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Abstract

The Markov chain ergodic theorem is well-understood if either the time-line
or the state space is discrete. However, there does not exist a very clear result
for general state space continuous-time Markov processes. Using methods from
mathematical logic and nonstandard analysis, we introduce a class of hyperfinite
Markov processes-namely, general Markov processes which behave like finite state
space discrete-time Markov processes. We show that, under moderate conditions,
the transition probability of hyperfinite Markov processes align with the transition
probability of standard Markov processes. The Markov chain ergodic theorem for
hyperfinite Markov processes will then imply the Markov chain ergodic theorem for
general state space continuous-time Markov processes.
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CHAPTER 1

Introduction

The transition probability of a time-homogeneous Markov process with a sta-
tionary probability distribution π will converge to π in an appropriate sense (i.e.,
will be “ergodic”), under suitable conditions (such as “irreducibility”). This phe-
nomenon is well understood for processes in discrete time and space (see e.g.
[Bil95,GS01]), and for processes in continuous time and discrete space (see e.g.
[GS01]), and for processes in discrete time and continuous space (see e.g. [MT09]
and [RR04]). However, for processes in continuous time and space, there are ap-
parently no such clean results; the closest are apparently the results in [MT93a,
MT93b,MT09] using awkward assumptions about skeleton chains together with
drift conditions. Other existing results (see,e.g., [Ste94]) make extensive use of the
techniques and results from [MT93a,MT93b].

Meanwhile, nonstandard analysis is a useful tool for providing intuitive new
proofs as well as new results to all areas of mathematics, including probability and
stochastic processes (see, eg.,[ACH97,Kei84,LW15]). One of the strengths of
nonstandard analysis is to provide a direct passage to link discrete mathematical
results to continuous mathematical results. This link is usually established by using
“hyperfinite” sets which is an infinite set with the same basic logical properties as
a finite set. Hence, they usually serve as a good approximation of general sets in
nonstandard analysis.

In this new paper, we apply nonstandard analysis to general state space contin-
uous time Markov processes. For a continuous Markov process {Xt}t≥0 with general
state spaceX, we will construct a nonstandard counterpart {X ′

t}t∈T (which is called
a hyperfinite Markov process). This nonstandard characterization {X ′

t}t∈T will al-
low us to view every Markov chain as a “discrete” process. The time line [0,∞) of
{Xt} is approximated by a hyperfinite set T = {0, δt, 2δt, . . . ,K} where δt is some
positive infinitesimal and K is some infinite number. We then take the nonstandard
extension of X and “cut” it into hyperfinitely pieces of mutually disjoint ∗Borel sets
with infinitesimal diameters. For example, if the state space X is Rn then we “cut”
X into “rectangles” of the form {x ∈ ∗Rn : a ≤ x1 < a+ δ, a ≤ x2 < a+ δ, . . . , a ≤
xn < a + δ} for some a ∈ ∗R and some positive infinitesimal δ. We then pick one
point from each of these ∗Borel sets to form a hyperfinite set S. The collection
of these ∗Borel sets is usually denoted by {B(s) : s ∈ S}. The set S is called the
“hyperfinite representation” of ∗X (the nonstandard extension of the state space
X). The link between X and S are usually established by the standard part map
st. The standard part of an element x ∈ ∗X is the unique element st(x) ∈ X such
that x is infinitesimally close to st(x). The standard part map st maps points in
{∗X} to their standard part. Under moderate conditions, it can be shown that
the measure of E ⊂ X is the same as the corresponding measure of st−1(E) ∩ S

1



2 1. INTRODUCTION

(see, eg,.Lemma 6.8). There has been a rich literature on using hyperfinite mea-
sure spaces to represent standard measure spaces. (see, eg., [And82,Loe74]). In
[And82], he gave a “hyperfinite representation” for every Hausdorff regular space
with Borel σ-algebra. In this paper, we focus on σ-compact completely metric
spaces hence obtaining a tighter control on our hyperfinite representation S.

The internal transition probability {G(δt)({s2})
s1 }s1,s2∈S of {X ′

t}t∈T is defined

to be {∗P (δt)
s1 (B(s2))}s1,s2∈S with some minor modification. Roughly speaking, we

obtain the internal transition probability of {X ′
t}t∈T by considering the ∗transition

probability from s1 to B(s2) at time δt and collapse the mass to one point s2.
Hyperfinite Markov processes behave like Markov processes on finite state spaces
with discrete time lines in many ways due to the close connection between finite
sets and hyperfinite sets. Most of the concepts of hyperfinite Markov processes
are naturally inherited from discrete Markov processes with finite state spaces.
Meanwhile, {X ′

t}t∈T also inherit most of the key properties of {Xt}t≥0. Most
importantly, the internal transition probability of {X ′

t}t∈T agree with the transition
probability of {Xt}t≥0 via standard part mapping. Namely,for every Borel set E,
every x ∈ X and every t > 0 we have

(1.1) (∀s ≈ x)(∀t′ ≈ t)(P (t)
x (E) = G(t′)

s (st−1(E)))

Thus, we refer {X ′
t}t∈T as a “hyperfinite representation” of {Xt}t≥0. Moreover,

if π is a stationary distribution for {Xt}t≥0, define π′({s}) = ∗π(B(s)) for every
s ∈ S, it then follows that π′ is “almost” a stationary distribution for {X ′

t}t∈T .

Under moderate assumptions of {Xt}t≥0, we can then show that G
(t)
s (A) ≈ π′(A)

for all infinite t and all internal set A. Finally, we can push down this result to
show that the transition probability of {Xt}t≥0 converges to π in total variation
distance hence establishing the Markov chain ergodic theorem for general state
space continuous-time Markov processes.

The method used in this paper is an “up and down” argument. In probability
theory and stochastic processes, it is usually easier to deal with discrete probability
theory as well as discrete time stochastic processes. By using nonstandard anal-
ysis, we first “push up” the problem into the nonstandard universe and consider
the hyperfinite counterpart of this problem. We can usually solve the hyperfinite
counterpart of the problem by mimicking the method we used in solving the finite
version of the problem. Once we solve the hyperfinite counterpart of the problem,
we “push down” to obtain the desired result for our original problem. We believe
that this method can be applied to many other areas in modern mathematics.

1. Chapter Outline

We conclude the introduction with a chapter-by-chapter summary, along the
way mentioning some important results proved in the paper.

In Chapter 2 we give a short introduction to Markov processes. We start by
introducing finite state space discrete time Markov processes and then move to
more general Markov processes. We also give proofs to some basic facts of Markov
processes. Most of the definitions as well as notations are adapted from [Ros06].
We state the main result of this paper at the end of Chapter 1 (see Theorem 2.16).

In Chapter 3 we develop from the beginning the notions needed for nonstandard
analysis, including the Extension, Transfer and Saturation Principles, internal sets



1. CHAPTER OUTLINE 3

and internal definition principles. The easiest way to visualize nonstandard anal-
ysis is to consider the R and its nonstandard extension ∗R. Hence, in Section 1,
we introduce basic concepts in ∗R including infinitesimals, infinite numbers, near-
standard numbers,etc. For readers who are unfamiliar with nonstandard analysis,
it is usually easy to make mistakes when it comes to identifying internal sets. In
Example 3.18, we show that the set st−1({0}) consisting of all infinitesimals is an
external set. In Section 2, we generalized those concepts and notations developed
in Section 1 to more general topological spaces.

In Chapter 4 we give an introduction to nonstandard measure theory. The
nonstandard measure theory is formulated by Peter Loeb in his landmark paper
[Loe75]. In [Loe75], Loeb constructed a standard countably additive probabil-
ity space (called the Loeb space) which is the completion of some “nonstandard
measure space” (called an internal probability space). We start Chapter 4 by in-
troducing internal probability spaces followed by an explicit construction of Loeb
spaces. A particular interesting class of internal probability spaces is the class con-
sisting of hyperfinite probability spaces. Hyperfinite sets are infinite sets with the
same first-order logic properties as finite sets. Hyperfinite probability spaces are
simply internal probability spaces with hyperfinite sample space. Hyperfinite prob-
ability spaces can often serve as a “good representations” of standard probability
spaces. We illustrate this idea in Example 4.5 and the remark after it. We also
discuss nonstandard product measures and nonstandard integration theory in this
chapter.

In Chapter 5, we discuss the measurability issue of the standard part map. The
link between a standard probability space X and its hyperfinite representation SX

is usually established via the standard part map. Thus, it is natural to require
that st (standard part map) to be a measurable function. In other words, we
would like to find out conditions such that st−1(E) is Loeb measurable for every
Borel set E. In [LR87], it has been shown that this question largely depends
on the Loeb measurability of NS(∗X) = {x ∈ ∗X : (∃y ∈ X)(y = st(x))}. In
Chapter 5, we investigate the conditions such that NS(∗X) is Loeb measurable.
In [ACH97, Exercise 4.19,1.20], NS(∗X) is Loeb measurable if X is either a σ-
compact, a locally compact Hausdorff or a complete metric space. We give a proof
for the σ-compact case in Lemma 5.5. We are also able to further extend the result
to merely Cech complete spaces (see Theorem 5.6).

In Chapter 6, we formally introduce the idea of hyperfinite representation.
In Definition 6.3, we give the definition of hyperfinite representation of a met-
ric spaces satisfying the Heine-Borel condition. The idea is to decompose X into
hyperfinitely many ∗Borel sets with infinitesimal diameters and pick one represen-
tative from every such ∗Borel set. We usually denote the hyperfinite representation
by S and the hyperfinite collection of ∗Borel sets by {B(s) : s ∈ S}. Note that
it is generally impossible to decompose the space into hyperfinitely many ∗Borel
sets with infinitesimal diameters. Thus, we only require our hyperfinite collection
{B(s) : s ∈ S} of ∗Borel sets to cover a “large enough” portion of ∗X. A hyper-
finite representation S has two parameters r and ε. The parameter r measures
how large portion does {B(s) : s ∈ S} cover while ε puts an upper bound on
the diameters of {B(s) : s ∈ S}. Given an (ε, r)-hyperfinite representation S, in



4 1. INTRODUCTION

Theorem 6.11, we define an internal probability measure P ′ on (S, I[S]) and estab-
lishes the link between (X,B[X], P ) and (S, I(S), P ′). Theorem 6.11 is similar to
[CNOSP95, Theorem 3.5] which was proved in [And82].

In Chapter 7, we define hyperfinite Markov processes and investigate many of
its properties. A hyperfinite Markov chain is characterized by four ingredients:

• a hyperfinite state space S.
• an initial distribution {νi}i∈S consisting of non-negative hyperreals sum-
ming to 1.

• a hyperfinite time line T = {0, δt, . . . ,K} for some infinitesimal δt and
some infinite K ∈ ∗R.

• transition probabilities {pij}i,j∈S consisting of non-negative hyperreals
with

∑
j∈S pij = 1 for all i ∈ S.

In other words, hyperfinite Markov processes behave much like discrete-time Markov
processes with finite state spaces. The Markov chain ergodic theorem for discrete-
time Markov processes with finite state spaces is proved using the “coupling” tech-
nique. Namely, for finite Markov processes, we can show that two i.i.d Markov
chains starting at different points will eventually “couple” at the same point under
moderate conditions. Similarly, for hyperfinite Markov processes, we can show that
two i.i.d copies starting at different points will eventually get infinitesimally close.
This infinitesimal coupling technique is illustrated in Lemma 7.8. In Theorems 7.19
and 7.26, we establish ergodic theorems for hyperfinite Markov processes.

In Chapter 8, we construct hyperfinite representations for discrete-time Markov
processes. Given a discrete-time Markov process {Xt}t∈N, we construct a hy-
perfinite Markov process {X ′

t}t∈T such that the internal transition probability
of {X ′

t}t∈T deviate from the transition probability of {Xt}t≥0 by infinitesimal.
{X ′

t}t∈T is defined on some hyperfinite representation S of X. Note that the time
line T of {X ′

t}t∈T in this case will be {1, 2, . . . ,K} for some infinite K ∈ ∗N. At
each step, an infinitesimal difference between the internal transition probability of
{X ′

t}t∈T and the transition probability of {Xt} is generated. As there are only
countably many steps, the internal transition probability give a reasonably well ap-
proximation for the transition probability of of {Xt}t∈N. We illustrate such result
in Theorem 8.16.

In Chapter 9, we apply similar ideas developed in Chapter 8 to continuous-time
Markov processes with general state spaces. However, the construction of hyper-
finite representation for a continuous-time Markov process {Xt}t≥0 is much more
complicated compared with the construction in Chapter 8. When the time-line is
continuous, the time-line T for the hyperfinite representation is {0, δt, 2δt, . . . ,K}
where δt is some infinitesimal and K is some infinite number. As it takes hyper-
finitely many infinitesimal steps to reach a non-infinitesimal time, we need to make
sure that the difference between {Xt}t≥0 and {X ′

t}t∈T generated in every step is so
small such that the accumulated difference will remain infinitesimal. We establish
this by using internal induction principle (see Theorem 9.20). Unlike the construc-
tion of {X ′

t}t∈T in Chapter 8, the construction of {X ′
t}t∈T in Chapter 9 involves

picking the underlying hyperfinite state space S carefully. Finally, we establish the
connection between {Xt}t≥0 and {X ′

t}t∈T in Theorem 9.43.
In Chapter 10, we establish the Markov chain ergodic theorem for continuous-

time general state space Markov processes. We show that the hyperfinite repre-
sentation {X ′

t}t∈T inherit many key properties from {Xt}t≥0 (see Theorem 10.6
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and Lemmas 10.8 and 10.15). By Theorem 7.26, we know that {X ′
t}t∈T is er-

godic. The ergodicity of {Xt}t∈T (Theorem 10.16) follows from pushing down
Theorem 7.26.

