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Abstract. The Markov chain ergodic theorem is well-understood if either the

time-line or the state space is discrete. However, there does not exist a very

clear result for general state space continuous-time Markov processes. Using

methods from mathematical logic and nonstandard analysis, we introduce a

class of hyperfinite Markov processes-namely, general Markov processes which

behave like finite state space discrete-time Markov processes. We show that,

under moderate conditions, the transition probability of hyperfinite Markov

processes align with the transition probability of standard Markov processes.

The Markov chain ergodic theorem for hyperfinite Markov processes will then

imply the Markov chain ergodic theorem for general state space continuous-time

Markov processes.
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1. Introduction

The transition probability of a time-homogeneous Markov process with a station-

ary probability distribution π will converge to π in an appropriate sense (i.e., will be

“ergodic”), under suitable conditions (such as “irreducibility”). This phenomenon

is well understood for processes in discrete time and space (see e.g. [Bil95; GS01]),

and for processes in continuous time and discrete space (see e.g. [GS01]), and

for processes in discrete time and continuous space (see e.g. [MT09] and [RR04]).

However, for processes in continuous time and space, there are apparently no such

clean results; the closest are apparently the results in [MT93a; MT93b; MT09] using

awkward assumptions about skeleton chains together with drift conditions. Other

existing results (see,e.g., [Ste94]) make extensive use of the techniques and results

from [MT93a; MT93b].

Meanwhile, nonstandard analysis is a useful tool for providing intuitive new

proofs as well as new results to all areas of mathematics, including probability

and stochastic processes (see, eg.,[ACH97; Kei84; LW15]). One of the strengths of

nonstandard analysis is to provide a direct passage to link discrete mathematical

results to continuous mathematical results. This link is usually established by using

“hyperfinite” sets which is an infinite set with the same basic logical properties as

a finite set. Hence, they usually serve as a good approximation of general sets in

nonstandard analysis.

In this new paper, we apply nonstandard analysis to general state space continuous

time Markov processes. For a continuous Markov process {Xt}t≥0 with general state

space X, we will construct a nonstandard counterpart {X ′t}t∈T (which is called a

hyperfinite Markov process). This nonstandard characterization {X ′t}t∈T will allow

us to view every Markov chain as a “discrete” process. The time line [0,∞) of {Xt}

is approximated by a hyperfinite set T = {0, δt, 2δt, . . . ,K} where δt is some positive

infinitesimal and K is some infinite number. We then take the nonstandard extension

of X and “cut” it into hyperfinitely pieces of mutually disjoint ∗Borel sets with

infinitesimal diameters. For example, if the state space X is Rn then we “cut” X into
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“rectangles” of the form {x ∈ ∗Rn : a ≤ x1 < a+δ, a ≤ x2 < a+δ, . . . , a ≤ xn < a+δ}

for some a ∈ ∗R and some positive infinitesimal δ. We then pick one point from

each of these ∗Borel sets to form a hyperfinite set S. The collection of these ∗Borel

sets is usually denoted by {B(s) : s ∈ S}. The set S is called the “hyperfinite

representation” of ∗X (the nonstandard extension of the state space X). The

link between X and S are usually established by the standard part map st. The

standard part of an element x ∈ ∗X is the unique element st(x) ∈ X such that x

is infinitesimally close to st(x). The standard part map st maps points in {∗X}

to their standard part. Under moderate conditions, it can be shown that the

measure of E ⊂ X is the same as the corresponding measure of st−1(E) ∩ S (see,

eg,.Lemma 6.8). There has been a rich literature on using hyperfinite measure

spaces to represent standard measure spaces. (see, eg., [And82; Loe74]). In [And82],

he gave a “hyperfinite representation” for every Hausdorff regular space with Borel

σ-algebra. In this paper, we focus on σ-compact completely metric spaces hence

obtaining a tighter control on our hyperfinite representation S.

The internal transition probability {G(δt)({s2})
s1 }s1,s2∈S of {X ′t}t∈T is defined to

be {∗P (δt)
s1 (B(s2))}s1,s2∈S with some minor modification. Roughly speaking, we

obtain the internal transition probability of {X ′t}t∈T by considering the ∗transition

probability from s1 to B(s2) at time δt and collapse the mass to one point s2.

Hyperfinite Markov processes behave like Markov processes on finite state spaces

with discrete time lines in many ways due to the close connection between finite

sets and hyperfinite sets. Most of the concepts of hyperfinite Markov processes

are naturally inherited from discrete Markov processes with finite state spaces.

Meanwhile, {X ′t}t∈T also inherit most of the key properties of {Xt}t≥0. Most

importantly, the internal transition probability of {X ′t}t∈T agree with the transition

probability of {Xt}t≥0 via standard part mapping. Namely,for every Borel set E,

every x ∈ X and every t > 0 we have

(∀s ≈ x)(∀t′ ≈ t)(P (t)
x (E) = G(t′)

s (st−1(E))) (1.1)
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Thus, we refer {X ′t}t∈T as a “hyperfinite representation” of {Xt}t≥0. Moreover,

if π is a stationary distribution for {Xt}t≥0, define π′({s}) = ∗π(B(s)) for every

s ∈ S, it then follows that π′ is “almost” a stationary distribution for {X ′t}t∈T .

Under moderate assumptions of {Xt}t≥0, we can then show that G
(t)
s (A) ≈ π′(A)

for all infinite t and all internal set A. Finally, we can push down this result to

show that the transition probability of {Xt}t≥0 converges to π in total variation

distance hence establishing the Markov chain ergodic theorem for general state

space continuous-time Markov processes.

The method used in this paper is an “up and down” argument. In probability

theory and stochastic processes, it is usually easier to deal with discrete probability

theory as well as discrete time stochastic processes. By using nonstandard analysis,

we first “push up” the problem into the nonstandard universe and consider the

hyperfinite counterpart of this problem. We can usually solve the hyperfinite

counterpart of the problem by mimicking the method we used in solving the finite

version of the problem. Once we solve the hyperfinite counterpart of the problem,

we “push down” to obtain the desired result for our original problem. We believe

that this method can be applied to many other areas in modern mathematics.

1.1. Section Outline. We conclude the introduction with a section-by-section

summary, along the way mentioning some important results proved in the paper.

In Section 2 we give a short introduction to Markov processes. We start by

introducing finite state space discrete time Markov processes and then move to

more general Markov processes. We also give proofs to some basic facts of Markov

processes. Most of the definitions as well as notations are adapted from [Ros06].

We state the main result of this paper at the end of section 1 (see Theorem 2.16).

In Section 3 we develop from the beginning the notions needed for nonstandard

analysis, including the Extension, Transfer and Saturation Principles, internal sets

and internal definition principles. The easiest way to visualize nonstandard analysis

is to consider the R and its nonstandard extension ∗R. Hence, in Section 3.1,
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we introduce basic concepts in ∗R including infinitesimals, infinite numbers, near-

standard numbers,etc. For readers who are unfamiliar with nonstandard analysis,

it is usually easy to make mistakes when it comes to identifying internal sets. In

Example 3.18, we show that the set st−1({0}) consisting of all infinitesimals is an

external set. In Section 3.2, we generalized those concepts and notations developed

in Section 3.1 to more general topological spaces.

In Section 4 we give an introduction to nonstandard measure theory. The

nonstandard measure theory is formulated by Peter Loeb in his landmark paper

[Loe75]. In [Loe75], Loeb constructed a standard countably additive probability

space (called the Loeb space) which is the completion of some “nonstandard measure

space” (called an internal probability space). We start Section 4 by introducing

internal probability spaces followed by an explicit construction of Loeb spaces. A

particular interesting class of internal probability spaces is the class consisting

of hyperfinite probability spaces. Hyperfinite sets are infinite sets with the same

first-order logic properties as finite sets. Hyperfinite probability spaces are simply

internal probability spaces with hyperfinite sample space. Hyperfinite probability

spaces can often serve as a “good representations” of standard probability spaces.

We illustrate this idea in Example 4.5 and the remark after it. We also discuss

nonstandard product measures and nonstandard integration theory in this section.

In Section 5, we discuss the measurability issue of the standard part map. The

link between a standard probability space X and its hyperfinite representation SX

is usually established via the standard part map. Thus, it is natural to require

that st (standard part map) to be a measurable function. In other words, we would

like to find out conditions such that st−1(E) is Loeb measurable for every Borel

set E. In [LR87], it has been shown that this question largely depends on the

Loeb measurability of NS(∗X) = {x ∈ ∗X : (∃y ∈ X)(y = st(x))}. In Section 5,

we investigate the conditions such that NS(∗X) is Loeb measurable. In [ACH97,

Exercise 4.19,1.20], NS(∗X) is Loeb measurable if X is either a σ-compact, a locally

compact Hausdorff or a complete metric space. We give a proof for the σ-compact
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case in Lemma 5.5. We are also able to further extend the result to merely Cech

complete spaces (see Theorem 5.6).

In Section 6, we formally introduce the idea of hyperfinite representation. In

Definition 6.3, we give the definition of hyperfinite representation of a metric spaces

satisfying the Heine-Borel condition. The idea is to decompose X into hyperfinitely

many ∗Borel sets with infinitesimal diameters and pick one representative from

every such ∗Borel set. We usually denote the hyperfinite representation by S

and the hyperfinite collection of ∗Borel sets by {B(s) : s ∈ S}. Note that it

is generally impossible to decompose the space into hyperfinitely many ∗Borel

sets with infinitesimal diameters. Thus, we only require our hyperfinite collection

{B(s) : s ∈ S} of ∗Borel sets to cover a “large enough” portion of ∗X. A hyperfinite

representation S has two parameters r and ε. The parameter r measures how large

portion does {B(s) : s ∈ S} cover while ε puts an upper bound on the diameters of

{B(s) : s ∈ S}. Given an (ε, r)-hyperfinite representation S, in Theorem 6.11, we

define an internal probability measure P ′ on (S, I[S]) and establishes the link between

(X,B[X], P ) and (S, I(S), P ′). Theorem 6.11 is similar to [Cut+95, Theorem 3.5

page 159] which was proved in [And82].

In Section 7, we define hyperfinite Markov processes and investigate many of its

properties. A hyperfinite Markov chain is characterized by four ingredients:

• a hyperfinite state space S.

• an initial distribution {νi}i∈S consisting of non-negative hyperreals summing

to 1.

• a hyperfinite time line T = {0, δt, . . . ,K} for some infinitesimal δt and some

infinite K ∈ ∗R.

• transition probabilities {pij}i,j∈S consisting of non-negative hyperreals with∑
j∈S pij = 1 for all i ∈ S.

In other words, hyperfinite Markov processes behave much like discrete-time Markov

processes with finite state spaces. The Markov chain ergodic theorem for discrete-

time Markov processes with finite state spaces is proved using the “coupling”
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technique. Namely, for finite Markov processes, we can show that two i.i.d Markov

chains starting at different points will eventually “couple” at the same point under

moderate conditions. Similarly, for hyperfinite Markov processes, we can show that

two i.i.d copies starting at different points will eventually get infinitesimally close.

This infinitesimal coupling technique is illustrated in Lemma 7.8. In Theorems 7.19

and 7.26, we establish ergodic theorems for hyperfinite Markov processes.

In Section 8, we construct hyperfinite representations for discrete-time Markov

processes. Given a discrete-time Markov process {Xt}t∈N, we construct a hyperfinite

Markov process {X ′t}t∈T such that the internal transition probability of {X ′t}t∈T

deviate from the transition probability of {Xt}t≥0 by infinitesimal. {X ′t}t∈T is

defined on some hyperfinite representation S of X. Note that the time line T of

{X ′t}t∈T in this case will be {1, 2, . . . ,K} for some infinite K ∈ ∗N. At each step, an

infinitesimal difference between the internal transition probability of {X ′t}t∈T and

the transition probability of {Xt} is generated. As there are only countably many

steps, the internal transition probability give a reasonably well approximation for

the transition probability of of {Xt}t∈N. We illustrate such result in Theorem 8.16.

In Section 9, we apply similar ideas developed in Section 8 to continuous-time

Markov processes with general state spaces. However, the construction of hyperfinite

representation for a continuous-time Markov process {Xt}t≥0 is much more compli-

cated compared with the construction in Section 8. When the time-line is continuous,

the time-line T for the hyperfinite representation is {0, δt, 2δt, . . . ,K} where δt is

some infinitesimal and K is some infinite number. As it takes hyperfinitely many

infinitesimal steps to reach a non-infinitesimal time, we need to make sure that

the difference between {Xt}t≥0 and {X ′t}t∈T generated in every step is so small

such that the accumulated difference will remain infinitesimal. We establish this by

using internal induction principle (see Theorem 9.20). Unlike the construction of

{X ′t}t∈T in Section 8, the construction of {X ′t}t∈T in Section 9 involves picking the

underlying hyperfinite state space S carefully. Finally, we establish the connection

between {Xt}t≥0 and {X ′t}t∈T in Theorem 9.43.
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In Section 10, we establish the Markov chain ergodic theorem for continuous-time

general state space Markov processes. We show that the hyperfinite representation

{X ′t}t∈T inherit many key properties from {Xt}t≥0 (see Theorem 10.6 and Lem-

mas 10.8 and 10.15). By Theorem 7.26, we know that {X ′t}t∈T is ergodic. The

ergodicity of {Xt}t∈T (Theorem 10.16) follows from pushing down Theorem 7.26.

One of the major assumptions on {Xt}t≥0 is the strong Feller property which

asserts that transition probability of {Xt}t≥0 is a continuous function of the starting

points with respect to the total variation distance. It is desirable to weaken this

condition to only assert that the transition probability is a continuous function of

the starting points for every Borel set (such condition is called the Feller condition).

In Section 11, we establish how to construct a hyperfinite representation {X ′t}t∈T

of {Xt}t≥0 when {Xt}t≥0 just satisfies the Feller condition. We also give a proof

of a weaker Markov chain ergodic theorem under the Feller condition. It remains

unclear to us whether the Markov chain ergodic theorem is true when {Xt}t≥0 only

satisfies the Feller condition.

In Section 12, we discuss how to construct standard Markov processes and

stationary distributions from hyperfinite Markov processes and weakly stationary

distributions (“stationary” distributions for hyperfinite Markov processes). This also

gives rise to some new insights in establishing existence of stationary distributions

for general Markov processes. A Markov process {Xt}t≥0 satisfies the merging

property if for all x, y ∈ X

lim
t→∞

‖ P (t)
x (·)− Py ‖= 0. (1.2)

Note that a Markov process with the merging property does not need to have a

stationary distribution. In Section 13, we discuss conditions on {Xt}t≥0 for it to

have the merging property. In Section 14, we close with a few remarks, some open

problems and a short literature review on existing Markov chain ergodic theorems.
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2. Markov Processes and the Main Result

We start this paper by giving a brief introduction to Markov processes. Some

of the notations and definitions are adapted from [Ros06]. Those who are familiar

with Markov processes may skip to Definition 2.8.

In general, a continuous-time stochastic process is a collection {Xt}t≥0 of random

variables, defined jointly on some probability triple, taking values in some state

space X with σ-algebra F , and indexed by the non-negative real numbers {t ≥ 0}.

Usually we regard the variable t as representing time, so that Xt represents a random

state at time t. Formally speaking, we have the following definition:

Definition 2.1. Given a probability space (Ω,F , P ) and a measurable space (X,Γ),

a X-valued stochastic process is a collection of X-valued random variables {Xt}t∈T ,

indexed by a totally ordered set T (“time line”). The space X is called the state

space.

The “time line” is almost always taken to be either R+ ∪ {0} (“non-negative

reals”) or N. When T = N, the stochastic process is called a discrete-time stochastic

process. Otherwise it is called a continuous-time stochastic process. In this paper,

the σ-algebra on X is always taken to be the Borel σ-algebra B[X]. The sample

space Ω is usually taken to be the set of all measurable functions from T to X and

F is taken to be the product σ-algebra. Every element in Ω is called a path.

We are now at the place to define Markov processes.

Definition 2.2. A stochastic process {Xt}t≥0 on some measurable space (X,B[X])

is a Markov process if there are transition probability measures P
(t)
x (·) on (X,B[X])

for all t ≥ 0 and all x ∈ X, and an initial distribution ν on (X,B[X]), such that

(1) P
(t)
x (·) is a probability measure on (X,B[X]) and P

(0)
x (·) is a point-mass at

x.

(2) P (X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫
x0∈A0

∫
xt1∈A1

. . .
∫
xtn∈An

ν(dx0)P
(t1)
x0 (dxt1)P

(t2−t1)
xt1

(dxt2) . . . P
(tn−tn−1)
xtn−1

(dxtn)

for all 1 ≤ t0 < . . . < tn and all A1, . . . , An ∈ B[X].
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(3) P
(s+t)
x (A) =

∫
P

(s)
x (dy)P

(t)
y (A) for all s, t ≥ 0, all x ∈ X and all A ∈ B[X].

where B[X] denote the Borel σ-algebra of X.

Intuitively, P
(t)
x (A) refers to the probability of getting into set A at time t given

that the chain starts at x. When the state space is countable, we write p
(t)
ij to denote

P
(t)
i ({j}).

The third property in Definition 2.2 is called the semigroup property. On countable

state space, we have p
(s+t)
ij =

∑
k∈X p

(s)
ik p

(t)
kj . When the time line is discrete, it is

easy to see that we can get all P
(t)
x (·) from P

(1)
x (·). Hence, when the time line is

discrete, transition probabilities of a Markov process is uniquely determined by its

“one-step” transition probability P
(1)
x (·) for all x ∈ X. In this case, we usually omit

1 and write Px(·) instead.

Probably the most well-understood type of Markov chains are discrete time

Markov chains on with discrete state spaces. By Definition 2.2, it is not difficult to

see that such a Markov process is characterized by three ingredients:

(1) a state space S.

(2) an initial distribution {vi : i ∈ S} consisting of non-negative numbers

summing to 1.

(3) one-step transition matrix {pij}i,j∈S consisting of non-negative numbers

with
∑
j∈S pij = 1 for each i ∈ S.

Clearly we can generate n-th transition probability from one-step transition

matrix {pij}i,j∈S . We use p
(n)
ij to denote the n-step transition probability from i to

j.

Example 2.3. The simplest example of Markov process is the simple random walk.

The state space is the set of all integers Z. The initial distribution is the point mass

at 0. The one-step transition matrix is given by Pi({i+ 1}) = 1
2 and Pi({i−1}) = 1

2 .

We first explore some basic properties of discrete-time Markov processes with

finite state spaces. Let {Xt}t≥0 denote such a Markov process. By Definition 2.2, it
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is easy to see that P (X0 = i0, X1 = i1, . . . , Xn = in) = νi0pi0i1pi1i2 · · · pin−1in . The

following two properties can be established pretty easily for such Markov process:

(1) P (Xk+1 = j|Xk = i0, Xk−1 = i1, . . . , X0 = ik) = P (Xk+1 = j|Xk = i0).

Markov property

(2) P (Xk+n = j|Xk = i) = p
(n)
ij for all i, j ∈ S and all k, n ∈ N. Time

homogeneous

Both of these properties can be generalized to more general Markov processes in

a natural way.

As one can see, the discrete time Markov chain with discrete state space is easy

to understand and work with. However, it is not the case for general Markov process.

The level of complexity increases greatly when we analysis general Markov processes

using standard method. In this paper, we will apply nonstandard analysis to turn

every continuous time general state space Markov process into a “finite” Markov

process. We will discuss these ideas in more details in later sections.

Before we discuss general Markov processes, we introduce the finite-dimensional

distributions for a general stochastic process.

Definition 2.4. Given a stochastic process {Xt}t∈T , and k ∈ N, and a finite

collection t1, t2, . . . , tk ∈ T of distinct index values, we define the Borel probability

measure µt1...tk on Xk by:

µt1...tk(H) = P ((Xt1 , . . . , Xtk) ∈ H), H ∈ B[Xk] (2.1)

The distribution {µt1...tk ; k ∈ N, t1, . . . , tk ∈ T distinct} are called the finite-

dimensional distributions for the stochastic process {Xt : t ∈ T}.

Under suitable “consistency” conditions of the finite-dimensional distributions,

we can determine a stochastic process from its finite-dimensional distributions. We

first introduce the following definition.
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Definition 2.5. A measure µ on a Hausdorff measure space (X,F) is inner regular

if

µ(A) = sup{µ(K)|compact K ⊂ A}. (2.2)

Theorem 2.6 (Kolmogorov Existence Theorem). Let T be any set. Let {(Ωt,Ft)}t∈T

be some collection of measurable spaces with Hausdorff topology on each Ωt. For

each J ⊂ T , let ΩJ =
∏
t∈J Ωt. For subset I ⊂ J ⊂ T , let πJI be the projection map

from
∏
t∈J Ωt →

∏
t∈I Ωt. For each finite F ⊂ T , suppose we have a probability

measure µF on ΩF which is inner regular with respect to the product topology on

ΩF . Suppose that for finite sets F ⊂ G ⊂ T , we have that

µF (A) = µG((πGF )−1(A)). (2.3)

for all measurable sets A. Then there exists an unique measure µ on ΩT such that

µF (A) = µ((πTF )−1(A)) for all finite F ⊂ T and all measurable sets A.

It is clear that T = {x ∈ R : x ≥ 0} for a continuous Markov processes. For a

detailed proof of this theorem, see e.g. [Bil95, 1995,Theorem 36.1].

We now turn our attention to general Markov processes. When ν({x}) > 0, we

write Px(·) for the probability of an event conditional on X0 = x. In particular, we

have P
(t)
x (A) = P (Xt ∈ A|X0 = x). However, we have ν(x) = 0 for most of x when

the state space is not discrete. Thus, we shall view Px as a probability measure

on the product space ({x} ×XR+

,F) where F denote the product Borel σ-algebra

with finite dimensional distribution:

Px(Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫
xt1∈A1

. . .
∫
xtn∈An

P
(t1)
x0 (dxt1)P

(t2−t1)
xt1

(dxt2) . . . P
(tn−tn−1)
xtn−1

(dxtn).

Then by Kolmogorov existence theorem, such probability measure Px exists.
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Definition 2.7. A probability distribution π(·) on (X,B[X]) is a stationary distri-

bution for the Markov process {Xt}t≥0 if
∫
X
P

(t)
x (A)π(dx) = π(A) for all t ≥ 0 and

all A ∈ B[X].

The intuition behind stationarity is quite simple. It means that if we start the

Markov chain in the distribution π then any time later the distribution will still

be π. However, even if we start our process in some other distribution we would

like to show that eventually the distribution will be π. This is the famous Markov

chain Ergodic theorem. Before giving the formal statement of the Markov chain

Ergodic theorem, we need to introduce some concepts for Markov processes. All

these assumptions will be restated later in the paper.

Definition 2.8. Let K[X] denote the collection of compact subsets of X. The

Markov chain {Xt}t≥0 is said to be vanishing in distance if for all t ≥ 0, all K ∈ K[X]

and every ε > 0, the set {x ∈ X : P
(t)
x (K) ≥ ε} is contained in a compact subset of

X.

Roughly speaking, if a Markov process {Xt} is vanishing in distance, it means

that the probability of {Xt} “traveling far” within a fixed amount of time is small.

This ensures that the Markov process is non-explosive. In Section 9, we give an

equivalent formulation of Definition 2.8 using the metric d on the state space X. It

will be easier to see the intuition behind Definition 2.8 there.

Definition 2.9. A Markov chain {Xt}t≥0 is said to be strong Feller if for all t > 0,

all ε > 0, all x ∈ X, there exists δ > 0 such that:

((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)). (2.4)

Definition 2.10. Given two probability measures P1, P2 on some measurable space

(X,F). The total variation distance between P1 and P2 is

‖ P1 − P2 ‖= sup
A∈F
|P1(A)− P2(A)|. (2.5)
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The strong Feller condition essentially says that, for any t > 0, the mapping

x→ P
(t)
x (·) is continuous with respect to total variation norm. Given a strong Feller

Markov process {Xt}, if we start at two points which are close to each other, after

a fixed period of time, the probabilities of them reaching the same set is very close.

This is certainly a reasonable assumption for most of the Markov processes. As a

matter of fact, most of the diffusion and Gaussian processes satisfy this condition.

Definition 2.11. A Markov chain {Xt}t≥0 is said to be weakly continuous in time

if for any basic open set A ⊂ X, and any x ∈ X, we know that P
(t)
x (A) is a right

continuous function for t > 0. Moreover, for any t0 ∈ R+, any x ∈ X and any

E ∈ B[X] we know that limt↑t0 P
(t)
x (E) always exists although it not necessarily

equals to P
(t0)
x (E)

Definition 2.12. A Markov chain {Xt}t≥0 with state space X is said to be open

set irreducible on X if for every open ball B ⊆ X and any x ∈ X, there exists

t ∈ R+ such that p
(t)
x (B) > 0.

If a Markov process is open set irreducible, it means that it is possible to move

from any point to any open set.

The classical proof of the Markov chain Ergodic theorem in the finite case uses

the “coupling” idea. Roughly speaking, under moderate conditions, for two i.i.d

Markov processes starting at two different points will eventually “couple” at some

point. Thus it is worth to consider the product of two Markov processes.

Definition 2.13. Let {Xt}t≥0 and {Yt}t≥0 be two Markov processes on state spaces

X and Y , respectively. Let P
(t)
x (·) denote the t-step transition measure of {Xt}t≥0

had the chain started at x. Let Q
(t)
y (·) denote the t-step transition measure of

{Yt}t≥0 had the chain started at y. The joint Markov chain {Xt × Yt}t≥0 is a

Markov process on the state space X × Y with transition probability:

F
(t)
(x,y)(A×B) = P (t)

x (A)Q(t)
y (B). (2.6)

for all (x, y) ∈ X × Y , all A×B ∈ B[X]× B[Y ] and all t ≥ 0.
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The most common product Markov chain is the product between a Markov chain

{Xt} and itself. However, even if {Xt} is open set irreducible this may not be the

case for the product chain {Xt ×Xt}.

Example 2.14. Let {Xt}t∈N be a Markov process with two-points state space

{1, 2} with discrete topology. Let P1({2}) = 1 and P2({1}) = 1. It is clear that

{Xt} is open set irreducible. However, it is never possible to go from (1, 2) to (1, 1)

since P
(t)
1 ({1})P (t)

2 ({1}) = 0 for all t ∈ N.

Thus we impose the following condition on {Xt}t≥0 to eliminate such counter-

example.

Definition 2.15. The Markov chain {Xt}t≥0 is productively open set irreducible if

the joint Markov chain {Xt×Yt}t≥0 is open set irreducible on X×X where {Yt}t≥0

is an independent identical copy of {Xt}t≥0.

We are now at the place to state the main result of this paper.

Theorem 2.16. Let {Xt}t≥0 be a general state space continuous-time Markov

chain with separable locally compact metric state space (X, d). Suppose {Xt}t≥0

is productively open set irreducible and has a stationary distribution π. Suppose

{Xt}t≥0 is vanishing in distance, strong Feller and weakly continuous. Then for

π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

A similar result holds for general-state-space discrete time Markov processes. We

can drop weakly continuity in time and vanishing in distance in the discrete time

case. To prove Theorem 2.16, we first establish a weaker Markov chain ergodic

theorem. We start by introducing the following definition.

Definition 2.17. A metric space X is said to satisfy the Heine-Borel condition if

the closure of every open ball is compact.

The proof of the following theorem will be delayed to Section 10, see Theorem 10.16
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Theorem 2.18. Let {Xt}t≥0 be a general-state-space continuous in time Markov

chain living on some metric space X satisfying the Heine-Borel condition. Suppose

{Xt}t≥0 is productively open set irreducible and has a stationary distribution π.

Suppose {Xt}t≥0 is strong Feller, weakly continuous in time and vanishes in distance.

Then for π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

Theorem 2.18 is interesting on its own. For example, Theorem 2.18 applies to all

Markov processes with Euclidean state space. However, Theorem 2.18 does require

that the state space X is a metric space satisfying the Heine-Borel property. Such an

X is automatically a separable locally compact metric space. Hence Theorem 2.18 is

an immediate consequence of Theorem 2.16. On one hand, the Heine-Borel condition

is quite strong. For example, (0, 1) and (0,∞), while they are separable locally

compact metric spaces, do not satisfy the Heine-Borel property. On the other hand,

from the nonstandard perspective, the Heine-Borel condition is desirable because it

guarantees that every finite nonstandard element is infinitely close to a standard

element (see Theorem 6.2). Hence, it will be easier to establish Theorem 2.18 than

Theorem 2.16.

It is easy to see that Theorem 2.18 follows from Theorem 2.16. For the remainder

of this section, we establish Theorem 2.16 from Theorem 2.18. We start by proving

the following theorem which shows that, for every separable locally compact metric

space, there exists a Heine-Borel metric dH on X that induces the same topology.

Theorem 2.19. Let (X, d) be a separable locally compact metric space. There

is a metric dH on X inducing the same topology such that (X, dH) satisfies the

Heine-Borel property.

Proof. It is a well-known topological fact that if (X, d) is a separable locally compact

metric space then X is σ-compact. Let X =
⋃
n∈NKn where every Kn is a compact

subset of X. We now define a non-decreasing of compact subsets of X as following:

• Let V1 = K1.
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• Suppose we have defined Vn. As X is locally compact, there is a finite

collection {U1, . . . , Uk} of open sets such that
⋃
i≤k Ui ⊃ Vn and U i is

compact for every i ≤ k. Let Vn+1 = (
⋃
i≤k U i) ∪Kn+1.

Thus, X =
⋃
n∈N Vn and Vn ⊂ Wn+1 where Wn+1 is the interior of Vn+1. Define

fn : X 7→ R by letting fn(x) = d(x,Vn)
d(x,Vn)+d(x,X\Wn+1)

. Let f(x) =
∑∞
n=1 fn(x). Note

that
∑∞
n=1 fn(x) is always finite since each x ∈ X is in some Vn. Moreover, as

both Vn and X \Wn+1 are closed, the function f : X 7→ R is continuous. Define

dH : X ×X → R by

dH(x, y) = d(x, y) + |f(x)− f(y)|. (2.7)

Then

dH(x, z) = d(x, z) + |f(x)− f(z)| ≤ d(x, y) + |f(x)− f(y)|+ d(y, z) + |f(y)− f(z)|

(2.8)

hence dH is a metric on X.

Claim 2.20. dH induces the same topology as d.

Proof. Let {xn : n ∈ N} be a subset ofX and let y ∈ X. Suppose limn→∞ dH(xn, y) =

0. As d(xn, y) ≤ dH(xn, y) for all n ∈ N, we have limn→∞ d(xn, y) = 0. Now sup-

pose limn→∞ d(xn, y) = 0. As f is continuous in the original metric, we have

limn→∞ f(xn) = f(y) hence we have limn→∞ dH(xn, y) = 0. �

The metric space (X, dH) satisfies the Heine-Borel condition since the following

claim is true.

Claim 2.21. For every A ⊂ X bounded with respect to dH , there is some Vn such

that A ⊂ Vn.

Proof. Suppose A is not a subset of any element in {Vn : n ∈ N}. Fix some element

n ∈ N and r ∈ R+. Pick x ∈ Vn+1 \ Vn. By the construction of f , we know that

n+ 1 ≥ f(x) > n. Thus, we can pick an element a ∈ A such that f(a) > f(x) + r.

Then dH(x, a) > r. As n and r are arbitrary, this shows that A is not bounded. �
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�

With the help of Theorem 2.19, we can prove Theorem 2.16 from Theorem 2.18.

Proof of Theorem 2.16. Let dH be a Heine-Borel metric on X that induces the same

topology as (X, d). By Theorem 2.18, it is sufficient to show that {Xt}t≥0 is strong

Feller and vanishes in distance under the metric dH . Note that vanishing in distance

(Definition 2.8) is a purely topological property. As dH and d generate the same

topology, we know that {Xt}t≥0 vanishes in distance under the metric dH .

We now show that {Xt}t≥0 is strong Feller under the metric dH . Pick t > 0,

ε > 0 and x ∈ X. As {Xt}t≥0 is strong Feller under the metric d, there exists a

δ > 0 such that

((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)). (2.9)

Note that the set {y ∈ X : d(x, y) < δ} is an open subset of X. As the metric

dH generates the same topology as (X, d), there exists δ′ > 0 such that {y ∈ X :

dH(x, y) < δ′} ⊂ {y ∈ X : d(x, y) < δ}. Thus, we can conclude that

((∀y ∈ X)(dH(x, y) < δ′ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)). (2.10)

Hence, {Xt}t≥0 is strong Feller under the Heine-Borel metric dH . �

To complete the proof of Theorem 2.16, it is sufficient to show Theorem 2.18.

From this point on, we shall work with Markov processes with metric state space

satisfying the Heine-Borel condition.

3. Preliminaries: Nonstandard Analysis

Those familiar with nonstandard methods may safely skip this section on their first

reading. Nonstandard analysis is introduced by Abraham Robinson in [Rob66]. For

modern applications of nonstandard analysis, interested readers can read [ACH97] or

[Cut+95]. For those who are particularly interested in nonstandard measure theory,

we recommend [LW15] which contains special measure-theoretic results obtained
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by nonstandard analysis that have no known classic analogues in various fields (see

[LW15, Chapter. 8]). Our following introduction of nonstandard analysis owes much

to [ACH97]. Some part of this section is adapted from [DD16].

For a set S, let P(S) denote its power set. Given any set S, define V0(S) = S

and Vn+1(S) = Vn(S) ∪P(Vn(S)) for all n ∈ N. Then V(S) =
⋃
n∈N Vn(S) is

called the superstructure of S, and S is called the ground set of the superstructure

V(S). We treat the elements in V(S) as indivisible atomics. The rank of an object

a ∈ V(S) is the smallest k for which a ∈ Vk(S). The members of S have rank 0.

The objects of rank no less than 1 in V(S) are precisely the sets in V(S). The empty

set ∅ and S both have rank 1.

We now formally define the language L(V(S)) of V(S).

• constants: one for each element in V(S).

• variables: x1, x2, x3, . . .

• relations: = and ∈.

• parentheses: ) and (

• connectives: ∧ (and), ∨ (or) and ¬ (not).

• quantifiers: ∀ and ∃

The formulas in L(V(S)) are defined recursively:

• If x and y are variables and a and b are constants,

(x = y), (x ∈ y), (a = x), (a ∈ x), (x ∈ a), (a = b), (a ∈ b) are formulas.

• If φ and ψ are formulas, then (φ ∧ ψ), (φ ∨ ψ) and (¬φ) are formulas.

• If φ is a formula, x is a variable and A ∈ V(S) then (∀x ∈ A)(φ) and

(∃x ∈ A)(φ) are formulas.

A variable x is called a free variable if it is not within the scope of any quantifiers.

Let us agree to use the following abbreviations in constructing formulas in

L(V(S)): We will write (φ =⇒ ψ) instead of ((¬φ) ∨ (ψ)) and (φ⇐⇒ ψ) instead

of (φ =⇒ ψ) ∧ (ψ =⇒ φ).

It may seem that we should include more relation symbols and function symbols

in our language. For example, it is definitely natural to require 1 < 2 to be a
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well-defined formula. However, every relation symbol and function syumbol can

be viewed as an element in V(S) and we already have a constant symbol for that.

Thus our language is powerful enough to describe all well-defined relation symbols

and function symbols. In conclusion, there is no problem to include these symbols

within our formula.

Definition 3.1. Let κ be an uncountable cardinal number. A κ-saturated non-

standard extension of a superstructure V(S) is a set ∗S and a rank-preserving map

∗ : V(S)→ V(∗S) satisfying the following three principles:

• extension: ∗S is a superset of S and ∗s = s for all s ∈ S.

• transfer : For every sentence φ in L(V(S)), φ is true in V(S) if and only if

its ∗-transfer ∗φ is true in V(∗S).

• κ-saturation: For every family F = {Ai : i ∈ I} of internal sets indexed by

a set I of cardinality less than κ, if F has the finite intersection property,

i.e., if every finite intersection of elements in F is nonempty, then the total

intersection of F is non-empty.

A ℵ1 saturated model can be constructed via an ultrafilter, see [ACH97, Thm. 1.7.13].

The language of V(∗S) is almost the same as L except that we enlarge the set of

constants to include every element in V(∗S). We denote the language of V(∗(S)) by

L(V(∗S)). If φ(x1, . . . , xn) is a formula in L(V(S)) with free variables x1, . . . , xn,

then the ∗-transfer of φ is the formula in L(V(∗S)) obtained by changing every

constant a to ∗a. Clearly, every constant in ∗φ(x1, . . . , xn) is internal.

An important class of elements in V(∗S) is the class of internal elements.

Definition 3.2. An element a ∈ V(∗S) is internal when there exists b ∈ V(S) such

that a ∈ ∗b, and a is said to be external otherwise.

The next theorem shows that saturation to any uncountable cardinal number is

possible:

Theorem 3.3 ([Lux69]). For every superstructure V(S) and uncountable cardinal

number κ, there exists a κ-saturated nonstandard extension of V(S).
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From this point on, we shall always assume that our nonstandard extension is

always as saturated as we want.

As one can see, internal elements are those “well-behaved” elements which can be

carried over via the transfer principle. It is natural to ask how to identify internal

elements. By Definition 3.2, we know that an element a ∈ V(∗S) is internal if and

only if there exists a k ∈ N such that a ∈ ∗Vk(S). It is then easy to see that every

a ∈ ∗S is internal. The following lemma gives a characterization of internal elements

in P(∗S).

