to prove the Generalised Dini’s Theorem and Lemma 5 used
in the proof of Theorem 1 above, which we do in Sections 7 and 8 below.

6 The Bounded Adaption Metropolis (BAM)

Algorithm

To illustrate our results in a simple but useful case, consider the follow-
ing Bounded Adaption Metropolis (BAM) Algorithm, which is an easier-to-
implement version of the similarly-named algorithm presented in [7].

Let X = Rd, let K ⊆ X be a (large) bounded region, let π be a continuous
positive density on X , and let D > 0 be a (large) constant. Let Y be any
compact collection of d-dimensional positive-definite matrices, and fix some
specific matrix Σ∗ ∈ Y .

Define a process {Xn} as follows: X0 = x0 for some fixed x0 ∈ K. Then
for n = 0, 1, 2, . . ., given Xn, we generate a proposal Yn+1 by: (a) if Xn 6∈ K,
then Yn+1 ∼ N(Xn, Σ∗); or (b) if Xn ∈ K, then Yn+1 ∼ N(Xn, Σn+1), where
the matrix Σn+1 ∈ Y is selected in some fashion, perhaps depending on Xn

and on the chain’s entire history. Once Yn+1 is chosen, then if |Yn+1−Xn| >
D, the proposal is rejected so Xn+1 = Xn. Otherwise, if |Yn+1 − Xn| ≤ D,
then with probability

a(Xn, Yn+1) =


min[1, π(Yn+1)

π(Xn)
] if Xn ∈ K &Yn+1 ∈ K or Xn 6∈ K &Yn+1 6∈ K

min[1,
π(Yn+1)qΣ∗ (Yn+1,Xn)

π(Xn)qΣn+1
(Xn,Yn+1)

] if Xn ∈ K &Yn+1 6∈ K

min[1,
π(Yn+1)qΣn+1

(Yn+1,Xn)

π(Xn)qΣ∗ (Xn,Yn+1)
] if Xn 6∈ K &Yn+1 ∈ K

the proposal is accepted so Xn+1 = Yn+1, or with the remaining probabil-
ity the proposal is rejected so Xn+1 = Xn. (Here qΣ(x, y) is the density of
N(x,Σ) evaluated at y.) That is, at iteration n, BAM is a version of the
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Metropolis-Hastings algorithm as defined earlier, with proposal subdistribu-
tion N(x,Σn+1)(dy)1(η(x, y) ≤ D) for Xn ∈ K, or N(x,Σ∗)(dy)1(η(x, y) ≤
D) for Xn 6∈ K, and the above formula for a(Xn, Yn+1) then corresponds to
the usual Metropolis-Hastings acceptance probability for this proposal.

Special case. For example, Σn+1 could be chosen to be (2.38)2Vn/d where Vn
is the empirical covariance matrix of X0, . . . , Xn from the process’s previous
history (except restricted to some compact set Y), since that choice approx-
imates the optimal proposal covariance, cf. [13, 19]. One way to define Vn is
let Vn = Cov(〈X0〉, 〈X1〉, . . . , 〈Xn〉) + εId for some arbitrarily small constant
ε > 0. 〈Xi〉 is a shrunken version of Xi, i.e. 〈Xi〉j = max(−L,min(L,Xi,j))
for some (large) constant L > 0, with j indexing for jth coordinate. This
idea of defining Vn is from Section 12.3 of [7].

Proposition 2. Consider the ‘special case’ described above. Let Y = {γ | γ is a d×
d positive definite matrix, ε Id ≤ γ ≤ (8L2 + ε)d Id}. Then Y is compact and
every Vn is in Y. Also, the ‘special case’ of BAM algorithm satisfies the
Diminishing Adaption condition, i.e. (2.2)

Proof. See proof of Proposition 6 in [25].