One of the major assumptions on {Xt}t≥0 is the strong Feller property which
asserts that transition probability of {Xt}t≥0 is a continuous function of the starting
points with respect to the total variation distance. It is desirable to weaken this
condition to only assert that the transition probability is a continuous function of
the starting points for every Borel set (such condition is called the Feller condition).
In Chapter 11, we establish how to construct a hyperfinite representation {X ′

t}t∈T

of {Xt}t≥0 when {Xt}t≥0 just satisfies the Feller condition. We also give a proof
of a weaker Markov chain ergodic theorem under the Feller condition. It remains
unclear to us whether the Markov chain ergodic theorem is true when {Xt}t≥0 only
satisfies the Feller condition.

In Chapter 12, we discuss how to construct standard Markov processes and
stationary distributions from hyperfinite Markov processes and weakly stationary
distributions (“stationary” distributions for hyperfinite Markov processes). This
also gives rise to some new insights in establishing existence of stationary distribu-
tions for general Markov processes. A Markov process {Xt}t≥0 satisfies the merging
property if for all x, y ∈ X

(1.2) lim
t→∞

‖ P (t)
x (·)− Py ‖= 0.

Note that a Markov process with the merging property does not need to have a
stationary distribution. In Chapter 13, we discuss conditions on {Xt}t≥0 for it to
have the merging property. In Chapter 14, we close with a few remarks, some open
problems and a short literature review on existing Markov chain ergodic theorems.





CHAPTER 2

Markov Processes and the Main Result

We start this paper by giving a brief introduction to Markov processes. Some
of the notations and definitions are adapted from [Ros06]. Those who are familiar
with Markov processes may skip to Definition 2.8.

In general, a continuous-time stochastic process is a collection {Xt}t≥0 of ran-
dom variables, defined jointly on some probability triple, taking values in some state
space X with σ-algebra F , and indexed by the non-negative real numbers {t ≥ 0}.
Usually we regard the variable t as representing time, so that Xt represents a ran-
dom state at time t. Formally speaking, we have the following definition:

Definition 2.1. Given a probability space (Ω,F , P ) and a measurable space
(X,Γ), a X-valued stochastic process is a collection of X-valued random variables
{Xt}t∈T , indexed by a totally ordered set T (“time line”). The space X is called
the state space.

The “time line” is almost always taken to be either R+ ∪ {0} (“non-negative
reals”) or N. When T = N, the stochastic process is called a discrete-time stochastic
process. Otherwise it is called a continuous-time stochastic process. In this paper,
the σ-algebra on X is always taken to be the Borel σ-algebra B[X]. The sample
space Ω is usually taken to be the set of all measurable functions from T to X and
F is taken to be the product σ-algebra. Every element in Ω is called a path.

We are now at the place to define Markov processes.

Definition 2.2. A stochastic process {Xt}t≥0 on some measurable space

(X,B[X]) is a Markov process if there are transition probability measures P
(t)
x (·)

on (X,B[X]) for all t ≥ 0 and all x ∈ X, and an initial distribution ν on (X,B[X]),
such that

(1) P
(t)
x (·) is a probability measure on (X,B[X]) and P

(0)
x (·) is a point-mass

at x.
(2) P (X0 ∈ A0, Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫
x0∈A0

∫
xt1

∈A1

. . .
∫
xtn∈An

ν(dx0)P
(t1)
x0 (dxt1)P

(t2−t1)
xt1

(dxt2) . . . P
(tn−tn−1)
xtn−1

(dxtn)

for all 1 ≤ t0 < . . . < tn and all A1, . . . , An ∈ B[X].

(3) P
(s+t)
x (A) =

∫
P

(s)
x (dy)P

(t)
y (A) for all s, t ≥ 0, all x ∈ X and all A ∈ B[X].

where B[X] denote the Borel σ-algebra of X.

Intuitively, P
(t)
x (A) refers to the probability of getting into set A at time t

given that the chain starts at x. When the state space is countable, we write p
(t)
ij

to denote P
(t)
i ({j}).

The third property in Definition 2.2 is called the semigroup property. On

countable state space, we have p
(s+t)
ij =

∑
k∈X p

(s)
ik p

(t)
kj . When the time line is

7



8 2. MARKOV PROCESSES AND THE MAIN RESULT

discrete, it is easy to see that we can get all P
(t)
x (·) from P

(1)
x (·). Hence, when

the time line is discrete, transition probabilities of a Markov process is uniquely

determined by its “one-step” transition probability P
(1)
x (·) for all x ∈ X. In this

case, we usually omit 1 and write Px(·) instead.
Probably the most well-understood type of Markov chains are discrete time

Markov chains on with discrete state spaces. By Definition 2.2, it is not difficult to
see that such a Markov process is characterized by three ingredients:

(1) a state space S.
(2) an initial distribution {vi : i ∈ S} consisting of non-negative numbers

summing to 1.
(3) one-step transition matrix {pij}i,j∈S consisting of non-negative numbers

with
∑

j∈S pij = 1 for each i ∈ S.

Clearly we can generate n-th transition probability from one-step transition

matrix {pij}i,j∈S . We use p
(n)
ij to denote the n-step transition probability from i

to j.

Example 2.3. The simplest example of Markov process is the simple random
walk. The state space is the set of all integers Z. The initial distribution is the
point mass at 0. The one-step transition matrix is given by Pi({i + 1}) = 1

2 and

Pi({i− 1}) = 1
2 .

We first explore some basic properties of discrete-time Markov processes with
finite state spaces. Let {Xt}t≥0 denote such a Markov process. By Definition 2.2, it
is easy to see that P (X0 = i0, X1 = i1, . . . , Xn = in) = νi0pi0i1pi1i2 · · · pin−1in . The
following two properties can be established pretty easily for such Markov process:

(1) P (Xk+1 = j|Xk = i0, Xk−1 = i1, . . . , X0 = ik) = P (Xk+1 = j|Xk = i0).
Markov property

(2) P (Xk+n = j|Xk = i) = p
(n)
ij for all i, j ∈ S and all k, n ∈ N. Time

homogeneous

Both of these properties can be generalized to more general Markov processes
in a natural way.

As one can see, the discrete time Markov chain with discrete state space is
easy to understand and work with. However, it is not the case for general Markov
process. The level of complexity increases greatly when we analysis general Markov
processes using standard method. In this paper, we will apply nonstandard analysis
to turn every continuous time general state space Markov process into a “finite”
Markov process. We will discuss these ideas in more details in later chapters.

Before we discuss general Markov processes, we introduce the finite-dimensional
distributions for a general stochastic process.

Definition 2.4. Given a stochastic process {Xt}t∈T , and k ∈ N, and a finite
collection t1, t2, . . . , tk ∈ T of distinct index values, we define the Borel probability
measure μt1...tk on Xk by:

(2.1) μt1...tk(H) = P ((Xt1 , . . . , Xtk) ∈ H), H ∈ B[Xk]

The distribution {μt1...tk ; k ∈ N, t1, . . . , tk ∈ T distinct} are called the finite-
dimensional distributions for the stochastic process {Xt : t ∈ T}.
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Under suitable “consistency” conditions of the finite-dimensional distributions,
we can determine a stochastic process from its finite-dimensional distributions. We
first introduce the following definition.

Definition 2.5. A measure μ on a Hausdorff measure space (X,F) is inner
regular if

(2.2) μ(A) = sup{μ(K)|compact K ⊂ A}.

Theorem 2.6 (Kolmogorov Existence Theorem). Let T be any set. Let
{(Ωt,Ft)}t∈T be some collection of measurable spaces with Hausdorff topology on
each Ωt. For each J ⊂ T , let ΩJ =

∏
t∈J Ωt. For subset I ⊂ J ⊂ T , let πJ

I be the
projection map from

∏
t∈J Ωt →

∏
t∈I Ωt. For each finite F ⊂ T , suppose we have

a probability measure μF on ΩF which is inner regular with respect to the product
topology on ΩF . Suppose that for finite sets F ⊂ G ⊂ T , we have that

(2.3) μF (A) = μG((π
G
F )

−1(A)).

for all measurable sets A. Then there exists an unique measure μ on ΩT such that
μF (A) = μ((πT

F )
−1(A)) for all finite F ⊂ T and all measurable sets A.

It is clear that T = {x ∈ R : x ≥ 0} for a continuous Markov processes. For a
detailed proof of this theorem, see e.g. [Bil95, 1995, Theorem 36.1].

We now turn our attention to general Markov processes. When ν({x}) > 0, we
write Px(·) for the probability of an event conditional on X0 = x. In particular, we

have P
(t)
x (A) = P (Xt ∈ A|X0 = x). However, we have ν(x) = 0 for most of x when

the state space is not discrete. Thus, we shall view Px as a probability measure

on the product space ({x}×XR
+

,F) where F denote the product Borel σ-algebra
with finite dimensional distribution:

Px(Xt1 ∈ A1, . . . , Xtn ∈ An)

=
∫
xt1

∈A1
. . .

∫
xtn∈An

P
(t1)
x0 (dxt1)P

(t2−t1)
xt1

(dxt2) . . . P
(tn−tn−1)
xtn−1

(dxtn).

Then by Kolmogorov existence theorem, such probability measure Px exists.

Definition 2.7. A probability distribution π(·) on (X,B[X]) is a stationary

distribution for the Markov process {Xt}t≥0 if
∫
X
P

(t)
x (A)π(dx) = π(A) for all t ≥ 0

and all A ∈ B[X].

The intuition behind stationarity is quite simple. It means that if we start the
Markov chain in the distribution π then any time later the distribution will still
be π. However, even if we start our process in some other distribution we would
like to show that eventually the distribution will be π. This is the famous Markov
chain Ergodic theorem. Before giving the formal statement of the Markov chain
Ergodic theorem, we need to introduce some concepts for Markov processes. All
these assumptions will be restated later in the paper.

Definition 2.8. Let K[X] denote the collection of compact subsets of X.
The Markov chain {Xt}t≥0 is said to be vanishing in distance if for all t ≥ 0, all

K ∈ K[X] and every ε > 0, the set {x ∈ X : P
(t)
x (K) ≥ ε} is contained in a compact

subset of X.

Roughly speaking, if a Markov process {Xt} is vanishing in distance, it means
that the probability of {Xt} “traveling far” within a fixed amount of time is small.
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This ensures that the Markov process is non-explosive. In Chapter 9, we give an
equivalent formulation of Definition 2.8 using the metric d on the state space X. It
will be easier to see the intuition behind Definition 2.8 there.

Definition 2.9. A Markov chain {Xt}t≥0 is said to be strong Feller if for all
t > 0, all ε > 0, all x ∈ X, there exists δ > 0 such that:

(2.4) ((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

Definition 2.10. Given two probability measures P1, P2 on some measurable
space (X,F). The total variation distance between P1 and P2 is

(2.5) ‖ P1 − P2 ‖= sup
A∈F

|P1(A)− P2(A)|.

The strong Feller condition essentially says that, for any t > 0, the mapping

x → P
(t)
x (·) is continuous with respect to total variation norm. Given a strong Feller

Markov process {Xt}, if we start at two points which are close to each other, after
a fixed period of time, the probabilities of them reaching the same set is very close.
This is certainly a reasonable assumption for most of the Markov processes. As a
matter of fact, most of the diffusion and Gaussian processes satisfy this condition.

Definition 2.11. A Markov chain {Xt}t≥0 is said to be weakly continuous in

time if for any basic open set A ⊂ X, and any x ∈ X, we know that P
(t)
x (A) is a

right continuous function for t > 0. Moreover, for any t0 ∈ R+, any x ∈ X and any

E ∈ B[X] we know that limt↑t0 P
(t)
x (E) always exists although it not necessarily

equals to P
(t0)
x (E)

Definition 2.12. A Markov chain {Xt}t≥0 with state space X is said to be
open set irreducible on X if for every open ball B ⊆ X and any x ∈ X, there exists

t ∈ R+ such that p
(t)
x (B) > 0.

If a Markov process is open set irreducible, it means that it is possible to move
from any point to any open set.

The classical proof of the Markov chain Ergodic theorem in the finite case uses
the “coupling” idea. Roughly speaking, under moderate conditions, for two i.i.d
Markov processes starting at two different points will eventually “couple” at some
point. Thus it is worth to consider the product of two Markov processes.