Lemma 3.4. Consider a superstructure V(S) based on a set S with N ⊂ S

and its nonstandard extension, for any standard set C from this superstructure,⋃
k<ω

∗Vk(S) ∩P(∗C) = ∗P(C).

Proof. Let us assume that C has rank n for some n ∈ N. P(C) ∈ Vn+1(S) hence

we have ∗P(C) ∈ ∗Vn+1(S). Consider the following sentence (∀x ∈ P(C))(∀y ∈

x)(y ∈ C), the transfer of this sentence implies that ∗P(C) ⊂P(∗C). Hence we

have ∗P(C) ⊂
⋃
k<ω

∗Vk(S) ∩P(∗C), completing the proof. �

Thus, we know that that A ⊂ ∗S is internal if and only if A ∈ ∗P(S).

The following lemma shows a particularly useful fact of internal sets which will

be used extensively in this paper.

Lemma 3.5. Let a be an internal element in V(∗S). Then the collection of all

internal subsets of a is itself internal.

Proof. As a is an internal element, there exists a k ∈ N such that a ∈ ∗Vk(S). For

any internal set a′ ⊂ a, it is easy to see that a′ ∈ ∗Vk(S). Let b denote the collection

of all internal subsets of a. The sentence (∀x ∈ y)(x ∈ Vk(S)) =⇒ (Y ∈ Vk+1(S))

is true. Thus, by the transfer principle, we have that b ∈ ∗Vk+1(S) hence b is an

internal set. �

It takes practice to identify general internal sets. The main tool for constructing

internal sets is the internal definition principle:
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Lemma 3.6 (Internal Definition Principle). Let φ(x) be a formula in L(V(∗S))

with free variable x. Suppose that all constants that occurs in φ are internal, then

{x ∈ V(∗S) : φ(x)} is internal in V(∗S).

Saturation can be equivalently expressed in terms of the satisfiability of families of

formulas. The role of the finite intersection property is played by finite satisfiability:

Definition 3.7. Let J be an index set and let A ⊆ V(∗S). A set of formulas

{φj(x) | j ∈ J} over V(∗S) is said to be finitely satisfiable in A when, for every

finite subset α ⊂ J , there exists c ∈ A such that φj(c) holds for all j ∈ α.

We can now provide the following alternative expression of κ-saturation:

Theorem 3.8 ([ACH97, Thm. 1.7.2]). Let ∗V(S) be a κ-saturated nonstandard

extension of the superstructure V(S), where κ is an uncountable cardinal number.

Let J be an index set of cardinality less than κ. Let A be an internal set in ∗V(S).

For each j ∈ J , let φj(x) be a formula over ∗V(S), so all objects mentioned in φj(x)

are internal. Further, suppose that the set of formulas {φj(x) | j ∈ J} is finitely

satisfied in A. Then there exists c ∈ A such that φj(c) holds in ∗V(S) simultaneously

for all j ∈ J .

Example 3.9. A particular interesting example of superstructure is V(R). The

nonstandard extension of this superstructure is V(∗R). V(∗R) contains hyperreals,

∗N, etc. We will study this particular superstructure in detail in Section 3.1.

Through out this paper, we shall assume our ground set S always contain R as a

subset.

We conclude this section by introducing a particularly useful class of sets in

V(∗S): hyperfinite sets. A hyperfinite set A is an infinite set that has the basic

logical properties of a finite set.

Definition 3.10. A set A ∈ V(∗S) is hyperfinite if and only if there exists an

internal bijection between A and {0, 1, ...., N − 1} for some N ∈ ∗N.
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This N , if exists, is unique and this unique N is called the internal cardinality of

A.

Just like finite sets, we can carry out all the basic arithmetics on a hyperfinite set.

For example, we can sum over a hyperfinite set just like we did for finite set. Basic

set theoretic operations are also preserved. For example, we can take hyperfinite

unions and intersections just as taking finite unions and intersections.

We have rather nice characterization of internal subsets of a hyperfinite set.

Lemma 3.11 ([ACH97]). A subset A of a hyperfinite set T is internal if and only

if A is hyperfinite.

An immediate consequence of Theorem 3.8 is:

Proposition 3.12 ([ACH97, Proposition. 1.7.4]). Assume that the nonstandard

extension is κ-saturated. Let a be an internal set in V(∗S). Let A be a (possibly

external) subset of a such that the cardinality of A is strictly less than κ. Then there

exists a hyperfinite subset b of a such that b contains A as a subset.

3.1. The Hyperreals. Probably the most well-known nonstandard extension is

the nonstandard extension of R. We investigate some basic properties and notations

in ∗R.

Definition 3.13. The set ∗R is called the set of hyperreals and every element in

∗R is called a hyperreal number. An element x ∈ ∗R is called an infinitesimal if

x < 1
n for all n ∈ N. An element y ∈ ∗R is called an infinite number if y > n for all

n ∈ N.

We write x ≈ 0 when x is an infinitesimal.

Definition 3.14. Two elements x, y ∈ ∗R are infinitesimally close if |x− y| ≈ 0. In

which case, we write x ≈ y. An element x ∈ ∗R is near-standard if x is infinitesimally

close to some a ∈ R. An element x ∈ ∗R is finite if |x| is bounded by some standard

real number a.
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It is easy to see that if x ∈ ∗R is bounded then there exists some a ∈ R such that

|x− a| is finite.

Lemma 3.15. An element x ∈ ∗R is finite if and only if x is near-standard.

Proof. It is clear that if x is near-standard then x is finite. Suppose there exists a

x ∈ ∗R such that x is finite but not near-standard. Then there exists a a0 ∈ R such

that |x| ≤ a0. This means that x ∈ ∗[−a0, a0]. As x is not near-standard, for every

standard a ∈ [−a0, a0] we can find an open interval Oa centered at a with x 6∈ ∗Oa.

The family {Oa : a ∈ [−a0, a0]} covers [−a0, a0] and therefore has a finite subcover

{O1, ..., On}. As [−a0, a0] ⊂
⋃
i≤nOi,

∗[−a0, a0] ⊂
⋃
i≤n

∗Oi. Since x 6∈
⋃
i≤n

∗Oi,

x 6∈ ∗[−a0, a0] which is a contradiction. Hence x ∈ ∗R is finite if and only if it is

near-standard.

Pick an arbitrary near-standard x ∈ ∗R. Suppose there are two different a1, a2 ∈ R

such that x ≈ a1 and x ≈ a2. This implies a1 ≈ a2 which is impossible since

a1, a2 ∈ R. Hence there exists a unique a ∈ R such that x ≈ a. �

This lemma would fail if we take some points from R.

Example 3.16. Consider the set R \ {0}. Then every infinitesimal element in ∗R

is finite since they are bounded by 1. However, they are not near-standard since 0

is excluded.

Definition 3.17. Let NS(∗R) to denote the collection of all near-standard points

in ∗R. For every near-standard point x ∈ ∗R, let st(x) denote the unique element in

a ∈ R such that |x− a| ≈ 0. st(x) is called the standard part of x. We call st the

standard part map.

ForA ⊂ ∗R, we write st(A) to mean {x ∈ R : (∃a ∈ A)(x is the standard part of a)}.

Similarly for every B ⊂ R, we write st−1(B) to mean {x ∈ ∗R : (∃b ∈ B)(|x− b| ≈

0)}.

We now give an example of an external set. The example also shows that we

have to be very careful when applying the transfer principle.
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Example 3.18. The monad µ(0) of 0 is defined to be {a ∈ ∗R : a ≈ 0}. We show

that µ(0) is an external set. Consider the sentence: ∀A ∈ P(R) if A is bounded

above then there is a least upper bound for A. By the transfer principle, we know

that (∀A ∈ ∗P(R))(for all internal subsets of ∗R if A is bounded above then there

is a least upper bound for A). Suppose µ(0) is internal then there exists a a0 ∈∗ R

such that a0 is an least upper bound for µ(0). Clearly a0 > 0. Note that a0 can not

be infinitesimal since if a0 is infinitesimal then 2a0 would also be infinitesimal and

2a0 > a0. If a0 is non-infinitesimal then so is a0
2 . But then a0

2 is an upper bound

for µ(0). This contradict with the fact that a0 is the least upper bound. Hence µ(0)

is not an internal set.

It is easy to make the following mistake: if we write the sentence as “∀A ⊂ R if A

is bounded above then there is a least upper bound for A” the transfer of it seems

to give that “∀A ⊂ ∗R if A is bounded above then there is a least upper bound for

A”. As we have already seen, this is not correct. The reason is because ⊂ is not in

the language of set theory thus we have an “illegal” formation of a sentence. This

shows that we have to be very careful when applying the transfer principle.

The following two principles derived from saturation are extremely useful in

establishing the existence of certain nonstandard objects.

Theorem 3.19. Let A ⊂ ∗R be an internal set

(1) (Overflow) If A contains arbitrarily large positive finite numbers, then it

contains arbitrarily small positive infinite numbers.

(2) (Underflow) If A contains arbitrarily small positive infinite numbers, then

it contains arbitrarily large positive finite numbers.

We conclude this section by the following lemma. This lemma will be used

extensively in this paper.

Lemma 3.20. Let N be an element in ∗N. Let {a1, . . . , aN} be a set of non-

negative hyperreals such that
∑N
i=1 ai = 1. Let {b1, . . . , bN} and {c1, . . . , cN} be
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subsets of R such that bi ≈ ci for all i ≤ N . Then a1b1 + a2b2 + · · · + aNbN ≈

a1c1 + a2c2 + · · ·+ aNcN .

Proof. By the transfer of convex combination theorem, we know that (a1b1 + a2b2 +

· · ·+aNbN )−(a1c1+a2c2+· · ·+aNcN ) = a1(b1−c1)+a2(b2−c2)+· · ·+aN (bN−cN ) ≤

max{ai|bi − ci| : i ≤ N} ≈ 0. �

3.2. Nonstandard Extensions of General Metric Spaces. We generalize the

concepts developed in Section 3.1 into generalized topological spaces. We especially

emphasize on general metric spaces.

Let X be a topological space and let ∗X denote its nonstandard extension. For

every x ∈ X, let Bx denote a local base at point x.

Definition 3.21. Given x ∈ X, the monad of x is

µ(x) =
⋂
U∈Bx

∗U. (3.1)

The near-standard points in ∗X are the points in the monad of some standard

points.

If X is a metric space with metric d, then ∗d is a metric for ∗X. The monad of a

point x ∈ X, in this case, is µ(x) =
⋂
n∈N

∗Un where each Un = {y ∈ X : d(x, y) <

1
n}. Thus we have the following definition:

Definition 3.22. Two elements x, y ∈ ∗X are infinitesimally close if ∗d(x, y) ≈ 0.

An element x ∈ ∗X is near-standard if x is infinitesimally close to some a ∈ X. An

element x ∈ ∗X is finite if ∗d(x, a) is finite for some a ∈ X.

If x ∈ ∗X is finite, then generally x is not near-standard. This is not even true

for complete metric spaces.

Example 3.23. Consider the set of natural numbers N. Define the metric d on

N to be d(x, y) = 1 if x 6= y and equals to 0 otherwise. Then (N, d) is a complete

metric space. Every element in ∗N is finite. But those elements in ∗N \ N are not

near-standard.
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Just as in ∗R, we have the following definition.

Definition 3.24. Let NS(∗X) to denote the collection of all near-standard points

in ∗X. For every near-standard point x ∈ ∗X, let st(x) denote the unique element

in a ∈ X such that ∗d(x, a) ≈ 0. st(x) is called the standard part of x. We call st

the standard part map.

In general, NS(∗X) is a proper subset of ∗X. However, when X is compact, we

have NS(∗X) = ∗X. This is the nonstandard way to characterize a compact space.

Theorem 3.25 ([ACH97, Theorem 3.5.1]). A set A ⊂ X is compact if and only if

∗A = NS(∗A).

Proof. Assume A is compact but there exists y ∈ A such that y is not near-standard.

Then for every x ∈ A, there exists an open set Ox containing x with y 6∈ ∗Ox. The

family {Ox : x ∈ A} forms an open cover of A. As A is compact, there exists a finite

subcover {O1, . . . , On} for some n ∈ N. As A ⊂
⋃n
i=1Oi, by the transfer principle,

we have ∗A ⊂
⋃n
i=1
∗Oi. However, y 6∈ Oi for all i ≤ n. This implies that y 6∈ A, a

contradiction.

We now show the reverse direction. Let U = {Oα : α ∈ A} be an open cover of

A with no finite subcover. By Proposition 3.12, let B be a hyperfinite collection of

∗U containing ∗Oα for all α ∈ A. By the transfer principle, there exists a y ∈ ∗A

such that y 6∈ U for all U ∈ B. Thus, y 6∈ ∗Oα for all α ∈ A. Hence y can not be

near-standard, completing the proof. �

This relationship breaks down for non-compact spaces as is shown by the following

example.

Example 3.26. Consider ∗[0, 1] = {x ∈ ∗R : 0 ≤ x ≤ 1}, as [0, 1] is compact

we have ∗[0, 1] = NS(∗[0, 1]). (0, 1) is not compact and this implies that ∗(0, 1) 6=

NS(∗(0, 1)). Indeed, consider any positive infinitesimal ε ∈ ∗R. Then ε ∈ ∗(0, 1) but

ε 6∈ NS(∗(0, 1)).
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However, under enough saturation, the standard part map st maps internal sets

to compact sets.

Theorem 3.27 ([Lux69]). Let (X, T ) be a regular Hausdorff space. Suppose the

nonstandard extension is more saturated than the cardinality of T . Let A be a

near-standard internal set. Then E = st(A) = {x ∈ X : (∃a ∈ A)(a ∈ µ(x))} is

compact.

Proof. Fix y ∈ ∗E. If U is a standard open set with y ∈ ∗U , then U ∩ E 6= ∅. Let

x ∈ E ∩ U . By the definition of E, there exists an a ∈ A such that a ∈ µ(x) ⊂ ∗U .

Thus, for every open set U with y ∈ ∗U , there exists a ∈ A ∩ ∗U . By saturation,

there exists an a0 ∈ A such that a0 ∈ A ∩ ∗U for all standard open set U with

y ∈ ∗U .

Let x0 = st(a0). In order to finish the proof, by Theorem 3.25, it is sufficient

to show that y ∈ µ(x0). Suppose not, then there exists an open set V such that

x0 ∈ V and y 6∈ ∗V . By regularity of X, there exists an open set V ′ such that

x0 ∈ V ′ ⊂ V ′ ⊂ V . Then x ∈ V ′ and y ∈ ∗X \ ∗V ′. It then follows that a0 ∈ ∗V ′

and a0 ∈ ∗X \ ∗V ′. This is a contradiction. �

Moreover, for σ-compact locally compact spaces, we have the following result.

Theorem 3.28. Let X be a Hausdorff space. Suppose X is σ-compact and locally

compact. Then there exists a non-decreasing sequence of compact sets Kn with⋃
n∈NKn = X such that

⋃
n∈N

∗Kn = NS(∗X).

Proof. As X is σ-compact, there exists a sequence of non-decreasing compact sets

Gn such that X =
⋃
n∈NGn. Let K0 = G0. By locally compactness of X, for every

x ∈ K0 ∪G1, let Cx denote a compact subset of X containing a neighborhood Ux

of x. The collection {Ux : x ∈ K0 ∪ G1} is a cover of K0 ∪ G1 hence there is a

finite subcover {Ux1
, . . . , Uxn}. Let K1 =

⋃
i≤n Cxi . It is easy to see that K1 is a

compact and K0 ⊂ K1
o where K1

o denotes the interior of K1. For any n ∈ N, we

can construct Kn based on Kn−1 ∪Gn in exactly the same way as we constructs
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K1. Hence we have a sequence of compact sets Kn such that
⋃
n∈NKn = X and

Kn ⊂ Kn+1
o for all n ∈ N.

We now show that
⋃
n∈N

∗Kn = NS(∗X). As every Kn is compact, by ??,

we know that
⋃
n∈N

∗Kn ⊂ NS(∗X). Now pick any element x ∈ NS(∗X). Then

st(x) ∈ ∗Kn for some n. As Kn ⊂ Kn+1
o, we know that µ(st(x)) ⊂ ∗Kn+1 hence

we have x ∈ ∗Kn+1. Thus, we know that NS(∗X) ⊂
⋃
n∈N

∗Kn, completing the

proof. �

A merely Hausdorff σ-compact space may not have this property. For a σ-compact,

locally compact and Hausdorff space X, the sequence {Kn : n ∈ N} has to be chosen

carefully.

Example 3.29. The set of rational numbers Q is a Hausdorff σ-compact space.

Every compact subset of Q is finite. Thus, for any collection {Kn : n ∈ N} of Q

that covers Q, we have
⋃
n∈N

∗Kn = Q. That is, any near-standard hyperrational is

not in any of the ∗Kn.

Now consider the real line R. Let Kn = [−n,− 1
n ] ∪ [ 1n , n] ∪ {0} for n ≥ 1. It is

easy to see that
⋃
n∈NKn = R. However, an infinitesimal is not an element of any

∗Kn.

4. Internal Probability Theory

In this section, we give a brief introduction to nonstandard probability theory.

The interested reader can consult [Kei84] and [ACH97, Section 4] for more details.

The expert may safely skip this section on first reading.

Let Ω be an internal set. An internal algebra A ⊂P(Ω) is an internal set contain-

ing Ω and closed under complementation and hyperfinite unions/intersections. A set

function P : A → ∗R is hyperfinitely additive when, for every n ∈ ∗N and mutually

disjoint internal family {A1, . . . , An} ⊂ A, we have P (
⋃
i≤nAi) =

∑
i≤n P (Ai).

We are now at the place to introduce the definition of internal probability spaces.

Definition 4.1. An internal finitely-additive probability space is a triple (Ω,A, P )

where:
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(1) Ω is an internal set.

(2) A is an internal subalgebra of P(Ω)

(3) P : A → ∗R is a non-negative hyperfinitely additive internal function such

that P (Ω) = 1 and P (∅) = 0.

Example 4.2. Let (X,A, P ) be a standard probability space. Then (∗X, ∗A, ∗P )

is an internal probability space. Although A is a σ-algebra and P is countably

additive, A is just an internal algebra and ∗P is only hyperfinitely additive. This is

because “countable” is not an element of the superstructure.

A special class of an internal probability spaces are hyperfinite probability spaces.

Hyperfinite probability spaces behave like finite probability spaces but can be good

“approximation” of standard probability space as we will see in future sections.

Definition 4.3. A hyperfinite probability space is an internal probability space

(Ω,A, P ) where:

(1) Ω is a hyperfinite set.

(2) A = I(Ω) where I(Ω) denote the collection of all internal subsets of Ω.

Like finite probability spaces, we can specify the internal probability measure P

by defining its mass at each ω ∈ Ω.

Peter Loeb in [Loe75] showed that any internal probability space can be extended

to a standard countably additive probability space. The extension is called the Loeb

space of the original internal probability space. The central theorem in modern

nonstandard measure theory is the following:

Theorem 4.4 ([Loe75]). Let (Ω,A, P ) be an internal finitely additive probability

space; then there is a standard (σ-additive) probability space (Ω,A, P ) such that:

(1) A is a σ-algebra with A ⊂ A ⊂P(Ω).

(2) P (A) = st(P (A)) for any A ∈ A.

(3) For every A ∈ A and standard ε > 0 there are Ai, Ao ∈ A such that

Ai ⊂ A ⊂ Ao and P (Ao \Ai) < ε.
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(4) For every A ∈ A there is a B ∈ A such that P (A4B) = 0.

The probability triple (Ω,A, P ) is called the Loeb space of (Ω,A, P ). It is a

σ-additive standard probability space. From Loeb’s original proof, we can give the

explicit form of A and P :

(1) A equals to:

{A ⊂ Ω|∀ε ∈ R+∃Ai, Ao ∈ A such that Ai ⊂ A ⊂ Ao and P (Ao \Ai) < ε}. (4.1)

(2) For all A ∈ A we have:

P (A) = inf{P (Ao)|A ⊂ Ao, Ao ∈ A} = sup{P (Ai)|Ai ⊂ A,Ai ∈ A}. (4.2)

In fact, the Loeb σ-algebra can be taken to be the P -completion of the smallest

σ-algebra generated by A. In this paper, we shall assume that our Loeb space is

always complete.

The following example of hyperfinite probability space motivates the idea of

hyperfinite representation.

Example 4.5. Let (Ω,A, P ) be a hyperfinite probability space. Pick any N ∈
∗N \ N and let δt = 1

N . Then δt is an infinitesimal. Let Ω = {δt, 2δt, ...., 1} and

A = I(Ω)(Recall that I(Ω) is the collection of all internal subsets of Ω). Define P

on A by letting P (ω) = δt for all ω ∈ Ω. This is called the uniform hyperfinite Loeb

measure.

Claim 4.6. st−1(0) ∩ Ω ∈ A

Proof. st−1(0) ∩ Ω consists of elements from Ω that are infinitesimally close to

0. Let An = {ω ∈ Ω : ω ≤ 1
n}. By the internal definition principle, An is

internal for all n ∈ N. Thus An ∈ A for all n ∈ N. Hence
⋂
n∈NAn ∈ A. Thus

st−1(0) ∩ Ω =
⋂
n∈NAn ∈ A, completing the proof. �

Let ν denote the Lebesgue measure on [0, 1]. In Section 6, we will show that

ν(A) = P (st−1(A) ∩ Ω) for every Lebesgue measurable set A. This shows that we
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can use (Ω,A, P ) to represent the Lebesgue measure on [0, 1]. (Ω,A, P ) is called

a “hyperfinite representation” of the Lebesgue measure space on [0, 1]. We will

investigate such hyperfinite representation space in more detail in Section 6.

As st−1(0) is an external set, Example 4.5 shows that the Loeb σ-algebra contains

external sets.

4.1. Product Measures. In this section, we introduce internal product measures.

This would be useful when we are dealing with the product of two hyperfinite

Markov chains in later sections.

In this section, let (Ω,A, P1) and (Γ,D, P2) be two internal probability spaces.

Let (Ω,A, P 1) and (Γ,D, P 2) be the Loeb spaces of (Ω,A, P1) and (Γ,D, P2),

respectively.

Definition 4.7. The product Loeb measure P 1×P 2 is defined to be the probability

measure on (Ω× Γ,A⊗D) satisfying:

(P 1 × P 2)(A×B) = P 1(A) · P 2(B). (4.3)

for all A×B ∈ A×D, where A⊗D denotes the σ-algebra generated by sets from

A×D.

Note that this is nothing more than the standard definition of product measures.

Thus (Ω× Γ,A⊗D, P 1 × P 2) is a standard σ-additive probability space.

It is sometimes more natural to consider the product internal measure P1 × P2.

Definition 4.8. The product internal measure P1×P2 is defined to be the internal

probability measure on (Ω× Γ,A⊗D) satisfying:

(P1 × P2)(A×B) = P1(A) · P2(B). (4.4)

for all A×B ∈ A×D, where A⊗D denote the internal algebra generated by sets

from A×D.

In this case, we form a product internal probability space (Ω×Γ,A⊗D, P1×P2).
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Example 4.9. Suppose both (Ω,A, P1) and (Γ,D, P2) are hyperfinite probability

spaces. Recall from Definition 4.3 that A = I(Ω) and D = I(Γ) where I(Ω) and

I(Γ) denote the collection of all internal sets of Ω and Γ,respectively. Then the

product internal measure P1 × P2 is defined on I(Ω× Γ). To see this, it is enough

to note that every internal subset of Ω×Γ is hyperfinite hence is a hyperfinite union

of singletons.

Once we have the product internal probability space (Ω × Γ,A ⊗ D, P1 × P2),

the Loeb construction can be applied to give a Loeb probability space (Ω ×

Γ, (A⊗D), (P1 × P2)). The Loeb probability space (Ω × Γ, (A⊗D), (P1 × P2))

is called the Loeb product space. It is shown in [KS04] that the Loeb product

space (Ω× Γ, (A⊗D), (P1 × P2)) is uniquely determined by the factor Loeb spaces

(Ω,A, P1) and (Γ,D, P2), and not on the internal probability spaces (Ω,A, P1) and

(Γ,D, P2) that generate (Ω,A, P1) and (Γ,D, P2). It is natural to seek for relation

between (Ω× Γ, (A⊗D), (P1 × P2)) and (Ω× Γ,A⊗D, P 1 × P 2).

Theorem 4.10 ([Kei84]). Consider two Loeb probability spaces (Ω,A, P 1) and

(Γ,D, P 2). We have (P1 × P2) = P 1 × P 2 on A⊗D.

Proof. We first show that A ⊗ D ⊂ (A⊗D). It is enough to show that for any

A×B ∈ A×D we have A×B ∈ (A⊗D). Fix an ε ∈ (0, 1). As A ⊂ A, by Loeb’s

construction, there exists Ai, Ao ∈ A with Ai ⊂ A ⊂ Ao such that P1(Ao \Ai) < ε.

Similarly, there exist such Bi, Bo ∈ D for B. Then we have

(P1 × P2)((Ao ×Bo) \ (Ai ×Bi)) = (P1 × P2)((Ao \Ao)× (Ai \Bi)) = ε2 < ε.

(4.5)

As our choice of ε is arbitrary, we have A×B ∈ (A⊗D).



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 35

We now show that (P1 × P2) = P 1 × P 2 on A⊗D. Again it is enough to just

consider A×B ∈ A×D. We then have:

P 1 × P 2(A×B) (4.6)

= sup{st(P1(Ai))|Ai ⊂ A,Ai ∈ A} × sup{st(P2(Bi))|Bi ⊂ A,Bi ∈ D} (4.7)

= sup{st(P1(Ai))st(P2(Bi))|Ai ⊂ A,Ai ∈ A, Bi ⊂ A,Bi ∈ D} (4.8)

= (P1 × P2)(A×B), (4.9)

completing the proof. �

However, A⊗D will generally be a smaller σ-algebra than (A⊗D) as is shown

by the following example which is due to Doug Hoover.

Example 4.11. [Kei84] Let Ω be an infinite hyperfinite set. Let Γ = I(Ω).

Let (Ω, I(Ω), P ) and (Γ, I(Γ), Q) be two uniform hyperfinite probability spaces

over the respective sets. Let E = {(ω, λ) : ω ∈ λ ∈ Γ}. It can be shown that

E ∈ (I(Ω)⊗ I(Γ)) but E 6∈ I(Ω) ⊗ I(Γ). It can be shown that (P ×Q)(E) > 0

while P (A)Q(B) = 0 for every A ∈ I[Ω] and every B ∈ I[Γ].

In [Sun98], the author gave a complete characterization of the relationship between

the two types of product spaces for Loeb spaces. Before we quote the result from

[Sun98], we first recall the following common definition from measure theory.

Definition 4.12. Let (X,F , P ) be a probability space. An atom is a set A ∈ F

with P (A) > 0 and the property that for each measurable subset B ⊂ A, either

P (B) = 0 or P (B) = P (A). (X,F , P ) is called purely atomic if every measurable

set with positive measure contains an atom.

We quote the following result from [Sun98] which gives a complete characterization

between two types of product spaces for Loeb spaces.

Theorem 4.13 ([Sun98, Proposition. 6.6]). Let (Ω,A, P1) and (Γ,D, P2) be two

internal probability spaces. The completion of the product Loeb σ-algebra A⊗D is
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strictly contained in the Loeb product σ-algebra A⊗D if and only if both P1 and P2

are not purely atomic.

It is natural to ask whether the product Loeb σ-algebra is a “rich” subset of the

Loeb product σ-algebra. In particular, let (Ω,A, P ) be an internal probability space

and suppose (P × P )(B) > 0 for some B ∈ A⊗A, does there exists C ∈ A ⊗ A

such that C ⊂ B and (P × P )(C) > 0? The answer of this question is generally

negative. It is shown in [Ber+02, Thm. 5.1] that for any two atomless Loeb spaces

and any number s ∈ [0, 1], there is a measurable set E in the corresponding Loeb

product space with Loeb product measure s such that its inner and outer measure,

based on the usual product of the factor Loeb spaces, are zero and one respectively.

4.2. Nonstandard Integration Theory. In this section we establish the non-

standard integration theory on Loeb spaces. Fix an internal probability space

(Ω,Γ, P ) and let (Ω,Γ, P ) denote the corresponding Loeb space. If Γ is ∗σ-algebra

then we have the notion of “P -integrability” which is nothing more than the usual

integrability “copied” from the standard measure theory. Note that the Loeb space

(Ω,Γ, P ) is a standard countably additive probability space. The Loeb integrability

is the same as the integrability with respect to the probability measure P . We

mainly focus on discussing the relationship between “P -integrability” and Loeb

integrability in this section.

Corollary 4.14 ([ACH97, Corollary 4.6.1]). Suppose (Ω,Γ, P ) is an internal prob-

ability space, and F : Ω → ∗R is an internal measurable function such that st(F )

exists everywhere. Then st(F ) is Loeb integrable and
∫
FdP ≈

∫
st(F )dP .

The situation is more difficult when st(F ) exists almost surely. We present the

following well-known result.

Theorem 4.15 ([ACH97, Theorem 4.6.2]). Suppose (Ω,Γ, P ) is an internal prob-

ability space, and F : Ω → ∗R is an internally integrable function such that st(F )

exists P -almost surely. Then the following are equivalent:
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(1) st(
∫
|F |dP ) exists and it equals to limn→∞ st(

∫
|Fn|dP ) where for n ∈ N,

Fn = min{F, n} when F ≥ 0 and Fn = max{F,−n} when F ≤ 0.

(2) For every infinite K > 0,
∫
|F |>K |F |dP ≈ 0.

(3) st(
∫
|F |dP ) exists, and for every B with P (B) ≈ 0, we have

∫
B
|F |dP ≈ 0.

(4) st(F ) is P -integrable, and ∗
∫
FdP ≈

∫
st(F )dP .

Definition 4.16. Suppose (Ω,Γ, P ) is an internal probability space, and F : Ω→ ∗R

is an internally integrable function such that st(F ) exists P -almost surely. If F

satisfies any of the conditions (1)-(4) in Theorem 4.15, then F is called a S-integrable

function.

Up to now, we have been discussing the internal integrability as well as the Loeb

integrability of internal functions. An external function is never internally integrable.

However, it is possible that some external functions are Loeb integrable. We start

by introducing the following definition.

Definition 4.17. Suppose that (Ω,Γ, P ) is a Loeb space, that X is a Hausdorff

space, and that f is a measurable (possibly external) function from Ω to X. An

internal function F : Ω→ ∗X is a lifting of f provided that f = st(F ) almost surely

with respect to P .

We conclude this section by the following Loeb integrability theory.

Theorem 4.18 ([ACH97, Theorem 4.6.4]). Let (Ω,Γ, P ) be a Loeb space, and let

f : Ω→ R be a measurable function. Then f is Loeb integrable if and only if it has

a S-integrable lifting.

5. Measurability of Standard Part Map

When we apply nonstandard analysis to attack measure theory questions, the

standard part map st plays an essential role since st−1(E) for E ∈ B[X] is usually

considered to be the nonstandard counterpart for E. Thus a natural question to ask

is: when is the standard part map st a measurable function? There are quite a few
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answers to this question in the literature (see, eg,. [ACH97, Section 4.3]) and they

should cover most of the interesting cases. It turns out that, in most interesting

cases, the measurability of st depends on the Loeb measurability of NS(∗X). Such

results are mentioned in [ACH97, Exescise 4.19,4.20]. However, we give a proof for

more general topological spaces in this section.

The following theorem of Ward Henson in [Hen79] is a key result regarding the

measurability of st.

Theorem 5.1 ([ACH97, Theorems 4.3.1 and 4.3.2]). Let X be a regular topological

space, let P be an internal, finitely additive probability measure on (∗X, ∗B[X])

and suppose NS(∗X) ∈ ∗B[X]; then st is Borel measurable from (∗X, ∗B[X]) to

(X,B[X]).

Thus we only need to figure out what conditions on X will guarantee that

NS(∗X) ∈ ∗B[X]. In the literature, people have shown that, for σ-compact, locally

compact or completely metrizable spaces X, we have NS(∗X) ∈ ∗B[X]. In this

section we will generalize such results to more general topological spaces.

We first recall the following definitions from general topology.

Definition 5.2. Let X be a topological space. A subset A is a Gδ set if A is a

countable intersection of open sets. A subset is a Fσ set if its complement is a Gδ

set.

Definition 5.3. For a Tychonoff space X, it is Cech complete if there exist a

compactification Y such that X is a Gδ subset of Y .

The following lemma is due to Landers and Rogge. We provide a proof here since

it is closely related to our main result of this section.

Lemma 5.4 ([LR87]). Suppose that (Ω,A, P ) is an internal finitely additive proba-

bility space with corresponding Loeb space (Ω,AL, P ) and suppose that C is a subset

of A such that the nonstandard model is more saturated than the external cardinality

of C. Then
⋂
C ∈ AL. Furthermore, if P (A) = 1 for all A ∈ C, then P (

⋂
C) = 1
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Proof. Without loss of generality we can assume that C is closed under finite

intersections. Let r = inf{P (C) : C ∈ C}. Fix a standard ε > 0. We can find

Co ∈ C ⊂ A such that P (Co) < r + ε. Denote C = {Cα : α ∈ J} where J

is some index set. Consider the set of formulas {φα(A)|α ∈ J} where φα(A) is

(A ∈ A) ∧ (P (A) > r − ε) ∧ ((∀a ∈ A)(a ∈ Cα)). As C is closed under finite

intersection and r = inf{P (C) : C ∈ C}, we have {φα(A) : α ∈ J} is finitely

satisfiable. By saturation, we can find a set Ai ∈ A such that P (Ai) > r − ε and

Ai ⊂
⋂
C. So

⋂
C ∈ AL.

If ∀C ∈ C we have P (C) = 1, by the same construction in the last paragraph, we

have 1− ε ≤ P (Ai) ≤ P (
⋂
C) ≤ P (Ao) = 1 for every positive ε ∈ R. Thus we have

the desired result. �

In the context of Lemma 5.4, by considering the complement, it is easy to see

that
⋃
C ∈ A. Similarly, if we have P (A) = 0 for all A ∈ C then P (

⋃
C) = 0.

We quote the next lemma which establishes the Loeb measurability of NS(∗X)

for σ-compact spaces.

Lemma 5.5 ([LR87]). Let X be a σ-compact space with Borel σ-algebra B[X] and

let (∗X, ∗B[X]L, P ) be a Loeb space. Then NS(∗X) ∈ ∗B[X].

We are now at the place to prove the measurability of NS(∗X) for Cech complete

spaces.

Theorem 5.6. If the Tychnoff space X is Cech complete then NS(∗X) ∈ ∗B[X]L.

Proof. Let Y be a compactification of X such that X is a Gδ subset of Y . We use

S to denote Y \X. Then S is a Fσ subset of T hence is a σ-compact subset of Y.

Let S =
⋃
i∈ω Si where each Si is a compact subset of Y . Note that

∗Y = ∗X ∪ ∗S = NS(∗X) ∪ ∗S ∪ Z. (5.1)

where Z = ∗X \ NS(∗X). As Y is compact, we know that Z = {x ∈ ∗X :

(∃s ∈ S)(x ∈ µ(s))}. Note that NS(∗X), ∗S,Z are mutually disjoint sets. Let

Ni = {y ∈ ∗Y : (∃x ∈ Si)(y ∈ µ(x))}.
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Claim 5.7. For any i ∈ ω, Ni ∈ ∗B[X].

Proof. : Without loss of generality, it is enough to prove the claim for N1. Let

U = {U ⊂ X: U is open and S1 ⊂ U}. We claim that N1 =
⋂
{∗U : U ∈ U}. To

see this, we first consider any u ∈
⋂
{∗U : U ∈ U}. Suppose u 6∈ N1, this means

that for any y ∈ S1 there exists ∗Uy such that Uy is open and u 6∈ ∗Uy. As S1 is

compact, we can pick finitely many y1, . . . , yn such that S1 ⊂
⋃
i≤n Uyi . Thus we

have ∗
⋃
i≤nUyi =

⋃
i≤n

∗Uyi ⊂
⋃
y∈S1

∗Uy. Note that u 6∈
⋃
y∈S1

∗Uy implies that

u 6∈ ∗
⋃
i≤n Uyi . But

⋃
i≤n Uyi is an element of U . Hence we have a contradiction.

Conversely, it is easy to see that N1 ⊂
⋂
{∗U : U ∈ U}. We also know that each

∗U ∈ ∗B[X]. Assume that we are working on a nonstandard extension which is more

saturated than the cardinality of the topology of X, then for any i ∈ ω Ni ∈ ∗B[X]

by Lemma 5.4. �

It is also easy to see that
⋃
i<ω Ni = NS(∗S) ∪ Z. By Lemma 5.5, we know that

both
⋃
i<ω Ni and NS(∗S) belong to ∗B[Y ]. Hence Z ∈ ∗B[Y ].

As S is σ-compact in Y, we know that S ∈ B[Y ]. By the transfer principle, we

know that ∗S ∈ ∗B[Y ] ⊂ ∗B[Y ]. As both ∗S and Z belong to ∗B[Y ], it follows that

NS(∗X) ∈ ∗B[Y ].