For the BAM algorithm, our results herein prove that the Containment
condition holds, and hence convergence to stationarity also holds assuming
Diminishing Adaption:

Theorem 3. The above BAM algorithm satisfies Containment (2.3). Hence,
if the selection of the Σn satisfies Diminishing Adaption (2.2), then conver-
gence to stationarity (2.1) holds.

This stands in contrast to other situations in which it is very difficult or im-
possible to establish convergence of adaptive MCMC algorithms. Theorem 3
is proved in Section 9 below, as a special case of our more general results.

7 Generalised Dini’s Theorem

Dini’s Theorem may be stated as follows (see e.g. Theorem 7.13 in [21]).
Let {fn} be a sequence of continuous real-valued functions defined on a com-
pact set C, which is non-decreasing (i.e. fn(x) ≤ fn+1(x) for each fixed n
and x ∈ C), and which converges pointwise to a continuous function f (i.e.
limn→∞ fn(x) = f(x) for each fixed x ∈ X ). Then the convergence is uniform,
i.e. limn→∞ supx∈C |fn(x)− f(x)| = 0.

In this section, we generalise Dini’s Theorem to the combocontinuous
case, so that the theorem can be applied to prove Theorem 1.
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Theorem 4. (Generalised Dini’s Theorem)
Suppose a set C is compact, and {fn} is a sequence of real-valued func-

tions on C, and f is a continuous real-valued function on C, and:

1. For each n ∈ N, fn can be expressed as fn(z) = fn,I(z)(z) for some
index function I(z) ∈ J = {1, 2, . . . ,m}, and some m ∈ N, and some
collection fn,i of functions.

2. Each of these fn,i is a continuous real-valued function on Ci, the closure
of the subset Ci = {z ∈ C | I(z) = i}.

3. For each i ∈ J , {fn,i} converges pointwise to f on Ci.

4. For each i ∈ J , fn,i(z) ≥ fn+1,i(z) for all z ∈ Ci, n = 1, 2, 3, ....

Then fn → f uniformly on C, i.e. limn→∞ supx∈C |fn(x)− f(x)| = 0.

Proof. This follows by applying the original Dini’s Theorem separately on
each subset Ci. For a complete proof, let gn,i = fn,i−f for each i ∈ J . Since
{fn,i} converges pointwise to f on Ci, {gn,i} converges pointwise to 0 on Ci.
Also, for each i ∈ J , since fn,i(z) ≥ fn+1,i(z) for all z ∈ Ci, gn,i ≥ gn+1,i for
all z ∈ Ci.

Let ε > 0 and Cn,i = {z ∈ Ci|gn,i(z) ≥ ε}, i ∈ J . Then Cn,i is closed,
since gn,i = fn,i− f is continuous on Ci, and the continuous inverse image of
any closed set is closed (e.g. Rudin, 1976, Theorem 4.8 Corollary). Hence,
Cn,i is compact, since closed subsets of compact sets are compact (e.g. Rudin,
1976, Theorem 2.35).

Next, note that Cn,i ⊃ Cn+1,i, since gn,i ≥ gn+1,i on Ci. Pick z ∈ Ci.
Since gn,i → 0 on Ci, z 6∈ Cn,i if n is sufficiently large. Thus, for every
z ∈ Ci, we have that z 6∈ ∩∞n=1Cn,i. It follows that ∩∞n=1Cn,i is the empty set.
Hence, by the finite intersection property (e.g. Rudin, 1976, Theorem 2.36,
Corollary), there must be some Ni ∈ N such that CNi,i is empty.

Therefore, 0 ≤ gn,i(z) < ε for all z ∈ Ci and for all n ≥ Ni. Hence,
0 ≤ gn(z) < ε for all z ∈ C and for all n ≥ max(N1, . . . , Nm). Since ε is
arbitrary, fn → f uniformly on C.