Definition 2.13. Let {Xt}t≥0 and {Yt}t≥0 be two Markov processes on state

spaces X and Y , respectively. Let P
(t)
x (·) denote the t-step transition measure of

{Xt}t≥0 had the chain started at x. Let Q
(t)
y (·) denote the t-step transition measure

of {Yt}t≥0 had the chain started at y. The joint Markov chain {Xt × Yt}t≥0 is a
Markov process on the state space X × Y with transition probability:

(2.6) F
(t)
(x,y)(A×B) = P (t)

x (A)Q(t)
y (B).

for all (x, y) ∈ X × Y , all A×B ∈ B[X]× B[Y ] and all t ≥ 0.

The most common product Markov chain is the product between a Markov
chain {Xt} and itself. However, even if {Xt} is open set irreducible this may not
be the case for the product chain {Xt ×Xt}.

Example 2.14. Let {Xt}t∈N be a Markov process with two-points state space
{1, 2} with discrete topology. Let P1({2}) = 1 and P2({1}) = 1. It is clear that
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{Xt} is open set irreducible. However, it is never possible to go from (1, 2) to (1, 1)

since P
(t)
1 ({1})P (t)

2 ({1}) = 0 for all t ∈ N.

Thus we impose the following condition on {Xt}t≥0 to eliminate such counter-
example.

Definition 2.15. The Markov chain {Xt}t≥0 is productively open set irre-
ducible if the joint Markov chain {Xt × Yt}t≥0 is open set irreducible on X × X
where {Yt}t≥0 is an independent identical copy of {Xt}t≥0.

We are now at the place to state the main result of this paper.

Theorem 2.16. Let {Xt}t≥0 be a general state space continuous-time Markov
chain with separable locally compact metric state space (X, d). Suppose {Xt}t≥0

is productively open set irreducible and has a stationary distribution π. Suppose
{Xt}t≥0 is vanishing in distance, strong Feller and weakly continuous. Then for

π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

A similar result holds for general-state-space discrete time Markov processes.
We can drop weakly continuity in time and vanishing in distance in the discrete
time case. To prove Theorem 2.16, we first establish a weaker Markov chain ergodic
theorem. We start by introducing the following definition.

Definition 2.17. A metric space X is said to satisfy the Heine-Borel condition
if the closure of every open ball is compact.

The proof of the following theorem will be delayed to Chapter 10, see Theo-
rem 10.16

Theorem 2.18. Let {Xt}t≥0 be a general-state-space continuous in time Markov
chain living on some metric space X satisfying the Heine-Borel condition. Sup-
pose {Xt}t≥0 is productively open set irreducible and has a stationary distribution
π. Suppose {Xt}t≥0 is strong Feller, weakly continuous in time and vanishes in

distance. Then for π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A) −

π(A)| = 0.

Theorem 2.18 is interesting on its own. For example, Theorem 2.18 applies
to all Markov processes with Euclidean state space. However, Theorem 2.18 does
require that the state space X is a metric space satisfying the Heine-Borel prop-
erty. Such an X is automatically a separable locally compact metric space. Hence
Theorem 2.18 is an immediate consequence of Theorem 2.16. On one hand, the
Heine-Borel condition is quite strong. For example, (0, 1) and (0,∞), while they
are separable locally compact metric spaces, do not satisfy the Heine-Borel property.
On the other hand, from the nonstandard perspective, the Heine-Borel condition is
desirable because it guarantees that every finite nonstandard element is infinitely
close to a standard element (see Theorem 6.2). Hence, it will be easier to establish
Theorem 2.18 than Theorem 2.16.

It is easy to see that Theorem 2.18 follows from Theorem 2.16. For the remain-
der of this chapter, we establish Theorem 2.16 from Theorem 2.18. We start by
proving the following theorem which shows that, for every separable locally com-
pact metric space, there exists a Heine-Borel metric dH on X that induces the same
topology.
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Theorem 2.19. Let (X, d) be a separable locally compact metric space. There
is a metric dH on X inducing the same topology such that (X, dH) satisfies the
Heine-Borel property.

Proof. It is a well-known topological fact that if (X, d) is a separable locally
compact metric space then X is σ-compact. Let X =

⋃
n∈N

Kn where every Kn is
a compact subset of X. We now define a non-decreasing of compact subsets of X
as following:

• Let V1 = K1.
• Suppose we have defined Vn. As X is locally compact, there is a finite
collection {U1, . . . , Uk} of open sets such that

⋃
i≤k Ui ⊃ Vn and U i is

compact for every i ≤ k. Let Vn+1 = (
⋃

i≤k U i) ∪Kn+1.

Thus, X =
⋃

n∈N
Vn and Vn ⊂ Wn+1 where Wn+1 is the interior of Vn+1. Define

fn : X �→ R by letting fn(x) =
d(x,Vn)

d(x,Vn)+d(x,X\Wn+1)
. Let f(x) =

∑∞
n=1 fn(x). Note

that
∑∞

n=1 fn(x) is always finite since each x ∈ X is in some Vn. Moreover, as
both Vn and X \ Wn+1 are closed, the function f : X �→ R is continuous. Define
dH : X ×X → R by

(2.7) dH(x, y) = d(x, y) + |f(x)− f(y)|.

Then
(2.8)
dH(x, z) = d(x, z) + |f(x)− f(z)| ≤ d(x, y) + |f(x)− f(y)|+ d(y, z) + |f(y)− f(z)|

hence dH is a metric on X.

Claim 2.20. dH induces the same topology as d.

Proof. Let {xn : n ∈ N} be a subset of X and let y ∈ X. Suppose

lim
n→∞

dH(xn, y) = 0.

As d(xn, y) ≤ dH(xn, y) for all n ∈ N, we have limn→∞ d(xn, y) = 0. Now sup-
pose limn→∞ d(xn, y) = 0. As f is continuous in the original metric, we have
limn→∞ f(xn) = f(y) hence we have limn→∞ dH(xn, y) = 0. �

The metric space (X, dH) satisfies the Heine-Borel condition since the following
claim is true.

Claim 2.21. For every A ⊂ X bounded with respect to dH , there is some Vn

such that A ⊂ Vn.

Proof. Suppose A is not a subset of any element in {Vn : n ∈ N}. Fix some
element n ∈ N and r ∈ R+. Pick x ∈ Vn+1 \ Vn. By the construction of f , we
know that n + 1 ≥ f(x) > n. Thus, we can pick an element a ∈ A such that
f(a) > f(x) + r. Then dH(x, a) > r. As n and r are arbitrary, this shows that A
is not bounded. �

�

With the help of Theorem 2.19, we can prove Theorem 2.16 from Theorem 2.18.
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Proof of Theorem 2.16. Let dH be a Heine-Borel metric on X that induces
the same topology as (X, d). By Theorem 2.18, it is sufficient to show that {Xt}t≥0

is strong Feller and vanishes in distance under the metric dH . Note that vanishing
in distance (Definition 2.8) is a purely topological property. As dH and d generate
the same topology, we know that {Xt}t≥0 vanishes in distance under the metric
dH .

We now show that {Xt}t≥0 is strong Feller under the metric dH . Pick t > 0,
ε > 0 and x ∈ X. As {Xt}t≥0 is strong Feller under the metric d, there exists a
δ > 0 such that

(2.9) ((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

Note that the set {y ∈ X : d(x, y) < δ} is an open subset of X. As the metric
dH generates the same topology as (X, d), there exists δ′ > 0 such that {y ∈ X :
dH(x, y) < δ′} ⊂ {y ∈ X : d(x, y) < δ}. Thus, we can conclude that

(2.10) ((∀y ∈ X)(dH(x, y) < δ′ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

Hence, {Xt}t≥0 is strong Feller under the Heine-Borel metric dH . �
To complete the proof of Theorem 2.16, it is sufficient to show Theorem 2.18.

From this point on, we shall work with Markov processes with metric state space
satisfying the Heine-Borel condition.





CHAPTER 3

Preliminaries: Nonstandard Analysis

Those familiar with nonstandard methods may safely skip this chapter on
their first reading. Nonstandard analysis is introduced by Abraham Robinson
in [Rob66]. For modern applications of nonstandard analysis, interested read-
ers can read [ACH97] or [CNOSP95]. For those who are particularly interested
in nonstandard measure theory, we recommend [LW15] which contains special
measure-theoretic results obtained by nonstandard analysis that have no known
classic analogues in various fields (see [LW15, Chapter. 8]). Our following intro-
duction of nonstandard analysis owes much to [ACH97]. Some part of this chapter
is adapted from [DD16].

For a set S, let P(S) denote its power set. Given any set S, define V0(S) = S
and Vn+1(S) = Vn(S) ∪ P(Vn(S)) for all n ∈ N. Then V(S) =

⋃
n∈N

Vn(S) is
called the superstructure of S, and S is called the ground set of the superstructure
V(S). We treat the elements in V(S) as indivisible atomics. The rank of an object
a ∈ V(S) is the smallest k for which a ∈ Vk(S). The members of S have rank
0. The objects of rank no less than 1 in V(S) are precisely the sets in V(S). The
empty set ∅ and S both have rank 1.

We now formally define the language L(V(S)) of V(S).
• constants : one for each element in V(S).
• variables : x1, x2, x3, . . .
• relations : = and ∈.
• parentheses : ) and (
• connectives : ∧ (and), ∨ (or) and ¬ (not).
• quantifiers : ∀ and ∃

The formulas in L(V(S)) are defined recursively:

• If x and y are variables and a and b are constants,
(x = y), (x ∈ y), (a = x), (a ∈ x), (x ∈ a), (a = b), (a ∈ b) are

formulas.
• If φ and ψ are formulas, then (φ ∧ ψ), (φ ∨ ψ) and (¬φ) are formulas.
• If φ is a formula, x is a variable and A ∈ V(S) then (∀x ∈ A)(φ) and
(∃x ∈ A)(φ) are formulas.

A variable x is called a free variable if it is not within the scope of any quanti-
fiers.

Let us agree to use the following abbreviations in constructing formulas in
L(V(S)): We will write (φ =⇒ ψ) instead of ((¬φ) ∨ (ψ)) and (φ ⇐⇒ ψ) instead
of (φ =⇒ ψ) ∧ (ψ =⇒ φ).

It may seem that we should include more relation symbols and function symbols
in our language. For example, it is definitely natural to require 1 < 2 to be a well-
defined formula. However, every relation symbol and function syumbol can be

15
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viewed as an element in V(S) and we already have a constant symbol for that.
Thus our language is powerful enough to describe all well-defined relation symbols
and function symbols. In conclusion, there is no problem to include these symbols
within our formula.

Definition 3.1. Let κ be an uncountable cardinal number. A κ-saturated
nonstandard extension of a superstructure V(S) is a set ∗S and a rank-preserving
map ∗ : V(S) → V(∗S) satisfying the following three principles:

• extension: ∗S is a superset of S and ∗s = s for all s ∈ S.
• transfer : For every sentence φ in L(V(S)), φ is true in V(S) if and only
if its ∗-transfer ∗φ is true in V(∗S).

• κ-saturation: For every family F = {Ai : i ∈ I} of internal sets indexed by
a set I of cardinality less than κ, if F has the finite intersection property,
i.e., if every finite intersection of elements in F is nonempty, then the total
intersection of F is non-empty.

A ℵ1 saturated model can be constructed via an ultrafilter, see [ACH97,
Thm. 1.7.13].

The language of V(∗S) is almost the same as L except that we enlarge the set of
constants to include every element in V(∗S). We denote the language of V(∗(S)) by
L(V(∗S)). If φ(x1, . . . , xn) is a formula in L(V(S)) with free variables x1, . . . , xn,
then the ∗-transfer of φ is the formula in L(V(∗S)) obtained by changing every
constant a to ∗a. Clearly, every constant in ∗φ(x1, . . . , xn) is internal.

An important class of elements in V(∗S) is the class of internal elements.

Definition 3.2. An element a ∈ V(∗S) is internal when there exists b ∈ V(S)
such that a ∈ ∗b, and a is said to be external otherwise.

The next theorem shows that saturation to any uncountable cardinal number
is possible:

Theorem 3.3 ([Lux69]). For every superstructure V(S) and uncountable car-
dinal number κ, there exists a κ-saturated nonstandard extension of V(S).

From this point on, we shall always assume that our nonstandard extension is
always as saturated as we want.

As one can see, internal elements are those “well-behaved” elements which can
be carried over via the transfer principle. It is natural to ask how to identify internal
elements. By Definition 3.2, we know that an element a ∈ V(∗S) is internal if and
only if there exists a k ∈ N such that a ∈ ∗Vk(S). It is then easy to see that
every a ∈ ∗S is internal. The following lemma gives a characterization of internal
elements in P(∗S).

Lemma 3.4. Consider a superstructure V(S) based on a set S with N ⊂ S
and its nonstandard extension, for any standard set C from this superstructure,⋃

k<ω
∗Vk(S) ∩ P(∗C) = ∗P(C).

Proof. Let us assume that C has rank n for some n ∈ N. P(C) ∈ Vn+1(S)
hence we have

∗P(C) ∈ ∗Vn+1(S).

Consider the following sentence (∀x ∈ P(C))(∀y ∈ x)(y ∈ C), the transfer of this
sentence implies that ∗P(C) ⊂ P(∗C). Hence we have ∗P(C) ⊂

⋃
k<ω

∗Vk(S) ∩
P(∗C), completing the proof. �
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Thus, we know that that A ⊂ ∗S is internal if and only if A ∈ ∗P(S).
The following lemma shows a particularly useful fact of internal sets which will

be used extensively in this paper.