We now show that NS(∗X) ∈ ∗B[X]. Fix an arbitrary internal probability measure

P on (∗X, ∗B[X]). Let P ′ be the extension of P to (∗Y , ∗B[Y ]) defined by P ′(A) =

P ′(A ∩X). We already know that NS(∗X) ∈ ∗B[Y ]. By definition, this means that

for every positive ε ∈ R there exist Ai, Ao ∈ ∗B[Y ] such that Ai ⊂ NS(∗X) ⊂ Ao

and P ′(Ao \ Ai) < ε. Let Bi = Ai ∩ ∗X and Bo = Ao ∩ ∗X. By the construction

of P and P ′, it is clear that Bi ⊂ NS(∗X) ⊂ Bo and P (Bo \Bi) < ε. It remains to

show that Bi and Bo both lie in ∗B[X]. The transfer of (∀A ∈ B[Y ])(A∩X ∈ B[X])

gives us the final result. �

Thus, by Theorem 5.1, we know that st is measurable for Cech-complete spaces.

For regular spaces, either locally compact spaces or completely metrizable spaces are

Cech-complete. Thus we have established the measurability of st for more general



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 41

topological spaces. However, note that σ-compact metric spaces need not be Cech

complete.

We now introduce the concept of universally Loeb measurable sets.

Recall from Section 4 that given an internal algebra A its Loeb extension A is

actually the P -completion of the σ-algebra generated by A. So AL could differ for

different internal probability measures. We use AP to denote the Loeb extension of

A with respect to the internal probability measure P .

Definition 5.8. A set A ⊂ ∗X is called universally Loeb-measurable if A ∈ AP for

every internal probability measure P on (∗X,A).

We denote the collection of all universally-Loeb measurable sets by L(A). By The-

orem 5.6, NS(∗X) is universally Loeb measurable if X is Cech complete. Moreover,

Theorem 5.1 can be restated as following:

Theorem 5.9 ([LR87]). Let X be a Hausdorff regular space equipped with Borel

σ-algebra B[X]. If B ∈ B[X] then st−1(B) ∈ {A ∩NS(∗X) : A ∈ L(B[X])}.

Thus, by Theorem 5.6, st−1(B) is universally measurable for every B ∈ B[X] if

X is Cech complete.

We conclude this section by giving an example of a relatively nice space where

NS(∗X) is not measurable.

Theorem 5.10. [ACH97, Example 4.1] There is a separable metric space X and a

Loeb space (∗X, ∗B[X], P ) such that NS(∗X) is not measurable.

Proof. Let X be the Bernstein set of [0, 1]; for every uncountable closed subset

A of [0, 1], both A ∩X and A ∩ ([0, 1] \X) are nonempty. The topology on X is

the natural subspace topology inherited from standard topology on [0, 1]. Clearly

B ⊂ X is Borel if and only if B = X ∩B′ for some Borel subset B′ of [0, 1]. Let µ

denote the Lebesgue measure on ([0, 1],B[[0, 1]]). Let A be the σ-algebra generated

from B[[0, 1]] ∪ {X}. Let m be the extension of µ to A by letting m(X) = 1.

Claim 5.11. m is a probability measure on ([0, 1],A).
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Proof. It is sufficient to show that, for any A,B ∈ B[[0, 1]], we have

m(A ∩X) = m(B ∩X)→ m(A) = m(B). (5.2)

Suppose not. Then m(A4 B) > 0. As m(A ∩X) = m(B ∩X), we have m((A4

B) ∩X) = 0. But we already know that m([0, 1] \X) = 0 �

Let P be the restriction of ∗m to ∗B[X]. Consider the internal probability space

(∗X, ∗B[X], P ). Let A ∈ NS(∗X)∩ ∗B[X] and let A′ = stX(A) where stX(A) = {x ∈

X : (∃a ∈ A)(a ≈ x)}. By Theorem 3.27, we know that A′ is a compact subset of X.

Thus A′ is a closed subset of [0, 1]. As X does not contain any uncountable closed

subset of [0, 1], we conclude that A′ must be countable. Thus, for any ε > 0, there

exists an open set Uε ⊂ [0, 1] of Lebesgue measure less than ε that contains A′. As

A′ = stX(A), we know that A ⊂ ∗X ∩ ∗Uε ⊂ ∗Uε. Then P (A) ≤ ∗m(∗Uε) < ε. Thus

the P -inner measure of NS(∗X) is 0. By applying the same technique to [0, 1] \X,

we can show that the P -outer measure of NS(∗X) is 1. Thus NS(∗X) can not be

Loeb measurable. �

This is slightly different from [ACH97, Example 4.1]. In [ACH97, Example 4.1],

the author let m be a finitely-additive extension of Lebesgue measure to all subsets

of [0, 1]. In this paper, we let m to be a countably-additive extension of the Lebesgue

measure to include the Bernstein set.

6. Hyperfinite Representation of a Probability Space

In the literature of nonstandard measure theory, there exist quite a few results to

represent standard measure spaces using hyperfinite measure spaces. For example,

see [BW69; Loe74; Hen72; And82]. In this section, we establish a hyperfinite repre-

sentation theorem for Heine-Borel metric spaces with Radon probability measures.

Although we restrict ourselves to a smaller class of spaces, we believe that we provide

a more intuitive and simple construction. Moreover, such a construction will be

used extensively in later sections.
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Let X be a σ-compact metric space. Let d denote the metric in X. Then ∗d will

denote the metric on ∗X. We impose the following definition on our space X.

Definition 6.1. A metric space is said to satisfy the Heine-Borel condition if the

closure of every open ball is compact.

Note that the Heine-Borel condition is equivalent to that every closed bounded

set is compact.

As we mentioned in Section 3.2, finite elements of complete metric spaces need

not be near-standard. However, finite elements are near-standard for metric spaces

satisfying the Heine-Borel condition.

Theorem 6.2. A metric space X satisfies the Heine-Borel condition if and only if

every finite element in ∗X is near-standard.

Proof. Let X be a metric space with metric d. Suppose X satisfies the Heine-Borel

condition. Let y ∈ ∗X be a finite element. Then there exists x ∈ X and k ∈ N such

that ∗d(x, y) < k. Let Uky denote the open ball centered at y with radius k. Clearly

we know that y ∈ ∗Uky ⊂ ∗(Uky ). As X satisfies the Heine-Borel condition, we know

that Uky is a compact set. By Theorem 3.25, there exists an element x0 ∈ Uky such

that y ∈ µ(x0).

We now prove the reverse direction. Suppose X does not satisfy the Heine-Borel

condition. Then there exists an open ball U such that U is not compact. By

Theorem 3.25, there exists an element y ∈ ∗(U) such that y is not in the monad of

any element x ∈ U . As y ∈ ∗(U), y is finite hence is near-standard. Thus there exists

a x0 ∈ X \ U such that y ∈ µ(x0). Thus there exists an open ball V centered at x0

such that V ∩ U = ∅. Then we have y ∈ ∗V and y ∈ ∗U , which is a contradiction.

Thus the closure of every open ball of X must be compact, completing the proof. �

We shall assume our state space X is a metric space satisfying the Heine-Borel

condition in the remainder of this paper unless otherwise mentioned. Note that

metric spaces satisfying the Heine-Borel condition are complete and σ-compact.
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We are now at the place to introduce the hyperfinite representation of a topological

space. The idea behind hyperfinite representation is quite simple: For a metric

space X, we partition an ”initial segment” of ∗X into hyperfinitely pieces of sets

with infinitesimal diameters. We then pick exactly one element from each element of

the partition to form our hyperfinite representation. The formal definition is stated

below.

Definition 6.3. Let X be a metric space satisfying the Heine-Borel condition.

Let ε ∈ ∗R+ be an infinitesimal and r be an infinite nonstandard real number. A

hyperfinite set S ⊂ ∗X is said to be an (ε, r)-hyperfinite representation of ∗X if the

following three conditions hold:

(1) For each s ∈ S, there exists a B(s) ∈ ∗B[X] with diameter no greater than

ε containing s such that B(s1) ∩B(s2) = ∅ for any two different s1, s2 ∈ S.

(2) For any x ∈ NS(∗X), ∗d(x, ∗X \
⋃
s∈S B(s)) > r.

(3) There exists a0 ∈ X and some infinite r0 such that

NS(∗X) ⊂
⋃
s∈S

B(s) = U(a0, r0) (6.1)

where U(a0, r0) = {x ∈ ∗X : ∗d(x, a0) ≤ r0}.

If X is compact, then
⋃
s∈S B(s) = ∗X. In this case, the second parameter

of an (ε, r)-hyperfinite representation is redundant. Thus, we have ε-hyperfinite

representation for compact space X.

Definition 6.4. Let T denote the topology of X and K denote the collection of

compact sets of X. A ∗open set is an element of ∗T and a ∗compact set is an

element of ∗K.

By the transfer principle, a set A is a ∗compact set if for every ∗open cover of

A there is a hyperfinite subcover. By the Heine-Borel condition, the closure of

every open ball is a compact subset of X. By the transfer principle, we know that

U(a0, r0) in Definition 6.3 is ∗compact.
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Example 6.5. Consider the real line R with standard metric. Fix N1, N2 ∈ ∗N \N.

Let ε = 1
N1

and let r = 2N2. It then follows that

S = {−2N2,−2N2 +
1

N1
, . . . ,− 1

N1
, 0,

1

N1
, . . . , 2N2} (6.2)

is a (ε, r)-hyperfinite representation of ∗R.

To see this, we need to check the three conditions in Definition 6.3. For s = 2N2,

let B(s) = {2N2}. For other s ∈ S, let B(s) = [s, s+ 1
N1

). Clearly {B(s) : s ∈ S}

is a mutually disjoint collection of ∗Borel sets with diameter no greater than 1
N1

.

Moreover, it is easy to see that
⋃
s∈S B(s) = [−2N2, 2N2] ⊃ NS(∗R). For every

element y ∈ ∗R\ [−2N2, 2N2], we have ∗d(y, 0) > 2N2. Then the distance between y

and any near-standard element is greater than N2. Finally, by the transfer principle,

we know that
⋃
s∈S B(s) = [−2N2, 2N2] is a ∗compact set.

Theorem 6.6. Let X be a metric space satisfying the Heine-Borel condition. Then

for every positive infinitesimal ε and every positive infinite r there exists a (ε, r)-

hyperfinite representation Srε of ∗X.

Proof. Let us start by assuming X is non-compact. Since X satisfies the Heine-Borel

condition, X must be unbounded. Fix an infinitesimal ε0 ∈ ∗R+ and an infinite r0.

Pick any standard x0 ∈ X and consider the open ball

U(x0, 2r0) = {x ∈ ∗X : ∗d(x, x0) < 2r0}. (6.3)

As X is unbounded, U(x0, 2r0) is a proper subset of ∗X. Moreover, as X satisfies the

Heine-Borel condition, U(x0, 2r0) is a ∗compact proper subset of ∗X. The following

sentence is true for X:

(∀r, ε ∈ R+)(∃N ∈ N)(∃A ∈P(B[X]))(A has cardinality N and A is a collection

of mutually disjoint sets with diameters no greater than ε and A covers U(x0, r))

By the transfer principle, we have:

(∃K ∈ ∗N)(∃A ∈ ∗P(B[X]))(A has internal cardinality K and A is a collection

of mutually disjoint sets with diameters no greater than ε0 and A covers U(x0, 2r0))
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Let A = {Ui : i ≤ K}. Without loss of generality, we can assume that Ui is

a subset of U(x0, 2r0) for all i ≤ K. It follows that
⋃
i≤K Ui = U(x0, 2r0) which

implies that NS(∗X) ⊂
⋃
i≤K Ui. For any x ∈ NS(∗X) and any y ∈ ∗X \U(x0, 2r0),

we have ∗d(x, y) > r0. By the axiom of choice, we can pick one element si ∈ Ui for

i ≤ K. Let Sr0ε0 = {si : i ≤ K} and it is easy to check that this Sr0ε0 satisfies all the

conditions in Definition 6.3.

It is easy to see that an essentially same but much simpler proof would work

when X is compact. �

For an (ε, r)-hyperfinite representation Srε , it is possible for Srε to contain every

element of X.

Lemma 6.7. Suppose our nonstandard model is more saturated than the cardinality

of X, then we can construct Srε so that X ⊂ Srε .

Proof. Let A = {Ui : i ≤ K} be the same object as in Theorem 6.6 and let

Srε = {si : i ≤ K} be a hyperfinite representation constructed from A. Let a={S:

S is a hyperfinite subset of ∗X with internal cardinality K}. Note that a is itself an

internal set. Pick x ∈ X and let φx(S) be the formula

(S ∈ a) ∧ ((∀s ∈ S)(∃!U ∈ A)(s ∈ U)) ∧ (x ∈ S). (6.4)

Consider the family F = {φx(S)|x ∈ X}, we now show that this family is finitely

satisfiable. Fix finitely many elements x1, ....xk from X, we define a function f

from Srε to ∗X as follows: For each i ≤ N , if {x1, ...xk} ∩ Ui = ∅ then f(si) = si. If

the intersection is nonempty, then {x1, ...xk} ∩ Ci = {x} for some x ∈ {x1, ...xk}.

In this case, we let f(si) = x. By the internal definition principle, such f is an

internal function and f(Srε ) is the realization of the formula φx1
(S) ∩ · · · ∩ φxk(S).

By saturation, there would be a S0 ∈ a satisfies all the formulas in F simultaneously.

This S0 is the desired set. �

Let (X,B[X], P ) be a Borel probability space satisfying the conditions of The-

orem 6.6 and let S be an (ε, r)-hyperfinite representation of ∗X. We now show
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that we can define an internal measure on (S, I(S)) such that the resulting internal

probability space is a good representation of (X,B[X], P ). Similar theorems have

been given assuming that X is merely Hausdorff [And82]. Here we assume X is a

metric space satisfying Heine-Borel conditions and as a consequence we will obtain

tighter control on the representation of (X,B[X], P ).

Before we introduce the main theorem of this section, we first quote the following

useful lemma by Anderson.

Lemma 6.8 ([ACH97, Thm 4.1]). Let (X,B[X], µ) be a σ-compact Borel probability

space. Then st is measure preserving from (∗X, ∗B[X], ∗µ) to (X,B[X], µ). That is,

we have µ(E) = ∗µ(st−1(E)) for all E ∈ B[X].

Proof. Let E ∈ B[X], ε ∈ R+ and choose K compact, U open with K ⊂ E ⊂ U

and µ(U) − µ(K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U , and

∗µ(∗U) − ∗µ(∗K) < ε. By Theorem 5.9, we have st−1(E) ∈ ∗B[X]. Since ε is

arbitrary, we have µ(E) = ∗µ(st−1(E)). �

The following two lemmas are crucial in the proof of the main theorem of this

section.

Lemma 6.9. Consider any (ε, r)-hyperfinite representation S of ∗X. Let F denote⋃
{B(s) : s ∈ st−1(E) ∩ S}. Then for any E ∈ B[X], we have st−1(E) = F

Proof. First we show that F ⊂ st−1(E). Let x ∈ F then x must lie in B(s0) for some

s0 ∈ st−1(E) ∩ S. Since s0 ∈ st−1(E), there exists a y ∈ E such that s0 ∈ µ(y). As

B(s0) has infinitesimal radius, B(s0) ⊂ µ(y). Hence x ∈ B(s0) ⊂ µ(y) ⊂ st−1(E).

Hence, F ⊂ st−1(E).

Now we show the reverse direction. Let x ∈ st−1(E) . Since
⋃
s∈S B(s) ⊃ NS(∗X),

x ∈ B(s0) for some s0 ∈ S. As x ∈ st−1(E), there exists a y ∈ E such that x ∈ µ(y).

This shows that s0 ∈ st−1(E)∩S which implies that x ∈ F , completing the proof. �

Before proving the next lemma, recall that L(A) denote the collection of univer-

sally Loeb measurable sets of the internal algebra A.
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Lemma 6.10. Let X be a metric space satisfying the Heine-Borel condition equipped

with Borel σ-algebra B[X]. Let S be a (ε, r)-hyperfinite representation of ∗X for

some positive infinitesimal ε. Then for any E ∈ B[X] we have

st−1(E) ∈ L(∗B[X]) and st−1(E) ∩ S ∈ L(I(S)). (6.5)

Proof. By Theorem 5.9, st−1(E) ∈ {A ∩ NS(∗X) : A ∈ L(∗B[X])}. As X is σ-

compact, by Lemma 5.5, we have NS(∗X) ∈ L(∗B[X]) hence st−1(E) ∈ L(∗B[X]).

Let P be any internal probability measure on (S, I(S)) Let P ′ be an internal

probability measure on (∗X, ∗B[X]) with P ′(B) = P (B ∩ S). As S is internal and

st−1(E) is universally Loeb measurable, we know that st−1(E)∩S ∈ ∗B[X]
P ′

where

∗B[X]
P ′

denotes the Loeb σ-algebra of ∗B[X] under P ′. Fix any ε > 0. We can

then find Ai, Ao ∈ ∗B[X] such that Ai ⊂ st−1(E) ∩ S ⊂ Ao and P ′(Ao \ Ai) < ε.

We thus have

P ′(Ao \Ai) = P ((Ao \Ai) ∩ S) = P ((Ao ∩ S) \ (Ai ∩ S)) < ε. (6.6)

As both Ai, Ao ∈ ∗B[X], we know that Ai ∩ S,Ao ∩ S ∈ I(S). Moreover, we have

Ai ∩ S ⊂ st−1(E) ∩ S ⊂ Ao ∩ S. Hence, by the construction of Loeb measure,

st−1(E) ∩ S is Loeb measurable with respect to P . As P is arbitrary, we know that

st−1(E) ∩ S ∈ L(I(S)). �

We are now at the place to prove the main theorem of this section.

Theorem 6.11. Let (X,B[X], P ) be a Borel probability space where X is a metric

space satisfying the Heine-Borel condition, and let (∗X, ∗B[X], ∗P ) be its nonstandard

extension. Then for every positive infinitesimal ε,every positive infinite r and every

(ε, r)-hyperfinite representation S of ∗X there exists an internal probability measure

P ′ on (S, I(S))

(1) P ′({s}) ≈ ∗P (B(s)).

(2) P (E) = P ′(st−1(E) ∩ S) for every E ∈ B[X].

where P ′ denotes the Loeb measure of P ′.
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Proof. Fix an infinitesimal ε ∈ ∗R+ and an positive infinite number r. Let S be

a (ε, r)-hyperfinite representation of ∗X and consider the hyperfinite measurable

space (S, I(S)). Let P ′({s}) =
∗P (B(s))

∗P (
⋃
s∈S B(s)) for every s ∈ S. It follows that

P ′ is internal because the map s 7→ P ′({s}) is internal. For any A ∈ I(S), let

P ′(A) =
∑
s∈A P

′({s}). Since
∑
s∈A

∗P (B(s)) = ∗P (
⋃
s∈S B(s)) by the hyperfinite

additivity of ∗P , it is easy to see that P ′ is an internal probability measure on

(S, I(S)).

As
⋃
s∈S B(s) ⊃ NS(∗X), by Lemma 6.8, we know that ∗P (

⋃
s∈S B(s)) ≈ 1.

Hence we have P ′({s}) ≈ ∗P (B(s)).

It remains to show that P (E) = P ′(st−1(E) ∩ S) for every E ∈ B[X]. As X

is a σ-compact Borel probability space, by Lemma 6.8 and Lemma 6.10, we have

P (E) = ∗P (st−1(E)). By Lemma 6.9, we then have

∗P (st−1(E)) = ∗P (
⋃
{B(s) : s ∈ st−1(E) ∩ S}). (6.7)

Consider any set Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S), then Ao is an internal subset of S

hence is hyperfinite. This means that
⋃
s∈Ao B(s) is a hyperfinite union of ∗Borel

sets hence is ∗Borel. Because st−1(E) ∩ S ⊂ Ao, we have

∗P (
⋃
{B(s) : s ∈ st−1(E) ∩ S}) ≤ ∗P (

⋃
s∈Ao

B(s)) = st(∗P (
⋃
s∈Ao

B(s))). (6.8)

As
⋃
s∈S B(s) ⊃ NS(∗X), by Lemma 6.8, we have ∗P (

⋃
s∈S B(s)) ≈ 1. Thus we

have

st(∗P (
⋃
s∈Ao

B(s))) = st(
∗P (

⋃
s∈Ao B(s))

∗P (
⋃
s∈S B(s))

) = st(P ′(Ao)) = P ′(Ao). (6.9)

Hence, for every set Ao ∈ I(S) such that Ao ⊃ st−1(E) ∩ S, we have

∗P (st−1(E)) = ∗P (
⋃
{B(s) : s ∈ st−1(E) ∩ S}) ≤ P ′(Ao). (6.10)
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This means that

∗P (st−1(E)) ≤ inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}. (6.11)

By a similar argument, we have

∗P (st−1(E)) ≥ sup{P ′(Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}. (6.12)

By Lemma 6.10, we have st−1(E) ∩ S ∈ I(S)L. Thus by the construction of Loeb

measure, we have

inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)} (6.13)

= sup{P ′(Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)} (6.14)

= P ′(st−1(E) ∩ S). (6.15)

Hence P (E) = ∗P (st−1(E)) = P ′(st−1(E) ∩ S) finishing the proof. �

From the above proof, we see that

∗P (st−1(E)) = inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)} (6.16)

= inf{st(
∗P (

⋃
s∈Ao B(s))

∗P (
⋃
s∈S B(s))

) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)} (6.17)

= inf{∗P (
⋃
s∈Ao

B(s)) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}. (6.18)

Similarly we have:

∗P (st−1(E)) = sup{∗P (
⋃
s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)} (6.19)

Note that if X is compact, then ∗P (
⋃
s∈S B(s)) = ∗P (∗X) = 1. Hence P ′({s}) =

∗P (B(s)) in Theorem 6.11. We no longer need to normalize the probability space

when X is compact.

We conclude this section by giving an explicit application of Theorem 6.11 to

Example 4.5.
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Example 6.12. Let µ be the Lebesgue measure on the unit interval [0, 1] restricted

to the Borel σ-algebra on [0, 1]. Let N be an infinite element in ∗N and let

Ω = { 1
N ,

2
N , . . . ,

N−1
N , 1}. Let µ′ be an internal probability measure on (Ω, I(Ω))

such that µ′({ω}) = 1
N for every ω ∈ Ω.

Theorem 6.13. For every Borel measurable set A, we have

µ(A) = µ′(st−1(A) ∩ Ω). (6.20)

Proof. Clearly Ω is a ( 1
N )-hyperfinite representation of ∗[0, 1]. For every ω ∈ Ω,

we have B(ω) = (ω − 1
N , ω] for ω 6= 1

N and B( 1
N ) = [0, 1

N ]. It is easy to see that

{B(ω) : ω ∈ Ω} covers ∗[0, 1] and µ′({ω}) = ∗µ(B(ω)) for every ω ∈ Ω. Thus, by

Theorem 6.11, we have µ(A) = µ′(st−1(A) ∩ Ω), completing the proof. �

7. General Hyperfinite Markov Processes

In this section, we introduce the concept of general hyperfinite Markov processes.

Intuitively, hyperfinite Markov processes behaves like finite Markov processes but

can be used to represent standard continuous time Markov processes under certain

conditions.

Definition 7.1. A general hyperfinite Markov chain is characterized by the following

four ingredients:

(1) A hyperfinite state space S ⊂ ∗X where X is a metric space satisfying the

Heine-Borel condition.

(2) A hyperfinite time line T = {0, δt, ....,K} where δt = 1
N ! for some N ∈ ∗N\N

and K ∈ ∗N \ N.

(3) A set {vi : i ∈ S} where each vi ≥ 0 and
∑
i∈S vi = 1.

(4) A set {pij}i,j∈S consisting of non-negative hyperreals with
∑
j∈S pij = 1 for

each i ∈ S
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Thus the state space S naturally inherits the ∗metric of ∗X. An element s ∈ S is

near-standard if it is near-standard in ∗X. The near-standard part of S, NS(S), is

defined to be NS(S) = NS(∗X) ∩ S.

Note that the time line T contains all the standard rational numbers but contains

no standard irrational number. However, for every standard irrational number r

there exists tr ∈ T such that tr ≈ r.

Intuitively, the {pij}i,j∈S refers to the internal probability of going from i to j at

time δt.

The following theorem shows the existence of hyperfinite Markov Processes.

Theorem 7.2. Given a non-empty hyperfinite state space S, a hyperfinite time

line T = {0, δt, ....,K}, {vi}i∈S and {pij}i,j∈S as in Definition 7.1. Then there

exists internal probability triple (Ω,A, P ) with an internal stochastic process {Xt}t∈T

defined on (Ω,A, P ) such that

P (X0 = i0, Xδt = iδt, ...Xt = it) = vi0pi0iδt ...pit−δtit (7.1)

for all t ∈ T and i0, ....it ∈ S.

Note that vi0pi0iδt ...pit−δtit is a product of hyperfinitely many hyperreal numbers.

It is well-defined by the transfer principle.

Proof. Let Ω={ω ∈ ST : ω is internal} which is the set of internal functions from T

to S. As both S and T are hyperfinite, Ω is hyperfinite. Let A be the set consisting

of all internal subsets of Ω. We now define the internal measure P on (Ω,A). For

every ω ∈ Ω, let

P (ω) = viω(0)
piω(0)iω(1)

· · · piω(K−δt)iω(K)
. (7.2)

For every A ∈ A, let P (A) =
∑
ω∈A P (ω). Let Xt(ω) = ω(t). It is easy to check

that (Ω,A, P ) and {Xt}t∈T satisfy the conditions of this theorem. �

We use (Ω,A, P ) to denote the Loeb extension of the internal probability triple

(Ω,A, P ) in Theorem 7.2. The construction of hyperfinite Markov processes is
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similar to the construction of finite state space discrete time Markov processes.

Unlike the construction of general Markov processes, we do not need to use the

Kolmogorov extension theorem.

We introduce the following definition.

Definition 7.3. For any i, j ∈ S and any t ∈ T , we define:

p
(t)
ij =

∑
ω∈M

P ({ω}|X0 = i) (7.3)

where M = {ω ∈ Ω : ω(0) = i ∧ ω(t) = j}.

It is easy to see that p
(δt)
ij = pij . For general t ∈ T , p

(t)
ij is the sum of

piiδtpiδti2δt · · · pit−δtj over all possible iδt, i2δt, . . . , it−δt in S. Intuitively, p
(t)
ij is

the internal probability of the chain reaches state j at time t provided that the

chain started at i. For any set A ∈ I(S), any i ∈ S and any t ∈ T , the internal

transition probability from x to A at time t is denoted by p
(t)
i (A) or p(t)(i, A). In

both cases, they are defined to be
∑
j∈A p

(t)
ij .

We are now at the place to show that the hyperfinite Markov chain is time-

homogeneous.

Lemma 7.4. For any t, k ∈ T and any i, j ∈ S, we have P (Xk+t = j|Xk = i) = p
(t)
ij

provided that P (Xk = i) > 0.

Proof. It is sufficient to show that P (Xk+δt = j|Xk = i) = pij since the general

case follows from a similar calculation.

P (Xk+δt = j|Xk = i) =
P (Xk+δt = j,Xk = i)

P (Xk = i)
(7.4)

=

∑
i0,iδt,...,ik−δt

vi0pi0iδt · · · pik−δtipij∑
i0,iδt,...,ik−δt

vi0pi0iδt · · · pik−δti
(7.5)

= pij . (7.6)

Hence we have the desired result. �
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We write Pi(Xt ∈ A) for P (Xt ∈ A|X0 = i). It is easy to see that p
(t)
i (A) =

Pi(Xt ∈ A). Note that for every i ∈ S and every t ∈ T , p
(t)
i (·) is an internal

probability measure on (S, I(S)). We use p
(t)
i to denote the Loeb extension of

this internal probability measure. For every A ∈ I(S), it is easy to see that

p
(t)
i (A) = P i(Xt ∈ A).

We are now at the place to define some basic concepts for Hyperfinite Markov

processes.

Definition 7.5. Let π be an internal probability measure on (S, I(S)). We call π

a weakly stationary if there exists an infinite t0 ∈ T such that for any t ≤ t0 and

any A ∈ I(S) we have π(A) ≈
∑
i∈S π({i})p(t)(i, A).

The definition of weakly stationary distribution is similar to the definition of

stationary distribution for discrete time finite Markov processes. However, we only

require π(A) ≈
∑
i∈S π({i})p(t)(i, A) for t no greater than some infinite t0 for weakly

stationary distributions. We use π to denote the Loeb extension of π.

Definition 7.6. A hyperfinite Markov chain is said to be strong regular if for any

A ∈ I(S), any i, j ∈ NS(S) and any non-infinitesimal t ∈ T we have

(i ≈ j) =⇒ (Pi(Xt ∈ A) ≈ Pj(Xt ∈ A)). (7.7)

One might wonder whether Pi(Xt ∈ A) ≈ Pj(Xt ∈ A) for infinitesimal t ∈ T .

This is generally not true.

Example 7.7. Let the time line T = {0, δt, 2δt, . . . ,K} for some infinitesimal δt

and some infinite K. Let the state space S = {−K√
δt
, . . . ,−

√
δt, 0,

√
δt, . . . , K√

δt
}. For

any i ∈ S, we have p(δt)(i, i +
√
δt) = 1

2 and pii−
√
δt = 1

2 . This is Anderson’s

construction of Brownian motion which motivates the study of infinitesimal stochastic

processes (see [And76]). It can also be viewed as a hyperfinite Markov process. As

the normal distributions with different means converge in total variational distance,

the hyperfinite Brownian motion is strong Feller. However, we have p(δt)(0,
√
δt) = 1

2

and p(δt)(
√
δt,
√
δt) = 0.
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For a general state space Markov processes, the transition probability to a specific

point is usually 0. For hyperfinite Markov process, under some conditions, we can

get infinitesimally close to a specific point with probability 1.

Lemma 7.8. Consider a hyperfinite Markov chain on a state space S and two

states i, j ∈ S, let {U
1
n
j : n ∈ N} be the collection of balls with radius 1

n around j.

Suppose ∀n ∈ N, we have P i({ω : (∃t ∈ NS(T ))(Xt(ω) ∈ U
1
n
j )}) = 1. Then for any

infinite s0 ∈ T , we have P i({ω : ∃t < s0Xt(ω) ≈ j}) = 1.

Proof. Pick any infinite s0 ∈ T and from the hypothesis we know that ∀n ∈ N,

Pi({ω : (∃t ≤ s0)(Xt ∈ U
1
n
j )}) > 1− 1

n .

Consider the set B = {n ∈ ∗N : Pi({ω : (∃t ≤ s0)(Xt ∈ U
1
n
j )}) > 1 − 1

n}, by

the internal definition principle, B is an internal set and contains N. By overspill,

B contains an infinite number in ∗N and we denote it by n0. Thus we have

Pi({ω : (∃t ≤ s0)(Xt ∈ U
1
n0
j )}) > 1− 1

n0
. Hence P i({ω : (∃t ≤ s0)(Xt ∈ U

1
n0
j )}) = 1.

The set {ω : (∃t ≤ s0)(Xt ≈ j)} is a superset of {ω : (∃t ≤ s0)(Xt ∈ U
1
n0
j )}. Since

the Loeb measure is complete we know that P i({ω : (∃t ≤ s0)(Xt ≈ j)}) = 1. �

.

In the study of standard Markov processes, it is sometimes useful to consider the

product of two i.i.d Markov processes. The similar idea can be applied to hyperfinite

Markov processes.

Definition 7.9. Let {Xt}t∈T be a hyperfinite Markov chain with internal transition

probability {pij}i,j∈S . Let {Yt}t∈T be a i.i.d copy of {Xt}. Then product chain Zt

is defined on the state space S × S with transition probability

{q(i,j),(k,l) = pikpjl}i,j,k,l∈S . (7.8)

Similarly q(i,j),(k,l) refers to the internal probability of going from point (i, j) to

point (k, l). The following lemma is an immediate consequence of this definition.
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Lemma 7.10. Let {Xt}t∈T , {Yt}t∈T and {Zt}t∈T be the same as in Definition 7.9.

Then for any t ∈ T ,any i, j ∈ S and any A,B ∈ I(S) we have q
(t)
(i,j)(A × B) =

p
(t)
i (A)p

(t)
j (B).

Proof. We prove this lemma by internal induction on T .

Fix any i, j ∈ S and any A,B ∈ I(S). We have

p
(δt)
i (A)p

(δt)
j (B) (7.9)

=
∑

(a,b)∈A×B

p
(δt)
i ({a})× p(δt)j ({b}) (7.10)

=
∑

(a,b)∈A×B

q
(δt)
(i,j)({(a, b)}) (7.11)

= q
(δt)
(i,j)(A×B). (7.12)

Hence we have shown the base case.

Suppose we know that the lemma is true for t = k. We now prove the lemma for

k + δt. Fix any i, j ∈ S and any A,B ∈ I(S). We have

p
(k+δt)
i (A)× p(k+δt)j (B) (7.13)

=
∑
s∈S

p
(δt)
i ({s})p(k)s (A)×

∑
s′∈S

p
(δt)
j ({s′})p(k)s′ (B) (7.14)

=
∑

(s,s′)∈S×S

p
(δt)
i ({s})p(δt)j ({s′})p(k)s (A)p

(k)
s′ (B) (7.15)

By induction hypothesis, this equals to:

∑
(s,s′)∈S×S

q
(δt)
(i,j)({(s, s

′)})q(k)(s,s′)(A×B) = q
(k+δt)
(i,j) (A×B). (7.16)

As all the parameters are internal, by internal induction principle we have shown

the result. �

Definition 7.11. Consider a hyperfinite Markov chain {Xt}t∈T and two near-

standard i, j ∈ S. A near-standard (x, y) ∈ S×S is called a near-standard absorbing

point with respect to i, j if P ′(i,j)((∃t ∈ NS(T ))(Zt ∈ U
1
n
x × U

1
n
y )) = 1 for all n ∈ N
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where P ′ denotes the internal probability measure of the product chain {Zt}t∈T

and U
1
n
x , U

1
n
y denote the open ball centered at x, y with radius 1

n ,respectively.

It is a natural to ask when a hyperfinite Markov chain has a near-standard

absorbing point. We start by introducing the following definitions.

Definition 7.12. For any A ∈ I(S), the stopping time τ(A) with respect to a

hyperfinite Markov chain {Xt}t∈T is defined to be τ(A) = min{t ∈ T : Xt ∈ A}.

Definition 7.13. A hyperfinite Markov chain {Xt}t∈T is productively near-standard

open set irreducible if for any i, j ∈ NS(S) and any near-standard open ball B with

non-infinitesimal radius we have P ′(i,j)(τ(B ×B) <∞) > 0 where P ′ denotes the

internal probability measure of the product chain {Zt}t∈T as in Definition 7.9.

Recall that the state space of {Xt}t∈T is a hyperfinite set S ⊂ ∗X where X is a

metric space satisfying the Heine-Borel condition. Let d denote the metric on X. A

near-standard open ball of S is an internal set taking the form {s ∈ S : ∗d(s, s0) < r}

for some near-standard point s0 ∈ S and some near-standard r ∈ ∗R.

Theorem 7.14. Let {Xt}t∈T be a hyperfinite Markov chain with weakly stationary

distribution π such that π(NS(S)) = 1. Suppose π × π is a weakly stationary

distribution for the product Markov process {Zt}t∈T . If {Xt}t∈T is productively

near-standard open set irreducible then for π × π almost all (i, j) ∈ S × S there

exists an near-standard absorbing point (i0, i0) for (i, j) as in Definition 7.11.

Before we prove this theorem, we first establish the following technical lemma.

Although this lemma takes place in the non-standard universe, the proof of this

lemma is similar to the proof of a similar standard result in [RR04].

Lemma 7.15 ([RR04, Lemma. 20]). Consider a general hyperfinite Markov chain on

a state space S, having a weakly stationary distribution π(·) such that π(NS(S)) = 1.

Suppose that for some internal A ⊂ S, we have P x(τ(A) <∞) > 0 for π almost all

x ∈ S. Then for π-almost-all x ∈ S, P x(τ(A) <∞) = 1.
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Proof. Suppose to the contrary that the conclusion does not hold. That means

π(x ∈ S : P x(τ(A) <∞) < 1) > 0.

Claim 7.16. There exist l ∈ N, δ ∈ R+ and internal set B ⊂ S with π(B) > 0

such that P x(τ(A) =∞,max{k ∈ T : Xk ∈ B} < l) ≥ δ for all x ∈ B.

Proof. As π(x ∈ S : P x(τ(A) =∞) > 0) > 0, This implies that there exist δ1 ∈ R+

and B1 ∈ F with π(B1) > 0 such that P x(τ(A) <∞) ≤ 1− δ1 for all x ∈ B1 where

F denote the Loeb extension of the internal algebra I(S) with respect to π. By the

construction of Loeb measure, we can assume that B1 is internal. On the other hand,

as P x(τ(A) <∞) > 0 for π almost surely x ∈ S, by countable additivity, we can find

l0 ∈ N and δ2 ∈ R+ and internal B2 ⊂ B1(again by the construction of Loeb measure)

with π(B2) > 0 such that ∀x ∈ B2, P x((∃t ≤ l0 ∧ t ∈ T )(Xt ∈ A)) ≥ δ2. Let

η = |{k ∈ N∪ {0} : (∃t ∈ T ∩ [k, k+ 1))(Xk ∈ B2)}|. Then for any r ∈ N and x ∈ S,

we have P x(τ(A) = ∞, η > r(l0 + 1)) ≤ P x(τ(A) = ∞|η > r(l0 + 1)) ≤ (1 − δ2)r.