Remark. In Theorem 4, it does not suffice to assume only that fn,i converges
pointwise to f on Ci, i.e. the closure Ci really is required. For example, let
C = [0, 2], and m = 2, with I(x) = 1 for x ∈ [0, 1) and I(x) = 2 for x ∈ [1, 2].
Then let fn,1(x) = xn, and fn,2(x) = f(x) = 0. Then fn,1 → 0 pointwise on
C1 := [0, 1), but supC1

fn,1 = 1 for each n, so the convergence of fn to f is
not uniform.
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8 Lemma About Combocontinuity

We here show that, under the assumptions of Theorem 1, the total varia-
tion distance mapping (5.1) is combocontinuous, and each ‘piece’ converges
to 0. Then we can apply Theorem 4 (Generalised Dini’s Theorem) to the
mapping (5.1).

Lemma 5. Consider an adaptive MCMC algorithm as in Section 2, with
assumed densities as in Section 4. Assume condition (e). Then:

1. for each n ≥ 1, the function fn,γ(x) := ‖P n
γ (x, ·) − π(·)‖ is jointly

combocontinuous in (x, γ) in the sense that: fn,γ(x) = fn,γ,I(x)(x) for
some index function I : X → {1, 2, . . . ,m} for some m ∈ N where
fn,γ,i(x) is jointly continuous in x and γ; and

2. for each fixed (x, γ, i), fn,γ,i(x) converges pointwise to 0 on X as n→∞
and is a non-increasing function in n.

Proof. For simplicity we assume (e2); the proof for (e1) is similar but easier
(e.g. replace aγ(x) by 1). Thus, the proposal densities qγ(x, y) of a Metropolis
Hastings algorithm are truncated combocontinuous, with

qγ(x, y) =
m∑
i=1

βγ,i(x, y)1(x ∈ Ti)1(η(x, y) ≤ D) (8.1)

where D > 0 is some (large) constant, {T1, . . . , Tm} is a partition of X , and
βγ,i(x, y) is jointly continuous in x and y and γ, and is uniformly bounded.

Let aγ(x) be the acceptance probability of a proposal from x ∈ X in the
Metropolis-Hastings algorithm. Write aγ(x) as

aγ(x) =

∫
{y∈X|η(x,y)≤D}

min
[
1,
g(y)qγ(y, x)

g(x)qγ(x, y)

]
qγ(x, y)λ(dy) .

Define wγ(x, y) as

wγ(x, y) = min
[
1,
g(y)qγ(y, x)

g(x)qγ(x, y)

]
qγ(x, y) .

Notice that we can write

wγ(x, y) =
m∑
i=1

wγ,i(x, y)1(x ∈ Ti)

12



where

wγ,i(x, y) = min
[
1,

g(y)qγ(y, x)

g(x)βγ,i(x, y)

]
βγ,i(x, y) .

Then the transition kernel Pγ(x, dy) of this algorithm can be written as

Pγ(x, dy) = [1− aγ(x)]δx(dy) + wγ(x, y)λ(dy).

where δx(·) is a point-mass at x.
Next, define a set An(x,y,D) as

An(x,y,D) = {(z1, . . . ,zn) ∈ X n | η(x, z1) ≤ D, η(z1, z2) ≤ D, η(z2, z3) ≤ D,

. . . , η(zn−1, zn) ≤ D, η(zn, y) ≤ D}.

That is, An(x,y,D) is the set of paths moving from x to y in n steps while never
moving more than a distance D on any one step. Then the n-step transition
kernel P n

γ (x, dy) can be written as

P n
γ (x, dy) = [1− aγ(x)]nδx(dy) + wnγ (x, y)λ(dy)

where we define

wnγ (x, y) =
∑
S 6=∅

wn,Sγ (x, y).