Lemma 3.5. Let a be an internal element in V(∗S). Then the collection of all
internal subsets of a is itself internal.

Proof. As a is an internal element, there exists a k ∈ N such that a ∈ ∗Vk(S).
For any internal set a′ ⊂ a, it is easy to see that a′ ∈ ∗Vk(S). Let b denote the
collection of all internal subsets of a. The sentence (∀x ∈ y)(x ∈ Vk(S)) =⇒ (Y ∈
Vk+1(S)) is true. Thus, by the transfer principle, we have that b ∈ ∗Vk+1(S) hence
b is an internal set. �

It takes practice to identify general internal sets. The main tool for constructing
internal sets is the internal definition principle:

Lemma 3.6 (Internal Definition Principle). Let φ(x) be a formula in L(V(∗S))
with free variable x. Suppose that all constants that occurs in φ are internal, then
{x ∈ V(∗S) : φ(x)} is internal in V(∗S).

Saturation can be equivalently expressed in terms of the satisfiability of fam-
ilies of formulas. The role of the finite intersection property is played by finite
satisfiability:

Definition 3.7. Let J be an index set and let A ⊆ V(∗S). A set of formulas
{φj(x) | j ∈ J} over V(∗S) is said to be finitely satisfiable in A when, for every
finite subset α ⊂ J , there exists c ∈ A such that φj(c) holds for all j ∈ α.

We can now provide the following alternative expression of κ-saturation:

Theorem 3.8 ([ACH97, Thm. 1.7.2]). Let ∗V(S) be a κ-saturated nonstandard
extension of the superstructure V(S), where κ is an uncountable cardinal number.
Let J be an index set of cardinality less than κ. Let A be an internal set in ∗V(S).
For each j ∈ J , let φj(x) be a formula over ∗V(S), so all objects mentioned in
φj(x) are internal. Further, suppose that the set of formulas {φj(x) | j ∈ J} is
finitely satisfied in A. Then there exists c ∈ A such that φj(c) holds in ∗V(S)
simultaneously for all j ∈ J .

Example 3.9. A particular interesting example of superstructure is V(R). The
nonstandard extension of this superstructure is V(∗R). V(∗R) contains hyperreals,
∗N, etc. We will study this particular superstructure in detail in Section 1.

Through out this paper, we shall assume our ground set S always contain R as
a subset.

We conclude this section by introducing a particularly useful class of sets in
V(∗S): hyperfinite sets. A hyperfinite set A is an infinite set that has the basic
logical properties of a finite set.

Definition 3.10. A set A ∈ V(∗S) is hyperfinite if and only if there exists an
internal bijection between A and {0, 1, ...., N − 1} for some N ∈ ∗N.

This N , if exists, is unique and this unique N is called the internal cardinality
of A.

Just like finite sets, we can carry out all the basic arithmetics on a hyperfinite
set. For example, we can sum over a hyperfinite set just like we did for finite
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set. Basic set theoretic operations are also preserved. For example, we can take
hyperfinite unions and intersections just as taking finite unions and intersections.

We have rather nice characterization of internal subsets of a hyperfinite set.

Lemma 3.11 ([ACH97]). A subset A of a hyperfinite set T is internal if and
only if A is hyperfinite.

An immediate consequence of Theorem 3.8 is:

Proposition 3.12 ([ACH97, Proposition. 1.7.4]). Assume that the nonstan-
dard extension is κ-saturated. Let a be an internal set in V(∗S). Let A be a (possibly
external) subset of a such that the cardinality of A is strictly less than κ. Then there
exists a hyperfinite subset b of a such that b contains A as a subset.

1. The Hyperreals

Probably the most well-known nonstandard extension is the nonstandard ex-
tension of R. We investigate some basic properties and notations in ∗R.

Definition 3.13. The set ∗R is called the set of hyperreals and every element
in ∗R is called a hyperreal number. An element x ∈ ∗R is called an infinitesimal if
x < 1

n for all n ∈ N. An element y ∈ ∗R is called an infinite number if y > n for all
n ∈ N.

We write x ≈ 0 when x is an infinitesimal.

Definition 3.14. Two elements x, y ∈ ∗R are infinitesimally close if |x− y| ≈
0. In which case, we write x ≈ y. An element x ∈ ∗R is near-standard if x is
infinitesimally close to some a ∈ R. An element x ∈ ∗R is finite if |x| is bounded
by some standard real number a.

It is easy to see that if x ∈ ∗R is bounded then there exists some a ∈ R such
that |x− a| is finite.

Lemma 3.15. An element x ∈ ∗R is finite if and only if x is near-standard.

Proof. It is clear that if x is near-standard then x is finite. Suppose there
exists a x ∈ ∗R such that x is finite but not near-standard. Then there exists a
a0 ∈ R such that |x| ≤ a0. This means that x ∈ ∗[−a0, a0]. As x is not near-
standard, for every standard a ∈ [−a0, a0] we can find an open interval Oa centered
at a with x �∈ ∗Oa. The family {Oa : a ∈ [−a0, a0]} covers [−a0, a0] and therefore
has a finite subcover {O1, ..., On}. As [−a0, a0] ⊂

⋃
i≤n Oi,

∗[−a0, a0] ⊂
⋃

i≤n
∗Oi.

Since x �∈
⋃

i≤n
∗Oi, x �∈ ∗[−a0, a0] which is a contradiction. Hence x ∈ ∗R is finite

if and only if it is near-standard.
Pick an arbitrary near-standard x ∈ ∗R. Suppose there are two different

a1, a2 ∈ R such that x ≈ a1 and x ≈ a2. This implies a1 ≈ a2 which is impossible
since a1, a2 ∈ R. Hence there exists a unique a ∈ R such that x ≈ a. �

This lemma would fail if we take some points from R.

Example 3.16. Consider the set R \ {0}. Then every infinitesimal element in
∗R is finite since they are bounded by 1. However, they are not near-standard since
0 is excluded.
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Definition 3.17. Let NS(∗R) to denote the collection of all near-standard
points in ∗R. For every near-standard point x ∈ ∗R, let st(x) denote the unique
element in a ∈ R such that |x− a| ≈ 0. st(x) is called the standard part of x. We
call st the standard part map.

For A ⊂ ∗R, we write st(A) to mean

{x ∈ R : (∃a ∈ A)(x is the standard part of a)}.

Similarly for every B ⊂ R, we write st−1(B) to mean {x ∈ ∗R : (∃b ∈ B)(|x− b| ≈
0)}.

We now give an example of an external set. The example also shows that we
have to be very careful when applying the transfer principle.

Example 3.18. The monad μ(0) of 0 is defined to be {a ∈ ∗R : a ≈ 0}. We
show that μ(0) is an external set. Consider the sentence: ∀A ∈ P(R) if A is
bounded above then there is a least upper bound for A. By the transfer principle,
we know that (∀A ∈ ∗P(R))(for all internal subsets of ∗R if A is bounded above
then there is a least upper bound for A). Suppose μ(0) is internal then there exists
a a0 ∈∗ R such that a0 is an least upper bound for μ(0). Clearly a0 > 0. Note
that a0 can not be infinitesimal since if a0 is infinitesimal then 2a0 would also be
infinitesimal and 2a0 > a0. If a0 is non-infinitesimal then so is a0

2 . But then a0

2 is
an upper bound for μ(0). This contradict with the fact that a0 is the least upper
bound. Hence μ(0) is not an internal set.

It is easy to make the following mistake: if we write the sentence as “∀A ⊂ R if
A is bounded above then there is a least upper bound for A” the transfer of it seems
to give that “∀A ⊂ ∗R if A is bounded above then there is a least upper bound for
A”. As we have already seen, this is not correct. The reason is because ⊂ is not in
the language of set theory thus we have an “illegal” formation of a sentence. This
shows that we have to be very careful when applying the transfer principle.

The following two principles derived from saturation are extremely useful in
establishing the existence of certain nonstandard objects.

Theorem 3.19. Let A ⊂ ∗R be an internal set

(1) (Overflow) If A contains arbitrarily large positive finite numbers, then it
contains arbitrarily small positive infinite numbers.

(2) (Underflow) If A contains arbitrarily small positive infinite numbers,
then it contains arbitrarily large positive finite numbers.

We conclude this section by the following lemma. This lemma will be used
extensively in this paper.

Lemma 3.20. Let N be an element in ∗N. Let {a1, . . . , aN} be a set of non-

negative hyperreals such that
∑N

i=1 ai = 1. Let {b1, . . . , bN} and {c1, . . . , cN} be
subsets of R such that bi ≈ ci for all i ≤ N . Then a1b1 + a2b2 + · · · + aNbN ≈
a1c1 + a2c2 + · · ·+ aNcN .

Proof. By the transfer of convex combination theorem, we know that (a1b1+
a2b2 + · · ·+ aNbN )− (a1c1 + a2c2 + · · ·+ aNcN ) = a1(b1 − c1) + a2(b2 − c2) + · · ·+
aN (bN − cN ) ≤ max{ai|bi − ci| : i ≤ N} ≈ 0. �
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2. Nonstandard Extensions of General Metric Spaces

We generalize the concepts developed in Section 1 into generalized topological
spaces. We especially emphasize on general metric spaces.

Let X be a topological space and let ∗X denote its nonstandard extension. For
every x ∈ X, let Bx denote a local base at point x.

Definition 3.21. Given x ∈ X, the monad of x is

(3.1) μ(x) =
⋂

U∈Bx

∗U.

The near-standard points in ∗X are the points in the monad of some standard
points.

If X is a metric space with metric d, then ∗d is a metric for ∗X. The monad
of a point x ∈ X, in this case, is μ(x) =

⋂
n∈N

∗Un where each Un = {y ∈ X :

d(x, y) < 1
n}. Thus we have the following definition:

Definition 3.22. Two elements x, y ∈ ∗X are infinitesimally close if ∗d(x, y) ≈
0. An element x ∈ ∗X is near-standard if x is infinitesimally close to some a ∈ X.
An element x ∈ ∗X is finite if ∗d(x, a) is finite for some a ∈ X.

If x ∈ ∗X is finite, then generally x is not near-standard. This is not even true
for complete metric spaces.

Example 3.23. Consider the set of natural numbers N. Define the metric d on
N to be d(x, y) = 1 if x �= y and equals to 0 otherwise. Then (N, d) is a complete
metric space. Every element in ∗N is finite. But those elements in ∗N \ N are not
near-standard.

Just as in ∗R, we have the following definition.

Definition 3.24. Let NS(∗X) to denote the collection of all near-standard
points in ∗X. For every near-standard point x ∈ ∗X, let st(x) denote the unique
element in a ∈ X such that ∗d(x, a) ≈ 0. st(x) is called the standard part of x. We
call st the standard part map.

In general, NS(∗X) is a proper subset of ∗X. However, when X is compact, we
have NS(∗X) = ∗X. This is the nonstandard way to characterize a compact space.

Theorem 3.25 ([ACH97, Theorem 3.5.1]). A set A ⊂ X is compact if and
only if ∗A = NS(∗A).

Proof. Assume A is compact but there exists y ∈ A such that y is not near-
standard. Then for every x ∈ A, there exists an open set Ox containing x with
y �∈ ∗Ox. The family {Ox : x ∈ A} forms an open cover of A. As A is compact,
there exists a finite subcover {O1, . . . , On} for some n ∈ N. As A ⊂

⋃n
i=1 Oi, by

the transfer principle, we have ∗A ⊂
⋃n

i=1
∗Oi. However, y �∈ Oi for all i ≤ n. This

implies that y �∈ A, a contradiction.
We now show the reverse direction. Let U = {Oα : α ∈ A} be an open cover of

A with no finite subcover. By Proposition 3.12, let B be a hyperfinite collection of
∗U containing ∗Oα for all α ∈ A. By the transfer principle, there exists a y ∈ ∗A
such that y �∈ U for all U ∈ B. Thus, y �∈ ∗Oα for all α ∈ A. Hence y can not be
near-standard, completing the proof. �
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This relationship breaks down for non-compact spaces as is shown by the fol-
lowing example.

Example 3.26. Consider ∗[0, 1] = {x ∈ ∗R : 0 ≤ x ≤ 1}, as [0, 1] is compact
we have ∗[0, 1] = NS(∗[0, 1]). (0, 1) is not compact and this implies that ∗(0, 1) �=
NS(∗(0, 1)). Indeed, consider any positive infinitesimal ε ∈ ∗R. Then ε ∈ ∗(0, 1)
but ε �∈ NS(∗(0, 1)).

However, under enough saturation, the standard part map st maps internal sets
to compact sets.

Theorem 3.27 ([Lux69]). Let (X, T ) be a regular Hausdorff space. Suppose
the nonstandard extension is more saturated than the cardinality of T . Let A be a
near-standard internal set. Then E = st(A) = {x ∈ X : (∃a ∈ A)(a ∈ μ(x))} is
compact.