In particular, P x(τ(A) =∞, η =∞) = 0.

Hence for x ∈ B2, we have

P x(τ(A) =∞, η <∞) (7.17)

= 1− P x(τ(A) =∞, η =∞)− P x(τ(A) <∞) (7.18)

≥ 1− 0− (1− δ1) = δ1. (7.19)

By countable additivity again there exist l ∈ N, δ ∈ R+ and B ⊂ B2 (again pick B to

be internal) with π(B) > 0 such that P x(τ(A) =∞,max{t ∈ T : Xt ∈ B2} < l) ≥ δ

for all x ∈ B. Finally as B ⊂ B2, we have

max{t ∈ T : Xt ∈ B2} ≥ max{t ∈ T : Xt ∈ B} (7.20)

establishing the claim. �
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Claim 7.17. Let B, l, δ be as in Claim 7.16. Let K ′ be the biggest hyperinteger

such that K ′l ≤ K where K is the last element in T . Let

s = max{k ∈ ∗N : (1 ≤ k ≤ K ′) ∧ (Xkl ∈ B)} (7.21)

and s = 0 if the set is empty. Then for all 1 ≤ r ≤ j ∈ N we have

∑
x∈S

π({x})Px(s = r,Xjl 6∈ A) ' st(π(B)δ). (7.22)

Proof. Pick any j ∈ N. we have

∑
x∈S

π({x})Px(s = r,Xjl 6∈ A) =
∑
x∈S

π({x})
∑
y∈B

Px(Xrl = y)Py(s = 0, X(j−r)l 6∈ A)

(7.23)

Note that τ(A) =∞ implies X(j−r)l 6∈ A and max{k ∈ T : Xk ∈ B} < l implies

that s = 0. As r, l ∈ N and π is a weakly stationary distribution, we have

∑
x∈S

π({x})
∑
y∈B

Px(Xrl = y)Py(s = 0, X(j−r)l 6∈ A) (7.24)

≥
∑
x∈S

π({x})
∑
y∈B

Px(Xrl = y)δ (7.25)

≈ π(B)δ. (7.26)

By the definition of standard part, it is easy to see that this claim holds. �
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Now we are at the position to prove the theorem. For all j ∈ N, by Claim 7.16,

we have

π(Ac) ≈
∑
x∈S

π({x})Px(Xjl ∈ Ac) (7.27)

=
∑
x∈S

π({x})Px(Xjl 6∈ A) (7.28)

≥
j∑
r=1

∑
x∈S

π({x})Px(s = r,Xjl 6∈ A) (7.29)

≥
j∑
r=1

st(π(B)δ). (7.30)

As π(B) > 0, so we can pick j ∈ N such that j > 1
st(π(B)δ) . This gives that π(Ac) > 1

which is a contradiction, proving the result. �

.

We are now at the place to prove Theorem 7.14.

proof of Theorem 7.14. Pick any near-standard i0 ∈ S. Recall that U
1
n
i0

denote the

open ball around i0 with radius 1
n . It is clear that U

1
n
i0
× U

1
n
i0
∈ I(S) × I(S). By

Definition 7.13, we have P ′(i,j)(τ(U
1
n
i0
× U

1
n
i0

) < ∞) > 0 for all n ∈ N and π × π

almost all (i, j) ∈ S×S. As π×π is a weakly stationary distribution, by Lemma 7.15,

we have P ′(i,j)(τ(U
1
n
i0
×U

1
n
i0

) <∞) = 1 for π′ almost surely (i, j) ∈ S × S and every

n ∈ N. By Definition 7.11, we know that (i0, i0) is a near-standard absorbing point

for π′ almost all (i, j) ∈ S × S. �

Note that this proof shows that every near-standard point (i, j) is a near-standard

absorbing point for π × π almost all (x, y) ∈ S × S.

In the statement of Theorem 7.14, we require π × π to be a weakly stationary

distribution of the product hyperfinite Markov chain {Zt}t∈T . Recall that t0 is an

infinite element in T such that π(A) ≈
∑
i∈S π({i})p(t)i (A) for all A ∈ I(S) and all

t ≤ t0.
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Lemma 7.18. Let π′ = π × π. For any A,B ∈ I(S) and any t ≤ t0, we have

π′(A × B) ≈
∑

(i,j)∈S×S π
′
(i,j)q

(t)
(i,j)(A × B) where q

(t)
(i,j)(A × B) denotes the t-step

transition probability from (i, j) to the set A×B.

Proof. Pick A,B ∈ I(S) and t ≤ t0. Then, by Definition 7.5 and Lemma 7.10, we

have

∑
(i,j)∈S×S

π′({(i, j)})q(t)(i,j)(A×B) (7.31)

=
∑

(i,j)∈S×S

π({i})π({j})p(t)i (A)p
(t)
j (B) (7.32)

= (
∑
i∈S

π({i})p(t)i (A))(
∑
j∈S

π({j})p(t)j (B)) (7.33)

≈ π(A)π(B) (7.34)

= π(A×B). (7.35)

�

However, we do not know whether π′ would always be a weakly stationary

distribution since I(S)× I(S) is a bigger σ-algebra than I(S)× I(S). This gives

rise to the following open questions.

Open Problem 1. Does there exists a π′ that fails to be a weakly stationary

distribution of the product hyperfinite Markov process {Zt}t∈T ?

It is natural to ask whether the product of two weakly stationary distributions

is a weakly stationary distribution for the product chain. More generally, suppose

P1, P2 are two internal probability measures on (Ω,A) with P1(A) ≈ P2(A) for all

A ∈ A, is it true that (P1 × P1)(B) ≈ (P2 × P2)(B) for all B ∈ A⊗A? The answer

to this question is affirmative by the result in [KS04] that the Loeb product space is

uniquely determined by its factor Loeb spaces.

We are now at the place to prove the hyperfinite Markov chain Ergodic theorem.
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Theorem 7.19. Consider a strongly regular hyperfinite Markov chain having a

weakly stationary distribution π such that π(NS(S)) = 1. Suppose for π × π almost

surely (i, j) ∈ S × S there exists a near-standard absorbing point (i0, i0) for (i, j).

Then there exists an infinite t0 ∈ T such that for π-almost every x ∈ S, any internal

set A, any infinite t ≤ t0 we have Px(Xt ∈ A) ≈ π(A).

Proof. Let {Xt}t∈T be such a hyperfinite Markov chain with internal transition prob-

ability {p(t)ij }i,j∈S,t∈T . Let {Yt}t∈T be a i.i.d copy of {Xt}t∈T and let {Zt}t∈T denote

the product hyperfinite Markov chain. We use P ′ and P ′ to denote the internal

probability and Loeb probability of {Zt}t∈T . Let π′({(i, j)}) = π({i})π({j}).

By the assumption of the theorem, we know that for π′ almost surely (i, j) ∈ S×S

there exists a near-standard absorbing point (i0, i0) for (i, j). As π(NS(S)) = 1,

both i, j can be taken to be near-standard points. Pick an infinite t0 ∈ T such

that π(A) ≈
∑
i∈S π({i})Pi(Xt ∈ A) for all t ≤ t0 and all internal sets A ⊂ S.

Now fix some internal set A and some infinite time t1 ≤ t0. Let M denote the set

{ω : ∃t < t1 − 1, Xs(ω) ≈ Ys(ω) ≈ i0}. By Definition 7.11, we know that for π′

almost surely (i, j) ∈ S × S and any n ∈ N we have

P ′(i,j)((∃t ∈ NS(T ))(Zt ∈ U
1
n
i0
× U

1
n
i0

)) = 1. (7.36)

By Lemma 7.8, we know that for π′ almost surely (i, j) ∈ S×S we have P ′(i,j)(M) =

1. Thus by strongly regularity of the chain, we know that for π′ almost surely

(i, j) ∈ S × S:

|P i(Xt1 ∈ A)− P j(Xt1 ∈ A)| (7.37)

= |P ′(i,j)(Xt1 ∈ A)− P ′(i,j)(Yt1 ∈ A)| (7.38)

= |P ′(i,j)((Xt1 ∈ A) ∩M c)− P ′(i,j)((Yt1 ∈ A) ∩M c)| (7.39)

≤ P ′(i,j)(M c) = 0 (7.40)



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 63

To see Eq. (7.39), note that |P ′(i,j)((Xt1 ∈ A)∩M)−P ′(i,j)((Yt1 ∈ A)∩M)| = 0 since

{Xt}t∈T is strong regular. Hence we know that for π′ almost surely (i, j) ∈ S × S

we have |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≈ 0.

Let the set F = {(i, j) ∈ S × S : |Pi(Xt1 ∈ A) − Pj(Xt1 ∈ A)| ≈ 0}. We know

that π′(F ) = 1. For each i ∈ S, define Fi = {j ∈ S : (i, j) ∈ F}.

Claim 7.20. For π almost surely i ∈ S, π(Fi) = 1.

Proof. Note that π′ = π × π and is defined on all I(S × S). Fix some n ∈ N. Let

Fn = {(i, j) ∈ S × S : |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≤ 1

n
}. (7.41)

For each i ∈ S, let Fni = {j ∈ S : (i, j) ∈ Fn}. Note that both Fn and Fni are

internal sets. Moreover, as Fn ⊃ F , we know that π′(Fn) = 1. We will show that, for

π almost surely i ∈ S, Fni has π measure 1. Let En = {i ∈ S : (∃j ∈ S)((i, j) ∈ Fn)}.

By the internal definition principle, En is an internal set. We first show that

π(En) = 1. Suppose not, then there exist a positive ε ∈ R such that st(π(En)) ≤ 1−ε.

As Fn ⊂ En × S, we have

π′(Fn) = π(En)× π(S) ≤ 1− ε (7.42)

Contradicting the fact that π′(Fn) = 1.

Now suppose that there exists a set with positive π measure such that π(Fni ) < 1

for every i from this set. By countable additivity and the fact that π(En) = 1, there

exist positive ε1, ε2 ∈ R and an internal set Dn ⊂ En such that π(Dn) = ε1 and

π(Fni ) < 1− ε2 for all i ∈ Dn. As each Fni is internal, the collection {Fni : i ∈ Dn}

is internal. Then the set A =
⋃
i∈Dn{i} × Fni is internal. Thus we have

π′(Fn) ≤ π′(Fn ∪A) = π′(Fn \A) + π′(A). (7.43)
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Note that

π′(Fn \A) ≤ π′((En \Dn)× S) ≤ π′((S \Dn)× S) ≤ 1− ε1 (7.44)

π′(A) = st(π(A)) = st(
∑
i∈Dn

π({i})π(Fni )) ≤ st(
∑
i∈Dn

π({i})(1− ε2)) = ε1(1− ε2).

(7.45)

In conclusion, π′(Fn) = π′(Fn\A)+π′(A) ≤ (1−ε1)+ε1(1−ε2) < 1. A contradiction.

Hence, for every n ∈ N, there exists a Bn with π(Bn) = 1 such that π(Fni ) = 1 for

every i ∈ Bn. Without loss of generality, we can assume {Bn}n∈N is a decreasing

sequence of sets. Thus, we have π(
⋂
n∈NBn) = 1. For every i ∈

⋂
n∈NBn, we know

that π(
⋂
n∈N F

n
i ) = 1. As

⋂
n∈N F

n
i = Fi, we have the desired result. �

Thus we have

|Pi(Xt1 ∈ A)− π(A)| ≈ |
∑
j∈S

π({j})(Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A))| (7.46)

≤
∑
j∈S

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|. (7.47)

Recall that Fi = {j ∈ S : |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≈ 0}. By the previous claim,

for π almost all i we have π(Fi) = 1. Pick some arbitrary positive ε ∈ R+, we can

find an internal F ′i ⊂ Fi such that π(F ′i ) > 1− ε. Now for π almost all i we have

∑
j∈S

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| (7.48)

=
∑

j∈S\F ′i

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|+
∑
j∈F ′i

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|

(7.49)

The first part of the last equation is less than ε and the second part is infinitesimal.

Thus we have
∑
j∈S π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| / ε. As ε is arbitrary, we

know that
∑
j∈S π({j})|Pi(Xt1 ∈ A)−Pj(Xt1 ∈ A)| is infinitesimal. Hence we know

that for π almost all i ∈ S we have |Pi(Xt1 ∈ A)− π(A)| ≈ 0. As t1 is arbitrary, we

have the desired result. �
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An immediate consequence of this theorem is the following result.

Corollary 7.21. Consider a strongly regular hyperfinite Markov chain having a

weakly stationary distribution π such that π(NS(S)) = 1. Suppose {Xt}t∈T is

productively near-standard open set irreducible and π × π is a weakly stationary

distribution of the product hyperfinite Markov chain {Zt}t∈T . Then there exists an

infinite t0 ∈ T such that for π-almost every x ∈ S, any internal set A, any infinite

t ≤ t0 we have Px(Xt ∈ A) ≈ π(A).

Proof. The proof follows immediately from Theorems 7.14 and 7.19. �

It follows immediately from the construction of Loeb measure that for any internal

A ⊂ S, we have P x(Xt ∈ A) = π(A) for any infinite t ≤ t0. We can extend this

result to all universally Loeb measurable sets.

Lemma 7.22. Let L(I(S)) denote the collection of all universally Loeb measurable

sets (see Definition 5.8). Under the same assumptions of Theorem 7.19. For every

B ∈ L(I(S)), every infinite t ≤ t0 we have P x(Xt ∈ B) = π(B) for π-almost every

x ∈ S.

Proof. The proof follows directly from the construction of Loeb measures. �

As X is a metric space satisfying the Heine-Borel condition, we always have

st−1(E) ∈ L(I(S)) for every E ∈ B[X].

We now show that we can actually obtain a stronger type of convergence than in

Theorem 7.19 and Corollary 7.21.

Definition 7.23. Given two hyperfinite probability spaces (S, I(S), P1) and (S, I(S), P2),

the total variation distance is defined to be

‖ P1(·)− P2(·) ‖= sup
A∈I(S)

|P1(A)− P2(A)|. (7.50)

Lemma 7.24. We have

‖ P1(·)− P2(·) ‖≥ sup
f :S→∗[0,1]

|
∑
i∈S

P1({i})f(i)−
∑
i∈S

P2({i})f(i)|. (7.51)



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 66

The sup is taken over all internal functions.

Proof. |
∑
i∈S P1(i)f(i) −

∑
i∈S P2(i)f(i)| = |

∑
i∈S f(i)(P1(i) − P2(i))|. This is

maximized at f(i) = 1 for P1 > P2 and f(i) = 0 for P1 ≤ P2 (or vice versa). Note

that such f is an internal function. Thus we have |
∑
i∈S f(i)(P1(i) − P2(i))| ≤

|P1(A)− P2(A)| for A = {i ∈ S : P1(i) > P2(i)} (or {i ∈ S : P1(i) ≤ P2(i)}). This

establishes the desired result. �

Consider the general hyperfinite Markov chain, for any fixed x ∈ S and any t ∈ T

it is natural to consider the total variation distance ‖ p(t)x (·)−π(·) ‖. Just as standard

Markov chains, we can show that the total variation distance is non-increasing.

Lemma 7.25. Consider a general hyperfinite Markov chain with weakly stationary

distribution π. Then for any x ∈ S and any t1, t2 ∈ T such that t1 + t2 ∈ T , we

have ‖ p(t1)x (·)− π(·) ‖'‖ p(t1+t2)x (·)− π(·) ‖

Proof. Pick t1, t2 ∈ T such that t1 + t2 ∈ T and any internal set A ⊂ S. Then we

have |p(t1+t2)x (A)− π(A)| ≈ |
∑
y∈S p

(t1)
xy p

(t2)
y (A)−

∑
y∈S π(y)p

(t2)
y (A)|. Let f(y) =

p
(t2)
y (A). By the internal definition principle, we know that p

(t2)
y (A) is an internal

function. By the previous lemma we know that

|p(t1+t2)x (A)− π(A)| /‖ p(t1)x (·)− π(·) ‖ . (7.52)

Since this is true for all internal A, we have shown the lemma. �

We conclude this section by introducing the following theorem which gives a

stronger convergence result compared with Theorem 7.19 and Corollary 7.21.

Theorem 7.26. Under the same hypotheses in Theorem 7.19. For π almost every

s ∈ NS(S), the sequence {supB∈L(I(S)) |P s(Xt ∈ B)− π(B)| : t ∈ NS(T )} converges

to 0.
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Proof. We need to show that for any positive ε ∈ R there exists a t1 ∈ NS(T ) such

that for every t ≥ t1 we have

sup
B∈L(I(S))

|P s(Xt ∈ B)− π(B)| < ε. (7.53)

Pick any real ε > 0, by Theorem 7.19, we know that for any infinite t ≤ t0

we have ‖ p(t)s (·) − π(·) ‖< ε
2 . By underspill, there exist a t1 ∈ NS(T ) such

that ‖ p(t1)s (·) − π(·) ‖< ε
2 . Fix any t2 ≥ t1. Then by Lemma 7.25 we have

‖ p(t2)s (·) − π(·) ‖< ε. Now fix any internal set A ⊂ S. By the definition of

total variation distance, we have |Ps(Xt2 ∈ A) − π(A)| < ε. This implies that

|P s(Xt2 ∈ A)− π(A)| ≤ ε for all A ∈ I(S). For external B ∈ L(I(S)), we have

P s(Xt2 ∈ B) = sup{P s(Xt2 ∈ Ai) : Ai ⊂ B,Ai ∈ I(S)} (7.54)

π(B) = sup{π(Ai) : Ai ⊂ B,Ai ∈ I(S)} (7.55)

hence we have |P (t2)

s (B)− π(B)| ≤ ε for all B ∈ L(I(S)). Thus we have the desired

result. �

As st−1(E) ∈ L(I(S)) for all E ∈ B[X], we have

lim
t→∞
{ sup
E∈B[X]

|P (t)

x (st−1(E))− π(st−1(E))| : t ∈ NS(T )} = 0. (7.56)

Note that the statement of Theorem 7.26 is very similar to the statement of the

standard Markov chain Ergodic theorem. We will use this theorem in later sections

to establish the standard Markov chain Ergodic theorem.

8. Hyperfinite Representation for Discrete-time Markov Processes

As one can see from Section 7, hyperfinite Markov processes behave like discrete-

time finite state space Markov processes in many ways. Discrete-time finite state

space Markov processes are well-understood and easy to work with. This makes

hyperfinite Markov processes easy to work with. Thus it is desirable to construct a

hyperfinite Markov process for every standard Markov process. In this section, we
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illustrate this idea by constructing a hyperfinite Markov process for every discrete-

time general state space Markov process. Such hyperfinite Markov process is called

a hyperfinite representation of the standard Markov process. For continuous-time

general state space Markov processes, such construction will be done in the next

section.

We start by establishing some basic properties of general Markov processes. Note

that we establish these properties for general state space continuous time Markov

processes. It is easy to see that these properties also hold for discrete-time general

state space Markov processes.

8.1. General properties of the transition probability. Consider a Markov

chain {Xt}t≥0 on (X,B[X]) where X is a metric space satisfying the Heine-Borel

condition. Note that X is then a σ-compact complete metric space. We shall denote

the transition probability of {Xt}t≥0 by

{P (t)
x (A) : x ∈ X, t ∈ R+, A ∈ B[X]}. (8.1)

Once again P
(t)
x (A) refers to the probability of going from x to set A at time

t. For each fixed x ∈ X, t ≥ 0, we know that P
(t)
x (·) is a probability measure

on (X,B[X]). It is sometimes desirable to treat the transition probability as a

function of three variables. Namely, we define a function g : X ×R+×B[X] 7→ [0, 1]

by g(x, t, A) = P
(t)
x (A). We will use these to notations of transition probability

interchangeably.

The nonstandard extension of g is then a function from ∗X × ∗R+ × ∗B[X] to

∗[0, 1].

Lemma 8.1. For any given x ∈ ∗X, any t ∈ ∗R+, ∗g(x, t, .) is an internal finitely-

additive probability measure on (∗X, ∗B[X]).

Proof. : Clearly ∗X is internal and ∗B[X] is an internal algebra. The following

sentence is clearly true:
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(∀x ∈ X)(∀t ∈ R)(g(x, t, ∅) = 0∧g(x, t,X) = 1∧((∀A,B ∈ B[X])(g(x, t, A∪B) =

g(x, t, A) + g(x, t, B)− g(x, t, A ∩B)))).

By the transfer principle and the definition of internal probability space, we have

the desired result. �

Recall that for every fixed A ∈ B[X] and any t ≥ 0, we require that P
(t)
x (A) is a

measurable function from X to [0, 1]. This gives rise to the following lemma.

Lemma 8.2. For each fixed A ∈ ∗B[X] and time point t ∈ ∗R+, ∗g(x, t, A) is a

∗-Borel measurable function from ∗X to ∗[0, 1].

Proof. We know that ∀A ∈ B[X] ∀t ∈ R+ ∀B ∈ B[[0, 1]] {x : g(x, t, A) ∈ B} ∈ B[X].

By the transfer principle, we get the desired result. �

For every x ∈ ∗X and t ∈ ∗R+, we use ∗P
(t)

x (·) or ∗g(x, t, ·) to denote the Loeb

measure with respect to the internal probability measure ∗g(x, t, .).

We now investigate some properties of the internal function ∗g. We first introduce

the following definition.

Definition 8.3. For any A,B ∈ B[X], any k1, k2 ∈ R+ and any x ∈ X, let

f
(k1,k2)
x (A,B) be Px(Xk1+k2 ∈ B|Xk1 ∈ A) when P

(k1)
x (A) > 0 and let f

(k1,k2)
x (A,B) =

1 otherwise.

Intuitively, f
(k1,k2)
x (A,B) denotes the probability that {Xt}t≥0 reaches set B at

time k1+k2 conditioned on the chain reaching set A at time k1 had the chain started

at x. For every x ∈ X, every k1, k2 ∈ R+ and every A ∈ B[X] it is easy to see

that f
(k1,k2)
x (A, .) is a probability measure on (X,B[X]) provided that P

(k1)
x (A) > 0.

For those A such that P
(k1)
x (A) > 0, by the definition of conditional probability,

we know that f
(k1,k2)
x (A,B) =

Px(Xk1+k2
∈B∧Xk1∈A)

P
(k1)
x (A)

. We can view f as a function

from X × R+ × R+ × B[X] × B[X] to [0, 1]. By the transfer principle, we know

that ∗f is an internal function from ∗X × ∗R+ × ∗R+ × ∗B[X] × ∗B[X] to ∗[0, 1].

Moreover, ∗f (k1,k2)x (A, .) is an internal probability measure on (∗X, ∗B[X]) provided

that ∗g(x, k1, A) > 0.
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We first establish the following standard result of the functions g and f .

Lemma 8.4. Consider any k1, k2 ∈ R+, any x ∈ X and any two sets A,B ∈ B[X]

such that g(x, k1, A) > 0 . If there exists an ε > 0 such that for any two points

x1, x2 ∈ A we have |g(x1, k2, B) − g(x2, k2, B)| ≤ ε, then for any point y ∈ A we

have |g(y, k2, B)− f (k1,k2)x (A,B)| ≤ ε.

Proof. Since g(x, k1, A) > 0, we have

f (k1,k2)x (A,B) =
Px(Xk1+k2 ∈ B,Xk1 ∈ A)

Px(Xk1 ∈ A)
=

∫
A
g(s, k2, B)g(x, k1,ds)

g(x, k1, A)
. (8.2)

For any y ∈ A, we have

|g(y, k2, B)− f (k1,k2)x (A,B)| =
∫
A
|g(y, k2, B)− g(s, k2, B)|g(x, k1.ds)

g(x, k1, A)
. (8.3)

As |g(x1, k2, B)− g(x2, k2, B)| ≤ ε for any x1, x2 ∈ A, we have∫
A
|g(y, k2, B)− g(s, k2, B)|g(x, k1.ds)

g(x, k1, A)
≤ ε · g(x, k1, A)

g(x, k1, A)
= ε. (8.4)

�

Intuitively, this lemma means that if the probability of going from any two

different points from A to B are similar then it does not matter much which point

in A do we start.

Transferring Lemma 8.4, we obtain the following lemma

Lemma 8.5. Consider any k1, k2 ∈ ∗R+, any x ∈ ∗X and any two internal sets

A,B ∈ ∗B[X] such that g(x, k1, A) > 0. If there exists a positive ε ∈ ∗R such that

for any two points x1, x2 ∈ A we have |∗g(x1, k2, B)− ∗g(x2, k2, B)| ≤ ε, then for

any point y ∈ A we have |∗g(y, k2, B)− ∗f (k1,k2)x (A,B)| ≤ ε.

In particular, if |∗g(x1, k2, B)− ∗g(x2, k2, B)| ≈ 0 for all x1, x2 in some A then

we have |∗g(y, k2, B) − ∗f (k1,k2)x (A,B)| ≈ 0 for all y ∈ A. It is easy to see that

Lemmas 8.4 and 8.5 hold for discrete-time Markov processes. We simply restrict
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to k1, k2 in N or ∗N,respectively. When k1 = 1 and the context is clear, we write

f
(k2)
x (A,B) instead of f

(k1,k2)
x (A,B).

8.2. Hyperfinite Representation for Discrete-time Markov Processes. In

this section, we consider a discrete-time general state space Markov process {Xt}t∈N

with a metric state space X satisfying the Heine-Borel condition. Let {Px(.)}x∈X

denote the one-step transition probability of {Xt}t∈N. The probability Px(A) refers

to the probability of going from x to A in one step. For general n-step transition

probability P
(n)
x (A), we view it as a function g : X × N× B[X] 7→ [0, 1] in a same

way as in last section. The nonstandard extension ∗g is an internal function from

∗X×∗N×∗B[X] to ∗[0, 1]. We start by making the following assumption on {Xt}t∈N.

Condition DSF. A discrete-time Markov process {Xt}t∈N is called strong Feller

if for every x ∈ X and every ε > 0 there exists δ > 0 such that

(∀x1 ∈ X)(|x1 − x| < δ =⇒ ((∀A ∈ B[X])|Px1
(A)− Px(A)| < ε)). (8.5)

We quote the following lemma regarding total variation distance. This lemma is

the “standard counterpart” of Lemma 7.24.

Lemma 8.6 ([RR04]). Let ν1, ν2 be two different probability measures on some

space (X,F) and let ‖ ν1 − ν2 ‖ denote the total variation distance between ν1, ν2.

Then ‖ ν1 − ν2 ‖= supf :X→[0,1] |
∫
fdν1 −

∫
fdν2| where f is measurable.

An immediate consequence of Lemma 8.6 is the following result which can be

viewed as a discrete-time counterpart of Lemma 7.25.

Lemma 8.7. Consider the discrete-time Markov process {Xt}t∈N with state space

X. For every ε > 0, every x1, x2 ∈ X and every positive k ∈ N we have

((∀A ∈ B[X])(|P (k)
x1

(A)− P (k)
x2

(A)| ≤ ε)) =⇒ ((∀A ∈ B[X])(|P (k+1)
x1

(A)− P (k+1)
x2

(A)| ≤ ε)).

(8.6)
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Proof. : Pick any arbitrary ε > 0, any x1, x2 ∈ X and any k ∈ N. We have

sup
A∈B[X]

{|P (k+1)
x1

(A)− P (k+1)
x2

(A)|} (8.7)

= sup
A∈B[X]

{|
∫
y∈X

Py(A)P (k)
x1

(dy)−
∫
y∈X

Py(A)P (k)
x2

(dy)|} (8.8)

≤‖ P (k)
x1

(·)− P (k)
x2

(·) ‖≤ ε. (8.9)

Thus we have proved the result. �

By the transfer principle and (DSF), we have the following result.

Lemma 8.8. Suppose {Xt}t∈N satisfies (DSF). Let x1 ≈ x2 ∈ NS(∗X). Then for

every positive k ∈ N and every A ∈ ∗B[X] we have ∗g(x1, k, A) ≈ ∗g(x2, k, A).

Proof. Fix x1, x2 ∈ NS(∗X). We first prove the result for k = 1. Let x0 = st(x1) =

st(x2) and let ε be any positive real number. By (DSF) and the transfer principle,

we know that there exists δ ∈ R+ such that

(∀x ∈ ∗X)(|x− x0| < δ =⇒ ((∀A ∈ ∗B[X])|∗g(x, 1, A)− ∗g(x0, 1, A)| < ε))

(8.10)

As x1 ≈ x2 ≈ x0 and ε is arbitrary, we know that ∗g(x1, 1, A) ≈ ∗g(x0, 1, A) ≈
∗g(x2, 1, A) for all A ∈ ∗B[X].

We now prove the lemma for all k ∈ N. Again fix some ε ∈ R+. We know that

(∀A ∈ ∗B[X])(|∗g(x1, 1, A)− ∗g(x2, 1, A)| < ε). (8.11)

By the transfer of Lemma 8.7, we know that for every k ∈ N we have

(∀A ∈ ∗B[X])(|∗g(x1, k, A)− ∗g(x2, k, A)| < ε). (8.12)

As ε is arbitrary, we have the desired result. �

We are now at the place to construct a hyperfinite Markov process {X ′t}t∈N which

represents our standard Markov process {Xt}t∈N. Our first task is to specify the
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state space of {X ′t}t∈N. Pick any positive infinitesimal δ and any positive infinite

number r. Our state space S for {X ′t}t∈N is simply a (δ, r)-hyperfinite representation

of ∗X. The following properties of S will be used later.

(1) For each s ∈ S, there exists a B(s) ∈ ∗B[X] with diameter no greater than

δ containing s such that B(s1) ∩B(s2) = ∅ for any two different s1, s2 ∈ S.

(2) NS(∗X) ⊂
⋃
s∈S B(s).

For every x ∈ ∗X, we know that ∗g(x, 1, .) is an internal probability measure on

(∗X, ∗B[X]). When X is non-compact,
⋃
s∈S B(s) 6= ∗X. We can truncate ∗g to an

internal probability measure on
⋃
s∈S B(s).

Definition 8.9. For i ∈ {0, 1}, let g′(x, i, A) :
⋃
s∈S B(s)×∗B[X]→ ∗[0, 1] be given

by:

g′(x, i, A) = ∗g(x, i, A ∩
⋃
s∈S

B(s)) + δx(A)∗g(x, i, ∗X \
⋃
s∈S

B(s)). (8.13)

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

Intuitively, this means that if our ∗Markov chain is trying to reach ∗X \
⋃
s∈S B(s)

then we would force it to stay at where it is. For any x ∈
⋃
s∈S B(s) and any

A ∈ ∗B[X], it is easy to see that g′(x, 0, A) = 1 if x ∈ A and equals to 0 otherwise.

Clearly, g′(x, 0, .) is an internal probability measure for every x ∈
⋃
s∈S B(s).

We first show that g′ is a valid internal probability measure.

Lemma 8.10. Let B[
⋃
s∈S B(s)] = {A ∩

⋃
s∈S B(s) : A ∈ ∗B[X]}. Then for

any x ∈
⋃
s∈S B(s), the triple (

⋃
s∈S B(s),B[

⋃
s∈S B(s)], g′(x, 1, .)) is an internal

probability space.

Proof. Fix x ∈
⋃
s∈S B(s). We only need to show that g′(x, 1, .) is an internal

probability measure on (
⋃
s∈S B(s),B[

⋃
s∈S B(s)]).
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By definition, it is clear that g′(x, 1, ∅) = 0 and g′(x, 1,
⋃
s∈S B(s)) = 1. Consider

two disjoint A,B ∈ B[
⋃
s∈S B(s)], we have:

g′(x, 1, A ∪B) (8.14)

= ∗g(x, 1, A ∪B) + δx(A ∪B)∗g(x, 1, ∗X \
⋃
s∈S

B(s)) (8.15)

= ∗g(x, 1, A) + δx(A)∗g(x, 1, ∗X \
⋃
s∈S

B(s)) + ∗g(x, 1, B) + δx(B)∗g(x, 1, ∗X \
⋃
s∈S

B(s))

(8.16)

= g′(x, 1, A) + g′(x, 1, B). (8.17)

Thus we have the desired result. �

In fact, for x ∈ NS(∗X) = st−1(X), the probability of escaping to infinity is

always infinitesimal.

Lemma 8.11. Suppose {Xt}t∈N satisfies (DSF). Then for any x ∈ NS(∗X) and

any t ∈ N, we have ∗g(x, t, st−1(X)) = 1.

Proof. Pick a x ∈ NS(∗X) and some t ∈ N. Let x0 = st(x). By Lemma 8.8, we know

that ∗g(x, t, A) ≈ ∗g(x0, t, A) for every A ∈ ∗B[X]. Thus we have ∗g(x, t, st−1(X)) =

∗g(x0, t, st
−1(X)) = 1, completing the proof. �

We now define the hyperfinite Markov chain {X ′t}t∈N on (S, I(S)) from {Xt}t∈N by

specifying its “one-step” transition probability. For i, j ∈ S let G
(0)
ij = g′(i, 0, B(j))

and Gij = g′(i, 1, B(j)). Intuitively, Gij refers to the probability of going from i to

j in one step. For any internal set A ⊂ S and any i ∈ S, Gi(A) =
∑
j∈AGij . Then

{X ′t}t∈N is the hyperfinite Markov chain on (S, I(S)) with “one-step” transition

probability {Gij}i,j∈S . We first verify that Gi(·) is an internal probability measure

on (S, I(S)) for every i ∈ S.

Lemma 8.12. For every i ∈ S, Gi(·) and G
(0)
i (·) are internal probability measure

on (S, I(S)).
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Proof. Clearly G
(0)
i (A) = 1 if i ∈ A and G

(0)
i (A) = 0 otherwise. Thus G

(0)
i (·) is an

internal probability measure on (S,S).

Now consider Gi(·). By definition, it is clear that

Gi(∅) = g′(i, 1, ∅) = 0 (8.18)

Gi(S) = g′(i, 1,
⋃
s∈S

B(s)) = ∗g(i, 1,
⋃
s∈S

B(s)) + δi(
⋃
s∈S

B(s))∗g(i, 1, ∗X \
⋃
s∈S

B(s)) = 1.

(8.19)

For hyperfinite additivity, it is sufficient to note that for any two internal sets

A,B ⊂ S and any i ∈ S we have Gi(A ∪B) =
∑
j∈A∪B Gij = Gi(A) +Gi(B). �

We use G
(t)
i (·) to denote the t-step transition probability of {X ′t}t∈N. Note that

G
(t)
i (·) is purely determined from the “one-step” transition matrix {Gij}i,j∈S . We

now show that G
(t)
i (·) is an internal probability measure on (S, I(S)).

Lemma 8.13. For any i ∈ S and any t ∈ N, G
(t)
i (·) is an internal probability

measure on (S, I(S)).

Proof. We will prove this by internal induction on t.

For t equals to 0 or 1, we already have the results by Lemma 8.12.

Suppose the result is true for t = t0. We now show that it is true for t = t0 + 1.

Fix any i ∈ S. For all A ∈ I(S) we have G
(t0+1)
i (A) =

∑
j∈S GijG

(t0)
j (A). Thus

we have G
(t0+1)
i (∅) =

∑
j∈S GijG

(t0)
j (∅) = 0. Similarly we have G

(t0+1)
i (S) =∑

j∈S GijG
(t0)
j (S) = 1. Pick any two disjoint sets A,B ∈ I(S). We have:

G
(t0+1)
i (A ∪B) =

∑
j∈S

Gij(G
(t0)
j (A) +G

(t0)
j (B)) = G

(t0+1)
j (A) +G

(t0+1)
j (B).

(8.20)

Hence G
(t0+1)
i (·) is an internal probability measure on (S, I(S)). Thus by internal

induction, we have the desired result. �

The following lemma establishes the link between ∗transition probability and the

internal transition probability of {X ′t}t∈N.
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Theorem 8.14. Suppose {Xt}t∈N satisfies (DSF). Then for any n ∈ N, any

x ∈ NS(S) and any A ∈ ∗B[X], ∗g(x, n,
⋃
s∈A∩S B(s)) ≈ G(n)

x (A ∩ S).

Proof. We prove the theorem by induction on n ∈ N.

Let n = 1. Fix any x ∈ NS(∗X) ∩ S and any A ∈ ∗B[X]. We have

Gx(A ∩ S) (8.21)

= g′(x, 1,
⋃

s∈A∩S
B(s)) (8.22)

= ∗g(x, 1,
⋃

s∈A∩S
B(s)) + δx(

⋃
s∈A∩S

B(s))∗g(x, 1, ∗X \
⋃
s∈S

B(s)) (8.23)

≈ ∗g(x, 1,
⋃

s∈A∩S
B(s)) (8.24)

where the last ≈ follows from Lemma 8.11.

We now prove the general case. Fix any x ∈ NS(∗X) ∩ S and any A ∈ ∗B[X].

Assume the theorem is true for t = k and we will show the result holds for t = k+ 1.

We have

∗g(x, k + 1,
⋃

s′∈A∩S
B(s′)) (8.25)

= (
∑
s∈S

∗g(x, 1, B(s))∗f (k)x (B(s),
⋃

s′∈A∩S
B(s′)) + ∗g(x, 1, ∗X \

⋃
s∈S

B(s))∗f (k)x (∗X \
⋃
s∈S

B(s),
⋃

s′∈A∩S
B(s′))

(8.26)

≈
∑
s∈S

∗g(x, 1, B(s))∗f (k)x (B(s),
⋃

s′∈A∩S
B(s′)). (8.27)

where the last ≈ follows from Lemma 8.11.