Here the sum is over all non-empty subsets S ⊆ {1, 2, ..., n}, and wn,Sγ (x, y)
is the sub-density corresponding to getting from x to y in n steps while
accepting moves only at the times in S (while rejecting moves at all times

not in S). For example, if n = 5 and S = {2, 4, 5}, then w
5,{2,4,5}
γ (x, y)

corresponds to transitioning from x to y in 5 steps, while the first and third
proposals are rejected and the others are accepted. The transition density
w

5,{2,4,5}
γ (x, y) can be thus written as

w5,{2,4,5}
γ (x, y) =

∫∫
A2

(x,y,D)

[1− aγ(x)]wγ(x, y1)[1− aγ(y1)]wγ(y1, y2)wγ(y2, y)λ(dy1)λ(dy2) .

First, we prove that [1 − aγ(x)]n is jointly combocontinuous in x and γ.
We write

aγ(x) =
m∑
i=1

aγ,i(x)1(x ∈ Ti)

13



Then, aγ,i(x) can be written as

aγ,i(x) =

∫
{y∈X|η(x,y)≤D}

wγ,i(x, y)λ(dy) (8.2)

for i = 1, . . . ,m. Fix (x0, γ0). Let a sequence {(xk, γk)}∞k=1 → (x0, γ0). Group
possible y values into

U1 = {y ∈ X |η(xk, y) ≤ D & η(x0, y) ≤ D}
U2 = {y ∈ X |η(xk, y) ≤ D & η(x0, y) > D}
U3 = {y ∈ X |η(xk, y) > D & η(x0, y) ≤ D}

When k → ∞, λ(U2), λ(U3) → 0; wγ,i(x, y) is jointly continuous in x and γ
for each fixed y and uniformly bounded; λ(U1) is finite. Thus, aγk,i(xk) →
aγ0,i(x0) as k → ∞ by the Bounded Convergence Theorem; i.e. aγ,i(x) is
jointly continuous in x and γ and so are [1− aγ,i(x)] and [1− aγ,i(x)]n. We
conclude that [1− aγ(x)]n is jointly combocontinuous in x and γ.

Second, we prove wn,Sγ (x, y) is jointly combocontinuous in x and γ, and
is uniformly bounded when restricted to the subset {(x, y) : η(x, y) ≤ `D}
where |S| = `. Fix x0 ∈ Ti and γ0 ∈ Y . Let a sequence {(xk, γk)}∞k=1 →
(x0, γ0), with each xk ∈ T i. Let y1 be the very first proposal accepted by
either of two chains started at xk and x0. We group possible y1 values into the
same subsets U1 and U2 and U3 as above. As k →∞, λ(U2), λ(U3)→ 0. Also,
[1−aγ,i(x)] and wγ,i(x, y) are jointly continuous in x and γ. Now, λ(Al−1

(xk,y,D))

and λ(Al−1
(x0,y,D)) are finite so that we can apply the Bounded Convergence

Theorem for the set Al−1
(xk,y,D) ∩ A

l−1
(x0,y,D). Hence, wn,Sγk (xk, y) → wn,Sγ0

(x0, y)

as k → ∞. It follows that wn,Sγ (x, y) is jointly continuous in x and γ when

restricted to T i. This means we can write wn,Sγ (x, y) as

wn,Sγ (x, y) =
m∑
i=1

wn,Sγ,i (x, y)1(x ∈ Ti) (8.3)

where wn,Sγ,i (x, y) = wn,Sγ (x, y) for x ∈ T i, and wn,Sγ,i (x, y) is extended to
other x ∈ X arbitrarily subject to preserving its continuity. This shows
that wn,Sγ (x, y) is jointly combocontinuous in x and γ. Furthermore, the
function g is continuous, and βγ,i is (by assumption) uniformly bounded.
So, aγ and wγ are uniformly bounded when restricted to a compact set.
Therefore, wn,Sγ (x, y) is uniformly bounded when restricted to the subset
{(x, y) : η(x, y) ≤ `D}.
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Third, we prove ‖P n
γ (x, ·)− π(·)‖ is jointly combocontinuous in x and γ.