Proof. Fix y ∈ ∗E. If U is a standard open set with y ∈ ∗U , then U ∩E �= ∅.
Let x ∈ E ∩ U . By the definition of E, there exists an a ∈ A such that a ∈
μ(x) ⊂ ∗U . Thus, for every open set U with y ∈ ∗U , there exists a ∈ A ∩ ∗U . By
saturation, there exists an a0 ∈ A such that a0 ∈ A ∩ ∗U for all standard open set
U with y ∈ ∗U .

Let x0 = st(a0). In order to finish the proof, by Theorem 3.25, it is sufficient
to show that y ∈ μ(x0). Suppose not, then there exists an open set V such that
x0 ∈ V and y �∈ ∗V . By regularity of X, there exists an open set V ′ such that
x0 ∈ V ′ ⊂ V ′ ⊂ V . Then x ∈ V ′ and y ∈ ∗X \ ∗V ′. It then follows that a0 ∈ ∗V ′

and a0 ∈ ∗X \ ∗V ′. This is a contradiction. �

Moreover, for σ-compact locally compact spaces, we have the following result.

Theorem 3.28. Let X be a Hausdorff space. Suppose X is σ-compact and
locally compact. Then there exists a non-decreasing sequence of compact sets Kn

with
⋃

n∈N
Kn = X such that

⋃
n∈N

∗Kn = NS(∗X).

Proof. As X is σ-compact, there exists a sequence of non-decreasing compact
sets Gn such that X =

⋃
n∈N

Gn. Let K0 = G0. By locally compactness of X, for
every x ∈ K0∪G1, let Cx denote a compact subset of X containing a neighborhood
Ux of x. The collection {Ux : x ∈ K0 ∪G1} is a cover of K0 ∪G1 hence there is a
finite subcover {Ux1

, . . . , Uxn
}. Let K1 =

⋃
i≤n Cxi

. It is easy to see that K1 is a

compact and K0 ⊂ K1
o where K1

o denotes the interior of K1. For any n ∈ N, we
can construct Kn based on Kn−1 ∪ Gn in exactly the same way as we constructs
K1. Hence we have a sequence of compact sets Kn such that

⋃
n∈N

Kn = X and
Kn ⊂ Kn+1

o for all n ∈ N.
We now show that

⋃
n∈N

∗Kn = NS(∗X). As every Kn is compact, by Theo-
rem 3.25, we know that

⋃
n∈N

∗Kn ⊂ NS(∗X). Now pick any element x ∈ NS(∗X).
Then st(x) ∈ ∗Kn for some n. As Kn ⊂ Kn+1

o, we know that μ(st(x)) ⊂ ∗Kn+1

hence we have x ∈ ∗Kn+1. Thus, we know that NS(∗X) ⊂
⋃

n∈N

∗Kn, completing
the proof. �

A merely Hausdorff σ-compact space may not have this property. For a σ-
compact, locally compact and Hausdorff space X, the sequence {Kn : n ∈ N} has
to be chosen carefully.
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Example 3.29. The set of rational numbers Q is a Hausdorff σ-compact space.
Every compact subset of Q is finite. Thus, for any collection {Kn : n ∈ N} of Q
that covers Q, we have

⋃
n∈N

∗Kn = Q. That is, any near-standard hyperrational
is not in any of the ∗Kn.

Now consider the real line R. Let Kn = [−n,− 1
n ]∪ [ 1n , n]∪ {0} for n ≥ 1. It is

easy to see that
⋃

n∈N
Kn = R. However, an infinitesimal is not an element of any

∗Kn.



CHAPTER 4

Internal Probability Theory

In this chapter, we give a brief introduction to nonstandard probability theory.
The interested reader can consult [Kei84] and [ACH97, Section 4] for more details.
The expert may safely skip this chapter on first reading.

Let Ω be an internal set. An internal algebra A ⊂ P(Ω) is an internal set con-
taining Ω and closed under complementation and hyperfinite unions/intersections.
A set function P : A → ∗R is hyperfinitely additive when, for every n ∈ ∗N
and mutually disjoint internal family {A1, . . . , An} ⊂ A, we have P (

⋃
i≤n Ai) =∑

i≤n P (Ai).
We are now at the place to introduce the definition of internal probability

spaces.

Definition 4.1. An internal finitely-additive probability space is a triple
(Ω,A, P ) where:

(1) Ω is an internal set.
(2) A is an internal subalgebra of P(Ω)
(3) P : A → ∗R is a non-negative hyperfinitely additive internal function such

that P (Ω) = 1 and P (∅) = 0.

Example 4.2. Let (X,A, P ) be a standard probability space. Then (∗X, ∗A, ∗P )
is an internal probability space. Although A is a σ-algebra and P is countably ad-
ditive, A is just an internal algebra and ∗P is only hyperfinitely additive. This is
because “countable” is not an element of the superstructure.

A special class of an internal probability spaces are hyperfinite probability
spaces. Hyperfinite probability spaces behave like finite probability spaces but can
be good “approximation” of standard probability space as we will see in future
chapters.

Definition 4.3. A hyperfinite probability space is an internal probability space
(Ω,A, P ) where:

(1) Ω is a hyperfinite set.
(2) A = I(Ω) where I(Ω) denote the collection of all internal subsets of Ω.

Like finite probability spaces, we can specify the internal probability measure
P by defining its mass at each ω ∈ Ω.

Peter Loeb in [Loe75] showed that any internal probability space can be ex-
tended to a standard countably additive probability space. The extension is called
the Loeb space of the original internal probability space. The central theorem in
modern nonstandard measure theory is the following:

Theorem 4.4 ([Loe75]). Let (Ω,A, P ) be an internal finitely additive proba-
bility space; then there is a standard (σ-additive) probability space (Ω,A, P ) such
that:

23
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(1) A is a σ-algebra with A ⊂ A ⊂ P(Ω).
(2) P (A) = st(P (A)) for any A ∈ A.
(3) For every A ∈ A and standard ε > 0 there are Ai, Ao ∈ A such that

Ai ⊂ A ⊂ Ao and P (Ao \Ai) < ε.
(4) For every A ∈ A there is a B ∈ A such that P (A�B) = 0.

The probability triple (Ω,A, P ) is called the Loeb space of (Ω,A, P ). It is a
σ-additive standard probability space. From Loeb’s original proof, we can give the
explicit form of A and P :

(1) A equals to:

(4.1) {A ⊂ Ω|∀ε ∈ R+∃Ai, Ao ∈ A such that Ai ⊂ A ⊂ Ao and P (Ao \Ai) < ε}.

(2) For all A ∈ A we have:

(4.2) P (A) = inf{P (Ao)|A ⊂ Ao, Ao ∈ A} = sup{P (Ai)|Ai ⊂ A,Ai ∈ A}.

In fact, the Loeb σ-algebra can be taken to be the P -completion of the smallest
σ-algebra generated by A. In this paper, we shall assume that our Loeb space is
always complete.

The following example of hyperfinite probability space motivates the idea of
hyperfinite representation.

Example 4.5. Let (Ω,A, P ) be a hyperfinite probability space. Pick any N ∈
∗N \ N and let δt = 1

N . Then δt is an infinitesimal. Let Ω = {δt, 2δt, ...., 1} and
A = I(Ω)(Recall that I(Ω) is the collection of all internal subsets of Ω). Define
P on A by letting P (ω) = δt for all ω ∈ Ω. This is called the uniform hyperfinite
Loeb measure.

Claim 4.6. st−1(0) ∩ Ω ∈ A

Proof. st−1(0) ∩ Ω consists of elements from Ω that are infinitesimally close
to 0. Let An = {ω ∈ Ω : ω ≤ 1

n}. By the internal definition principle, An is

internal for all n ∈ N. Thus An ∈ A for all n ∈ N. Hence
⋂

n∈N
An ∈ A. Thus

st−1(0) ∩ Ω =
⋂

n∈N
An ∈ A, completing the proof. �

Let ν denote the Lebesgue measure on [0, 1]. In Chapter 6, we will show that
ν(A) = P (st−1(A) ∩ Ω) for every Lebesgue measurable set A. This shows that we
can use (Ω,A, P ) to represent the Lebesgue measure on [0, 1]. (Ω,A, P ) is called
a “hyperfinite representation” of the Lebesgue measure space on [0, 1]. We will
investigate such hyperfinite representation space in more detail in Chapter 6.

As st−1(0) is an external set, Example 4.5 shows that the Loeb σ-algebra con-
tains external sets.

1. Product Measures

In this section, we introduce internal product measures. This would be useful
when we are dealing with the product of two hyperfinite Markov chains in later
sections.

In this section, let (Ω,A, P1) and (Γ,D, P2) be two internal probability spaces.
Let (Ω,A, P 1) and (Γ,D, P 2) be the Loeb spaces of (Ω,A, P1) and (Γ,D, P2), re-
spectively.
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Definition 4.7. The product Loeb measure P 1 × P 2 is defined to be the
probability measure on (Ω× Γ,A⊗D) satisfying:

(4.3) (P 1 × P 2)(A×B) = P 1(A) · P 2(B).

for all A×B ∈ A×D, where A⊗D denotes the σ-algebra generated by sets from
A×D.

Note that this is nothing more than the standard definition of product measures.
Thus (Ω× Γ,A⊗D, P 1 × P 2) is a standard σ-additive probability space.

It is sometimes more natural to consider the product internal measure P1×P2.

Definition 4.8. The product internal measure P1 × P2 is defined to be the
internal probability measure on (Ω× Γ,A⊗D) satisfying:

(4.4) (P1 × P2)(A×B) = P1(A) · P2(B).

for all A×B ∈ A×D, where A⊗D denote the internal algebra generated by sets
from A×D.

In this case, we form a product internal probability space (Ω×Γ,A⊗D, P1×P2).

Example 4.9. Suppose both (Ω,A, P1) and (Γ,D, P2) are hyperfinite proba-
bility spaces. Recall from Definition 4.3 that A = I(Ω) and D = I(Γ) where I(Ω)
and I(Γ) denote the collection of all internal sets of Ω and Γ,respectively. Then the
product internal measure P1×P2 is defined on I(Ω×Γ). To see this, it is enough to
note that every internal subset of Ω× Γ is hyperfinite hence is a hyperfinite union
of singletons.

Once we have the product internal probability space (Ω × Γ,A ⊗ D, P1 ×
P2), the Loeb construction can be applied to give a Loeb probability space (Ω ×
Γ, (A⊗D), (P1 × P2)). The Loeb probability space (Ω × Γ, (A⊗D), (P1 × P2))
is called the Loeb product space. It is shown in [KS04] that the Loeb product

space (Ω×Γ, (A⊗D), (P1 × P2)) is uniquely determined by the factor Loeb spaces
(Ω,A, P1) and (Γ,D, P2), and not on the internal probability spaces (Ω,A, P1) and
(Γ,D, P2) that generate (Ω,A, P1) and (Γ,D, P2). It is natural to seek for relation

between (Ω× Γ, (A⊗D), (P1 × P2)) and (Ω× Γ,A⊗D, P 1 × P 2).

Theorem 4.10 ([Kei84]). Consider two Loeb probability spaces (Ω,A, P 1) and

(Γ,D, P 2). We have (P1 × P2) = P 1 × P 2 on A⊗D.

Proof. We first show that A⊗D ⊂ (A⊗D). It is enough to show that for any

A×B ∈ A×D we have A×B ∈ (A⊗D). Fix an ε ∈ (0, 1). As A ⊂ A, by Loeb’s
construction, there exists Ai, Ao ∈ A with Ai ⊂ A ⊂ Ao such that P1(Ao \Ai) < ε.
Similarly, there exist such Bi, Bo ∈ D for B. Then we have

(4.5) (P1×P2)((Ao×Bo)\ (Ai×Bi)) = (P1×P2)((Ao \Ao)× (Ai \Bi)) = ε2 < ε.

As our choice of ε is arbitrary, we have A×B ∈ (A⊗D).

We now show that (P1 × P2) = P 1 × P 2 on A⊗D. Again it is enough to just
consider A×B ∈ A×D. We then have:

P 1 × P 2(A×B)(4.6)

= sup{st(P1(Ai))|Ai ⊂ A,Ai ∈ A} × sup{st(P2(Bi))|Bi ⊂ A,Bi ∈ D}(4.7)

= sup{st(P1(Ai))st(P2(Bi))|Ai ⊂ A,Ai ∈ A, Bi ⊂ A,Bi ∈ D}(4.8)

= (P1 × P2)(A×B),(4.9)
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completing the proof. �

However, A⊗D will generally be a smaller σ-algebra than (A⊗D) as is shown
by the following example which is due to Doug Hoover.

Example 4.11. [Kei84] Let Ω be an infinite hyperfinite set. Let Γ = I(Ω).
Let (Ω, I(Ω), P ) and (Γ, I(Γ), Q) be two uniform hyperfinite probability spaces
over the respective sets. Let E = {(ω, λ) : ω ∈ λ ∈ Γ}. It can be shown that

E ∈ (I(Ω)⊗ I(Γ)) but E �∈ I(Ω) ⊗ I(Γ). It can be shown that (P ×Q)(E) > 0
while P (A)Q(B) = 0 for every A ∈ I[Ω] and every B ∈ I[Γ].

In [Sun98], the author gave a complete characterization of the relationship
between the two types of product spaces for Loeb spaces. Before we quote the
result from [Sun98], we first recall the following common definition from measure
theory.