By Lemmas 8.5 and 8.8, we have ∗f (k)x (B(s),
⋃
s′∈A∩S B(s′)) ≈ ∗g(s, k,

⋃
s′∈A∩S B(s′)).

Thus we have

∑
s∈S

∗g(x, 1, B(s))∗f (k)x (B(s),
⋃

s′∈A∩S
B(s′)) ≈

∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)).

(8.28)
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It remains to show that
∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃
s′∈A∩S B(s′)) ≈ G(k+1)

x (A ∩ S).

Fix any positive ε ∈ R. By Lemma 8.11, we can pick an internal set M ⊂ NS(S)

such that ∗g(x, 1,
⋃
s∈M B(s)) > 1− ε. We then have

∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)) (8.29)

=
∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)) +

∑
s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)).

(8.30)

By induction hypothesis, we have ∗g(s, k,
⋃
s′∈A∩S B(s′)) ≈ G

(k)
s (A ∩ S) for all

s ∈M . By Lemma 3.20 we have

∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)) ≈

∑
s∈M

∗g(x, 1, B(s))G(k)
s (A ∩ S). (8.31)

As all B(s) are mutually disjoint, x lies in at most one element of the collection

{B(s) : s ∈M}. Suppose x ∈ B(s0) for some s0 ∈M . Then we have

|
∑
s∈M

∗g(x, 1, B(s))G(k)
s (A ∩ S)−

∑
s∈M

g′(x, 1, B(s))G(k)
s (A ∩ S)| (8.32)

= |(∗g(x, 1, B(s0))− g′(x, 1, B(s0)))G(k)
s0 (A ∩ S)| (8.33)

= |∗g(x, 1, ∗X \
⋃
s∈S

B(s))G(k)
s0 (A ∩ S)| ≈ 0 (8.34)

where the last ≈ follows from Lemma 8.11. Thus, by Eq. (8.31), we have

∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)) (8.35)

≈
∑
s∈M

g′(x, 1, B(s))G(k)
s (A ∩ S) (8.36)

=
∑
s∈M

Gx({s})G(k)
s (A ∩ S). (8.37)

As ∗g(x, 1,
⋃
s∈M B(s)) > 1− ε, we know that

∑
s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S
B(s′)) < ε. (8.38)
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On the other hand, we have

∑
s∈S\M

Gx({s})G(k)
s (A ∩ S) (8.39)

=
∑

s∈S\M

g′(x, 1, B(s))G(k)
s (A ∩ S) (8.40)

≤
∑

s∈S\M

g′(x, 1, B(s)) (8.41)

≤ ∗g(x, 1,
⋃

s∈S\M

B(s)) + ∗g(x, 1, ∗X \
⋃
s∈S

B(s)) (8.42)

≈ ∗g(x, 1,
⋃

s∈S\M

B(s)) < ε (8.43)

where the second last ≈ follows from Lemma 8.11.

Thus the difference between∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃
s′∈A∩S B(s′))+

∑
s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃
s′∈A∩S B(s′))

and
∑
s∈M Gx({s})G(k)

s (A ∩ S) +
∑
s∈S\M Gx({s})G(k)

s (A ∩ S) is less or approxi-

mately to ε. Hence we have

|∗g(x, k + 1,
⋃

s′∈A∩S
B(s′))−G(k+1)

x (A ∩ S)| / ε (8.44)

As our choice of ε is arbitrary, we have ∗g(x, k + 1,
⋃
s′∈A∩S B(s′)) ≈ G(k+1)

x (A∩S),

completing the proof. �

The following lemma is a slight generalization of [ACH97, Thm 4.1].

Lemma 8.15. Suppose {Xt}t∈N satisfies (DSF). Then for any Borel set E, any

x ∈ NS(∗X) and any n ∈ N, we have ∗g(x, n, ∗E) ≈ ∗g(x, n, st−1(E)).

Proof. Fix x ∈ NS(∗X) and n ∈ N. Let x0 = st(x). Fix any positive ε ∈ R, as

g(x0, n, .) is a Radon measure, we can find K compact, U open with K ⊂ E ⊂

U such that g(x0, n, U) − g(x0, n,K) < ε
2 . By the transfer principle, we know

that ∗g(x0, n,
∗U)− ∗g(x0, n, ∗K) < ε/2. By (DSF) we know that ∗g(x0, n,

∗U) ≈
∗g(x, n, ∗U) and ∗g(x0, n,

∗K) ≈ ∗g(x, n, ∗K). Hence we know that ∗g(x, n, ∗U) −
∗g(x, n, ∗K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U . Both
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∗g(x, n, ∗E) and ∗g(x, n, st−1(E)) lie between ∗g(x, n, ∗U) and ∗g(x, n, ∗K). So

|∗g(x, n, ∗E)−∗g(x, n, st−1(E))| < ε. This is true for any ε and hence ∗g(x, n, ∗E) ≈

∗g(x, n, st−1(E)). �

We are now at the place to establish the link between the transition probability

of {Xt}t∈N and the internal transition probability of {X ′t}t∈N.

Theorem 8.16. Suppose {Xt}t∈N satisfies (DSF). Then for any s ∈ NS(S), any

n ∈ N and any E ∈ B[X], P
(n)
st(s)(E) = G

(n)

s (st−1(E) ∩ S).

Proof. Fix any s ∈ NS(S), any n ∈ N and any Borel set E. By Lemma 8.15, we

have P
(n)
st(s)(E) = ∗g(st(s), n, ∗E) ≈ ∗g(s, n, ∗E) ≈ ∗g(s, n, st−1(E)). By Eq. (6.19),

we have

∗g(s, n, st−1(E)) = sup{∗g(s, n,
⋃
s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}. (8.45)

By Theorem 8.14, we have ∗g(s, n,
⋃
s∈Ai B(s)) = G

(n)

s (Ai). Thus we have

∗g(s, n, st−1(E)) = sup{G(n)

s (Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)} = G
(n)

s (st−1(E) ∩ S).

(8.46)

Hence we have the desired result. �

Thus the transition probability of {Xt}t∈N agrees with the Loeb probability of

{X ′t}t∈N via standard part map.

9. Hyperfinite Representation for Continuous-time Markov Processes

In Section 8.2, for every standard discrete-time Markov process, we construct a

hyperfinite Markov process that represents it. In this section, we extend the results

developed in Section 8 to continuous-time Markov processes. Let {Xt}t≥0 be a

continuous-time Markov process on a metric state space X satisfying the Heine-Borel

condition. The transition probability of {Xt}t≥0 is given by

{P (t)
x (A) : x ∈ X, t ∈ R+, A ∈ B[X]}. (9.1)
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When we view the transition probability as a function of three variables, we again use

g(x, t, A) to denote the transition probability P
(t)
x (A). We have already established

some general properties regarding the transition probability g(x, t, A) in Section 8.1.

We recall some important definitions are results here.

Definition 9.1. For any A,B ∈ B[X], any k1, k2 ∈ R+ and any x ∈ X, let

f
(k1,k2)
x (A,B) be Px(Xk1+k2 ∈ B|Xk1 ∈ A) when P

(k1)
x (A) > 0 and let f

(k1,k2)
x (A,B) =

1 otherwise.

Again, f can be viewed as a function of five variables. Let {An : n ∈ N} be a

partition of X consisting of Borel sets and let k1, k2 ∈ R+. For any x ∈ X and any

A ∈ B[X], we have

g(x, k1 + k2, A) =
∑
n∈N

g(x, k1, An)f (k1,k2)x (An, A). (9.2)

Intuitively, this means that the Markov chain first go to one of the An’s at time k1

and then go from that An to A in time k2.

As in Section 8.1, we are interested in the relation between the nonstandard

extensions of g and f . Recall Lemma 8.5 from Section 8.1.

Lemma 9.2. Consider any k1, k2 ∈ ∗R+, any x ∈ ∗X and any two sets A,B ∈
∗B[X] such that g(x, k1, A) > 0. If there exists a positive ε ∈ ∗R such that for any

two points x1, x2 ∈ A we have |∗g(x1, k2, B)− ∗g(x2, k2, B)| ≤ ε, then for any point

y ∈ A we have |∗g(y, k2, B)− ∗f (k1,k2)x (A,B)| ≤ ε.

Let the hyperfinite time line T = {δt, . . . ,K} as in Section 7. When k1 = δt and

the context is clear, we write f
(k2)
x (A,B) instead of f

(k1,k2)
x (A,B).

In Section 8.2, we constructed a hyperfinite Markov chain {X ′t}t∈N which repre-

sents our standard Markov chain {Xt}t∈N. The idea was that the difference between

the transition probability of {Xt}t∈N and the internal transition probability {X ′t}t∈N

generated from each step is infinitesimal. Since the time-line was discrete, this

implies that the transition probability of {Xt}t∈N and {X ′t}t∈N agree with each
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other. However, for continuous-time Markov process, we need to make sure that if

we add up the errors up to any near-standard time t0 the sum is still infinitesimal.

Thus, instead of taking any hyperfinite representation of ∗X to be our state space

we need to carefully choose our state space for our hyperfinite Markov process.

9.1. Construction of Hyperfinite State Space. In this section, we will carefully

pick a hyperfinite set S ⊂ ∗X to be the hyperfinite state space for our hyperfinite

Markov chain. The set S will be a (δ0, r)-hyperfinite representation of ∗X for some

infinitesimal δ0 and some positive infinite r. Intuitively, δ0 measures the closeness

between the points in S and r measures the portion of ∗X to be covered by S. We

first pick ε0 such that ε0
t
δt ≈ 0 for all t ∈ T . This ε0 will be fixed for the remainder

of this section. We first choose r according to this ε0. We first recall the following

definitions from Section 2.

Definition 9.3 (Definition 2.8). Let K[X] denote the collection of compact subsets

of X. The Markov chain {Xt}t≥0 is said to be vanishing in distance if for all t ≥ 0,

all K ∈ K[X] and every ε > 0, the set {x ∈ X : P
(t)
x (K) ≥ ε} is contained in a

compact subset of X.

Definition 9.4 (Definition 2.9). A Markov chain {Xt}t≥0 is said to be strong Feller

if for all t > 0, all ε > 0, all x ∈ X, there exists δ > 0 such that:

((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)). (9.3)

We first introduce the following definition from general topology.

Definition 9.5. Let X be a metric space. For every x ∈ X and every A ⊂ X, the

distance between x and A is defined by d(x,A) = inf{d(x, a) : a ∈ A}.

As promised in Section 2, we now give an equivalent formulation of Definition 2.8

using the metric. It is easier to see the intuition behind Definition 2.8 using the

following formulation of “diminishing in transition probability”.

Condition DT. For all t ≥ 0 and all compact K ⊂ X we have:
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(1) (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε).

(2) (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K) > r =⇒ g(x, t,K) < ε).

Note that every Markov process with bounded state space satisfies (DT) auto-

matically. We now show that (DT) can be derived from Definitions 2.8 and 2.9.

Theorem 9.6. Suppose a Markov process {Xt}t≥0 has the strong Feller property,

then it also has property (1) of (DT). Property (2) of (DT) is equivalent to vanishing

in distance whenever the metric on X has the Heine-Borel property.

Proof. We first show that property (1) of (DT) follows automatically from the strong

Feller property. Fix t ≥ 0, K ∈ K[X] and ε > 0. Let Fn = {x ∈ X : d(x,K) >

n}. By countable additivity, for every x ∈ X, there exists n(x) ∈ N such that

P
(t)
x (Fn(x)) < ε. By the strong Feller property, for every x ∈ X, there exists an

open ball U(x) such that P
(t)
y (Fn(x)) < ε for all y ∈ U(x). By compactness of K,

there exists a fixed m ∈ N such that P
(t)
y (Fm) < ε for all y ∈ K. Let r = m + s

where s is the diameter of K. By the triangle inequality, if x ∈ K and A ∈ B[X]

with d(x,A) > r then A ⊂ Fm. Hence, if d(x,A) > r then P
(t)
x (A) < ε.

We now show that property (2) of (DT) is equivalent to vanishing in distance

whenever the metric on X has the Heine-Borel property. Logically, property (2) of

(DT) is equivalent to: for all t ≥ 0, all K ∈ K[X] and all ε > 0, there exists r > 0

such that

{x ∈ X : P (t)
x (K) ≥ ε} ⊂ {x ∈ X : d(x,K) ≤ r}. (9.4)

Suppose {Xt}t≥0 has property (2) of (DT) and the metric on X has the Heine-Borel

property. As the metric on X has the Heine-Borel property, the set {x ∈ X :

d(x,K) ≤ r} is compact so {Xt}t≥0 is vanishing in distance.

Suppose {Xt}t≥0 is vanishing in distance. Fix t ≥ 0, K ∈ K[X] and ε > 0. The

set {x ∈ X : P
(t)
x (K) ≥ ε} is contained in some compact set T ⊂ X. As T is

compact, there exists some r > 0 such that {x ∈ X : P
(t)
x (K) ≥ ε} ⊂ T ⊂ {x ∈ X :

d(x,K) ≤ r}. Hence {Xt}t≥0 has property (2) of (DT). �
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As we will always assume that {Xt}t≥0 is vanishing in distance and strong Feller,

we shall use (DT) instead of Definition 2.8 from now on. The following condition is

an alternative condition to (DT), but stronger.

Condition SDT. For all t ≥ 0 we have

(∀ε > 0)(∃r > 0)(∀x ∈ X)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε). (9.5)

It is easy to see that (SDT) implies (DT).

Example 9.7. The Ornstein-Uhlenbeck is a continuous time stochastic process

{Xt}t≥0 satisfies the stochastic differential equation:

dXt = θ(µ−Xt)dt+ σdWt. (9.6)

where θ > 0, µ > 0 and σ > 0 are parameters and Wt denote the Wiener process.

The Ornstein-Uhlenbeck process is a stationary Gauss-Markov process. Note that

the Ornstein-Uhlenbeck process satisfies (DT) but not (SDT). As the state space of

the Ornstein-Uhlenbeck process satisfies the Heine-Borel condition, by Theorem 9.6,

the Ornstein-Uhlenbeck process also satisfies Definition 2.8.

An open ball centered at some x0 ∈ ∗X with radius r is simply the set

{x ∈ ∗X : ∗d(x, x0) ≤ r}. (9.7)

We usually use U(x0, r) to denote such set.

Theorem 9.8. Suppose (DT) holds. For every positive ε ∈ ∗R, there exists an open

ball U(a, r) centered at some standard point a with radius r such that:

(1) ∗g(x, δt, ∗X \ U(a, r)) < ε for all x ∈ NS(∗X).

(2) ∗g(y, t, A) < ε for all y ∈ ∗X \U(a, r), all near-standard A ∈ ∗B[X] and all

t ∈ T .

where U(a, r) = {x ∈ ∗X : ∗d(x, a) ≤ r}.
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Proof. : Fix a positive ε ∈ ∗R. Let X =
⋃
n∈NKn . For every n ∈ N, by the transfer

of condition 1 of (DT), there exists r ∈ ∗R+ such that the following formula ψn(r)

holds:

(∀x ∈ ∗Kn)(∀A ∈ ∗B[X])(∗d(x,A) > r =⇒ ∗g(x, δt, A) < ε). (9.8)

It is easy to see that {ψn(r) : n ∈ N} is a family of finitely satisfiable internal

formulas. By the saturation principle, there is a rδt such that

(∀x ∈
⋃
n∈N

∗Kn)(∀A ∈ ∗B[X])(∗d(x,A) > rδt =⇒ ∗g(x, δt, A) < ε). (9.9)

Claim 9.9. For every n ∈ N, the formula φn(r)

(∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn) < ε))). (9.10)

is satisfiable.

Proof. Fix some n ∈ N. For every t ∈ T , by the transfer of condition 2 of (DT),

there exists r ∈ ∗R+ such that the following formula holds:

(∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ∗g(x, t, ∗Kn) < ε). (9.11)

Define h : T → ∗R+ by

h(t) = min{r ∈ ∗R+ : (∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ∗g(x, t, ∗Kn) < ε)} (9.12)

By the internal definition principle, h is an internal function thus h(T ) is a hyperfinite

set. Let rn = max{r : r ∈ h(T )}. Then rn witnesses the satisfiability of the formula

φn(r). �

For any k ∈ N, it is easy to see that max{rni : i ≤ k} witnesses the satisfiability

of {φni(r) : i ≤ k}. Hence the family {φn(r) : n ∈ N} is finitely satisfiable. By the

saturation principle, there exists a r′ satisfies all φn(r) simultaneously. This means

(∀x ∈ ∗X)(∀n ∈ N)(∗d(x, ∗Kn) > r′ =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn) < ε))). (9.13)
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Consider any near-standard internal set A.

Claim 9.10. There exists n ∈ N such that A ⊂ ∗Kn.

Proof. Suppose not. Then Mn = {a ∈ A : a 6∈ ∗Kn} is non-empty for every n ∈ N.

It is easy to see that any finite intersection of these is non-empty. By saturation, we

know that
⋂
n∈NMn 6= ∅. Hence there exists a ∈ A such that a 6∈

⋃
n∈N

∗Kn. By

Theorem 3.28, we know that
⋃
n∈N

∗Kn = NS(∗X). This contradicts with the fact

that A is near-standard. �

Thus, we know that for every x ∈ ∗X and every near-standard A ∈ ∗B[X] we

have

((∀n ∈ N)(∗d(x, ∗Kn) > r′)) =⇒ ((∀t ∈ T )(∗g(x, t, A) < ε)). (9.14)

Pick an infinite r∞ ∈ ∗R>0. Let a be any standard element in X and let r =

2 max{rδt, r′, r∞}. We claim that U(a, r) satisfies the two conditions of this lemma.

By the choice of r, we know that ∗d(x, ∗X \U(a, r)) > rδt for all x ∈
⋃
n∈N

∗Kn. As⋃
n∈N

∗Kn = NS(∗X), by Eq. (9.9), we have

(∀x ∈ NS(∗X))(∗g(x, δt, ∗X \ U(a, r)) < ε). (9.15)

Fix any y ∈ ∗X \ U(a, r) and any near-standard A ∈ ∗B[X]. By the choice of r, we

know that ∗d(y, ∗Kn) > r′ for all n ∈ N. Thus, by Eq. (9.14) we have ∗g(y, t, A) < ε

for all t ∈ T . As our choices of y and A are arbitrary, we have the desired result. �

For the particular ε0 fixed above, we can find a standard a0 ∈ ∗X and some

positive infinite r1 ∈ ∗R such that the open ball U(a0, r1) satisfies the conditions in

Theorem 9.8. We fix a0 and r1 for the remainder of this section.

Lemma 9.11. Suppose (DT) holds. There exists a positive infinite r0 > 2r1 such

that

(∀y ∈ U(a0, 2r1))(∗g(y, δt, ∗X \ U(a0, r0)) < ε0). (9.16)
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Proof. By the transfer of the Heine-Borel condition, U(a0, 2r1) is a ∗compact set.

Then the proof follows easily from the transfer of condition 1 of (DT). Note that we

can always pick r0 to be bigger than 2r1. �

We will see how do we use Lemma 9.11 in Theorem 9.20. We now fix r0 for the

remainder of this section. An immediate consequence of Theorem 9.8 and Lemma 9.11

is:

Lemma 9.12. Suppose (DT) holds. For any x ∈ X, any t ∈ T , any near-standard

internal set A ⊂ ∗X we have ∗f (t)x (∗X \ U(a0, 2r0), A) < 2ε0.

Proof. Fix a x ∈ ∗X, a near-standard internal set A and some t ∈ T . By Theorem 9.8,

we know that (∀y ∈ ∗X \ U(a0, 2r0))(∗g(y, t, A) < ε0). This means that for any

y1, y2 ∈ ∗X \U(a0, 2r0) we have |∗g(y1, t, A)− ∗g(y2, t, A)| < ε0. By Lemma 8.5, we

know that for any y ∈ ∗X \ U(a0, 2r0) we have

|∗g(y, t, A)− ∗f (t)x (∗X \ U(a0, 2r0), A)| < ε0 (9.17)

which then implies that ∗f (t)x (∗X \ U(a0, 2r0), A) < 2ε0. �

Thus, our hyperfinite state space S is a (δ0, 2r0)-hyperfinite representation of ∗X

such that
⋃
s∈S B(s) = U(a0, 2r0). We now choose an appropriate δ0 to partition

U(a0, 2r0) into hyperfinitely pieces. We use the strong Feller condition to control

the diameter of each B(s) for s ∈ S. For reader’s convenience, we restate the strong

Feller condition below:

Condition SF. The Markov chain{Xt}t≥0 is said to be strong Feller if for every

t > 0, every x ∈ X and every ε > 0 there exists δ > 0 such that

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

(9.18)

Note that this δ depends on ε, t and x. View the transition probability as the

function g and by the transfer principle, we have for every t ∈ T \ {0},every ε ∈ ∗R+
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and every x ∈ ∗X there exists δ ∈ ∗R+ such that:

((∀y ∈ ∗X)(d(x, y) < δ =⇒ (∀A ∈ ∗B[X])|∗g(y, t, A)− ∗g(x, t, A)| < ε)). (9.19)

We can then show that the total variation distance between transition probabili-

ties for Markov processes is non-increasing. The following lemma is a “standard

counterpart” of Lemma 7.25. The proof is identical to Lemma 8.7 hence omitted.

Lemma 9.13. Consider a standard Markov process with transition probability

measure P
(t)
x (·), then for every ε ∈ R+, every x1, x2 ∈ X, every t1, t2 ∈ R+ and

every A ∈ B[X] we have

(|P (t1)
x1

(A)− P (t1)
x2

(A)| ≤ ε =⇒ |P (t1+t2)
x1

(A)− P (t1+t2)
x2

(A)| ≤ ε). (9.20)

Apply the transfer principle to the above lemma and restrict out time line to

T , we know that for every ε ∈ ∗R+, every x1, x2 ∈ ∗X ,every t1, t2 ∈ T+ and every

A ∈ ∗B[X] we have:

((|∗P (t1)
x1

(A)− ∗P (t1)
x2

(A)| ≤ ε) =⇒ (|∗P (t1+t2)
x1

(A)− ∗P (t1+t2)
x2

(A)| ≤ ε)). (9.21)

where ∗P (t)
x (A) = ∗g(x, t, A).

(SF) ensures the uniform continuity of the transition probability g(x, t, A) with

respect to x as is shown by the following lemma.

Lemma 9.14. Suppose (SF) holds. There exists δ0 ∈ ∗R+ such that for any

x1, x2 ∈ U(a0, 2r0) with |x1 − x2| < δ0 we have |∗g(x1, t, A)− ∗g(x2, t, A)| < ε0 for

all A ∈ ∗B[X] and all t ∈ T+.

Proof. By the transfer of strong Feller, for every x ∈ U(a0, 2r0) there exists δx ∈ ∗R+

such that:

(∀y ∈ ∗X)(d(x, y) < δx =⇒ (∀A ∈ ∗B[X])|∗g(x, δt, A)− ∗g(y, δt, A)| < ε0
2

).

(9.22)
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The internal collection L = {U(x, δx2 ) : x ∈ U(a0, 2r0)} of open balls forms an

open cover of U(a0, 2r0). By the transfer of Heine-Borel condition, we know that

U(a0, 2r0) is ∗compact hence there exists a hyperfinite subset of the cover L that

covers U(a0, 2r0). Denote this hyperfinite subcover by F = {B(xi,
δxi
2 ) : i ≤ N} for

some N ∈ ∗N. The set ∆ = { δxi2 : i ≤ N} is a hyperfinite set thus there exists a

minimum element of ∆. Let δ0 = min{ δxi2 : i ≤ N}.

Pick any x, y ∈ U(a0, 2r0) with d(x, y) < δ0. We have x ∈ U(xi,
δxi
2 ) for some

i ≤ N . Then we have ∗d(y, xi) ≤ ∗d(y, x) + ∗d(x, xi) ≤ δxi . Thus both x, y are

in U(xi, δxi). This means that (∀A ∈ ∗B[X])(|∗g(x, δt, A) − ∗g(y, δt, A)| < ε0).

By Eq. (9.21), we know that (∀A ∈ ∗B[X])(∀t ∈ T |∗g(x, t, A) − ∗g(y, t, A)| < ε0),

completing the proof. �

Now we have determined a0,r0 and δ0. We now construct a (δ0, 2r0)-hyperfinite

representation set S with
⋃
s∈S B(s) = U(a0, 2r0). The following lemma is an

immediate consequence.

Theorem 9.15. Suppose (SF) holds. Let S be a (δ0, 2r0)-hyperfinite representation

with
⋃
s∈S B(s) = U(a0, 2r0). For any s ∈ S, any x1, x2 ∈ B(s), any A ∈ ∗B[X]

and any t ∈ T+ we have |∗g(x1, t, A)− ∗g(x2, t, A)| < ε0

An immediate consequence of the above lemma is:

Lemma 9.16. Suppose (SF) holds. Let S be a (δ0, 2r0)-hyperfinite representation

with
⋃
s∈S B(s) = U(a0, 2r0). For for any s ∈ S, any y ∈ B(s), any x ∈ ∗X, any

A ∈ ∗B[X] and any t ∈ T+ we have |∗g(y, t, A)− ∗f (t)x (B(s), A)| < ε0.

Proof. First recall that we use ∗f (t)x (B(s), A) to denote ∗f (δt,t)x (B(s), A). This

lemma then follows easily by applying Lemma 8.4 to Theorem 9.15. �

For the remainder of this paper we shall fix our hyperfinite state space S to be a

(δ0, 2r0)-hyperfinite representation of ∗X with
⋃
s∈S B(s) = U(a0, 2r0). That is:

(1)
⋃
s∈S B(s) = U(a0, 2r0).
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(2) {B(s) : s ∈ S} is a mutually disjoint collection of ∗Borel sets with diameters

no greater than δ0.

This S will be the state space of our hyperfinite Markov process which is a

hyperfinite representation of our standard Markov process {Xt}t≥0.

9.2. Construction of Hyperfinite Markov Processess. In the last section,

we have constructed the hyperfinite state space S to be a (δ0, 2r0)-hyperfinite

representation of ∗X. In this section, we will construct a hyperfinite Markov

{X ′t}t∈T process on S which is hyperfinite representation of our standard Markov

process {Xt}t≥0.

The following definition is very similar to Definition 8.9.

Definition 9.17. Let g′(x, δt, A) :
⋃
s∈S B(s)× ∗B[X]→ ∗[0, 1] be given by:

g′(x, δt, A) = ∗g(x, δt, A ∩
⋃
s∈S

B(s)) + δx(A)∗g(x, δt, ∗X \
⋃
s∈S

B(s)). (9.23)

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

For any i, j ∈ S, letG
(δt)
i ({j}) = g′(i, δt, B(j)) and letG

(δt)
i (A) =

∑
j∈AG

(δt)
i ({j})

for all internal A ⊂ S. For any internal A ⊂ S, G
(0)
i (A) = 1 if i ∈ A and G0

i (A) = 0

otherwise.

The following two lemmas are identical to Lemmas 8.10, 8.12 and 8.13 after

substituting δt for 1. Likewise, G
(t)
i (·) denotes the t-step transition probability of

{X ′t}t∈T which is purely generated from {G(δt)
i (·)}i∈S .

Lemma 9.18. Let B[
⋃
s∈S B(s)] = {A ∩

⋃
s∈S B(s) : A ∈ ∗B[X]}. Then for

any x ∈
⋃
s∈S B(s) we have (

⋃
s∈S B(s),B[

⋃
s∈S B(s)], g′(x, δt, .)) is an internal

probability space.

Lemma 9.19. For any i ∈ S and any t ∈ T , we know that G
(t)
i (·) is an internal

probability measure on (S, I(S)).

For any i ∈ S and any t ∈ T we shall use G
(t)

i (·) to denote the Loeb extension of

the internal probability measure G
(t)
i (·) on (S, I(S)).
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In order for the hyperfinite Markov chain {X ′t}t∈T to be a good representation

of {Xt}t≥0, one of the key properties which needs to be shown is that the internal

transition probability of {X ′t}t∈T agrees with the transition probability of {Xt}t≥0

up to an infinitesimal. The following technical result is a key step towards showing

this property (recall that ε0 is a positive infinitesimal such that ε0
t
δt ≈ 0 for all

t ∈ T ). This result is similar to Theorem 8.14 but is more complicated.

Theorem 9.20. Suppose (DT) and (SF) hold. Then for any t ∈ T , any x ∈ S and

any near-standard A ∈ ∗B[X], we have

|∗g(x, t,
⋃

s′∈A∩S
B(s′))−G(t)

x (A ∩ S)| ≤ ε0 + 5ε0
t− δt
δt

. (9.24)

In particular, we have |∗g(x, t,
⋃
s′∈A∩S B(s′))−G(t)

x (A ∩ S)| ≈ 0 for all t ∈ T , all

x ∈ S and all near-standard A ∈ ∗B[X].

Proof. We will prove the result by internal induction on t ∈ T .

We first prove the theorem for t = 0. As x ∈ S, it is easy to see that x ∈⋃
s′∈A∩S B(s′) if and only if x ∈ A∩S. Hence ∗g(x, 0,

⋃
s′∈A∩S B(s′)) = G

(0)
x (A∩S)

We now show the case where t = δt. Pick any near-standard set A ∈ ∗B[X] and

any x ∈ S. By definition, we have:

G(δt)
x (A ∩ S) = g′(x, δt,

⋃
s′∈A∩S

B(s′)) (9.25)

= ∗g(x, δt,
⋃

s′∈A∩S
B(s′)) + δx(

⋃
s′∈A∩S

B(s′))∗g(x, δt, ∗X \
⋃
s∈S

B(s)).

(9.26)

For any x ∈
⋃
s′∈A∩S B(s′), by Theorem 9.8 and the fact that

⋃
s′∈A∩S B(s′) is

near-standard, we have ∗g(x, δt, ∗X \
⋃
s∈S B(s)) < ε0 since ∗d(x, ∗X\

⋃
s∈S B(s)) >

r0. Thus we have |∗g(x, δt,
⋃
s′∈A∩S B(s′))−G(δt)

x (A ∩ S)| < ε0.

We now prove the induction case. Assume the statement is true for some t ∈ T .

We now show that it is true for t + δt. Fix a near-standard A ∈ ∗B[X] and any

x ∈ S. We know that:
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∗g(x, t + δt,
⋃
s′∈A∩S B(s′)) =

∑
s∈S

∗g(x, δt, B(s))∗f (t)x (B(s),
⋃
s′∈A∩S B(s′)) +

∗g(x, δt, ∗X \
⋃
s∈S B(s))∗f (t)x (∗X \

⋃
s∈S B(s),

⋃
s′∈A∩S B(s′)).

Consider ∗g(x, δt, ∗X \
⋃
s∈S B(s))∗f (t)x (∗X \

⋃
s∈S B(s),

⋃
s′∈A∩S B(s′)). By

Lemma 9.12, we have ∗f (t)x (∗X\
⋃
s∈S B(s),

⋃
s′∈A∩S B(s′)) < 2ε0. Thus we conclude

that:

|∗g(x, t+ δt,
⋃

s′∈A∩S
B(s′))−

∑
s∈S

∗g(x, δt, B(s))∗f (t)x (B(s),
⋃

s′∈A∩S
B(s′))| < 2ε0.

(9.27)

By the construction of our hyperfinite representation S and Lemma 9.16, we know

that for any s ∈ S we have |∗g(s, t,
⋃
s′∈A∩S B(s′))− ∗f (t)x (B(s),

⋃
s′∈A∩S B(s′))| <

ε0. By the transfer of Lemma 3.20, we have that:

|
∑
s∈S

∗g(x, δt, B(s))∗f (t)x (B(s),
⋃

s′∈A∩S
B(s′))−

∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))| < ε0.

(9.28)

Let us now consider the formulas
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃
s′∈A∩S B(s′)) and∑

s∈S g
′(x, δt, B(s))∗g(s, t,

⋃
s′∈A∩S B(s′)). There exists an unique s0 ∈ S such that

x ∈ B(s0). This means that ∗g(x, δt, B(s)) is the same as g′(x, δt, B(s)) for all

s 6= s0. Thus we have:

|
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))−

∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))|

(9.29)

= |∗g(x, δt, B(s0))− g′(x, δt, B(s0))|∗g(s0, t,
⋃

s′∈A∩S
B(s′)). (9.30)

Recall the properties of r1 constructed after Theorem 9.8. If ∗d(s0, y) > r1 for all

near-standard y ∈ NS(∗X), by Theorem 9.8, we have ∗g(s0, t,
⋃
s′∈A∩S B(s′)) < ε0.
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This implies that

|∗g(s0, δt, B(s))− g′(s0, δt, B(s))|∗g(s0, t,
⋃

s′∈A∩S
B(s′)) < ε0. (9.31)

If there exists some x0 ∈ NS(∗X) such that ∗d(s0, x0) < r1 then s0 ∈ U(a0, 2r1). By

the definition of g′ and Lemma 9.11, we know that ∗g(s0, δt,
∗X \

⋃
s∈S B(s)) < ε0.

As x ∈ B(s0), by Theorem 9.15, we know that

|∗g(x, δt, B(s0))− g′(x, δt, B(s0))| = |∗g(x, δt, ∗X \
⋃
s∈S

B(s))| < 2ε0. (9.32)

To conclude we have:

|
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))−

∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))| < 2ε0.

(9.33)

Finally by induction hypothesis and the transfer of Lemma 3.20 we know that:

|
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))−G(t+δt)

x (A ∩ S)| (9.34)

= |
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S
B(s′))−

∑
s∈S

g′(x, δt, B(s))G(t)
s (A ∩ S)| (9.35)

≤ |∗g(s, t,
⋃

s′∈A∩S
B(s′))−G(t)

s (A ∩ S)| ≤ ε0 + 5ε0
t− δt
δt

. (9.36)

Thus by Eq. (9.27),Eq. (9.28),Eq. (9.33) and Eq. (9.36) we conclude that

|∗g(x, t+ δt,
⋃

s′∈A∩S
B(s′))−G(t+δt)

x (A ∩ S)| (9.37)

≤ ε0 + 4ε0
t− δt
δt

+ 5ε0 = ε0 + 5ε0
t

δt
. (9.38)

As all the parameters in this statement are internal, by internal induction principle,

we have shown the statement. As ε0
t
δt ≈ 0 for all t ∈ T , in particular, we have

|∗g(x, t,
⋃
s′∈A∩S B(s′)) − G(t)

x (A ∩ S)| ≈ 0 for all t ∈ T , all x ∈ S and all near-

standard A ∈ ∗B[X]. �
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As the state space X is σ-compact, by Lemma 5.5 and Theorem 5.9, we know that

st−1(A) is universally Loeb measurable for A ∈ B[X]. We now extend Theorem 9.20

to establish the relationship between ∗g and G.

Theorem 9.21. For any x ∈
⋃
s∈S B(s) let sx denote the unique element in S such

that x ∈ B(sx). Then, under (DT) and (SF), for any E ∈ B[X] and any t ∈ T , we

have ∗g(x, t, st−1(E)) = G
(t)

sx (st−1(E) ∩ S) for any x ∈ ∗X.

Proof. When t = 0, ∗g(x, 0, st−1(E)) is 1 if x ∈ st−1(E) and is 0 otherwise. Note

that x ∈ st−1(E) if and only if sx ∈ st−1(E) ∩ S. Hence ∗g(x, t, st−1(E)) =

G
(t)

sx (st−1(E) ∩ S).

We now prove the case for t > 0. By the transfer principle, we know that for any

x ∈ ∗X and any t ∈ T we have ∗g(x, t, .) is an internal probability measure. By the

construction of Loeb measures (Eq. (6.19)), for t > 0 we have

∗g(x, t, st−1(E)) = sup{∗g(x, t,
⋃
s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}. (9.39)

As the distance between x and sx is less than δ0, by Theorem 9.15 we know that

|∗g(x, t,
⋃
s∈Ai B(s))− ∗g(sx, t,

⋃
s∈Ai B(s))| < ε0. By Theorem 9.20, we know that

|∗g(sx, t,
⋃
s∈Ai B(s))−G(t)

sx (Ai)| ≈ 0 as Ai is a near-standard internal set. Thus we

know that ∗g(x, t,
⋃
s∈Ai B(s)) = G

(t)

sx (Ai). Thus we know that

∗g(x, t, st−1(E)) = sup{Gsx(Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)} = G
(t)

sx (st−1(E) ∩ S)

(9.40)

finishing the proof. �

One of the desired properties for a hyperfinite Markov chain is strong regularity.

Recall from Definition 7.6 that a hyperfinite Markov chain is strong regular if

for any A ∈ I(S), any non-infinitesimal t ∈ T and any i ≈ j ∈ NS(S) we have

G
(t)
i (A) ≈ G

(t)
j (A). We now show that {X ′t} satisfies strong regularity. We first

prove the following “locally continuous” property for ∗g.
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Lemma 9.22. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from ∗X

,any t ∈ ∗R+ that is not infinitesimal and any A ∈ ∗B[X] we have ∗g(x1, t, A) ≈
∗g(x2, t, A).