We write ‖P n
γ (x, ·)− π(·)‖ as

‖P n
γ (x, ·)− π(·)‖ = [1− aγ(x)]n + 0.5 ∗

∫
X
|wnγ (x, y)− g(y)|λ(dy). (8.4)

We rewrite (8.4) as

‖P n
γ (x, ·)− π(·)‖ =

m∑
i=1

{
[1− aγ,i(x)]n + 0.5 ∗

∫
X
|wnγ,i(x, y)− g(y)|λ(dy)

}
1(x ∈ Ti)

=
m∑
i=1

fn,γ,i(x)1(x ∈ Ti) , (8.5)

where we set fn,γ,i(x) = [1− aγ,i(x)]n + 0.5 ∗
∫
X |w

n
γ,i(x, y)− g(y)|λ(dy). We

proved above that [1− aγ(x)]n is jointly combocontinuous in x and γ. Now
we prove the joint combocontinuity for the latter part of (8.4). Again, we
group possible y′s. This time for some n, we group y′s based on the distance
`D for every ` ≤ n, creating 3n groups of y. i.e.

U1,1 = {y ∈ X |η(xk, y) ≤ D & η(x0, y) ≤ D}
U1,2 = {y ∈ X |η(xk, y) ≤ D & D < η(x0, y) ≤ 2D}
U1,3 = {y ∈ X |D < η(xk, y) ≤ 2D & η(x0, y) ≤ D}
U2,1 = {y ∈ X |D < η(xk, y) ≤ 2D & D < η(x0, y) ≤ 2D}
U2,2 = {y ∈ X |D < η(xk, y) ≤ 2D & 2D < η(x0, y) ≤ 3D}
U2,3 = {y ∈ X |2D < η(xk, y) ≤ 3D & D < η(x0, y) ≤ 2D}

...

Un,1 = {y ∈ X |(n− 1)D < η(xk, y) ≤ nD & (n− 1)D < η(x0, y) ≤ nD}
Un,2 = {y ∈ X |(n− 1)D < η(xk, y) ≤ nD & η(x0, y) > nD}
Un,3 = {y ∈ X |η(xk, y) > nD & (n− 1)D < η(x0, y) ≤ nD}

λ(U1,2), λ(U1,3), λ(U2,2), λ(U2,3), . . . , λ(Un,2), λ(Un,3) → 0 as k → 0. With

jointly continuity and uniform boundedness of the function wn,Sγ,i (x, y) proved
above, by Bounded Convergence Theorem the latter part of (8.4) is combo-
continuous in x and γ as λ(U1,1∪U2,1∪ . . .∪Un,1) is finite. Thus, ‖P n

γ (x, ·)−
π(·)‖ is jointly combocontinuous in x and γ.

Lastly, we want to prove each fn,γ,i from (8.5) converges to 0 on X as
n → ∞, and is a non-increasing function of n. Now, each fn,γ,i is the total
variation distance of a Metropolis-Hastings algorithm, which moves according
to a fixed transition kernel after the first iteration. No matter which state
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the chain is at after the first iteration (which must be within distance D
of the initial state), from that point onwards it converges to its stationary
distribution π. Thus, for each fixed (x, γ, i), the function fn,γ,i(x) converges
pointwise to 0 on X , and is a non-increasing function in n for n ≥ 2 by e.g.
Proposition 3(c) of [16]. The result follows.

Remark. In the last paragraph of the above proof, note that we need each
fn,γ,i from (8.5) to converge to 0 on X , not just on Ti. This is because when
we apply Theorem 4 (Generalised Dini’s Theorem), we need the convergence
on T i, not just on Ti. Hence, it is not sufficient to just state that each Pγ is
Harris ergodic to π.

9 Proof of Theorem 3

Denote the density of π as g with respect to Lebesgue measure. Denote
the proposal kernels for x ∈ K as {Q∗γ(x, ·)}γ∈Y and the proposal kernel for
x 6∈ K as Q(x, ·). We then define Qγ as

Qγ(x, ·) =

{
Q∗γ(x, ·) x ∈ K
Q(x, ·) x 6∈ K

Since we reject a proposal y from x if |x−y| > D, Qγ(x, dy) = 0 if |x−y| > D.
Let Pγ(x, ·) be a corresponding transition kernel for Qγ(x, ·).