Definition 4.12. Let (X,F , P ) be a probability space. An atom is a set A ∈ F
with P (A) > 0 and the property that for each measurable subset B ⊂ A, either
P (B) = 0 or P (B) = P (A). (X,F , P ) is called purely atomic if every measurable
set with positive measure contains an atom.

We quote the following result from [Sun98] which gives a complete character-
ization between two types of product spaces for Loeb spaces.

Theorem 4.13 ([Sun98, Proposition. 6.6]). Let (Ω,A, P1) and (Γ,D, P2) be
two internal probability spaces. The completion of the product Loeb σ-algebra A⊗D
is strictly contained in the Loeb product σ-algebra A⊗D if and only if both P1 and
P2 are not purely atomic.

It is natural to ask whether the product Loeb σ-algebra is a “rich” subset of the
Loeb product σ-algebra. In particular, let (Ω,A, P ) be an internal probability space
and suppose (P × P )(B) > 0 for some B ∈ A⊗A, does there exists C ∈ A ⊗ A
such that C ⊂ B and (P × P )(C) > 0? The answer of this question is generally
negative. It is shown in [BOSW02, Thm. 5.1] that for any two atomless Loeb
spaces and any number s ∈ [0, 1], there is a measurable set E in the corresponding
Loeb product space with Loeb product measure s such that its inner and outer
measure, based on the usual product of the factor Loeb spaces, are zero and one
respectively.

2. Nonstandard Integration Theory

In this section we establish the nonstandard integration theory on Loeb spaces.
Fix an internal probability space (Ω,Γ, P ) and let (Ω,Γ, P ) denote the correspond-
ing Loeb space. If Γ is ∗σ-algebra then we have the notion of “P -integrability” which
is nothing more than the usual integrability “copied” from the standard measure
theory. Note that the Loeb space (Ω,Γ, P ) is a standard countably additive proba-
bility space. The Loeb integrability is the same as the integrability with respect to
the probability measure P . We mainly focus on discussing the relationship between
“P -integrability” and Loeb integrability in this section.

Proposition 4.14 ([ACH97, Corollary 4.6.1]). Suppose (Ω,Γ, P ) is an inter-
nal probability space, and F : Ω → ∗R is an internal measurable function such that
st(F ) exists everywhere. Then st(F ) is Loeb integrable and

∫
FdP ≈

∫
st(F )dP .
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The situation is more difficult when st(F ) exists almost surely. We present the
following well-known result.

Theorem 4.15 ([ACH97, Theorem 4.6.2]). Suppose (Ω,Γ, P ) is an internal
probability space, and F : Ω → ∗R is an internally integrable function such that
st(F ) exists P -almost surely. Then the following are equivalent:

(1) st(
∫
|F |dP ) exists and it equals to limn→∞ st(

∫
|Fn|dP ) where for n ∈ N,

Fn = min{F, n} when F ≥ 0 and Fn = max{F,−n} when F ≤ 0.
(2) For every infinite K > 0,

∫
|F |>K

|F |dP ≈ 0.

(3) st(
∫
|F |dP ) exists, and for every B with P (B) ≈ 0, we have

∫
B
|F |dP ≈ 0.

(4) st(F ) is P -integrable, and ∗ ∫ FdP ≈
∫
st(F )dP .

Definition 4.16. Suppose (Ω,Γ, P ) is an internal probability space, and F :
Ω → ∗R is an internally integrable function such that st(F ) exists P -almost surely.
If F satisfies any of the conditions (1)-(4) in Theorem 4.15, then F is called a
S-integrable function.

Up to now, we have been discussing the internal integrability as well as the
Loeb integrability of internal functions. An external function is never internally
integrable. However, it is possible that some external functions are Loeb integrable.
We start by introducing the following definition.

Definition 4.17. Suppose that (Ω,Γ, P ) is a Loeb space, that X is a Hausdorff
space, and that f is a measurable (possibly external) function from Ω to X. An
internal function F : Ω → ∗X is a lifting of f provided that f = st(F ) almost surely
with respect to P .

We conclude this section by the following Loeb integrability theory.

Theorem 4.18 ([ACH97, Theorem 4.6.4]). Let (Ω,Γ, P ) be a Loeb space, and
let f : Ω → R be a measurable function. Then f is Loeb integrable if and only if it
has a S-integrable lifting.





CHAPTER 5

Measurability of Standard Part Map

When we apply nonstandard analysis to attack measure theory questions, the
standard part map st plays an essential role since st−1(E) for E ∈ B[X] is usually
considered to be the nonstandard counterpart for E. Thus a natural question to ask
is: when is the standard part map st a measurable function? There are quite a few
answers to this question in the literature (see, eg,. [ACH97, Section 4.3]) and they
should cover most of the interesting cases. It turns out that, in most interesting
cases, the measurability of st depends on the Loeb measurability of NS(∗X). Such
results are mentioned in [ACH97, Exescise 4.19,4.20]. However, we give a proof
for more general topological spaces in this chapter.

The following theorem of Ward Henson in [Hen79] is a key result regarding
the measurability of st.

Theorem 5.1 ([ACH97, Theorems 4.3.1 and 4.3.2]). Let X be a regular
topological space, let P be an internal, finitely additive probability measure on
(∗X, ∗B[X]) and suppose NS(∗X) ∈ ∗B[X]; then st is Borel measurable from

(∗X, ∗B[X]) to (X,B[X]).

Thus we only need to figure out what conditions on X will guarantee that
NS(∗X) ∈ ∗B[X]. In the literature, people have shown that, for σ-compact, locally

compact or completely metrizable spaces X, we have NS(∗X) ∈ ∗B[X]. In this
chapter we will generalize such results to more general topological spaces.

We first recall the following definitions from general topology.

Definition 5.2. Let X be a topological space. A subset A is a Gδ set if A is a
countable intersection of open sets. A subset is a Fσ set if its complement is a Gδ

set.

Definition 5.3. For a Tychonoff space X, it is Cech complete if there exist a
compactification Y such that X is a Gδ subset of Y .

The following lemma is due to Landers and Rogge. We provide a proof here
since it is closely related to our main result of this chapter.

Lemma 5.4 ([LR87]). Suppose that (Ω,A, P ) is an internal finitely additive
probability space with corresponding Loeb space (Ω,AL, P ) and suppose that C is a
subset of A such that the nonstandard model is more saturated than the external
cardinality of C. Then

⋂
C ∈ AL. Furthermore, if P (A) = 1 for all A ∈ C, then

P (
⋂
C) = 1

Proof. Without loss of generality we can assume that C is closed under finite
intersections. Let r = inf{P (C) : C ∈ C}. Fix a standard ε > 0. We can find
Co ∈ C ⊂ A such that P (Co) < r + ε. Denote C = {Cα : α ∈ J} where J
is some index set. Consider the set of formulas {φα(A)|α ∈ J} where φα(A) is

29
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(A ∈ A) ∧ (P (A) > r − ε) ∧ ((∀a ∈ A)(a ∈ Cα)). As C is closed under finite
intersection and r = inf{P (C) : C ∈ C}, we have {φα(A) : α ∈ J} is finitely
satisfiable. By saturation, we can find a set Ai ∈ A such that P (Ai) > r − ε and
Ai ⊂

⋂
C. So

⋂
C ∈ AL.

If ∀C ∈ C we have P (C) = 1, by the same construction in the last paragraph,
we have 1 − ε ≤ P (Ai) ≤ P (

⋂
C) ≤ P (Ao) = 1 for every positive ε ∈ R. Thus we

have the desired result. �

In the context of Lemma 5.4, by considering the complement, it is easy to see
that

⋃
C ∈ A. Similarly, if we have P (A) = 0 for all A ∈ C then P (

⋃
C) = 0.

We quote the next lemma which establishes the Loeb measurability of NS(∗X)
for σ-compact spaces.

Lemma 5.5 ([LR87]). Let X be a σ-compact space with Borel σ-algebra B[X]

and let (∗X, ∗B[X]L, P ) be a Loeb space. Then NS(∗X) ∈ ∗B[X].

We are now at the place to prove the measurability of NS(∗X) for Cech complete
spaces.

Theorem 5.6. If the Tychnoff space X is Cech complete then NS(∗X) ∈
∗B[X]L.

Proof. Let Y be a compactification of X such that X is a Gδ subset of Y . We
use S to denote Y \X. Then S is a Fσ subset of T hence is a σ-compact subset of
Y. Let S =

⋃
i∈ω Si where each Si is a compact subset of Y . Note that

(5.1) ∗Y = ∗X ∪ ∗S = NS(∗X) ∪ ∗S ∪ Z.

where Z = ∗X \ NS(∗X). As Y is compact, we know that Z = {x ∈ ∗X : (∃s ∈
S)(x ∈ μ(s))}. Note that NS(∗X), ∗S,Z are mutually disjoint sets. Let Ni = {y ∈
∗Y : (∃x ∈ Si)(y ∈ μ(x))}.

Claim 5.7. For any i ∈ ω, Ni ∈ ∗B[X].

Proof. : Without loss of generality, it is enough to prove the claim for N1.
Let U = {U ⊂ X: U is open and S1 ⊂ U}. We claim that N1 =

⋂
{∗U : U ∈ U}.

To see this, we first consider any u ∈
⋂
{∗U : U ∈ U}. Suppose u �∈ N1, this means

that for any y ∈ S1 there exists ∗Uy such that Uy is open and u �∈ ∗Uy. As S1 is
compact, we can pick finitely many y1, . . . , yn such that S1 ⊂

⋃
i≤n Uyi

. Thus we

have ∗ ⋃
i≤nUyi

=
⋃

i≤n
∗Uyi

⊂
⋃

y∈S1

∗Uy. Note that u �∈
⋃

y∈S1

∗Uy implies that

u �∈ ∗ ⋃
i≤n Uyi

. But
⋃

i≤n Uyi
is an element of U . Hence we have a contradiction.

Conversely, it is easy to see that N1 ⊂
⋂
{∗U : U ∈ U}. We also know that each

∗U ∈ ∗B[X]. Assume that we are working on a nonstandard extension which is more

saturated than the cardinality of the topology of X, then for any i ∈ ω Ni ∈ ∗B[X]
by Lemma 5.4. �

It is also easy to see that
⋃

i<ω Ni = NS(∗S) ∪ Z. By Lemma 5.5, we know

that both
⋃

i<ω Ni and NS(∗S) belong to ∗B[Y ]. Hence Z ∈ ∗B[Y ].
As S is σ-compact in Y, we know that S ∈ B[Y ]. By the transfer principle, we

know that ∗S ∈ ∗B[Y ] ⊂ ∗B[Y ]. As both ∗S and Z belong to ∗B[Y ], it follows that

NS(∗X) ∈ ∗B[Y ].

We now show that NS(∗X) ∈ ∗B[X]. Fix an arbitrary internal probability
measure P on (∗X, ∗B[X]). Let P ′ be the extension of P to (∗Y , ∗B[Y ]) defined
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by P ′(A) = P ′(A ∩ X). We already know that NS(∗X) ∈ ∗B[Y ]. By definition,
this means that for every positive ε ∈ R there exist Ai, Ao ∈ ∗B[Y ] such that
Ai ⊂ NS(∗X) ⊂ Ao and P ′(Ao \Ai) < ε. Let Bi = Ai ∩ ∗X and Bo = Ao ∩ ∗X. By
the construction of P and P ′, it is clear that Bi ⊂ NS(∗X) ⊂ Bo and P (Bo\Bi) < ε.
It remains to show that Bi and Bo both lie in ∗B[X]. The transfer of (∀A ∈
B[Y ])(A ∩X ∈ B[X]) gives us the final result. �

Thus, by Theorem 5.1, we know that st is measurable for Cech-complete spaces.
For regular spaces, either locally compact spaces or completely metrizable spaces
are Cech-complete. Thus we have established the measurability of st for more
general topological spaces. However, note that σ-compact metric spaces need not
be Cech complete.

We now introduce the concept of universally Loeb measurable sets.
Recall from Chapter 4 that given an internal algebra A its Loeb extension A is

actually the P -completion of the σ-algebra generated by A. So AL could differ for

different internal probability measures. We use AP
to denote the Loeb extension

of A with respect to the internal probability measure P .

Definition 5.8. A set A ⊂ ∗X is called universally Loeb-measurable if A ∈ AP

for every internal probability measure P on (∗X,A).

We denote the collection of all universally-Loeb measurable sets by L(A). By
Theorem 5.6, NS(∗X) is universally Loeb measurable if X is Cech complete. More-
over, Theorem 5.1 can be restated as following:

Theorem 5.9 ([LR87]). Let X be a Hausdorff regular space equipped with
Borel σ-algebra B[X]. If B ∈ B[X] then st−1(B) ∈ {A ∩NS(∗X) : A ∈ L(B[X])}.

Thus, by Theorem 5.6, st−1(B) is universally measurable for every B ∈ B[X]
if X is Cech complete.

We conclude this section by giving an example of a relatively nice space where
NS(∗X) is not measurable.

Theorem 5.10. [ACH97, Example 4.1] There is a separable metric space X
and a Loeb space (∗X, ∗B[X], P ) such that NS(∗X) is not measurable.