Proof. Fix two near-standard x1, x2 from ∗X. Let x0 = st(x1) = st(x2). Fix some

t0 ∈ ∗R+ that is not infinitesimal and also fix some positive ε ∈ R. Pick some

standard t′ ∈ R+ with t′ ≤ t0. By strong Feller we can pick a δ ∈ R+ such that

(∀y ∈ X)(|y − x0| < δ =⇒ ((∀A ∈ B[X])|g(y, t′, A) − g(x0, t′, A)| < ε)). By the

transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(∀A ∈ ∗B[X])(|∗g(x1, t
′, A)− ∗g(x2, t

′, A)| < ε). (9.41)

As t′ ≤ t0, by Eq. (9.21), we know that |∗g(x1, t0, A) − ∗g(x2, t0, A)| < ε for all

A ∈ ∗B[X]. Since our choice of ε is arbitrary, we can conclude that ∗g(x1, t0, A) ≈
∗g(x2, t0, A) for all A ∈ ∗B[X]. �

An immediate consequence of this lemma is the following:

Lemma 9.23. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from ∗X

,any t ∈ ∗R+ that is not infinitesimal and any universally Loeb measurable set A we

have ∗g(x1, t, A) = ∗g(x2, t, A).

Next we show that the internal measure ∗g(x, t, .) concentrates on the near-

standard part of ∗X for near-standard x and standard t.

Lemma 9.24. Suppose (SF) holds. For any Borel set E, any x ∈ NS(∗X) and any

t ∈ R+ we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).

Proof. Fix any x ∈ NS(∗X) and any t ∈ R+. Let x0 = st(x). Fix any ε,

as the probability measure P
(t)
x0 (·) is Radon, we can find K compact, U open

with K ⊂ E ⊂ U and P
(t)
x0 (U) − P (t)

x0 (K) < ε/2. By the transfer principle, we

know that ∗g(x0, t,
∗U) − ∗g(x0, t, ∗K) < ε/2. By Lemma 9.22, we know that

∗g(x0, t,
∗U) ≈ ∗g(x, t, ∗U) and ∗g(x0, t,

∗K) ≈ ∗g(x, t, ∗K). Hence we know that

∗g(x, t, ∗U)− ∗g(x, t, ∗K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U .
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Both ∗g(x, t, ∗E) and ∗g(x, t, st−1(E)) lie between ∗g(x, t, ∗U) and ∗g(x, t, ∗K). So

|∗g(x, t, ∗E)− ∗g(x, t, st−1(E))| < ε. This is true for any ε and hence ∗g(x, t, ∗E) ≈

∗g(x, t, st−1(E)). �

We are now at the place to establish that {X ′t} is strong regular. Note that

the time line T = {0, δt, ....,K} contains all the rational numbers but none of the

irrational numbers.

Theorem 9.25. Suppose (DT) and (SF) hold. For any two near-standard s1 ≈ s2

from S, any t ∈ T that is not infinitesimal and any A ∈ I(S) we have G
(t)
s1 (A) ≈

G
(t)
s2 (A).

Proof. Fix any two near-standard s1 ≈ s2 ∈ S and any non-infinitesimal t ∈ T .

Pick a non-zero t′ ∈ Q such that t′ ≤ t. By Theorem 9.21, we know that

∗g(x, t, st−1(E)) = G
(t)

sx (st−1(E) ∩ S). Fix any ε ∈ R+ and any A ∈ I(S), we now

consider Gt
′

s1(A) and Gt
′

s2(A). By Lemma 9.24, we can find a near-standard Ai ∈ I(S)

such that |G(t′)
s1 (A)−G(t′)

s1 (Ai)| < ε
3 and |G(t′)

s2 (A)−G(t′)
s2 (Ai)| < ε

3 . As Ai is near-

standard, by Theorem 9.20, we know that G
(t′)
s1 (Ai) ≈ ∗g(s1, t

′,
⋃
s∈Ai∩S B(s))

and G
(t′)
s2 (Ai) ≈ ∗g(s2, t

′,
⋃
s∈Ai∩S B(s)). Moreover,by Lemma 9.22, we know

that |∗g(s1, t′,
⋃
s∈Ai∩S B(s))− ∗g(s2, t′,

⋃
s∈Ai∩S B(s))| ≈ 0. Hence we know that

|G(t′)
s1 (Ai) − G

(t′)
s2 (Ai)| ≈ 0. Thus we have |G(t′)

s1 (A) − G
(t′)
s2 (A)| < ε. As our

choice ε is arbitrary, we know that |G(t′)
s1 (A)−G(t′)

s2 (A)| ≈ 0. Hence we know that

‖ G(t′)
s1 (·)−G(t′)

s1 (·) ‖≈ 0 where ‖ G(t′)
s1 (·)−G(t′)

s1 (·) ‖ denotes the total variation dis-

tance between G
(t′)
s1 and G

(t′)
s1 . By Lemma 7.25, we know that ‖ G(t)

s1 (·)−G(t)
s1 (·) ‖≈ 0

hence finishes the proof. �

We are now able to establish to following theorem which is an immediate conse-

quence of Theorem 9.25.

Lemma 9.26. Suppose (DT) and (SF) hold. For any two near-standard s1 ≈ s2

from S, any t ∈ T that is not infinitesimal and any universally Loeb measurable set

A we have G
(t)

s1 (A) = G
(t)

s2 (A).
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There exists a natural link between the transition probability g of {Xt} and its

nonstandard extension ∗g. We have already established a strong link between ∗g and

the internal transition probability G of {X ′t}. We have also established the “ local

continuity” of ∗g. We are now at the place to establish the relationship between the

internal transition probability of {X ′t} and the transition probability of {Xt}.

Theorem 9.27. Suppose (DT) and (SF) hold. For any s ∈ NS(S), any non-negative

t ∈ Q and any E ∈ B[X], we have P
(t)
st(s)(E) = G

(t)

s (st−1(E) ∩ S).

Proof. We first prove the theorem when t = 0. Fix any s ∈ NS(S) and any E ∈ B[X].

We know that P
(t)
st(s)(E) = 1 if st(s) ∈ E and P

(t)
st(s)(E) = 0 otherwise. For any

x ∈ S and A ∈ I(S), note that G
(0)
x (A) = 1 if and only if x ∈ A and G

(0)
x (A) = 0

otherwise. This establishes the theorem for t = 0.

We now prove the result for positive t ∈ Q. Fix any s ∈ NS(S), any positive

t ∈ Q and any E ∈ B[X]. By Lemmas 9.22 and 9.24 and Theorem 9.21, we know

that

g(st(s), t, E) = ∗g(st(s), t, ∗E) ≈ ∗g(s, t, ∗E) ≈ ∗g(s, t, st−1(E)) = G
(t)

s (st−1(E) ∩ S).

(9.42)

Thus we have for any s ∈ NS(S), any non-zero t ∈ Q+ and any E ∈ B[X]:

P
(t))
st(s)(E) = G

(t)

s (st−1(E) ∩ S). �

It is desirable to extend Theorem 9.27 to all non-negative t ∈ R. In order to do

this, we need some continuity condition of the transition probability with respect to

time.

Condition OC. The Markov chain {Xt} is said to be continuous in time if there

exists a basis B0 such that g(x, t, U) is a continuous function of t > 0 for every

x ∈ X and every U which is a finite intersection of elements from B0.

It is easy to see that g(x, t, U) is continuous function of t > 0 for every x ∈ X

and every U which is a finite union of elements from B0. Note that (OC) is weaker
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than assuming g(x, t, U) is a continuous function of t > 0 for every x ∈ X and every

open set U . We establish this by the following counterexample.

Example 9.28. Let µn be the uniform probability measure on the set { 1n , . . . , 1}

for every n ≥ 1. Let µ be the Lebesgue measure on [0, 1]. It is easy to see that µn(I)

converges to µ(A) for every open interval I. However, it is not the case that µn(U)

converges to µ(U) for every open set. To see this, let U be an open set containing

the the set of rational numbers Q such that µ(Q) ≤ 1
2 . We can find such U since

µ(Q) = 0. We know limn→∞ µn(U) = 1 which does not equal to µ(U) = 1
2 .

Let us fix a basis B0 satisfying the conditions in (OC) for the remainder of this

section.

Lemma 9.29. Suppose (SF) and (OC) hold. For any near-standard x1 ≈ x2, any

non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any U which is a finite

intersection of elements in B0, we have ∗g(x1, t1,
∗U) ≈ ∗g(x2, t2,

∗U).

Proof. Fix near-standard x1 ≈ x2 ∈ ∗X, some U ⊂ X which is a finite intersection

of elements in B0 and some ε ∈ R+. Also fix two non-infinitesimal t1, t2 ∈ NS(∗R+)

such that t1 ≈ t2. Let x0 ∈ X and t0 ∈ R+ denote the standard parts of x1, x2 and

t1, t2,respectively. Note that t0 > 0.

As U is a finite intersection of elements from B0, by (OC), there exists δ ∈ R+

such that

(∀t ∈ R+)((|t− t0| < δ) =⇒ (|g(x0, t, U)− g(x0, t0, U)| < ε)). (9.43)

By the transfer principle, we know that

(∀t ∈ ∗R+)((|t− t0| < δ) =⇒ (|∗g(x0, t,
∗U)− ∗g(x0, t0,

∗U)| < ε)). (9.44)

Since ε is arbitrary and st(t1) = st(t2) = t0, we have

∗g(x0, t1,
∗U) ≈ ∗g(x0, t0,

∗U) ≈ ∗g(x0, t2,
∗U). (9.45)
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By Lemma 9.22, we then have

∗g(x1, t1,
∗U) ≈ ∗g(x0, t1,

∗U) ≈ ∗g(x0, t2,
∗U) ≈ ∗g(x2, t2,

∗U), (9.46)

completing the proof. �

The next lemma establishes the relation between U and st−1(U).

Lemma 9.30. Suppose (SF) and (OC) hold. For any U which is a finite intersection

of elements from B0, any x ∈ NS(∗X) and any t ∈ NS(∗R+) we have ∗g(x, t, ∗U) ≈

∗g(x, t, st−1(U)).

Proof. Fix some U which is a finite intersection of elements from B0, some x ∈

NS(∗X) and some t ∈ NS(∗R+). As st−1(U) ⊂ ∗U , it is sufficient to show that

∗g(x, t, ∗U) − ∗g(x, t, st−1(U)) < ε for every ε ∈ R+. Fix some ε1 ∈ R+. By

Lemma 9.29, we know that

∗g(x, t, ∗U) ≈ ∗g(st(x), st(t), ∗U). (9.47)

Let U =
⋃
n∈N Un where Un ∈ B0 for all n ∈ N. As X is a metric space satisfying

the Heine-Borel condition, X is locally compact. Thus, without loss of generality,

we can assume that Un ⊂ U for all n ∈ N. By the continuity of probability and the

transfer principle, there exists a N ∈ N such that

∗g(st(x), st(t), ∗U)− ∗g(st(x), st(t), ∗(
⋃
n≤N

)Un) < ε1. (9.48)

By Lemma 9.29 again, we know that ∗g(x, t, ∗U) − ∗g(x, t, ∗(
⋃
n≤N )Un) < ε1.

As
⋃
n≤N Un ⊂ U , we know that ∗(

⋃
n≤N )Un ⊂ st−1(U). Hence we know that

∗g(x, t, ∗U) − ∗g(x, t, st−1(U)) < ε1. As the choice of ε1 is arbitrary, we have the

desired result. �

Before we extend Theorem 9.27 to all non-negative t ∈ R, we introduce the

following concept.
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Definition 9.31. A class C of subsets of some space X is called a π-system if it is

closed under finite intersections.

π-system can be used to determine the uniqueness of measures.

Lemma 9.32 ([Kal02, Lemma 1.17]). Let µ and ν be bounded measures on some

measurable space (Ω,A), and let C be a π-system in Ω such that Ω ∈ C and

σ(C) = A where σ(C) denote the σ-algebra generated by C. Then µ = ν if and only

if µ(A) = ν(A) for all A ∈ C.

Lemma 9.32 allows us to obtain slightly stronger results than Lemmas 9.29

and 9.30.

Lemma 9.33. Suppose (SF) and (OC) hold. For any near-standard x1 ≈ x2, any

non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any E ∈ B[X], we have

∗g(x1, t1,
∗E) ≈ ∗g(x2, t2,

∗E).

Proof. Fix two near-standard x1 ≈ x2 and two near-standard t1 ≈ t2. Let µ1(A) =

∗g(x1, t1,
∗A) and µ2(A) = ∗g(x2, t2,

∗A) for all A ∈ B[X]. It is easy to see that

both µ1 and µ2 are probability measures on X. By Lemma 9.29, we know that

µ1(U) = µ2(U) for any U which is a finite intersection of elements in B0. By

Lemma 9.32, we have the desired result. �

By using essentially the same argument, we have

Lemma 9.34. Suppose (SF) and (OC) hold. For any E ∈ B[X], any x ∈ NS(∗X)

and any t ∈ NS(∗R+) we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).

We are now at the place to extend Theorem 9.27 to all non-negative t ∈ R.

Theorem 9.35. Suppose (DT), (SF) and (OC) hold. For any s ∈ NS(S), any non-

infinitesimal t ∈ NS(T ) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E)∩S).
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Proof. Fix any s ∈ NS(S), any non-infinitesimal t ∈ NS(T ) and any E ∈ B[X]. By

Lemmas 9.33 and 9.34, we know that

g(st(s), st(t), E) = ∗g(st(s), st(t), ∗E) ≈ ∗g(s, t, ∗E) ≈ ∗g(s, t, st−1(E)). (9.49)

By Theorem 9.21, we know that ∗g(s, t, st−1(E)) = G
(t)

s (st−1(E) ∩ S). Thus we

know that g(st(s), st(t), E) = G
(t)

s (st−1(E) ∩ S), completing the proof. �

It is possible to weaken (OC) to: g(x, t, U) is a continuous function of t > 0

for x ∈ X and U ∈ B0. From the proof of Theorem 9.35, we can show that

g(st(s), st(t), U) = G
(t)

s (st−1(U) ∩ S) for all U ∈ B0. Then the question is: if two

finite Borel measures on some metric space agree on all open balls, do they agree on

all Borel sets? Unfortunately, this is not true even for compact metric spaces.

Theorem 9.36 ([Dav71, Theorem .2]). There exists a compact metric space Ω, and

two distinct probability Borel measures µ1, µ2 on Ω, such that µ1(U) = µ2(U) for

every open ball U ⊂ Ω.

However, we do have an affirmative answer of the above question for metric

spaces we normally encounter.

Theorem 9.37 ([PT91]). Whenever finite Borel measures µ and ν over a separable

Banach space agree on all open balls, then µ = ν.

The following definition of “continuous in time” is weaker than (OC).

Condition WC. The Markov chain {Xt} is said to be weakly continuous in time

if for any open ball A ⊂ X, and any x ∈ X, the function t 7→ P
(t)
x (A) is a right

continuous function for t > 0. Moreover, for any t0 ∈ R+, any x ∈ X and any

E ∈ B[X] we have limt↑t0 P
(t)
x (E) always exists although it not necessarily equals

to P
(t0)
x (E).

This condition is usually assumed for all the continuous time Markov processes.

An immediate implication of this definition is the following lemma:
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Lemma 9.38. Suppose (SF) and (WC) hold. For any near-standard x1 ≈ x2, any

non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and t1, t2 ≥ st(t1) and any open

ball A we have ∗g(x1, t1,
∗A) ≈ ∗g(x2, t2,

∗A).

Proof. The proof is similar to the proof of Lemma 9.29. �

This lemma, just like Lemma 9.29, is stronger than Lemma 9.22 since t1 and t2

need not be standard positive real numbers. We now generalize Lemma 9.24 to all

t ∈ NS(∗R). Before proving it, we first recall the following theorem.

Theorem 9.39 (Vitali-Hahn-Saks Theorem). Let µn be a sequence of countably

additive functions defined on some fixed σ-algebra Σ, with values in a given Banach

space B such that

lim
n→∞

µn(X) = µ(X). (9.50)

exists for every X ∈ Σ, then µ is countably additive.

An immediate consequence of Theorem 9.39 is that the limit of probability

measures remain a probability measure. The following lemma generalizes Lemma 9.24

to all t ∈ NS(∗R).

Lemma 9.40. Suppose (SF) and (WC) hold. For any x ∈ NS(∗X) and for any non-

infinitesimal t ∈ NS(∗R) we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)) for all E ∈ B[X].

Moreover, ∗g(x, t, st−1(X)) = 1 for all x ∈ NS(∗X) and all t ∈ NS(∗R).

Proof. Pick any x ∈ NS(∗X), any t ∈ NS(∗R) and any E ∈ B[X]. Let x0 = st(x)

and t0 = st(t). We first show the result for t < t0. For any B ∈ B[X], let h(x0, t0, B)

denote lims↑t0 g(x0, s, B). By Vitali-Hahn-Saks theorem, h is a probability measure

on (X,B[X]). Since X is a Polish space, h is a Radon measure. By Lemma 6.8,

we know that ∗h(x0, t0, st
−1(X)) = 1. As t ≈ t0, we know that ∗g(x0, t,

∗B) ≈
∗h(x0, t0,

∗B) for all B ∈ B[X]. Pick some ε ∈ R+ and choose K compact, U open
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with K ⊂ E ⊂ U and h(x0, t0, U)− h(x0, t0,K) < ε
2 . We have

|∗g(x0, t, st
−1(E))− ∗h(x0, t0, st

−1(E))| (9.51)

/ |∗g(x0, t, st
−1(E))− ∗g(x0, t,

∗K)|+ |∗h(x0, t0,
∗K)− ∗h(x0, t0, st

−1(E))| / ε

(9.52)

As ε is arbitrary, we have ∗g(x0, t, st
−1(E)) = ∗h(x0, t0, st

−1(E)). Hence we have

∗g(x0, t, st
−1(E)) = ∗g(x0, t,

∗E). By Lemma 9.22, we know that ∗g(x0, t,D) ≈
∗g(x, t,D) for all D ∈ ∗B[X]. Thus, we have ∗g(x0, t, st

−1(E)) = ∗g(x, t, st−1(E))

and ∗g(x0, t,
∗E) ≈ ∗g(x, t, ∗E). Hence we have ∗g(x, t, st−1(E)) = ∗g(x, t, ∗E).

For t ≥ t0, we can simply take h(x0, t0, B) to be g(x0, t0, B) for every B ∈ B[X].

Suppose there exist some x0 ∈ NS(∗X) and some infinitesimal t0 such that

∗g(x0, t0, st
−1(X)) < 1. This implies that there exist n ∈ N and A ∈ ∗B[X] such

that

(A ∩ st−1(X) = ∅) ∧ (∗g(x0, t0, A) >
1

n
). (9.53)

Pick some positive t1 ∈ R.

Claim 9.41. ∗f (t0,t1)x0
(A, ∗K) ≈ 0 for all compact K ⊂ X.

Proof. Pick some compact subset K and some positive ε ∈ R. By condition (2) of

(DT), there exists positive r ∈ R such that

(∀x ∈ X)(d(x,K) > r =⇒ g(x, t1,K) < ε). (9.54)

By the transfer principle, we know that ∗g(x, t1,
∗K) ≈ 0 for all x ∈ A. By

Lemma 8.5, we have ∗f (t0,t1)x0
(A, ∗K) ≈ 0. �

Fix some compact K ⊂ X. Note that

∗g(x0, t0 + t1,K) = ∗g(x0, t0, A)∗f (t0,t1)x0
(A, ∗K) + ∗g(x0, t0,

∗X \A)∗f (t0,t1)x0
(∗X \A, ∗K).

(9.55)
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Hence ∗g(x0, t0 + t1,K) / 1− 1
n . As this is true for all compact K ⊂ X, we know

that ∗g(x0, t0 + t1, st
−1(X)) ≤ 1 − 1

n . This is a contradiction hence we have the

desired result. �

A consequence of this lemma is the following result:

Lemma 9.42. Suppose (SF) and (WC) hold. For any s ∈ NS(S) and any t ∈ NS(T )

we have G
(t)
s (S) = G

(t)

s (NS(S)) = 1.

Proof. Fix any s ∈ NS(S) and any t ∈ NS(T ). By Theorem 9.21 and Lemma 9.40,

we know that

G
(t)

s (st−1(X) ∩ S) = ∗g(s, t, st−1(X)) = 1. (9.56)

�

Assuming (WC) instead of (OC), we have the following result which is similar to

Theorem 9.35.

Theorem 9.43. Suppose (DT), (SF) and (WC) hold. Suppose the state space X

of {Xt}t≥0 is a separable Banach space. Then for any s ∈ NS(S), any t ∈ NS(T )

with t > st(t) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S).

Proof. We require X to be a separable Banach space to apply Theorem 9.37. The

proof is similar to the proof of Theorem 9.35 hence omitted. �

10. Markov Chain Ergodic Theorem

In the last section, we established the relationship between the transition proba-

bility of {Xt}t≥0 and {X ′t}t∈T . In this section, we will show that {X ′t}t∈T inherits

some other key properties from {Xt}t≥0. Most importantly, we show that if π is

a stationary distribution then its nonstandard counterpart is a weakly stationary

distribution. Finally we will establish the Markov chain Ergodic theorem for {Xt}t≥0

by showing that {X ′t}t∈T converges.
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Let π be a stationary distribution for our standard Markov process {Xt}t≥0. We

now show that π′, the hyperfinite representation measure of π, is a weakly stationary

distribution for {X ′t}t∈T .

Since X is a Polish space equipped with Borel σ-algebra, the stationary distribu-

tion π for {Xt} must be a Radon measure. We first establish the following fact of

stationary distributions.

Lemma 10.1. For any t ∈ R+, any finite partition of X with Borel sets A1, ...., An, B

of X and any A ∈ B[X] such that:

(1) for each Ai ∈ {A1, ...., An} there exists an εi ∈ R+ such that for any

x, y ∈ Ai we have |P (t)
x (A)− P (t)

y (A)| < εi.

(2) there exists an ε ∈ R+ such that π(B) < ε.

We have |π(A)−
∑
i≤n π(Ai)P

(t)
xi (A)| ≤

∑
i≤n π(Ai)εi + ε for any xi ∈ Ai.

Proof. Fix a t ∈ R+ and suppose there exists such a finite partition A1, ...., An, B of

X satisfying the two conditions in the lemma. Pick any A ∈ B[X] and any xi ∈ Ai.

We then have:

|π(A)−
∑
i≤n

π(Ai)P
(t)
xi (A)| (10.1)

= |
∫
X

P (t)
x (A)π(dx)−

∑
i≤n

(

∫
Ai

π(dx))P (t)
xi (A)| (10.2)

= |
∑
i≤n

∫
Ai

P (t)
x (A)π(dx) +

∫
B

P (t)
x (A)π(dx)−

∑
i≤n

∫
Ai

P (t)
xi (A)π(dx)| (10.3)

≤ |
∑
i≤n

(

∫
Ai

(P (t)
x (A)− P (t)

xi (A))π(dx))|+ ε (10.4)

≤
∑
i≤n

(

∫
Ai

εiπ(dx)) + ε (10.5)

=
∑
i≤n

π(Ai)εi + ε. (10.6)

�
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Write P
(t)
x (A) as g(x, t, A) and then apply the transfer principle, we have the

following lemma:

Lemma 10.2. For any t ∈ ∗R+, for any hyperfinite partition of ∗X with ∗Borel

sets A1, ...., AN , B of ∗X and any A ∈ ∗B[X] such that:

(1) for each Ai ∈ {A1, ...., AN} there exists an εi ∈ ∗R+ such that for any

x, y ∈ Ai |∗g(x, t, A)− ∗g(x, t, A)| < εi.

(2) there exists an ε ∈ ∗R+ such that π(B) < ε.

We have

|∗π(A)−
∑
i≤N

∗π(Ai)
∗g(xi, t, A)| ≤

∑
i≤N

∗π(Ai)εi + ε. (10.7)

for any xi ∈ Ai

Recall the definition of weakly stationary distribution:

Definition 10.3. An internal distribution π′ on (S, I(S)) is called weakly stationary

with respect to the Markov chain {X ′t}t∈T if there exists an infinite t0 ∈ T such

that for every t ≤ t0 and every A ∈ I(S) we have π′(A) ≈
∑
s∈S π

′({s})G(t)
s (A).

We now construct a weak-stationary distribution for {X ′t}t∈T from the stationary

distribution π of {Xt}t≥0.

Definition 10.4. Define an internal probability measure π′ on (S, I(S)) as following:

(1) For all s ∈ S let π′({s}) =
∗π(B(s))

∗π(
⋃
s′∈S B(s′)) .

(2) For all internal sets A ⊂ S let π′(A) =
∑
s∈A π

′({s}).

The following lemma is a direct consequence of Definition 10.4.

Lemma 10.5. π′ is an internal probability measure on (S, I(S)). Moreover, for

any A ∈ B[X], we have π(A) = π′(st−1(A) ∩ S).

Proof. Clearly π′ is an internal measure on (S, I(S)). The second part of the lemma

follows directly from Theorem 6.11. �
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We now show that π′ is a weakly stationary distribution for {X ′t}.

Theorem 10.6. Suppose (DT), (SF) and (WC) hold. Then π′ is a weakly stationary

distribution for {X ′t}t∈T .

Proof. Fix an internal set A ∈ S and some near-standard t ∈ T . Consider the

hyperfinite partition F = {B(s1), ...., B(sN ), ∗X \
⋃
s∈S B(s)} of ∗X where S =

{s1, s2, ..., sN} is the state space of {X ′t}. Note that every member of F is an

member of ∗B[X]. By Theorem 9.15 and Eq. (9.21), we know that

(∀i ≤ N)(∀x, y ∈ B(si))(∀C ∈ ∗B[X])(|∗g(x, t, C)− ∗g(y, t, C)| < ε0). (10.8)

Let B =
⋃
s∈AB(s) then B ∈ ∗B[X] since it is a hyperfinite union of ∗Borel sets.

As π is a Radon measure, we know that there exists an infinitesimal ε1 such that

∗π(∗X \
⋃
s∈S B(s)) = ε1.

By Lemma 10.2 , we have

|∗π(B)−
∑
i≤N

∗π(B(si))
∗g(si, t, B)| ≤

∑
i≤N

∗π(B(si))ε0 + ε1 ≤ ε0 + ε1 ≈ 0. (10.9)

By Definition 10.4, we know that π′(A) =
∗π(B)

∗π(
⋃
s′∈S B(s′)) and π′(si) =

∗π(B(si))
∗π(

⋃
s′∈S B(s′)) .

Thus, we have

|π′(A)−
∑
i≤N

π′(si)
∗g(si, t, B)| ≈ 0. (10.10)

Fix positive ε ∈ R. As π′ concentrates on NS(S), there is a near-standard internal

set C with π′(C) > 1− ε. Thus we have

|
∑
s∈S

π′({s})∗g(si, t, B)−
∑
s∈C

π′({s})∗g(si, t, B)| < ε (10.11)

Claim 10.7. Suppose (DT), (SF) and (WC) hold. Then ∗g(s, t, B) ≈ G(t)
s (A) for

all s ∈ NS(S) and t ∈ NS(T ).
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Proof. Fix n0 ∈ N, s ∈ NS(S) and t ∈ NS(T ). By Lemma 9.42, there ex-

ist near-standard Ai ∈ I(S) with Ai ⊂ A such that G
(t)
s (A) − G

(t)
s (Ai) <

1
n0

.

By Lemma 9.40, there exist near-standard Ci ∈ ∗B[X] with Ci ⊂ B such that

∗g(s, t, B) − ∗g(s, t, Ci) < 1
n0

. As X is σ-compact, let X =
⋃
n∈NKn where

{Kn : n ∈ N} is a sequence of non-decreasing compact sets. Without loss of

generality, we can assume Ci ⊂ ∗Km for some m ∈ N. As Km is compact, there

exists a near-standard Bi ∈ I(S) such that ∗Km ∈
⋃
s∈Bi B(s). Thus, we have

Ci ⊂
⋃
s∈Bi B(s) ⊂ B. By the construction of B, it is easy to see that Bi ⊂ A.

Note that, by Theorem 9.20, we have

∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′)) ≈ G(t)
s (Ai ∪Bi) (10.12)

Thus we have

|∗g(s, t, B)−G(t)
s (A)| (10.13)

≈ |∗g(s, t, B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′)) +G(t)
s (Ai ∪Bi)−G(t)

s (A)| (10.14)

≤ |∗g(s, t, B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′))|+ |G(t)
s (Ai ∪Bi)−G(t)

s (A)| < 2

n0
(10.15)

As the choice of n0 is arbitrary, we have the desired result. �

As C is near-standard, by Lemma 3.20, we have

|
∑
s∈C

π′({s})∗g(si, t, B)−
∑
s∈C

π′({s})G(t)
s (A)| ≈ 0. (10.16)

By the construction of C again, we have

|
∑
s∈C

π′({s})G(t)
s (A)−

∑
s∈S

π′({s})G(t)
s (A)| < ε. (10.17)

By Eqs. (10.10), (10.11), (10.16) and (10.17), we have

|π′(A)−
∑
s∈S

π′({s})G(t)
s (A)| < 2ε. (10.18)
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As the choice of ε is arbitrary, we have π′(A) ≈
∑
s∈S π

′({s})G(t)
s (A) for all t ∈

NS(T ).

Consider the set D = {t ∈ T : (∀A ∈ I(S))(|π′(A)−
∑
s∈S π

′({s})G(t)
s (A)| < 1

t )}.

This is an internal set and contains all t ∈ NS(T ). Suppose there is no infinite

t0 such that D contains all the infinite t no greater than t0. This implies T \ D

contains arbitrarily small infinite element hence, by underspill, T \ D contains some

t0 ∈ NS(T ). This contradicts with the fact that D contains all t ∈ NS(T ). Thus π′

is a weakly stationary distribution of {X ′t}t∈T .

�

Note that if π is a stationary distribution of {Xt}t≥0 then π × π is a stationary

distribution of {Xt ×Xt}t≥0. Thus, we have the following lemma.

Lemma 10.8. Suppose (DT) and (SF) hold. Then π′ × π′ is a weakly stationary

distribution of {X ′t ×X ′t}t∈T .

Proof. It is straightforward to verify that S×S is a (δ0, r)-hyperfinite representation

of ∗X × ∗X. Since π× π is a stationary distribution, by Theorem 10.6, (π× π)′ is a

weakly stationary distribution of {X ′t ×X ′t}t∈T . In order to finish the proof, it is

sufficient to show that (π × π)′ = π′ × π′.

Pick any (s1, s2) ∈ S × S. As {B(s) : s ∈ S} is a collection of mutually disjoint

sets, we have

(π × π)′({(s1, s2)}) =
∗(π × π)(B(s1)×B(s2))

∗(π × π)(
⋃
s∈S B(s)×

⋃
s∈S B(s))

(10.19)

=
∗π(B(s1))

∗π(
⋃
s∈S B(s))

·
∗π(B(s2))

∗π(
⋃
s∈S B(s))

(10.20)

= π′(s1)π′(s2). (10.21)

Hence we have (π × π)′ = π′ × π′, completing the proof. �

In order to show that {X ′t}t∈T converges to π′, by Theorem 7.19, it remains to

show that for π′ × π′-almost surely (i, j) ∈ S×S there exists a near-standard absorb-

ing point i0. By Theorem 7.14, it is enough to show that {X ′t}t∈T is productively



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 109

near-standard open set irreducible. We first recall the definition of productively

near-standard open set irreducible. We now impose some conditions on {Xt}t≥0

to show that {X ′t}t∈T is productively near-standard open set irreducible. We first

recall the following definitions.

Definition 10.9. A Markov chain {Xt}t≥0 with state space X is said to be open

set irreducible on X if for every open ball B ⊆ X and any x ∈ X, there exists

t ∈ R+ such that P
(t)
x (B) > 0.

An internal set B ⊂ S is an open ball if B = {s ∈ S : ∗d(s, s0) < r} for some

s0 ∈ S and r ∈ ∗R. An open ball is near-standard if it contains only near-standard

elements.

Definition 10.10. A hyperfinite Markov chain {Yt}t∈T is called near-standard

open set irreducible if for any near-standard s ∈ S, any near-standard open ball

B ⊂ ∗X with non-infinitesimal radius we have P i(τ(B) <∞) > 0

We first establish the connection between open set irreducibility of {Xt}t≥0

and {X ′t}t∈T . Note that the consequence of the following theorem implies the

near-standard open-set irreducibility of {X ′t}t∈T .

Theorem 10.11. Suppose (DT), (SF) and (WC) hold. If {Xt}t≥0 is open set

irreducible, then for any near-standard s ∈ S, any near-standard open ball B with

non-infinitesimal radius there is a positive t ∈ NS(T ) such that G
(t)

s (B) > 0.

Proof. Consider any near-standard open ball B ⊂ S with non-infinitesimal radius k.

Without loss of generality let B = {s ∈ S : ∗d(s, s0) < r} for some near-standard

s0 ∈ S and some near-standard r ∈ ∗R+. Let A be the ball in X centered at st(s0)

with radius st(r)
2 .

Claim 10.12. st−1(A) ∩ S ⊂ B.

Proof. Pick any point x ∈ st−1(A) ∩ S. There exists a ∈ A such that x ∈ µ(a).

We then have ∗d(x, s0) ≤ ∗d(x, a) + ∗d(a, st(s0)) + ∗d(st(s0), s0) / st(r)
2 . Thus

∗d(x, s0) / st(r)
2 < r. This implies that st−1(A) ∩ S ⊂ B. �
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Consider any near-standard s ∈ S, there exists a x ∈ X such that x = st(s). As

{Xt}t≥0 is open set irreducible, there exists a t ∈ R+ such that P
(t)
x (A) > 0. Pick

t′ ∈ T such that t′ ≈ t and t′ ≥ t. By Lemma 9.38, Lemma 9.40 and Theorem 9.21,

we know that

P (t)
x (A) = g(x, t, A) = ∗g(x, t, ∗A) ≈ ∗g(s, t′, ∗A) ≈ ∗g(s, t′, st−1(A)) = G

(t′)

s (st−1(A) ∩ S).

(10.22)

Then we have st((G
(t)
s (B))) > 0. �

Let {X ′t}t∈T and {Y ′t }t∈T be two i.i.d hyperfinite Markov chains on (S, I(S))

both with internal transition probability {G(δt)
i j)}i,j∈S . Let {Z ′t}t∈T be the product

hyperfinite Markov chain live on (S × S, I(S × S)) with respect to {X ′t}t∈T and

{Y ′t }t∈T . Recall that the internal transition probability of {Z ′t}t∈T is then defined

to be

F
(δt)
(i,j)({(a, b)}) = G

(δt)
i ({a})×G(δt)

j ({b}). (10.23)

where (F
(δt)
(i,j)({(a, b)}) denote the internal probability of Z ′t starts at (i, j) and reach

(a, b) at δt.

Before we prove that {Z ′t}t∈T is near-standard open set irreducible, we impose

the following condition on the standard joint Markov chain.

Definition 10.13. The Markov chain {Xt}t≥0 is productively open set irreducible

if the joint Markov chain {Xt × Yt}t≥0 is open set irreducible on X × X where

{Yt}t≥0 is an independent identical copy of {Xt}t≥0.

The following lemma gives a sufficient condition for a Markov process being

productively open set irreducible.

Lemma 10.14. Let {Xt}t≥0 be an open set irreducible Markov process. If there

exists t0 ∈ R+ such that for any open set A and any x ∈ A, we have P
(t)
x (A) > 0

for all t ≥ t0. Then {Xt}t∈R is productively open set irreducible.
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Proof. Consider a basic open set A×B. Suppose {Xt} reaches A first. Then {Xt}

will wait for {Yt} to reach B. �

Most of the diffusion processes satisfy the condition of this lemma.

Recall that {X ′t}t∈T is productively near-standard open set irreducible if {Z ′t}t∈T

is near-standard open set irreducible.

Lemma 10.15. Suppose (DT), (SF) and (WC) hold. If {Xt}t≥0 is productively

open set irreducible, then {X ′t}t∈T is productively near-standard open set irreducible.

Proof. Let {Yt}t≥0 denote an independent identical copy of {Xt}t≥0. We use P to

denote the transition probability of Xt and Yt. Let {Zt}t∈R be the product chain of

{Xt} and {Yt}. We use Q to denote the transition probability of the joint chain Zt.

Let {Y ′t }t∈T denote an independent identical copy of {X ′t}t∈T . We use G to denote

the internal transition probability of X ′t and Y ′t and use F to denote the internal

transition probability of the product hyperifnite chain Z ′t. It is sufficient to show

that {Z ′t}t∈T is near-standard open set irreducible.

Pick any near-standard open ball B with non-infinitesimal radius from S × S

and fix some near-standard (i, j) ∈ S × S. Then there exists (x, y) ∈ X ×X such

that (i, j) ∈ µ((x, y)). We can find two open balls B1, B2 ∈ S with non-infinitesimal

radius such that B1 × B2 ⊂ B. As in Theorem 10.11, we can find two open balls

A1, A2 such that st−1(A1) ∩ S ⊂ B1 and st−1(A2) ∩ S ⊂ B2,respectively. Thus in

conclusion we have (st−1(A1)∩S)× (st−1(A2)∩S) = (st−1(A1×A2))∩ (S×S) ⊂ B.

As {Xt}t≥0 is productively open set irreducible, there exists t ∈ R+ such that

Q
(t)
(x,y)(A1 × A2) > 0. By (WC), we can pick t to be a rational number. By the

definition of {Zt}t≥0 and Theorem 9.27, we have

Q
(t)
(x,y)(A1 ×A2) = P (t)

x (A1)× P (t)
y (A2) = G

(t)

i (st−1(A1) ∩ S)×G(t)

j (st−1(A2) ∩ S).