The BAM algorithm with a fixed proposal kernel Qγ is reversible with
respect to π. Thus, π is a stationary distribution for the algorithm. As
noted in Section 4, a full-dimensional Metropolis-Hastings algorithm with
a centered truncated normal proposal kernel is Harris recurrent. Thus, the
BAM algorithm with a fixed proposal kernel Qγ is Harris recurrent. Since
it is also aperiodic, it follows that the BAM algorithm with each fixed Qγ is
Harris ergodic to π.

As constructed, the BAM algorithm determines γ (or Σn+1) of {Qγ(x, ·)}γ∈Y
at each iteration n based on the past and present states from the Markov
chain. And Y is compact. It follows that the BAM algorithm follows the
set-up of Section 2.

We also need to check if the algorithm satisfies the assumptions (a), (b),
(c), (d) and (e) from Section 4. As noted in Section 4, we only need the
corresponding Qγ and Q to satisfy the assumptions (a), (b) and (c), to ensure
that Pγ and P also satisfy them. The proposal kernels of the above BAM
algorithm have bounded jumps since Qγ(x, dy) = 0 when |x− y| > D. Thus,
it satisfies assumption (a), with metric η(x, y) = |x − y|. The chain moves
by a fixed transition kernel, Q, outside of a compact subset K, satisfying the
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assumption (b). The fixed proposal kernel Q is bounded above as described
in (c) since it is a normal distribution.

The state space X of the algorithm is an open subset of Rd, so we can use
the assumption (d’) to imply the assumption (d). Since Q is a normal dis-
tribution and π is continuous on X , the assumption (d’) is satisfied. We can
easily see that the proposal kernel densities qγ(x, y) of Qγ(x, dy) is continuous
in γ and jointly combocontinuous in x and γ as in (e2).

Therefore, by Theorem 1, the BAM algorithm satisfies Containment (2.3),
thus proving Theorem 3.

10 Numerical examples

In this section, we run the ‘special case’ of BAM algorithm (with ε =
0.001) described in Section 6 above, on two specific statistical examples, and
compare its performances with those of non-adaptive Metropolis algorithms.
The first example is in dimension d = 9, and the second one is in dimension
d = 12. In both cases, our compact set K is defined as the d-dimensional
cube [−100000, 100000]d, and our step size bound is D = 100000. The fixed
proposal kernel for the BAM algorithm when Xn 6∈ K is Q ∼ N(Xn, Id).

10.1 Application: 9-dimensional Multivariate Normal
Distribution

We first consider the target distribution N(µ,Σ), where µ ∈ Rd with
d = 9 and Σ ∈ Rd×d are fixed and arbitrary (subject to Σ being positive-
definite; in fact we set Σ = MM t where the matrix M was generated with iid
normal entries). The starting value for the MCMC algorithm is µ itself. The
trace plots (of coordinate 7) for a BAM algorithm and a standard Metropolis
algorithm (with proposal kernal N(Xn, Id)) are shown in Figure 2.
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Bounded Adaption Metropolis Standard Metropolis, N(Xn, Id)

Figure 2: Trace plots (of coordinate 7) for a Bounded Adaption Metropolis
(left) versus a Standard Metropolis algorithm with proposal kernel
N(Xn, Id) (right), on a 9-dimensional multivariate normal target
distribution, showing the superiority of the BAM algorithm.

We can see the mixing of the BAM algorithm is a lot better than the
standard Metropolis. In the trace plots of the BAM algorithm, we see an
increase in the average jumping distance from one state to the next state in
the first a few thousands iterations, which implies the adaption was indeed
effective.