Proof. LetX be the Bernstein set of [0, 1]; for every uncountable closed subset
A of [0, 1], both A ∩ X and A ∩ ([0, 1] \ X) are nonempty. The topology on X is
the natural subspace topology inherited from standard topology on [0, 1]. Clearly
B ⊂ X is Borel if and only if B = X ∩B′ for some Borel subset B′ of [0, 1]. Let μ
denote the Lebesgue measure on ([0, 1],B[[0, 1]]). Let A be the σ-algebra generated
from B[[0, 1]] ∪ {X}. Let m be the extension of μ to A by letting m(X) = 1.

Claim 5.11. m is a probability measure on ([0, 1],A).

Proof. It is sufficient to show that, for any A,B ∈ B[[0, 1]], we have

(5.2) m(A ∩X) = m(B ∩X) → m(A) = m(B).

Suppose not. Then m(A� B) > 0. As m(A ∩X) = m(B ∩X), we have m((A�
B) ∩X) = 0. But we already know that m([0, 1] \X) = 0 �

Let P be the restriction of ∗m to ∗B[X]. Consider the internal probability space
(∗X, ∗B[X], P ). Let A ∈ NS(∗X)∩∗B[X] and let A′ = stX(A) where stX(A) = {x ∈
X : (∃a ∈ A)(a ≈ x)}. By Theorem 3.27, we know that A′ is a compact subset ofX.
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Thus A′ is a closed subset of [0, 1]. As X does not contain any uncountable closed
subset of [0, 1], we conclude that A′ must be countable. Thus, for any ε > 0, there
exists an open set Uε ⊂ [0, 1] of Lebesgue measure less than ε that contains A′. As
A′ = stX(A), we know that A ⊂ ∗X ∩ ∗Uε ⊂ ∗Uε. Then P (A) ≤ ∗m(∗Uε) < ε. Thus
the P -inner measure of NS(∗X) is 0. By applying the same technique to [0, 1] \X,
we can show that the P -outer measure of NS(∗X) is 1. Thus NS(∗X) can not be
Loeb measurable. �

This is slightly different from [ACH97, Example 4.1]. In [ACH97, Exam-
ple 4.1], the author let m be a finitely-additive extension of Lebesgue measure to
all subsets of [0, 1]. In this paper, we let m to be a countably-additive extension of
the Lebesgue measure to include the Bernstein set.



CHAPTER 6

Hyperfinite Representation of a Probability Space

In the literature of nonstandard measure theory, there exist quite a few results
to represent standard measure spaces using hyperfinite measure spaces. For exam-
ple, see [BW69,Loe74,Hen72,And82]. In this chapter, we establish a hyperfinite
representation theorem for Heine-Borel metric spaces with Radon probability mea-
sures. Although we restrict ourselves to a smaller class of spaces, we believe that
we provide a more intuitive and simple construction. Moreover, such a construction
will be used extensively in later chapters.

Let X be a σ-compact metric space. Let d denote the metric in X. Then ∗d
will denote the metric on ∗X. We impose the following definition on our space X.

Definition 6.1. A metric space is said to satisfy the Heine-Borel condition if
the closure of every open ball is compact.

Note that the Heine-Borel condition is equivalent to that every closed bounded
set is compact.

As we mentioned in Section 2, finite elements of complete metric spaces need
not be near-standard. However, finite elements are near-standard for metric spaces
satisfying the Heine-Borel condition.

Theorem 6.2. A metric space X satisfies the Heine-Borel condition if and
only if every finite element in ∗X is near-standard.

Proof. Let X be a metric space with metric d. Suppose X satisfies the Heine-
Borel condition. Let y ∈ ∗X be a finite element. Then there exists x ∈ X and k ∈ N

such that ∗d(x, y) < k. Let Uk
y denote the open ball centered at y with radius k.

Clearly we know that y ∈ ∗Uk
y ⊂ ∗(Uk

y ). As X satisfies the Heine-Borel condition,

we know that Uk
y is a compact set. By Theorem 3.25, there exists an element

x0 ∈ Uk
y such that y ∈ μ(x0).

We now prove the reverse direction. Suppose X does not satisfy the Heine-
Borel condition. Then there exists an open ball U such that U is not compact. By
Theorem 3.25, there exists an element y ∈ ∗(U) such that y is not in the monad
of any element x ∈ U . As y ∈ ∗(U), y is finite hence is near-standard. Thus
there exists a x0 ∈ X \ U such that y ∈ μ(x0). Thus there exists an open ball V
centered at x0 such that V ∩ U = ∅. Then we have y ∈ ∗V and y ∈ ∗U , which
is a contradiction. Thus the closure of every open ball of X must be compact,
completing the proof. �

We shall assume our state space X is a metric space satisfying the Heine-Borel
condition in the remainder of this paper unless otherwise mentioned. Note that
metric spaces satisfying the Heine-Borel condition are complete and σ-compact.
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We are now at the place to introduce the hyperfinite representation of a topo-
logical space. The idea behind hyperfinite representation is quite simple: For a
metric space X, we partition an “initial segment” of ∗X into hyperfinitely pieces of
sets with infinitesimal diameters. We then pick exactly one element from each ele-
ment of the partition to form our hyperfinite representation. The formal definition
is stated below.

Definition 6.3. Let X be a metric space satisfying the Heine-Borel condition.
Let ε ∈ ∗R+ be an infinitesimal and r be an infinite nonstandard real number. A
hyperfinite set S ⊂ ∗X is said to be an (ε, r)-hyperfinite representation of ∗X if the
following three conditions hold:

(1) For each s ∈ S, there exists a B(s) ∈ ∗B[X] with diameter no greater than
ε containing s such that B(s1)∩B(s2) = ∅ for any two different s1, s2 ∈ S.

(2) For any x ∈ NS(∗X), ∗d(x, ∗X \
⋃

s∈S B(s)) > r.
(3) There exists a0 ∈ X and some infinite r0 such that

(6.1) NS(∗X) ⊂
⋃
s∈S

B(s) = U(a0, r0)

where U(a0, r0) = {x ∈ ∗X : ∗d(x, a0) ≤ r0}.

If X is compact, then
⋃

s∈S B(s) = ∗X. In this case, the second parameter
of an (ε, r)-hyperfinite representation is redundant. Thus, we have ε-hyperfinite
representation for compact space X.

Definition 6.4. Let T denote the topology of X and K denote the collection
of compact sets of X. A ∗open set is an element of ∗T and a ∗compact set is an
element of ∗K.

By the transfer principle, a set A is a ∗compact set if for every ∗open cover
of A there is a hyperfinite subcover. By the Heine-Borel condition, the closure of
every open ball is a compact subset of X. By the transfer principle, we know that
U(a0, r0) in Definition 6.3 is ∗compact.

Example 6.5. Consider the real line R with standard metric. Fix N1, N2 ∈
∗N \ N. Let ε = 1

N1
and let r = 2N2. It then follows that

(6.2) S = {−2N2,−2N2 +
1

N1
, . . . ,− 1

N1
, 0,

1

N1
, . . . , 2N2}

is a (ε, r)-hyperfinite representation of ∗R.
To see this, we need to check the three conditions in Definition 6.3. For s = 2N2,

let B(s) = {2N2}. For other s ∈ S, let B(s) = [s, s+ 1
N1

). Clearly {B(s) : s ∈ S}
is a mutually disjoint collection of ∗Borel sets with diameter no greater than 1

N1
.

Moreover, it is easy to see that
⋃

s∈S B(s) = [−2N2, 2N2] ⊃ NS(∗R). For every
element y ∈ ∗R\[−2N2, 2N2], we have

∗d(y, 0) > 2N2. Then the distance between y
and any near-standard element is greater thanN2. Finally, by the transfer principle,
we know that

⋃
s∈S B(s) = [−2N2, 2N2] is a

∗compact set.

Theorem 6.6. Let X be a metric space satisfying the Heine-Borel condition.
Then for every positive infinitesimal ε and every positive infinite r there exists a
(ε, r)-hyperfinite representation Sr

ε of ∗X.



6. HYPERFINITE REPRESENTATION OF A PROBABILITY SPACE 35

Proof. Let us start by assuming X is non-compact. Since X satisfies the
Heine-Borel condition, X must be unbounded. Fix an infinitesimal ε0 ∈ ∗R+ and
an infinite r0. Pick any standard x0 ∈ X and consider the open ball

(6.3) U(x0, 2r0) = {x ∈ ∗X : ∗d(x, x0) < 2r0}.
As X is unbounded, U(x0, 2r0) is a proper subset of ∗X. Moreover, as X satisfies
the Heine-Borel condition, U(x0, 2r0) is a ∗compact proper subset of ∗X. The
following sentence is true for X:

(∀r, ε ∈ R+)(∃N ∈ N)(∃A ∈ P(B[X]))(A has cardinality N and A is a col-
lection of mutually disjoint sets with diameters no greater than ε and A covers
U(x0, r))

By the transfer principle, we have:
(∃K ∈ ∗N)(∃A ∈ ∗P(B[X]))(A has internal cardinality K and A is a collection

of mutually disjoint sets with diameters no greater than ε0 and A covers U(x0, 2r0))
Let A = {Ui : i ≤ K}. Without loss of generality, we can assume that Ui is

a subset of U(x0, 2r0) for all i ≤ K. It follows that
⋃

i≤K Ui = U(x0, 2r0) which

implies that NS(∗X) ⊂
⋃

i≤K Ui. For any x ∈ NS(∗X) and any y ∈ ∗X \U(x0, 2r0),

we have ∗d(x, y) > r0. By the axiom of choice, we can pick one element si ∈ Ui for
i ≤ K. Let Sr0

ε0 = {si : i ≤ K} and it is easy to check that this Sr0
ε0 satisfies all the

conditions in Definition 6.3.
It is easy to see that an essentially same but much simpler proof would work

when X is compact. �
For an (ε, r)-hyperfinite representation Sr

ε , it is possible for S
r
ε to contain every

element of X.

Lemma 6.7. Suppose our nonstandard model is more saturated than the cardi-
nality of X, then we can construct Sr

ε so that X ⊂ Sr
ε .

Proof. Let A = {Ui : i ≤ K} be the same object as in Theorem 6.6 and let
Sr
ε = {si : i ≤ K} be a hyperfinite representation constructed from A. Let a={S:

S is a hyperfinite subset of ∗X with internal cardinality K}. Note that a is itself
an internal set. Pick x ∈ X and let φx(S) be the formula

(6.4) (S ∈ a) ∧ ((∀s ∈ S)(∃!U ∈ A)(s ∈ U)) ∧ (x ∈ S).

Consider the family F = {φx(S)|x ∈ X}, we now show that this family is finitely
satisfiable. Fix finitely many elements x1, ....xk from X, we define a function f
from Sr

ε to ∗X as follows: For each i ≤ N , if {x1, ...xk}∩Ui = ∅ then f(si) = si. If
the intersection is nonempty, then {x1, ...xk} ∩ Ci = {x} for some x ∈ {x1, ...xk}.
In this case, we let f(si) = x. By the internal definition principle, such f is an
internal function and f(Sr

ε ) is the realization of the formula φx1
(S)∩· · ·∩φxk

(S). By
saturation, there would be a S0 ∈ a satisfies all the formulas in F simultaneously.
This S0 is the desired set. �

Let (X,B[X], P ) be a Borel probability space satisfying the conditions of The-
orem 6.6 and let S be an (ε, r)-hyperfinite representation of ∗X. We now show
that we can define an internal measure on (S, I(S)) such that the resulting internal
probability space is a good representation of (X,B[X], P ). Similar theorems have
been given assuming that X is merely Hausdorff [And82]. Here we assume X is a
metric space satisfying Heine-Borel conditions and as a consequence we will obtain
tighter control on the representation of (X,B[X], P ).
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Before we introduce the main theorem of this chapter, we first quote the fol-
lowing useful lemma by Anderson.

Lemma 6.8 ([ACH97, Thm 4.1]). Let (X,B[X], μ) be a σ-compact Borel prob-

ability space. Then st is measure preserving from (∗X, ∗B[X], ∗μ) to (X,B[X], μ).
That is, we have μ(E) = ∗μ(st−1(E)) for all E ∈ B[X].

Proof. Let E ∈ B[X], ε ∈ R+ and choose K compact, U open with K ⊂ E ⊂
U and μ(U) − μ(K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U ,

and ∗μ(∗U) − ∗μ(∗K) < ε. By Theorem 5.9, we have st−1(E) ∈ ∗B[X]. Since ε is
arbitrary, we have μ(E) = ∗μ(st−1(E)). �

The following two lemmas are crucial in the proof of the main theorem of this
chapter.

Lemma 6.9. Consider any (ε, r)-hyperfinite representation S of ∗X. Let F
denote

⋃
{B(s) : s ∈ st−1(E) ∩ S}. Then for any E ∈ B[X], we have st−1(E) = F

Proof. First we show that F ⊂ st−1(E). Let x ∈ F then x must lie in
B(s0) for some s0 ∈ st−1(E) ∩ S. Since s0 ∈ st−1(E), there exists a y ∈ E
such that s0 ∈ μ(y). As B(s0) has infinitesimal radius, B(s0) ⊂ μ(y). Hence
x ∈ B(s0) ⊂ μ(y) ⊂ st−1(E). Hence, F ⊂ st−1(E).