(10.24)
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By Lemma 7.10 and the construction of Loeb measure, we know that

G
(t)

i (st−1(A1) ∩ S)×G(t)

j (st−1(A2) ∩ S) = F
(t)

(i,j)(st
−1(A1 ×A2)) ∩ (S × S)).

(10.25)

Thus F
(t)

(i,j)(st
−1(A1 ×A2)) ∩ (S × S)) > 0. As (st−1(A1 ×A2)) ∩ (S × S) ⊂ B we

have that F
(t)

(i,j)(B) > 0, completing the proof. �

Now we are at the place to prove the main theorem of this paper.

Theorem 10.16. Let {Xt}t≥0 be a general-state-space continuous in time Markov

chain on some metric space X satisfying the Heine-Borel condition. Suppose {Xt}t≥0

is productively open set irreducible and has a stationary distribution π. Suppose

{Xt}t≥0 is vanishing in distance and also satisfies (SF) and (WC). Then for π-almost

surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

Proof. As {Xt} is vanishing in distance and satisfies (SF), by Theorem 9.6, we

know that {Xt}t≥0 satisfies (DT). Let {X ′t}t∈T denote the corresponding hyperfinite

Markov chain on the hyperfinite set S. We use P to denote the transition probability

of {Xt}t≥0 and use G to denote the internal transition probability for {X ′t}t∈T .

Let π′ be defined as in Definition 10.4. By Theorem 10.6, we know that π′ is

a weakly stationary distribution for {X ′t}t∈T . We first show that the internal

transition probability of {X ′t}t∈T converges to π′. As {Xt}t≥0 is productively

open set irreducible, by Lemma 10.15, we know that {X ′t}t∈T is productively near-

standard open set irreducible. By Theorem 9.25, we know that {X ′t}t∈T is strong

regular. Thus by Theorems 7.19 and 7.26, we know that for π′ almost surely s ∈ S

and any A ∈ L(I(S)), limt→∞ supB∈L(I(S)) |G
(t)

s (B)− π′(B)| = 0.

Now fix any A ∈ B[X]. Then by Theorem 5.9, we know that st−1(A) ∈ L(I(S)).

Consider any x ∈ X and any s ∈ st−1({x})∩S. By Theorem 9.27, we know that for

any t ∈ Q+ we have P
(t)
x (A) = G

(t)

s (st−1(A) ∩ S). By Lemma 10.5, we know that

π(A) = π′(st−1(A) ∩ S). Suppose that there exists a set B ∈ B[X] with π(B) > 0

such that, for any x ∈ B, P
(t)
x (·) does not converge to π(·) in total variation distance.
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This means that for any s ∈ st−1(B) ∩ S we have

sup
A∈B[X]

|G(t)

s (st−1(A) ∩ S)− π′(st−1(A) ∩ S)|9 0. (10.26)

where we can restrict t to Q+ ⊂ T since total variation distance is non-increasing.

However, as π(B) > 0, we know that π′(st−1(B) ∩ S) > 0. This contradict the fact

that for π′ almost surely s, limt→∞ supB∈L(I(S)) |G
(t)

s (B)− π′(B)| = 0. Hence we

have the desired result. �

Using Theorems 9.6 and 10.16 and results in Section 2, we can obtain Theo-

rem 2.16. We restate it here.

Theorem 10.17. Let {Xt}t≥0 be a general state space continuous-time Markov

chain with separable locally compact metric state space (X, d). Suppose {Xt}t≥0

is productively open set irreducible and has a stationary distribution π. Suppose

{Xt}t≥0 is vanishing in distance, strong Feller and weakly continuous. Then for

π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

11. The Feller Condition

In Sections 8 and 10, our analysis depend on the strong Feller condition ((SF)).

In the literature, however, it is sometimes more desirable to replace strong Feller

condition with a weaker condition which we call Feller condition. In this section, we

will discuss the difference between strong Feller and Feller conditions. Moreover,

we will construct a hyperfinite representation {X ′t}t∈T of {Xt}t≥0 under Feller

condition. Finally, we will establish some of the key properties of {X ′t}t∈T inherited

from {Xt}t≥0.

We first recall the definition of strong Feller.

Remark 11.1. (SF) The Markov chain{Xt}t≥0 is said to be strong Feller if for any

t > 0 and any ε > 0 we have:

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

(11.1)
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We then introduce the Feller condition.

Condition WF. The Markov chain{Xt}t≥0 is said to be Feller if for all t > 0 and

all ε > 0 we have:

(∀A ∈ B[X])(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ |P (t)
y (A)− P (t)

x (A)| < ε)).

(11.2)

As one can see, the choice of δ in (WF) depends on the Borel set A. We present

the following Feller Markov process which is not strong Feller.

Example 11.2 (suggested by Neal Madras). [MS10, Page. 889] Let {Xt}t∈N be

a discrete-time Markov processes with state space [−π, π]. For every n ∈ N, let

1+sin(ny)
2π be the density of P 1

n
(dy). Let µ be the Lebesgue measure on [−π, π]

divided by 2π and let µ(A) = P0(A) for all Borel sets A.

Claim 11.3. limn→∞ P 1
n

(A) = µ(A) for all Borel sets A.

Proof. Let A be an internal with end points a and b.

lim
n→∞

P 1
n

(A) = lim
n→∞

∫ b

a

1 + sin(ny)

2π
dy (11.3)

= lim
n→∞

(
b− a
2π
− cos(nb)− cos(na)

2nπ
) (11.4)

=
b− a
2π

= µ(A) (11.5)

By Theorem 9.37, we have the desired result. �

Claim 11.4. supA∈B[[−π,π]] |P 1
n

(A)− µ(A)| ≥ 1
π for all n ∈ N

Proof. Let A be an internal with end points a and b. Then we have |P 1
n

(A)−µ(A)| =

| cos(nb)−cos(na)2nπ |. For any m ∈ N, we can find an open set Um which is a union of m

open intervals (a1, b1), . . . , (am, bm) such that cos(nbn)− cos(nan) = 2 for all n ≤ m.

Then |P 1
m

(Um)− µ(Um)| = 1
π , completing the proof. �
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11.1. Hyperfinite Representation under the Feller Condition. In this sec-

tion, we will show that, by carefully picking a hyperfinite representation, we can

construct a hyperfinite Markov process {X ′t}t∈T which is a hyperfinite representation

of {Xt}t≥0. We use P
(t)
x (A) to denote the transition probability of {Xt}t≥0. When

we view the transition probability as a function of three variables, we denote it by

g(x, t, A).

The state space of {X ′t}t∈T is a hyperfinite representation S of ∗X. By Defini-

tion 6.3, the hyperfinite set S should be a (δ0, r0)-hyperfinite representation of ∗X

for some positive infinitesimal δ0 and some positive infinite number r0. We need to

pick δ0 and r0 carefully. Recall that the time line T = {0, δt, . . . ,K}. Let ε0 be a

positive infinitesimal such that ε0
t
δt ≈ 0 for all t ∈ T . We can pick r0 the same way

as we did in Section 8. Recall (DT) and Theorem 9.8 from Section 8.

Remark 11.5 ((DT)). The Markov chain {Xt}t≥0 is said to be vanish in distance if

for all t ≥ 0 and all K ∈ K[X] we have:

(1) (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε).

(2) (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K) > r =⇒ g(x, t,K) < ε).

where K denote the collection of all compact sets of X.

By mimicking the proof of Theorem 9.6, we immediately obtain the following

result.

Lemma 11.6. If a Markov process has the weak Feller property, then it also satisfies

property (1) from (DT).

From (DT), we have the following lemma.

Lemma 11.7 (Theorem 9.8). Suppose (DT) holds. For every positive ε ∈ ∗R, there

exists an open ball centered at some standard point a with radius r such that:

(1) ∗g(x, δt, ∗X \ U(a, r)) < ε for all x ∈ NS(∗X).

(2) ∗g(y, t, A) < ε for all y ∈ ∗X \U(a, r), all near-standard A ∈ ∗B[X] and all

t ∈ T .
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where U(a, r) = {x ∈ ∗X : ∗d(x, a) ≤ r}.

Fix a standard a0 ∈ X. For the particular ε0, we can find a r1 such that the ball

U(a0, r1) satisfies the conditions in Lemma 11.7.

Recall the following results from Section 8

Lemma 11.8 (Lemma 9.11). Suppose (DT) holds. There exists a positive infinite

r0 > 2r1 such that

(∀y ∈ U(a0, 2r1))(∗g(y, δt, ∗X \ U(a0, r0)) < ε0). (11.6)

Just as in Section 8,we fix a0, r1 and r0 for the remainder of this section.

Lemma 11.9 (Lemma 9.12). Suppose (DT) holds. For any x ∈ X, any t ∈ T , any

near-standard internal set A ⊂ ∗X we have ∗f (t)x (∗X \ U(a0, r0), A) < 2ε0.

Just as in Section 8, our hyperfinite state space will cover U(a0, 2r0). We will

choose δ0 to partition U(a0, 2r0) into ∗Borel sets with diameters no greater than δ0.

We start by picking an arbitrary positive infinitesimal δ1 and let S1 be a (δ1, 2r0)-

hyperfinite representation of ∗X such that {B1(s) : s ∈ S1} = U(a0, 2r0). We fix S1

for the remainder of this section.

Lemma 11.10. Suppose (DT) and (WF) hold. There exists a positive infinitesimal

δ0 such that for any x1, x2 ∈ U(a0, 2r0) with |x1−x2| < δ0 we have for all A ∈ I(S1)

and all t ∈ T+:

|∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))| < ε0 (11.7)

Proof. Fix a A ∈ I(S1). By the transfer of (WF), for every x ∈ U(a0, 2r0) there

exists δx ∈ ∗R+ such that ∀y ∈ ∗X we have

d(x, y) < δx =⇒ |∗g(x, δt,
⋃
s∈A

B1(s))− ∗g(y, δt,
⋃
s∈A

B1(s))| < ε0
2
. (11.8)

The collection {U(x, δx2 ) : x ∈ U(a0, 2r0)} forms an open cover of U(a0, 2r0). By

the transfer of Heine-Borel condition, U(a0, 2r0) is ∗compact hence there exists a
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hyperfinite subset of the cover {U(x, δx2 ) : x ∈ U(a0, 2r0)} that covers U(a0, 2r0).

Denote this hyperfinite subcover by F = {U(xi,
δxi
2 ) : i ≤ N} where { δxi2 : i ≤ N}

is a hyperfinite set. Let δA = min{ δxi2 : i ≤ N}.

Pick any x, y ∈ U(a0, 2r0) with d(x, y) < δA. We know that x ∈ B(xi,
δxi
2 ) for

some i ≤ N and ∗d(y, xi) ≤ ∗d(y, x) + ∗d(x, xi) ≤ δxi . Thus both x, y are in some

B(xi, δxi). This means that

|∗g(x, δt,
⋃
s∈A

B1(s))− ∗g(y, δt,
⋃
s∈A

B1(s))| < ε0. (11.9)

Let M = {δA : A ∈ I(S)}. Note that M is a hyperfinite set hence there exists

a minimum element, denoted by δδt. We can carry out this argument for every

t ∈ T . Let δt denote the minimum element for time t and consider the hyperfinite

set {δt : t ∈ T}. This set again has a minimum element δ0. It is easy to check that

this δ0 satisfies the condition of this lemma. �

Definition 11.11. Let S, S′ be two hyperfinite representations of ∗X. The hyper-

finite representation S′ is a refinement of S if for every A ∈ I(S) there exists a

A′ ∈ I(S′) such that
⋃
s∈AB(s) =

⋃
s′∈A′ B

′(s′). The set A′ is called an enlargement

of A.

Let S′ be a refinement of S. For any A ∈ I(S), note that the enlargement A′ is

unique. Fix δ0 in Lemma 11.10 for the remainder of this section. We present the

following result.

Lemma 11.12. There exists a (δ0, 2r0)-hyperfinite representation S with
⋃
s∈S B(s) =

U(a0, 2r0) such that S is a refinement of S1.

Proof. Fix an arbitrary (δ0, 2r0)-hyperfinite representationH such that the collection

{BH(h) : h ∈ H} = U(a0, 2r0). For every s ∈ S1, let

M(s) = {BH(h) : BH(h) ∩B1(s) 6= ∅}. (11.10)
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Note that M(s) is hyperfinite for every s ∈ S1. Let

N(s) = {BH(h) ∩B1(s) : BH(h) ∈M(s)}. (11.11)

Note that N(s) is also hyperfinite for every s ∈ S1. It is easy to see that⋃
s∈S1

N(s) =
⋃
s∈S1

B1(s) = U(a0, 2r0). Note that
⋃
s∈S1

N(s) is a collection

of mutually disjoint ∗ Borel set with diameter no greater than δ2. Pick one point

from each element of
⋃
s∈S1

N(s) and form a hyperfinite set S. This S is a hyperfinite

set satisfying all the conditions of this lemma. �

For each s ∈ S, we use B(s) to denote the corresponding ∗Borel set. By the

construction in Lemma 11.12, we can see that every B(s) is a subset of B1(s′) for

some s′ ∈ S1 and every B1(s′) is a hyperfinite union of B(s).

By Lemmas 11.10 and 11.12, we have the following result:

Theorem 11.13. Let S1, S be the same hyperfinite representations as in Lemma 11.12.

Then for any s ∈ S, any x1, x2 ∈ B(s), any A ∈ I(S1) and any t ∈ T+ we have

|∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))| < ε0. (11.12)

An immediate consequence of this theorem is:

Corollary 11.14. Let S1, S be the same hyperfinite representations as in Lemma 11.12.

For for any s ∈ S, any y ∈ B(s), any x ∈ ∗X, any A ∈ I(S1) and any t ∈ T+ we

have |∗g(y, t,
⋃
s∈AB1(s))− ∗f (t)x (B(s),

⋃
s∈AB1(s))| < ε0.

We fix S constructed above for the remainder of this section. In summary, S1

is a (δ1, 2r0)-hyperfinite representation of ∗X for some infinitesimal δ1 such that

{B1(s) : s ∈ S1} covers U(a0, 2r0). S is a refinement of S1 satisfying the following

conditions:

(1) The diameter of B(s) is less than δ0 for all s ∈ S.

(2)
⋃
s∈S B(s) = U(a0, 2r0).
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We let S be the hyperfinite state space of our hyperfinite Markov process. Note

that for any x ∈ NS(∗X) and any y ∈ ∗X \
⋃
s∈S B(s), we have ∗d(x, y) > r0.

We construct {X ′t}t∈T on S in a similar way as in Section 8. Let g′(x, δt, A) =

∗g(x, δt, A ∩
⋃
s∈S B(s)) + δx(A)∗g(x, δt, ∗X \

⋃
s∈S B(s)) where δx(A) = 1 if x ∈ A

and δx(A) = 0 if otherwise. For i, j ∈ S let G
(δt)
ij = g′(i, δt, B(j)) be the “one-step”

internal transition probability of {X ′t}t∈T . We use G
(t)
i (·) to denote the t-step

internal transition measure. By Lemmas 8.12 and 8.13, we know that G
(t)
i (·) is an

internal probability measure on (S, I(S)) for all t ∈ T .

Similar to Theorem 9.20, we have the following theorem. The two proofs are

similar to each other.

Theorem 11.15. Suppose (DT) and (WF) hold. For any t ∈ T , any x ∈ S and

any near-standard A ∈ I(S1), we have

|∗g(x, t,
⋃
s∈AS

B(s))−G(t)
x (AS)| ≤ ε0 + 5ε0

t− δt
δt

. (11.13)

where AS is the enlargement of A. In particular, for all t ∈ T , all x ∈ S and all

near-standard A ∈ I(S1) we have

|∗g(x, t,
⋃
s∈AS

B(s))−G(t)
x (AS)| ≈ 0 (11.14)

Proof. : In the proof of Theorem 9.20, by (SF), we know that for any s0 ∈ S and

any t ∈ T+

(∀x1, x2 ∈ B(s0))(∀A ∈ I(S))(|∗g(x1, t,
⋃
s∈A

B(s))− ∗g(x2, t,
⋃
s∈A

B(s))| < ε0).

(11.15)

Under (WF), by Theorem 11.13 and Corollary 11.14 and the fact that S is a

refinement of S1, we know that for any s0 ∈ S and any t ∈ T+

(∀x1, x2 ∈ B(s0))(∀A ∈ I(S1))(|∗g(x1, t,
⋃
s∈AS

B(s))− ∗g(x2, t,
⋃
s∈AS

B(s))| < ε0).

(11.16)
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We use this formula to replace the Eq. (11.15) in the proof of Theorem 9.20. Then

the rest of the proof is identical to the proof of Theorem 9.20. �

In Section 8, we have shown that {X ′t} is a hyperfinite representation of {Xt}t≥0

in terms of transition probability. We first establish a similar result as Theorem 9.21.

Theorem 11.16. Suppose (DT) and (WF) hold. For any x ∈
⋃
s∈S B(s) let sx

denote the unique element in S such that x ∈ B(sx). Then for any E ∈ B[X] and

any t ∈ T , we have ∗g(x, t, st−1(E)) = G
(t)

sx (st−1(E) ∩ S).

Proof. We first prove the case when t = 0. ∗g(x, 0, st−1(E)) is 1 if x ∈ st−1(E)

and is 0 otherwise. Note that x ∈ st−1(E) if and only if sx ∈ st−1(E) ∩ S. Hence

∗g(x, 0, st−1(E)) = G
(0)

sx (st−1(E) ∩ S).

We now prove the case for t > 0. Fix some x ∈
⋃
s∈S B(s), some t > 0 and some

E ∈ B[X]. By the construction in Theorem 6.11 and Eq. (6.19), we know that for

every t > 0:

∗g(x, t, st−1(E)) = sup{∗g(x, t,
⋃
s∈A

B1(s)) : A ⊂ st−1(E) ∩ S1, A ∈ I(S1)} (11.17)

By Theorem 11.13, we have |∗g(x, t,
⋃
s∈AB1(s))− ∗g(sx, t,

⋃
s∈AB1(s))| < ε0. By

Theorem 11.15, we know that |∗g(sx, t,
⋃
s∈AB1(s))−G(t)

sx (AS)| ≈ 0. Thus we know

that ∗g(x, t,
⋃
s∈AB1(s)) = G

(t)

sx (AS). Hence we have

∗g(x, t, st−1(E)) = sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S1)}. (11.18)

Claim 11.17.

G
(t)

sx (st−1(E) ∩ S) = sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S1)}. (11.19)

Proof. Let B be an internal subset of S such that B ⊂ st−1(E) ∩ S. For any b ∈ B,

there exists a sb ∈ S1 such that b ∈ B1(sb). Let A = {sb : b ∈ B}. Then A ∈ I(S1)
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and it is easy to see that B ⊂ AS ⊂ st−1(E) ∩ S. Thus we can conclude that

sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S2)} = G
(t)

sx (st−1(E) ∩ S). (11.20)

�

Thus we have the desired result. �

The next lemma establishes a weaker form of local continuity of ∗g.

Lemma 11.18. Suppose (WF) holds. For any two near-standard x1 ≈ x2 from ∗X

,any t ∈ R+ and any A ∈ B[X] we have ∗g(x1, t,
∗A) ≈ ∗g(x2, t,

∗A).

Proof. Fix two near-standard x1, x2 from ∗X. Let x0 = st(x1) = st(x2). Also fix

t ∈ R+ and A ∈ B[X]. Pick ε ∈ R+. By (WF), we can pick a δ ∈ R+ such that

(∀y ∈ X)(|y − x0| < δ =⇒ (|g(y, t, A)− g(x0, t, A)| < ε)). (11.21)

By the transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(|∗g(x1, t,
∗A)− ∗g(x2, t,

∗A)| < ε). (11.22)

As ε is arbitrary, this completes the proof. �

As Lemma 9.24, the next lemma establishes the link between ∗E and st−1(E) for

every E ∈ B[X].

Lemma 11.19. Suppose (WF) holds. For any Borel set E, any x ∈ NS(∗X) and

any t ∈ R+ we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).

Proof. The proof uses Lemma 11.18 and is similar to the proof of Lemma 9.24. �

Lemmas 11.18 and 11.19 allow us to obtain the result in Theorem 9.27 under

weaker assumptions.

Theorem 11.20. Suppose (DT) and (WF) hold. For any s ∈ NS(S), any non-

negative t ∈ Q and any E ∈ B[X], we have P
(t)
st(s)(E) = G

(t)

s (st−1(E) ∩ S).
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Proof. The proof uses Lemmas 11.18 and 11.19 and is similar to the proof of

Theorem 9.27. �

In order to extend the result in Theorem 11.20 to all non-negative t ∈ R, we

follow the same path as Section 8. Recall that we needed (OC):

Condition OC. The Markov chain {Xt} is said to be continuous in time if for any

open ball U ⊂ X and any x ∈ X, we have g(x, t, U) being a continuous function for

t > 0.

Using the same proof as in Section 8, we obtain the following result.

Theorem 11.21. Suppose (DT), (OC) and (WF) hold. For any s ∈ NS(S), any

t ∈ NS(T ) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S).

Thus, in conclusion, we have the following theorem.

Theorem 11.22. Let {Xt}t≥0 be a continuous time Markov process on a metric

state space satisfying the Heine-Borel condition. Suppose {Xt}t≥0 satisfies (DT),

(OC) and (WF). Then there exists a hyperfinite Markov process {X ′t}t∈T with state

space S ⊂ ∗X such that for all s ∈ NS(S) and all t ∈ NS(T )

(∀E ∈ B[X])(P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S)). (11.23)

where P and G denote the transition probability of {Xt}t≥0 and {X ′t}t∈T , respec-

tively.

This theorem shows that, given a standard Markov process, we can almost always

use a hyperfinite Markov process to represent it. In [And76], Robert Anderson

discussed such hyperfinite representation for Brownian motion. In this paper, we

extend his idea to cover a large class of general Markov processes.

11.2. A Weaker Markov Chain Ergodic Theorem. In Section 10, we have

shown the Markov chain Ergodic theorem under strong Feller condition. In this

section, under Feller condition, we give a proof of a weaker form of the Markov
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Chain Ergodic theorem. In order to do this, we start by showing that {X ′t}t∈T

inherits some key properties from {Xt}t≥0.

Let π be a stationary distribution of {Xt}t≥0. As in Definition 10.4, we define an

internal probability measure π′ on (S, I(S)) by letting π′({s}) =
∗π(B(s))

∗π(
⋃
s′∈S B(s′)) for

every s ∈ S. By Lemma 10.5, for any A ∈ B[X] we have π(A) = π′(st−1(A) ∩ S).

This π′ is a weakly stationary for some internal subsets of S.

Theorem 11.23. Suppose (DT) and (WF) hold. There exists an infinite t0 ∈ T

such that for every A ∈ I(S1) and every t ≤ t0 we have

π′(AS) ≈
∑
i∈S

π′(i)G
(t)
i (AS). (11.24)

where AS is the enlargement of A.

Proof. The proof is similar to the proof of Theorem 10.6. We use Theorem 11.15

instead of Theorem 9.20. �

Condition CS. There exists a countable basis B of bounded open sets of X such

that any finite intersection of elements from B is a continuity set with respect to π

and g(x, t, .) for all x ∈ X and t > 0.

We shall fix this countable basis B for the remainder of this section. (CS) allows

us to prove the following lemma.

Lemma 11.24. Suppose (CS) holds. Then we have π(O) = π′((∗O ∩ S1)S) where

O is a finite intersection of elements from B.

Proof. Let O be a finite intersection of elements of B and let O denote the closure

of O. By the construction of π′, we know that π′(st−1(O) ∩ S) = π(O) = π(O) =

π′(st−1(O) ∩ S). In order to finish the proof, it is sufficient to prove the following

claim.

Claim 11.25. st−1(O) ∩ S ⊂ (∗O ∩ S1)S ⊂ st−1(O) ∩ S.
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Proof. Pick any point s ∈ st−1(O) ∩ S. Then s ∈ B1(s′) for some s′ ∈ S1. Note

also that s ∈ µ(y) for some y ∈ O. As O is open, we have µ(y) ⊂ ∗O which implies

that B1(s′) ⊂ ∗O which again implies that s ∈ (∗O ∩ S1)S .

Now pick some point y ∈ (∗O ∩ S1)S . Then y ∈ B1(y′) for some y′ ∈ ∗O ∩ S1.

As y is near-standard, we know that y′ is near-standard hence y′ ∈ µ(x) for some

x ∈ X. Suppose x 6∈ O. Then there exists an open ball U(x) centered at x such

that U(x) ∩O = ∅. This would imply that y′ 6∈ ∗O which is a contradiction. Hence

x ∈ O. This means that y ∈ µ(x) ⊂ st−1(O), completing the proof. �

This finishes the proof of this lemma. �

In order to show that the hyperfinite Markov chain {X ′t}t∈T converges, we need

to establish the strong regularity (at least for finite intersection of open balls) for

{X ′t}t∈T .

We first prove the following lemma which is analogous to Theorem 11.22.

Theorem 11.26. Suppose (DT), (OC), (WF) and (CS) hold. For any s ∈ NS(S)

and any t ∈ NS(T ) we have g(st(s), st(t), O) ≈ G(t)
s ((∗O ∩ S1)S) where O is a finite

intersection of elements from B.

Proof. By Theorem 11.22, we know that P
st(t)
st(s)(O) = G

(t)

s (st−1(O)∩S) and P
st(t)
st(s)(O) =

G
(t)

s (st−1(O) ∩ S) where O denote the closure of O. By (CS), we know that

P
st(t)
st(s)(O) = P

st(t)
st(s)(O). Then the result follows from Claim 11.25. �

We now show that {X ′t} is strong regular for open balls.

Lemma 11.27. Suppose (DT), (OC), (WF) and (CS) hold. For every s1 ≈ s2 ∈

NS(T ), there exists an infinite t1 ∈ T such that G
(t)
s1 ((∗O∩S1)S) ≈ G(t)

s2 ((∗O∩S1)S)

for and all t ≤ t1 and all O which is a finite intersection of elements from B.

Proof. Pick s1 ≈ s2 ∈ NS(S) and let O be a finite intersection of elements from

B. Let x = st(s1) = st(s2). By Theorem 11.26, for any t ∈ NS(T ), we know that

G
(t)
s1 ((∗O ∩ S1)S) ≈ g(x, st(t), O) and G

(t)
s2 ((∗O ∩ S1)S) ≈ g(x, st(t), O). Hence we
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have G
(t)
s1 ((∗O ∩ S1)S) ≈ G(t)

s2 ((∗O ∩ S1)S) for all t ∈ NS(T ). Consider the following

set

TO = {t ∈ T : |G(t)
s1 ((∗O ∩ S1)S)−G(t)

s2 ((∗O ∩ S1)S)| < 1

t
}. (11.25)

The set TO contains all the near-standard t ∈ T hence it contains an infinite tO ∈ T

by overspill. As every countable descending infinite reals has an infinite lower bound,

there exists an infinite t1 which is smaller than every element in {tO : O ∈ B}. �

By using essentially the same argument as in Theorem 7.19, we have the following

result for {X ′t}t∈T . The proof is omitted.

Theorem 11.28. Suppose (DT), (OC), (WF) and (CS) hold. Suppose {Xt}t≥0

is productively open set irreducible with stationary distribution π. Let π′ be the

internal probability measure defined in Theorem 11.23. Then for π′-almost every

s ∈ S there exists an infinite t′ ∈ T such that

G(t)
s ((∗O ∩ S1)S) ≈ π′((∗O ∩ S1)S) (11.26)

for all infinite t ≤ t′ and all O which is a finite intersection of elements from B.

This immediately gives rise to the following standard result.

Lemma 11.29. Suppose (DT), (OC), (WF) and (CS) hold. Suppose {Xt}t≥0

is productively open set irreducible with stationary distribution π. Then for π-

almost surely x ∈ X we have limt→∞ g(x, t, O) = π(O) for all O which is a finite

intersection of elements from B.

Proof. Suppose not. Then there exist an set B and some O which is a finite

intersection of elements from B with π(B) > 0 such that g(x, t, O) does not

converge to π(O) for x ∈ B. Fix a x0 ∈ B and let s0 be an element in S with

s0 ≈ x0. Then there exists an ε > 0 and a unbounded sequence of real numbers

{kn : n ∈ N} with |g(x0, kn, O)− π(O)| > ε for all n ∈ N. By Theorem 11.26 and

Lemma 11.24, we have |G(kn)
s0 ((∗O ∩ S1)S)− π′((∗O ∩ S1)S)| > ε for all n ∈ N. Let
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t′ be the same infinite element in T as in Theorem 11.28. By overspill, there is an

infinite t0 < t′ such that |G(t0)
s0 ((∗O ∩ S1)S) − π′((∗O ∩ S1)S)| > ε. As x0 and s0

are arbitrary, we have for every s ∈ st−1(B) ∩ S there is an infinite ts < t′ such

that |G(ts)
s0 ((∗O ∩ S1)S) − π′((∗O ∩ S1)S)| > ε. As π′(st−1(B) ∩ S) = π(B), this

contradicts with Theorem 11.28 hence completing the proof. �

We now generalize the convergence to all Borel sets. We will need the following

definition.

Definition 11.30 ([RS86, Page. 85]). Let Pn and P be probability measures on a

metric space X with Borel σ-algebra B[X]. A subclass C of B[X] is a convergence

determining class if weak convergence Pn to P is equivalent to Pn(A)→ P (A) for

all P -continuity sets A ∈ C.

For separable metric spaces, we have the following result.

Lemma 11.31 ([Mol05, Page. 416]). Let Pn and P be probability measures on a

separable metric space X with Borel σ-algebra B[X]. A class C of Borel sets is a

convergence determining class if C is closed under finite intersections and each open

set in X is at most a countable union of elements in C.

Theorem 11.32. Suppose {Xt}t≥0 is vanishing in distance and its state space has

the Heine-Borel property. Suppose (OC), (WF) and (CS) hold. Suppose {Xt}t≥0 is

productively open set irreducible with stationary distribution π. Then for π-almost

surely x ∈ X we have P
(t)
x (·) weakly converges to π(·).

Proof. By Theorem 9.6 and Lemma 11.6, we know that {Xt}t≥0 satisfies (DT).

Let B′ to be the smallest set containing B such that B′ is closed under finite

intersection. By Lemma 11.29, we know that limt→∞ P
(t)
x (A) = π(A) for all A ∈ B′.

The theorem then follows from Lemma 11.31. �

By using similar argument as in Theorem 2.16, we obtain the following theorem.
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Theorem 11.33. Suppose {Xt}t≥0 is vanishing in distance and its state space is a

separable σ-compact metric space. Suppose (OC), (WF) and (CS) hold. Suppose

{Xt}t≥0 is productively open set irreducible with stationary distribution π. Then

for π-almost surely x ∈ X we have P
(t)
x (·) weakly converges to π(·).

As one can see, with Feller condition, we can only show that {X ′t}t∈T is strong

regular for some particular class of sets. In order to prove some result like Theo-

rem 10.16, we need {X ′t}t∈T to be strong regular on a larger class of sets.

Open Problem 2. Suppose (WF) holds. Is it possible to pick a hyperfinite rep-

resentation S1 such that G
(t)
x (AS) ≈ G

(t)
y (AS) for all x ≈ y, all t ∈ T and all

A ∈ I(S1)?

12. Push-down Results

In Section 8, we discuss how to construct a corresponding hyperfinite Markov

process for every standard general Markov processes satisfying certain conditions. In

this section, we discuss the reverse procedure of constructing stationary distributions

and Markov processes from weakly stationary distributions and hyperfinite Markov

processes. Generally, we begin with an internal measure on ∗X and use standard

part map to push the corresponding Loeb measure down to X. We start this section

by introducing the following classical result.

Theorem 12.1 ([Cut+95, Thm. 13.4.1]). Let X be a Heine-Borel metric space

equipped with Borel σ-algebra B[X]. Let M be an internal probability measure defined

on (∗X, ∗B[X]). Let

C = {C ⊂ X : st−1(C) ∈ ∗B[X]}. (12.1)

Define a measure µ on the sets C by: µ(C) = M(st−1(C)). Then µ is the completion

of a regular Borel measure on X.

Proof. We first show that the collection C is a σ-algebra. Obviously ∅ ∈ C. By

Lemma 6.10, we know that X ∈ C. We now show that it is closed under complement.
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Suppose A ∈ C. It is easy to see that st−1(Ac) = (NS(∗X)\st−1(A)). By Theorem 5.1

and the fact that ∗B[X] is a σ-algebra, Ac ∈ C. We now show that C is closed

under countable union. Suppose {Ai : i ∈ N} be a countable collection of pairwise

disjoint elements from C. It is easy to see that
⋃
i∈ω(st−1(Ai) = st−1(

⋃
i∈ω Ai).

As st−1(Ai) ∈ ∗B[X] for every i ∈ N, we have st−1(
⋃
i∈ω Ai) ∈ ∗B[X]. Hence⋃

i∈ω Ai ∈ C.

We now show that µ is a well-defined measure on (X, C). Clearly µ(∅) = 0.

Suppose {Ai}i∈ω is a mutually disjoint collection from C. We have

µ(
⋃
i∈ω

Ai) = M(st−1(
⋃
i∈ω

Ai)) = M(
⋃
i∈ω

(st−1(Ai))). (12.2)

As Ai’s are mutually disjoint, we know that st−1(Ai)’s are mutually disjoint. Thus,

M(
⋃
i∈ω

(st−1(Ai))) =
∑
i∈ω

M(st−1(Ai)) =
∑
i∈ω

µ(Ai). (12.3)

This shows that µ is countably additive.

Finally we need to show that such µ is the completion of a regular Borel measure.

By universal Loeb measurability (Theorems 5.1 and 5.9), we know that st−1(B) ∈

∗B[X] for all B ∈ B[X]. Consider any B ∈ B[X] such that µ(B) = 0 and any C ⊂ B.

It is clear that st−1(C) ⊂ st−1(B). As the Loeb measure M is a complete measure,

we know that M(st−1(C)) = 0 since M(st−1(B)) = 0. Thus we have µ(C) = 0,

completing the proof. �

Note that the measure µ constructed in Theorem 12.1 need not have the same

total measure as M . For example, if the internal measure M concentrates on

some infinite element then µ would be a null measure. However, if we require

M(NS(∗X)) = st(M(∗X)) then µ(X) = st(M(∗X)). In particular, if M is an

internal probability measure with M(NS(∗X)) = 1 then µ is the completion of a

regular Borel probability measure on X. Such µ is called a push-down measure of

M and is denoted by Mp.

The following corollary is an immediate consequence of Theorem 12.1.
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Corollary 12.2. Let X be a Heine-Borel metric space equipped with Borel σ-

algebra B[X] and let SX be a hyperfinite representation of X. Let M be an internal

probability measure defined on (SX , I[SX ]). Let

C = {C ⊂ X : st−1(C) ∩ SX ∈ I[SX ]}. (12.4)

Then the push-down measure Mp on the sets C given by Mp(C) = M(st−1(C) ∩ SX)

is the completion of a regular Borel measure on X.

The following theorem shows the close connection between an internal probability

measure and its push-down measure under integration.

Lemma 12.3. Let X be a metric space equipped with Borel σ-algebra B[X], let

ν be an internal probability measure on (∗X, ∗B[X]) with ν(NS(∗X)) = 1. let

f : X → R be a bounded measurable function. Define g : NS(∗X) → R by

g(s) = f(st(s)). Then g is integrable with respect to ν restricted to NS(∗X) and we

have
∫
X
fdνp =

∫
NS(∗X)

g dν.

Proof. As ν(NS(∗X)) = 1, the push-down measure νp is a probability measure

on (X,B[X]). For every n ∈ N and k ∈ Z, define Fn,k = f−1([ kn ,
k+1
n )) and

Gn,k = g−1([ kn ,
k+1
n )). As f is bounded, the collection Fn = {Fn,k : k ∈ Z} \ {∅}

forms a finite partition of X, and similarly for Gn = {Gn,k : k ∈ Z} \ {∅} and ∗X.

Note that Gn,k = st−1(Fn,k) for every n ∈ N and k ∈ Z. By Lemma 6.10, Gn,k is

ν-measurable. For every n ∈ N, define f̂n : X → R and ĝn : ∗X → R by putting

f̂n = k
n on Fn,k and ĝn = k

n on Gn,k for every k ∈ Z. Thus f̂n (resp., ĝn) is a

simple (resp., ∗simple) function on the partition Fn (resp., Gn). By construction

f̂n ≤ f < f̂n + 1
n and ĝn ≤ g < ĝn + 1

n . It follows that
∫
X
fdνp = limn→∞

∫
X
f̂ndνp.

By Theorem 12.1, we have ν(Gn,k) = νp(Fn,k) for every n ∈ N and k ∈ Z. Thus,

for every n ∈ N and k ∈ Z, we have∫
X

f̂ndνp =
k

n
νp(Fn,k) =

k

n
ν(Gn,k) =

∫
NS(∗X)

ĝndν (12.5)
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Hence we have limn→∞
∫
NS(∗X)

ĝndν exists and
∫
NS(∗X)

g dν =
∫
X
fdνp, completing

the proof. �

12.1. Construction of Standard Markov Processes. In Section 8, we discussed

how to construct a hyperfinite Markov process from a standard Markov process. In

this section, we discuss the reverse direction. Starting with a hyperfinite Markov

process, we will construct a standard Markov process from it.