10.2 Application: Pump Failure Model

We next consider a BAM algorithm for a true Bayesian statistical model,
applied to the number of failures of pumps at a nuclear power plant. This
model was first introduced by [9]; we use the slightly different set-up from
[10]. The resulting posterior density is

f(λ1, ..., λn, α, β|y1, ..., yn) ∝ e−αβ0.1−1e−β
n∏
i=1

βα

Γ(α)
λα−1e−βλ(λiti)

yie−λiti .

This follows from the assumption that the number of failures follow the
distribution

f(y1, ..., yn|λ1, ..., λn) =
n∏
i=1

Poisson(λiti),
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Table 1: Pump Failure Data

Obs. no. 1 2 3 4 5 6 7 8 9 10
yi 5 1 5 14 3 19 1 1 4 22
ti 94.320 15.720 62.880 125.760 5.240 31.440 1.048 1.048 2.096 10.480

where λi is the failure rate of pump i, ti is the length of operation time (in
thousands of hours), and n is the number of pumps, and furthermore λi ∼
Gamma(α, β), α ∼ Exp(1), and β ∼ Gamma(0.1, 1). Here n = 10, so since
λ1, ..., λn, α, β > 0, the state space is (0,∞)d with dimension d = n+ 2 = 12.
The data for the model are the values of the yi and ti, which are reproduced
in Table 1 herein.

We run both Bounded Adaption Metropolis and standard Metropolis al-
gorithm to compare them. For ease of comparison, each run uses initial
values given by the estimates of each parameter obtained from a previous
standard MCMC run.
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Bounded Adaption Metropolis

Standard Metropolis, N(Xn, 0.01Id)

Standard Metropolis, N(Xn, Id)

Standard Metropolis, N(Xn, 0.001Id)

Figure 3: Trace plots (of coordinate 10) for the Pump Failure Model ex-
ample for a Bounded Adaption Metropolis algorithm (top left),
compared to Standard Metropolis algorithms with proposal distri-
butions whose Gaussian covariance matrices are the d-dimensional
identity (top right), 0.01 times this identity (bottom left), and
0.001 times this identity (bottom right).

Figure 3 shows the trace plots for the pump failure model with the BAM
algorithm, and with the standard Metropolis algorithm with proposal kernels
N(Xn, Id), N(Xn, 0.01 Id), and N(Xn, 0.001 Id).

For the non-adaptive algorithm with a fixed proposal kernel N(Xn, Id),
not a single proposal was accepted for the whole 15000 iterations. This is a
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combination of a couple of factors. First, it is a rare event for 12 univariate
normal proposal kernels to suggest all positive numbers when the variance
for the each proposal kernel is 1 and the starting value, X0, for each coordi-
nate ranges from 0.6 to 2. Also, X0 is the estimates from a previous MCMC
run, so the evaluation of X0 under the target density would be greater than
most of the other points in the state space. Thus, accepting a new proposal,
a point in the state space, over X0 does not exactly have a high probability
of happening unless the move is really small. The BAM algorithm over-
comes this problem as it adjusts the proposal variance to suit for the target
distribution of interest.

If we reduce down the scale of our proposal kernel for non-adaptive algo-
rithms to N(Xn, 0.01Id) or N(Xn, 0.001Id), then the proposals are accepted
more often. However, the mixing of the chains for these non-adaptive algo-
rithms are still clearly not as good as for BAM. This indicates that our new
Bounded Adaption Metropolis (BAM) adaptive MCMC algorithm performs
better than standard Metropolis algorithms, even if their proposal scalings
are adjusted manually to allow for reasonable acceptance rates.

It is our hope that the easily-verifiable ergodicity conditions presented
herein will allow MCMC practitioners to make more widespread use of such
adaptive MCMC algorithms, and thus benefit from their computational speed-
ups without suffering from burdensome or uncheckable technical conditions.

Acknowledgements. We thank the anonymous reviewer for very helpful
comments, which led to many improvements.
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