Let X be a metric space satisfying the Heine-Borel condition. Let S be a

hyperfinite representation of ∗X. Let {Yt}t∈T be a hyperfinite Markov process on S

with transition probability G
(t)
s (·) satisfying the following condition:

(1) For all s1, s2 ∈ NS(S) and all t1, t2 ∈ NS(T ):

(s1 ≈ s2 ∧ t1 ≈ t2) =⇒ (∀A ∈ I[S]G
(t1)

s1 (A) = G
(t2)

s2 (A)) (12.6)

(2)

(∀s ∈ NS(S))(∀t ∈ NS(T ))(G
(t)

s (NS(S)) = 1). (12.7)

For every x ∈ X, every h ∈ R+ and every A ∈ B[X], define

g(x, h,A) = G
(t)

s (st−1(A) ∩ S) (12.8)

where s ≈ x and t ≈ h. Such g(x, h,A) is well-defined because of Eq. (12.6). By

Theorem 12.1 and Eq. (12.7), it is easy to see that g(x, h, .) is a probability measure

on (X,B[X]) for x ∈ X and h ∈ R+. In fact, g(x, h, ·) is the push-down measure of

the internal probability measure G
(t)
s (·).

We would like to show that {g(x, h, .)}x∈X,h≥0 is the transition probability

measure of a Markov process on (X,B[X]). We first recall Definition 4.17 and The-

orem 4.18.

Definition 12.4. Suppose that (Ω,Γ, P ) is a Loeb space, that X is a Hausdorff

space, and that f is a measurable (possibly external) function from Ω to X. An
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internal function F : Ω→ ∗X is a lifting of f provided that f = st(F ) almost surely

with respect to P .

Theorem 12.5 ([ACH97, Theorem 4.6.4]). Let (Ω,Γ, P ) be a Loeb space, and let

f : Ω→ R be a measurable function. Then f is Loeb integrable if and only if it has

a S-integrable lifting.

We are now at the place to establish the following result.

Lemma 12.6. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Then for any

t1, t2 ∈ NS(T ), any s0 ∈ S and any E ∈ B[X], the internal transition probability

G
(t2)

s (st−1(E) ∩ S) is a G
(t1)

s0 (·)-integrable function of s.

Proof. Fix t1, t2 ∈ NS(T ), s0 ∈ NS(S) and E ∈ B[X]. By Eqs. (12.6) and (12.7),

we know that g(st(s), st(t2), E) = G
(t2)

s (st−1(E) ∩ S) for all s ∈ NS(S). The proof

will be finished by Theorem 4.18 and the following claim.

Claim 12.7. The internal function ∗g(·, st(t2), ∗E) : S 7→ ∗[0, 1] is a S-integrable

lifting of G
(t2)

s (st−1(E) ∩ S) : S 7→ ∗[0, 1] with respect to the internal probability

measure G
(t1)
s0 (·).

Proof. As G
(t1)
s0 (·) is an internal probability measure concentrating on a hyperfinite

set, by Corollary 4.14, it is easy to see that ∗g(·, st(t2), ∗E) is S-integrable. As

g(st(s), st(t2), E) = G
(t2)

s (st−1(E)∩S), it is sufficient to show that ∗g(·, st(t2), ∗E) is

a S-continuous function on NS(S). Pick some x1 ∈ X and ε ∈ R+. Let s1 ∈ S be any

element such that s1 ≈ x1. Let M = {s ∈ S : (∀A ∈ I[S])(|G(t2)
s (A)−G(t2)

s1 (A)| < ε}.

By Eq. (12.6), M contains every element in S which is infinitesimally close to s1.

By overspill, there is a δ ∈ R+ such that

(∀s ∈ S)(∗d(s, s1) < δ =⇒ (∀A ∈ I[S])(|G(t2)
s (A)−G(t2)

s1 (A)| < ε

2
)). (12.9)

This clearly implies that

(∀s ∈ S)(∗d(s, s1) < δ =⇒ (∀E ∈ B[X])(|G(t2)

s (st−1(E) ∩ S)−G(t2)

s1 (st−1(E) ∩ S)| < ε)).

(12.10)
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By the construction of g(·, st(t2), E), we have |g(x, st(t2), E)− g(x1, st(t2), E)| < ε

for all x ∈ X such that d(x, x1) < δ
2 . Hence g(·, st(t2), E) is a continuous function

for every x ∈ X which implies that ∗g(·, st(t2), E) is S-continuous on NS(S). �

�

We now establish the following result on “Markov property” of G
(t)

s (st−1(E)∩S).

Lemma 12.8. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). For any t1, t2 ∈

NS(T ), s0 ∈ NS(S) and E ∈ B[X], we have

G
(t1+t2)

s0 (st−1(E) ∩ S) ≈
∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds). (12.11)

Proof. Pick some E ∈ B[X], some s0 ∈ NS(S) and some t1, t2 ∈ NS(T ). For any set

A ∈ I[S] with st−1(E) ∩ S ⊂ A, we have G
(t2)

s (st−1(E) ∩ S) ≤ G(t2)

s (A). Hence we

have ∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≤
∫
G

(t2)

s (A)G
(t1)

s0 (ds). (12.12)

By Corollary 4.14, we have∫
G

(t2)

s (A)G
(t1)

s0 (ds) = st(

∫
G(t2)
s (A)G(t1)

s0 (ds)) = st(G(t1+t2)
s0 (A)) (12.13)

Hence, we have∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≤ inf{st(G(t1+t2)
s0 (A)) : st−1(E) ∩ S ⊂ A ∈ I[S]}.

(12.14)

Similarly, we have∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≥ sup{st(G(t1+t2)
s0 (B)) : st−1(E) ∩ S ⊃ B ∈ I[S]}.

(12.15)

Hence, by the construction of Loeb measure, we have

G
(t1+t2)

s0 (st−1(E) ∩ S) ≈
∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds). (12.16)
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�

We now establish the main result of this section.

Theorem 12.9. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). Then for any

h1, h2 ∈ R+, any x0 ∈ X and any E ∈ B[X] we have

g(x0, h1 + h2, E) =

∫
g(x, h2, E)g(x0, h1,dx). (12.17)

This means that the family of functions {g(x, h, ·)}x∈X,h≥0 have the semi-group

property.

Proof. Fix h1, h2 ∈ R+, x0 ∈ X and E ∈ B[X]. Let s0 ∈ S be some element

such that s0 ≈ x0 and let t1, t2 ∈ NS(T ) such that t1 ≈ h1 and t2 ≈ h2. By the

construction of g and Lemma 12.8, we have

g(x0, h1 + h2, E) = G
(t1+t2)

s0 (st−1(E) ∩ S) =

∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds).

(12.18)

By Eq. (12.6), we know that g(x, h2, E) = G
(t2)

s (st−1(E) ∩ S) provided that s ≈ x.

In Claim 12.7, we know that g(·, h2, E) is a continuous function hence we have

∗g(s, h2,
∗E) ≈ G(t2)

s (st−1(E) ∩ S) for all s ∈ NS(S).

Thus, by Lemma 12.3, we have∫
S

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) (12.19)

=

∫
NS(S)

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) (12.20)

=

∫
NS(S)

st(∗g(s, h2,
∗E))G

(t1)

s0 (ds) (12.21)

=

∫
NS(S)

g(st(s), h2, E)G
(t1)

s0 (ds) (12.22)

=

∫
X

g(x, h2, E)g(x0, h1,dx). (12.23)

Note that the last step follows from Lemma 12.3. Hence we have the desired

result. �
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As the transition probabilities {g(x, h, .)}x∈X,h≥0 have the semigroup property, we

know that {g(x, h, .)}x∈X,h≥0 defines a standard continuous-time Markov process on

the state space X with Borel σ-algebra B[X]. In fact, if we define X : Ω×[0,∞)→ X

by X(ω, h) = st(Y (ω, h+)) where h+ is the smallest element in T greater than or

equal to h then {Xh}h≥0 is a standard continuous-time Markov process obtained

from pushing-down the hyperfinite Markov process {Yt}t∈T .

12.2. Push down of Weakly Stationary Distributions. Recall from Defini-

tion 7.5 that an internal probability measure π on (S, I[S]) is a weakly stationary

distribution if there is an infinite t0 such that

(∀t ≤ t0)(∀A ∈ I(S))(π(A) ≈
∑
i∈S

π({i})p(t)(i, A)) (12.24)

p(t)(i, A) denote the t-step internal transition probability of a hyperfinite Markov

process.

In Section 12.1, we established how to construct a standard Markov process

{Xt}t≥0 on the state space X from a hyperfinite Markov process {Yt}t∈T on a state

space S satisfying certain properties. Note that S is a hyperfinite representation

of X. It is natural to ask: if Π is a weakly stationary distribution of {Yt}t∈T , is

the push-down Πp a stationary distribution of {Xt}t≥0? We will show that, if {Yt}

satisfies Eqs. (12.6) and (12.7) then Πp is a stationary distribution on {Xt}t≥0.

For the remainder of this section, let {G(t)
s (·)}s∈S,t∈T denote the transition

probabilities of {Yt}t∈T . Let {Xt}t≥0 be the standard Markov process on the state

space X constructed from {Yt} as in Section 12.1. Let {g(x, h, ·)}x∈X,h≥0 denote

the transition probabilities of {Xt}t≥0. Moreover, let Π be a weakly stationary

distribution of {Yt}t∈T such that Π(NS(S)) = 1. Let Πp be the push down measure

of Π defined in Theorem 12.1. It is easy to see that Πp is a probability measure on

(X,B[X]).

We first establish the following lemma.
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Lemma 12.10. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Then for any

t ∈ NS(T ) and any E ∈ B[X], the transition probability G
(t)

s (st−1(E) ∩ S) is a

Π-integrable function of s.

Proof. The proof of this lemma is similar to Lemma 12.6. �

Lemma 12.11. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). Then for any

t ∈ NS(T ) and any E ∈ B[X], we have

Π(st−1(E) ∩ S) ≈
∫
G(t)
s (st−1(E) ∩ S)Π(ds). (12.25)

Proof. The proof is similar to Lemma 12.8 �

We now show that the push-down measure of the weakly stationary distribution

Π is a stationary distribution for {Xt}t≥0.

Theorem 12.12. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Let Π be a

weakly stationary distribution of {Yt}t∈T with Π(NS(S)) = 1. Then the push-down

measure Πp of Π is a stationary distribution of {Xt}t≥0.

Proof. By Theorem 12.1 and the fact that Π(NS(S)) = 1, we know that Πp is a

probability measure on (X,B[X]).

Fix t0 ∈ R+ andA ∈ B[X]. It is sufficient to show that Πp(A) =
∫
g(x, t0, A)Πp(dx).

Let t be any element in T such that t ≈ t0. By the construction of Πp and

Lemma 12.11, we have

Πp(A) = Π(st−1(A) ∩ S) =

∫
G(t)
s (st−1(A) ∩ S)Π(ds). (12.26)
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By the construction of g, we know that g(x, t0, A) = G
(t)
s (st−1(A) ∩ S) provided

that s ≈ x. By a similar argument as in Theorem 12.9, we have∫
S

G
(t)

s (st−1(A) ∩ S)Π(ds) (12.27)

=

∫
NS(S)

st(∗g(s, t0,
∗A))Π(ds) (12.28)

=

∫
X

g(x, t0, A)Πp(dx). (12.29)

Hence completing the proof. �

Suppose we start with a standard Markov process {Xt}t≥0 satisfying (DT), (SF)

and (WC). Note that such {Xt}t≥0 may not necessarily have a stationary distri-

bution. An simple example of such {Xt}t≥0 is Brownian motion. The hyperfinite

representation {X ′t}t∈T of {Xt}t≥0 satisfies Eqs. (12.6) and (12.7). Thus, if there

is a weakly stationary distribution Π of {X ′t}t∈T with Π(NS(SX)) = 1 then there

is a stationary distribution of {Xt}t≥0. This provides an alternative approach for

establishing the existence of stationary distributions for standard Markov processes.

This will be discussed in detail in the next section.

12.3. Existence of Stationary Distributions. The existence of stationary distri-

bution for discrete-time Markov processes with finite state space is well-understood

(e.g [Ros06, Section 8.4]). The situation is much more complicated for Markov

processes with non-finite state spaces. The stationary distribution may not exist

at all even for well-behaved Markov processes (e.g Brownian motion). By using

the method developed in this paper, we consider the hyperfinite counterpart of the

original general-state space Markov process {Xt}t≥0. Assuming the state space

is compact, we show that a stationary distribution exists under mild regularity

conditions.

We start by quoting the following results for finite-state space discrete-time

Markov processes.
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Definition 12.13. A n×n matrix P is regular if some power of P has only positive

entries.

Theorem 12.14. Let P be the transition matrix of some finite-state space discrete-

time Markov process {Yt}t∈N. Suppose P is regular. Then there exists a matrix W

with all rows the same vector w such that limn→∞ Pn = W. Moreover, w is the

unique stationary distribution of {Yt}t∈N.

Definition 12.15. A n×n matrix P is irreducible if for every pair of i, j ≤ n there

is nij ∈ N such that the (i, j)-th entry of Pnij is positive.

The following theorem give a sufficient condition for P being regular.

Theorem 12.16. Let P be the transition matrix of some finite-state space discrete-

time Markov process {Yt}t∈N. If P is irreducible and at least one element in the

diagonal of P is positive, then P is regular.

For an arbitrary hyperfinite Markov process, we can form its transition matrix as

we did for finite Markov process.

Definition 12.17. Let K ∈ ∗N. A K×K (hyperfinite) matrix P is ∗regular if some

hyperfinite power of P has only positive entries. A K ×K matrix P is ∗irreducible

if for any i, j ≤ K there is nij ∈ ∗N such that the (i, j)-th entry of Pnij is positive.

Similarly, we have the following result for hyperfinite Markov processes.

Theorem 12.18. Let P be the hyperfinite transition matrix for some hyperfinite

Markov process {Yt}t∈T with state space S. Suppose P is ∗regular. Then there

exists a unique ∗stationary distribution Π for {Yt}t∈T , i.e for every s ∈ S, we have

Π({s}) =
∑
k∈S Π({k})P (δt)

ks .

Proof. The proof follows from the transfer of Theorem 12.14. �

Note that if Π is ∗stationary then Π is weakly stationary as in Definition 7.5.

The following theorem gives a sufficient condition for regularity of P.
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Theorem 12.19. Let P be the transition matrix of some hyperfinite Markov process

{Yt}t∈T with state space S. If P is ∗irreducible and at least one element in the

diagonal of P is positive, then P is ∗regular.

By ∗irreducible, we simply mean that for any i, j ∈ S there exists n ∈ ∗N such

that P
(n)
ij > 0. The proof of this theorem follows from transfer of Theorem 12.16.

We now turn our attention to standard continuous-time Markov process {Xt}t≥0

and its corresponding hyperfinite Markov process {X ′t}t∈T . We have the following

result:

Theorem 12.20. Let {Xt}t≥0 be a Markov process on a compact metric space X

and let {X ′t}t∈T be a hyperfinite Markov process on SX satisfying Eq. (11.23). Let

P be the hyperfinite transition matrix of {X ′t}t∈T . If P is ∗regular, then there exists

a stationary distribution for {Xt}t≥0.

Proof. By Theorem 12.18, there exists a unique ∗stationary distribution Π for

{X ′t}t∈T . Let Πp denote the push-down measure of Π. As X is compact, by

Theorem 12.12, Πp is a stationary distribution of {Xt}t≥0. �

Given a standard Markov process {Xt}t≥0. It is not difficult to find the hyperfinite

transition matrix of {X ′t}t∈T . Thus Theorem 12.20 provides a way to look for

stationary distributions.

Example 12.21 (Brownian motion). Let {Xt}t≥0 be the standard Brownian motion.

Clearly {Xt}t≥0 satisfies all the conditions in Theorem 9.35. Let {X ′t}t∈T be the

corresponding hyperfinite Markov process. The transition matrix of {X ′t}t∈T is

regular (in fact G
(δt)
s1 ({s2}) > 0 for all s1, s2 ∈ S). By Theorem 12.18, there exists a

∗stationary distribution Π of {X ′t}t∈T .

Standard Brownian motion does not have a stationary distribution. It does have

a stationary measure which is the Lebesgue measure on R. From a nonstandard

prospective, as we can see from this example, there exists a ∗stationary distribution

of {X ′t}t∈T . However, this ∗statioanry distribution will concentrate on the infinite
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portion of ∗R since otherwise its push-down will be a stationary distribution for the

standard Brownian motion.

13. Merging of Markov Processes

In Section 10, we discussed the total variance convergence of the transition

probabilities to stationary distributions for Markov processes satisfying certain

properties. In particular, we required our Markov chain to be productively open

set irreducible and to satisfy (DT), (SF), (OC) and (CS). However, such Markov

processes do not necessarily have a stationary distribution. A simple example is

standard Brownian motion. However, the transition probabilities of the standard

Brownian motion “merge” in the following sense.

Definition 13.1. A Markov process {Xt}t≥0 has the merging property if for every

two points x, y ∈ X, we have

lim
t→∞

‖ P (t)
x (·)− P (t)

y (·) ‖= 0 (13.1)

where P
(t)
x (·) denotes the transition measure and ‖ P (t)

x (·)− P (t)
y (·) ‖ denotes the

total variation distance between P
(t)
x (·) and P

(t)
y (·).

Saloff-Coste and Zúñiga [SCZ11] discuss the merging property for time-inhomogeneous

finite Markov processes. In this section, we focus on time-homogeneous general

Markov processes. For merging result of general probability measures, see [DDF88].

In this section, we give sufficient conditions to ensure that Markov processes have

the merging property. The following definition is analogous to Definition 7.11.

Definition 13.2. Given a Markov process {Xt}t≥0 on some state space X and fix

some x1, x2 ∈ X. An element (y1, y2) ∈ X ×X is an absorbing point of (x1, x2) if

for all n ∈ N

Q(x1,x2)(∃t Zt ∈ U(y1,
1

n
)× U(y2,

1

n
)) = 1. (13.2)
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where Q denote the probability measure of the product Markov chain {Zt}t≥0 of

{Xt}t≥0 and a i.i.d copy of {Xt}t≥0, and U(y, 1
n ) is the open ball centered at y with

radius 1
n .

Fix an infinitesimal ε0 such that ε0 · ( tδt ) ≈ 0 for all t ∈ T . As in Section 9,

we construct a hyperfinite Markov process {X ′t}t∈T on some (δ0, r0)-hyperfinite

representation of ∗X where δ0 and r0 are chosen with respect to this ε0. Moreover,

by Proposition 3.12 and Theorem 6.6, we can assume our hyperfinite state space

S contains every x ∈ X. The hyperfinite transition probabilities for {X ′t}t∈T are

defined in the same way as in the paragraph before Lemma 8.12 and are denoted by

{G(t)
i (·)}i∈S,t∈T .

Lemma 13.3. Suppose {Xt}t≥0 satisfies (DT), (SF) and (OC). Suppose (y1, y2) ∈

X ×X is an absorbing point of some x1, x2 ∈ X. Then (y1, y2) is a near-standard

absorbing point of x1, x2 for the hyperfinite Markov chain {X ′t}t∈T .

Proof. As {Xt}t≥0 satisfies (DT), (SF) and (OC), by Theorem 9.35, we have

P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S) (13.3)

hence implies that {X ′t}t∈T satisfies Eqs. (12.6) and (12.7). Let {Xp
t }t≥0 denote the

standard Markov process obtained from pushing down {X ′t}t∈T as in Section 12.1.

By the construction of {Xp
t }t≥0, we know that p

(t)
x (E) = P

(t)
x (E) for all x ∈ X,

t ≥ 0 and E ∈ B[X] where p and P denote the probability measure for {Xp
t }t≥0

and {Xt}t≥0, respectively.

Now fix some x1, x2 ∈ X. There exists (y1, y2) ∈ X ×X which is an absorbing

point for x1, x2. Fix an open ball U1 × U2 centered at (y1, y2). By Definition 13.2,

we know that Q(x1,x2)(∃t > 0 Zt ∈ U1 × U2) = 1. This implies that

q(x1,x2)(∃t > 0 Zpt ∈ U1 × U2) = 1 (13.4)

where q denote the probability measure of the product Markov chain {Zpt }t≥0

obtained from {Xp
t }t≥0 and its i.i.d copy. By the construction of {Xp

t }t≥0, we know
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that

F (x1,x2)(∃t ∈ NS(T ) Z ′t ∈ (st−1(U1)× st−1(U2)) ∩ (S × S)) = 1 (13.5)

where F denote the probability measure of the product hyperfinite Markov chain

{Z ′t}t∈T obtained from {X ′t}t∈T and its i.i.d copy. As st−1(U) ⊂ ∗U for any open

set U , we know that F (x1,x2)(∃t ∈ NS(T ) Z ′t ∈ (∗U1 × ∗U2) ∩ (S × S)) = 1. As our

choice of U1 × U2 is arbitrary, this shows that (y1, y2) is a near-standard absorbing

point of x1, x2. �

The proof of the following theorem is similar to the proof of Theorem 7.19.

Theorem 13.4. Suppose {Xt}t≥0 satisfies (DT), (SF) and (OC) and for every

x1, x2 ∈ X there exists a absorbing point (y, y) ∈ X×X. Then for every x1, x2 ∈ X,

every infinite t ∈ T and every A ∈ ∗B[X] we have G
(t)
x1 (A) ≈ G(t)

x2 (A).

Proof. Let {X ′t}t∈T be a corresponding hyperfinite Markov chain of {Xt}t≥0. Let

{Yt}t∈T be a i.i.d copy of {X ′t}t∈T and let {Zt}t∈T denote the product hyperfinite

Markov chain of {X ′t}t∈T and {Yt}t∈T . We use G′ and G′ for the internal probability

and Loeb probability of {Zt}t∈T .

Fix x1, x2 ∈ X. By assumption, there exists a standard absorbing point y. Pick

an infinite t0 ∈ T and fix some internal set A ⊂ S. Define

M = {ω : ∃t < t0 − 1, X ′t(ω) ≈ Yt(ω) ≈ y}. (13.6)

By Lemma 13.3, for all n ∈ N, we have

F (x1,x2)(∃t ∈ NS(T ) Z ′t ∈ (∗U(y,
1

n
)× ∗U(y,

1

n
)) ∩ (S × S)) = 1. (13.7)

where F denote the internal transition probability for the product hyperfinite Markov

chain {Z ′t}t∈T obtained from {X ′t}t∈T and its i.i.d copy. By Lemma 7.8, we know

that F (x1,x2)(M) = 1. By Theorem 9.25, we know that {X ′t}t∈T is strong regular.
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Thus we have:

|G(t0)

x1
(A)−G(t)

j (A)| (13.8)

= |F (x1,x2)(X
′
t0 ∈ A)− F (x1,x2)(Yt0 ∈ A)| (13.9)

= |F (x1,x2)((X
′
t0 ∈ A) ∩M)− F (x1,x2)((Yt0 ∈ A) ∩M)| (13.10)

= 0. (13.11)

�

We now establish the following merging result for the standard Markov process

{Xt}t≥0.

Theorem 13.5. Suppose {Xt}t≥0 satisfies (DT), (SF) and (OC) and for every

x1, x2 ∈ X there exists a standard absorbing point y. Then {Xt}t≥0 has the merging

property.

Proof. Pick a real ε > 0 and fix two standard x1, x2 ∈ X. By Theorem 13.4, we

know that |G(t)
x1 (A) − G(t)

x2 (A)| < ε for all infinite t ∈ T and all A ∈ ∗B[X]. Let

M = {t ∈ T : (∀A ∈ ∗B[X])(|G(t)
x1 (A)−G(t)

x2 (A)| < ε)}. By the underspill principle,

there exists a t0 ∈ NS(T ) such that |G(t0)
x1 (A) − G(t0)

x2 (A)| < ε for all A ∈ ∗B[X].

Pick a standard t1 > t0 and let t2 ∈ T be the first element greater than t1.

Claim 13.6. |G(t2)
x1 (A)−G(t2)

x2 (A)| < ε for all A ∈ ∗B[X].

Proof. Pick t3 ∈ T such that t0 + t3 = t2 and any A ∈ ∗B[X]. Then we have

|G(t2)
x1

(A)−G(t2)
x2

(A)| (13.12)

≈ |
∑
y∈S

G(t1)
x1

({y})G(t2)
y (A)−

∑
y∈S

G(t1)
x2

({y})G(t2)
y (A)| (13.13)

Let f(y) = G
(t2)
y (A). By the internal definition principle, we know that G

(t2)
y (A)

is an internal function with value between ∗[0, 1]. By Lemma 7.24, we know that

|G(t2)
x1

(A)−G(t2)
x2

(A)| /‖ G(t1)
x1

(·)−G(t1)
x2

(·) ‖ . (13.14)
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Since this is true for all internal A, we have established the claim. �

By the construction of Loeb measure, we know that

(∀B ∈ B[X])(|G(t2)

x1
(st−1(B) ∩ S)−G(t2)

x2
(st−1(B) ∩ S)| < ε). (13.15)

By Theorem 9.35 and the fact that t2 ≈ t1, we know that |P (t1)
x1 (B)− P (t1)

x2 (B)| < ε

for all B ∈ B[X]. This shows that {Xt}t≥0 has the merging property. �

14. Miscellaneous Remarks

(1) There has been a rich literature on hyperfinite representations. In this paper,

we cut ∗X into hyperfinitely “small” pieces (denoted by {B(s) : s ∈ SX})

such that ∗g(x, 1, A) ≈ g(y, 1, A) for all A ∈ ∗B[X] for if x and y are in the

same “small” piece B(s). This also depends on (DSF) which states that the

transition probability is a continuous function of starting points with respect

to total variation norm. In [Loe74], Loeb showed that, for any Hausdorff

topological space X, there is a hyperfinite partition BF of ∗X consisting of

∗Borel sets which is finer than any finite Borel-measurable partition of X.

That is, there exists N ∈ ∗N and {Ai : i ≤ N} ∈P(∗B[X]) such that

• For any i, j ≤ N , we have Ai 6= ∅ and Ai ∩Aj = ∅.

• ∗X =
⋃
i≤N Ai.

• For every bounded measurable function f , we have

sup
x∈Ai

∗f(x)− inf
x∈Ai

∗f(x) ≈ 0 (14.1)

for every i ≤ N .

Now consider a discrete-time Markov process with state space X. There

is a hyperfinite set S ⊂ ∗X and a hyperfinite partition {B(s) : s ∈ S}

of ∗X consisting of ∗Borel such that for all s ∈ S, any x, y ∈ B(S) and

any A ∈ B[X] we have |∗g(x, 1, ∗A) − ∗g(y, 1, ∗A)| ≈ 0. However, it is

not clear whether |∗g(x, 1, B) − ∗g(y, 1, B)| ≈ 0 for all B ∈ ∗B[X]. A

affirmative answer to this question may imply that (DSF) can be eliminated
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in establishing the Markov chain ergodic theorem for discrete-time Markov

processes.

(2) The following nonstandard measure theoretical question is related to the

previous point. Let X be a topological space and let (X,B[X]) be a Borel-

measurable space. The question is: is an internal probability measure on

(∗X, ∗B[X]) determined by its value on {∗A : A ∈ B[X]}? For nonstandard

extensions of standard probability measures on (X,B[X]), the answer is af-

firmative by the transfer principle. For general internal probability measures

on (∗X, ∗B[X]), the answer is false. We can have two internal probability

measures concentrating on two different infinitesimals. They are very differ-

ent internal measures but they agree on the nonstandard extensions of all

standard Borel sets. We are interested in the case in between.

Open Problem 3. Let X be a topological space and let (X,B[X]) be a Borel-

measurable space. Let P be a probability measure on (X,B[X]) and let P1 be

an internal probability measure on (∗X, ∗B[X]). Suppose P1(∗A) ≈ ∗P (∗A)

for all A ∈ B[X], is it true that P1 = ∗P?

We do have the following partial result.

Lemma 14.1. Let us consider ([0, 1],B[[0, 1]]) and let P be a probability

measure on it. Let P1 be an internal probability measure on (∗[0, 1], ∗B[[0, 1]])

such that P1(∗A) ≈ ∗P (∗A) for all A ∈ B[[0, 1]]. Then P1(I) = ∗P (I) where

I is an interval contained in ∗[0, 1].

Proof. It is easy to see that P1 = ∗P if P has countable support. Suppose

P has uncountable support. Then there is an interval [a, b] ⊂ [0, 1] such

that P ([a, b]) > 0 and P ({x}) = 0 for all x ∈ [a, b]. Thus, without loss of

generality, we can assume P is non-atomic on [0, 1]. Let (x, y) ⊂ ∗[0, 1]

be a ∗interval with infinitesimal length. There is a a ∈ [0, 1] such that

(x, y) ⊂ ∗(a, a+ 1
n ) for all n ∈ N. As limn→∞ P ((a, a+ 1

n )) = 0, we know

that P1((x, y)) ≈ 0. Pick x1, x2 ∈ ∗[0, 1]. Without loss of generality, we
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can assume x1 < x2. We then have P1((x1, x2)) ≈ P1((st(x1), st(x2)) ≈
∗P ((st(x1), st(x2)) ≈ ∗P ((x1, x2)). �

It should not be too hard to extend this lemma to more general metric

spaces. Note that the collection of ∗intervals forms a basis of ∗[0, 1]. An

affirmative answer to Open Problem 3 may follow from a variation of

Theorem 9.37.

(3) It is possible to weaken the conditions mentioned in the Markov chain ergodic

theorem (Theorem 10.16). In particular, it would be interesting to reduce

(SF) to (WF). In Section 11, we constructed a hyperfinite representation

{X ′t}t∈T of {Xt}t≥0 under the Feller condition. The problem with the

Markov chain ergodic theorem is: we do not know whether {X ′t}t∈T is

strong regular. Recall that {X ′t}t∈T is strong regular if for any A ∈ I[S],

any i, j ∈ NS(S) and any t ∈ T we have:

(i ≈ j) =⇒ (G(t)
x (A) ≈ G(t)

y (A)). (14.2)

where S denotes the state space of {X ′t}t∈T . This is related to the follow-

ing question: Suppose {Xt}t≥0 satisfies (WF). For any B ∈ ∗B[X], any

x, y ∈ NS(∗X) and any t ∈ T , is it true that ∗g(x, t, B) ≈ ∗g(y, t, B)? An

affirmative answer of this question will imply that {X ′t}t∈T is strong regular.

By the transfer of (WF), it is not hard to see that ∗g(x, t, ∗A) ≈ ∗g(y, t, ∗A)

for all x ≈ y ∈ NS(∗X), all t ∈ R+ and all A ∈ B[X]. Thus, an affirmative

answer to Open Problem 3 should allow us to reduce (SF) to (WF) in the

Markov chain ergodic theorem (Theorem 10.16).

(4) In Section 11.2, we showed that the transition probability converges to

the stationary distribution weakly. We achieve this by showing that the

transition probability converges to the stationary distribution for every

open ball which is also a continuity set. It is reasonable to expect such

convergence holds for all open balls, even all open sets. Such a result will

“almost” imply the Markov chain ergodic theorem by the following result.
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Lemma 14.2. Let (X, T ) be a topological space and let (X,B[X]) be a

Borel-measurable space. Let {Pn : n ∈ N} and P be Radon probability

measures on (X,B[X]). Suppose

lim
n→∞

sup
U∈T
|Pn(U)− P (U)| = 0. (14.3)

Then (Pn : n ∈ N) converges to P in total variation distance.

Proof. Pick ε > 0. There is a n0 ∈ N such that supU∈T |Pn(U)−P (U)| < ε
4

for all n > n0. Let K(X) denote the collection of compact subsets of

X. Then we have supK∈K(X) |Pn(K) − P (K)| < ε
4 for all n > n0. Fix

B ∈ B[X] and n1 > n0. Without loss of generality, we can assume that

Pn1
(B) ≥ P (B). As Pn1

is Radon, we can choose K compact, U open with

K ⊂ B ⊂ U such that Pn1
(U)− Pn1

(K) < ε
4 . We then have

|Pn1
(B)− P (B)| (14.4)

≤ |Pn1
(U)− P (K)| (14.5)

≤ |Pn1(U)− Pn1(K)|+ |Pn1(K)− P (K)| (14.6)

≤ ε

2
. (14.7)

This implies that supB∈B[X] |Pn1(B)−P (B)| < ε. Thus we have (Pn : n ∈ N)

converges to P in total variation distance. �

Note that the lemma remains true if we replace convergence in total

variation by limn→∞ Pn(A) = P (A) both in condition and conclusion.

(5) Discrete-time Markov processes with finite state space can be characterized

by its transition matrix. The same is true for hyperfinite Markov processes.

The Markov chain ergodic theorem as well as the existence of stationary

distribution are well understood for discrete-time Markov processes with

finite state space. In Theorem 12.20, we establish a existence of stationary

distribution result for general Markov processes via studying its hyperfinite

counterpart. Let {Xt}t≥0 be a standard Markov process and let {X ′t}t∈T be
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its hyperfinite representation. Under moderate conditions, we showed that

there is a ∗stationary distribution Π for {X ′t}t∈T . Note that every ∗stationary

distribution is a weakly stationary distribution. By Theorem 7.26, under

those conditions in Theorem 10.16, we know that the internal transition

probability of {X ′t}t∈T converges to the ∗stationary distribution Π. This

shows that the Loeb extension of Π is the same as the Loeb extension

of any other weakly stationary distributions. However, it seems that a

weakly stationary distribution would differ from a ∗stationary distribution

in general. We raise the following two questions.

Open Problem 4. Is there an example of a hyperfinite Markov process

where its ∗stationary distribution differs from some of its weakly stationary

distribution?

Open Problem 5. Is there an example of a hyperfinite Markov process

where the internal transition probability does not converge to the ∗stationary

distribution in the sense of Theorem 7.26?

(6) For general state space continuous-time Markov processes, the Markov chain

ergodic theorem applies to Harris recurrent chains. A Harris chain is a

Markov chain where the chain returns to a particular part of the state space

infinitely many times.

Definition 14.3. Let {Xt}t≥0 be a Markov process on a general state space

X. The Markov chain {Xt} is Harris recurrent if there exists A ⊂ X, t0 > 0,

0 < ε < 1, and a probability measure µ on X such that

• P (τA <∞|X0 = x) = 1 for all x ∈ X where τA denotes the stopping

time to set A.

• P (t0)
x (B) > εµ(B) for all measurable B ⊂ X and all x ∈ A.

The set A is called a small set.

The first equation ensures that {Xt} will always get into A, no matter

where it starts. The second equation implies that, once we are in A, Xn+t0



ERGODICITY OF MARKOV PROCESSES VIA NONSTANDARD ANALYSIS 148

is chosen according to µ with probability ε. For two i.i.d Markov processes

{Xt}t≥0 and {Yt}t≥0 starting at two different points in A, then the two

chains will couple in t0 steps with probability ε.

Let {Xt}t≥0 be a continuous-time Markov process on a general state

space X and let δ > 0. The δ-skeleton chain of {Xt}t≥0 is the discrete-time

process {Xδ, X2δ, . . . }. As the total variation distance is non-increasing, the

convergence in total variation distance on the δ-skeleton chain will imply

the Markov chain ergodic theorem on {Xt}t≥0. The following version of the

Markov chain ergodic theorem is taken from Meyn and Tweedie [MT93a].

Note that the skeleton condition is usually hard to check.

Theorem 14.4 ([MT93a, Thm. 6.1]). Suppose that {Xt}t≥0 is a Harris

recurrent Markov process with stationary distribution π. Then {Xt} is

ergodic if at least one of its skeleton chains is irreducible.

Recall that the Markov chain ergodic theorem states that, under moder-

ate conditions, the transition probabilities will converge to its stationary

distribution for almost all x ∈ X. The property of Harris recurrent allows us

to replace “almost all” by all. For a non-Harris chain, it needs not converge

on a null set.

Example 14.5 ([RR06, Example. 3]). Let X = {1, 2, . . . }. Let P1({1}) = 1,

and for x ≥ 2, Px({1}) = 1
x2 and Px({x + 1}) = 1 − 1

x2 . The chain has a

stationary distribution π which is the degenerate measure on {1}. Moreover,

the chain is aperiodic and π-irreducible. On the other hand, for x ≥ 2, we

have

P [(∀n)(Xn = x+ n)|X0 = x] =

∞∏
i=x

(1− 1

i2
) =

x− 1

x
> 0 (14.8)

Hence the convergence only holds if we start at {1}.

The Markov chain ergodic theorem developed in this paper (Theo-

rem 10.16) do not have such restrictions. It does not require the skeleton
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condition on the underlying Markov process nor does it require the Markov

chain to be Harris recurrent.

Acknowledgement

We thank Robert Anderson, H. Jerome Keisler, Edwin Perkins and Daniel Roy

for helpful discussions and insights, and thank Patrick Fitzsimmons and Krzysztof

Latuszynski for their suggestions on related works in the literature. We would also

like to thank the anonymous referee for insightful suggestions.

References

[ACH97] L. O. Arkeryd, N. J. Cutland, and C. W. Henson, eds. Nonstandard anal-

ysis. Vol. 493. NATO Advanced Science Institutes Series C: Mathematical

and Physical Sciences. Theory and applications. Kluwer Academic Pub-

lishers Group, Dordrecht, 1997, pp. xiv+366.

[And76] R. M. Anderson. “A nonstandard representation for Brownian motion
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