Now we show the reverse direction. Let x ∈ st−1(E) . Since
⋃

s∈S B(s) ⊃
NS(∗X), x ∈ B(s0) for some s0 ∈ S. As x ∈ st−1(E), there exists a y ∈ E such
that x ∈ μ(y). This shows that s0 ∈ st−1(E) ∩ S which implies that x ∈ F ,
completing the proof. �

Before proving the next lemma, recall that L(A) denote the collection of uni-
versally Loeb measurable sets of the internal algebra A.

Lemma 6.10. Let X be a metric space satisfying the Heine-Borel condition
equipped with Borel σ-algebra B[X]. Let S be a (ε, r)-hyperfinite representation of
∗X for some positive infinitesimal ε. Then for any E ∈ B[X] we have

(6.5) st−1(E) ∈ L(∗B[X]) and st−1(E) ∩ S ∈ L(I(S)).

Proof. By Theorem 5.9, st−1(E) ∈ {A ∩ NS(∗X) : A ∈ L(∗B[X])}. As
X is σ-compact, by Lemma 5.5, we have NS(∗X) ∈ L(∗B[X]) hence st−1(E) ∈
L(∗B[X]). Let P be any internal probability measure on (S, I(S)) Let P ′ be an
internal probability measure on (∗X, ∗B[X]) with P ′(B) = P (B ∩ S). As S is
internal and st−1(E) is universally Loeb measurable, we know that st−1(E) ∩ S ∈
∗B[X]

P ′

where ∗B[X]
P ′

denotes the Loeb σ-algebra of ∗B[X] under P ′. Fix any
ε > 0. We can then find Ai, Ao ∈ ∗B[X] such that Ai ⊂ st−1(E) ∩ S ⊂ Ao and
P ′(Ao \Ai) < ε. We thus have

(6.6) P ′(Ao \Ai) = P ((Ao \Ai) ∩ S) = P ((Ao ∩ S) \ (Ai ∩ S)) < ε.

As both Ai, Ao ∈ ∗B[X], we know that Ai ∩ S,Ao ∩ S ∈ I(S). Moreover, we have
Ai ∩ S ⊂ st−1(E) ∩ S ⊂ Ao ∩ S. Hence, by the construction of Loeb measure,
st−1(E)∩S is Loeb measurable with respect to P . As P is arbitrary, we know that
st−1(E) ∩ S ∈ L(I(S)). �

We are now at the place to prove the main theorem of this chapter.
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Theorem 6.11. Let (X,B[X], P ) be a Borel probability space where X is a
metric space satisfying the Heine-Borel condition, and let (∗X, ∗B[X], ∗P ) be its
nonstandard extension. Then for every positive infinitesimal ε,every positive infi-
nite r and every (ε, r)-hyperfinite representation S of ∗X there exists an internal
probability measure P ′ on (S, I(S))

(1) P ′({s}) ≈ ∗P (B(s)).
(2) P (E) = P ′(st−1(E) ∩ S) for every E ∈ B[X].

where P ′ denotes the Loeb measure of P ′.

Proof. Fix an infinitesimal ε ∈ ∗R+ and an positive infinite number r. Let S
be a (ε, r)-hyperfinite representation of ∗X and consider the hyperfinite measurable

space (S, I(S)). Let P ′({s}) =
∗P (B(s))

∗P (
⋃

s∈S B(s)) for every s ∈ S. It follows that

P ′ is internal because the map s �→ P ′({s}) is internal. For any A ∈ I(S), let
P ′(A) =

∑
s∈A P ′({s}). Since

∑
s∈A

∗P (B(s)) = ∗P (
⋃

s∈S B(s)) by the hyperfinite
additivity of ∗P , it is easy to see that P ′ is an internal probability measure on
(S, I(S)).

As
⋃

s∈S B(s) ⊃ NS(∗X), by Lemma 6.8, we know that ∗P (
⋃

s∈S B(s)) ≈ 1.
Hence we have P ′({s}) ≈ ∗P (B(s)).

It remains to show that P (E) = P ′(st−1(E) ∩ S) for every E ∈ B[X]. As X
is a σ-compact Borel probability space, by Lemma 6.8 and Lemma 6.10, we have
P (E) = ∗P (st−1(E)). By Lemma 6.9, we then have

(6.7) ∗P (st−1(E)) = ∗P (
⋃

{B(s) : s ∈ st−1(E) ∩ S}).

Consider any set Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S), then Ao is an internal subset of S
hence is hyperfinite. This means that

⋃
s∈Ao

B(s) is a hyperfinite union of ∗Borel

sets hence is ∗Borel. Because st−1(E) ∩ S ⊂ Ao, we have

(6.8) ∗P (
⋃

{B(s) : s ∈ st−1(E) ∩ S}) ≤ ∗P (
⋃

s∈Ao

B(s)) = st(∗P (
⋃

s∈Ao

B(s))).

As
⋃

s∈S B(s) ⊃ NS(∗X), by Lemma 6.8, we have ∗P (
⋃

s∈S B(s)) ≈ 1. Thus we
have

(6.9) st(∗P (
⋃

s∈Ao

B(s))) = st(
∗P (

⋃
s∈Ao

B(s))
∗P (

⋃
s∈S B(s))

) = st(P ′(Ao)) = P ′(Ao).

Hence, for every set Ao ∈ I(S) such that Ao ⊃ st−1(E) ∩ S, we have

(6.10) ∗P (st−1(E)) = ∗P (
⋃

{B(s) : s ∈ st−1(E) ∩ S}) ≤ P ′(Ao).

This means that

(6.11) ∗P (st−1(E)) ≤ inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}.

By a similar argument, we have

(6.12) ∗P (st−1(E)) ≥ sup{P ′(Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}.



38 6. HYPERFINITE REPRESENTATION OF A PROBABILITY SPACE

By Lemma 6.10, we have st−1(E) ∩ S ∈ I(S)L. Thus by the construction of Loeb
measure, we have

inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}(6.13)

= sup{P ′(Ai) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}(6.14)

= P ′(st−1(E) ∩ S).(6.15)

Hence P (E) = ∗P (st−1(E)) = P ′(st−1(E) ∩ S) finishing the proof. �
From the above proof, we see that

∗P (st−1(E)) = inf{P ′(Ao) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}(6.16)

= inf{st(
∗P (

⋃
s∈Ao

B(s))
∗P (

⋃
s∈S B(s))

) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}(6.17)

= inf{∗P (
⋃

s∈Ao

B(s)) : Ao ⊃ st−1(E) ∩ S,Ao ∈ I(S)}.(6.18)

Similarly we have:

(6.19) ∗P (st−1(E)) = sup{∗P (
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}

Note that if X is compact, then ∗P (
⋃

s∈S B(s)) = ∗P (∗X) = 1. Hence
P ′({s}) = ∗P (B(s)) in Theorem 6.11. We no longer need to normalize the proba-
bility space when X is compact.

We conclude this section by giving an explicit application of Theorem 6.11 to
Example 4.5.

Example 6.12. Let μ be the Lebesgue measure on the unit interval [0, 1] re-
stricted to the Borel σ-algebra on [0, 1]. Let N be an infinite element in ∗N and let
Ω = { 1

N , 2
N , . . . , N−1

N , 1}. Let μ′ be an internal probability measure on (Ω, I(Ω))
such that μ′({ω}) = 1

N for every ω ∈ Ω.

Theorem 6.13. For every Borel measurable set A, we have

(6.20) μ(A) = μ′(st−1(A) ∩ Ω).

Proof. Clearly Ω is a ( 1
N )-hyperfinite representation of ∗[0, 1]. For every

ω ∈ Ω, we have B(ω) = (ω − 1
N , ω] for ω �= 1

N and B( 1
N ) = [0, 1

N ]. It is easy to see
that {B(ω) : ω ∈ Ω} covers ∗[0, 1] and μ′({ω}) = ∗μ(B(ω)) for every ω ∈ Ω. Thus,
by Theorem 6.11, we have μ(A) = μ′(st−1(A) ∩ Ω), completing the proof. �



CHAPTER 7

General Hyperfinite Markov Processes

In this chapter, we introduce the concept of general hyperfinite Markov pro-
cesses. Intuitively, hyperfinite Markov processes behaves like finite Markov pro-
cesses but can be used to represent standard continuous time Markov processes
under certain conditions.

Definition 7.1. A general hyperfinite Markov chain is characterized by the
following four ingredients:

(1) A hyperfinite state space S ⊂ ∗X where X is a metric space satisfying the
Heine-Borel condition.

(2) A hyperfinite time line T = {0, δt, ....,K} where δt = 1
N ! for some N ∈

∗N \ N and K ∈ ∗N \ N.
(3) A set {vi : i ∈ S} where each vi ≥ 0 and

∑
i∈S vi = 1.

(4) A set {pij}i,j∈S consisting of non-negative hyperreals with
∑

j∈S pij = 1
for each i ∈ S

Thus the state space S naturally inherits the ∗metric of ∗X. An element s ∈ S
is near-standard if it is near-standard in ∗X. The near-standard part of S, NS(S),
is defined to be NS(S) = NS(∗X) ∩ S.

Note that the time line T contains all the standard rational numbers but con-
tains no standard irrational number. However, for every standard irrational number
r there exists tr ∈ T such that tr ≈ r.

Intuitively, the {pij}i,j∈S refers to the internal probability of going from i to j
at time δt.

The following theorem shows the existence of hyperfinite Markov Processes.

Theorem 7.2. Given a non-empty hyperfinite state space S, a hyperfinite time
line T = {0, δt, ....,K}, {vi}i∈S and {pij}i,j∈S as in Definition 7.1. Then there ex-
ists internal probability triple (Ω,A, P ) with an internal stochastic process {Xt}t∈T

defined on (Ω,A, P ) such that

(7.1) P (X0 = i0, Xδt = iδt, ...Xt = it) = vi0pi0iδt ...pit−δtit

for all t ∈ T and i0, ....it ∈ S.

Note that vi0pi0iδt ...pit−δtit is a product of hyperfinitely many hyperreal num-
bers. It is well-defined by the transfer principle.

Proof. Let Ω={ω ∈ ST : ω is internal} which is the set of internal functions
from T to S. As both S and T are hyperfinite, Ω is hyperfinite. Let A be the set
consisting of all internal subsets of Ω. We now define the internal measure P on
(Ω,A). For every ω ∈ Ω, let

(7.2) P (ω) = viω(0)
piω(0)iω(1)

· · · piω(K−δt)iω(K)
.

39
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For every A ∈ A, let P (A) =
∑

ω∈A P (ω). Let Xt(ω) = ω(t). It is easy to check
that (Ω,A, P ) and {Xt}t∈T satisfy the conditions of this theorem. �

We use (Ω,A, P ) to denote the Loeb extension of the internal probability triple
(Ω,A, P ) in Theorem 7.2. The construction of hyperfinite Markov processes is
similar to the construction of finite state space discrete time Markov processes.
Unlike the construction of general Markov processes, we do not need to use the
Kolmogorov extension theorem.

We introduce the following definition.

Definition 7.3. For any i, j ∈ S and any t ∈ T , we define:

(7.3) p
(t)
ij =

∑
ω∈M

P ({ω}|X0 = i)

where M = {ω ∈ Ω : ω(0) = i ∧ ω(t) = j}.

It is easy to see that p
(δt)
ij = pij . For general t ∈ T , p

(t)
ij is the sum of

piiδtpiδti2δt · · · pit−δtj over all possible iδt, i2δt, . . . , it−δt in S. Intuitively, p
(t)
ij is the

internal probability of the chain reaches state j at time t provided that the chain
started at i. For any set A ∈ I(S), any i ∈ S and any t ∈ T , the internal transition

probability from x to A at time t is denoted by p
(t)
i (A) or p(t)(i, A). In both cases,

they are defined to be
∑

j∈A p
(t)
ij .

We are now at the place to show that the hyperfinite Markov chain is time-
homogeneous.

Lemma 7.4. For any t, k ∈ T and any i, j ∈ S, we have P (Xk+t = j|Xk = i) =

p
(t)
ij provided that P (Xk = i) > 0.

Proof. It is sufficient to show that P (Xk+δt = j|Xk = i) = pij since the
general case follows from a similar calculation.

P (Xk+δt = j|Xk = i) =
P (Xk+δt = j,Xk = i)

P (Xk = i)
(7.4)

=

∑
i0,iδt,...,ik−δt

vi0pi0iδt · · · pik−δtipij∑
i0,iδt,...,ik−δt

vi0pi0iδt · · · pik−δti
(7.5)

= pij .(7.6)

Hence we have the desired result. �

We write Pi(Xt ∈ A) for P (Xt ∈ A|X0 = i). It is easy to see that p
(t)
i (A) =

Pi(Xt ∈ A). Note that for every i ∈ S and every t ∈ T , p
(t)
i (·) is an internal

probability measure on (S, I(S)). We use p
(t)
i to denote the Loeb extension of this

internal probability measure. For every A ∈ I(S), it is easy to see that p
(t)
i (A) =

P i(Xt ∈ A).
We are now at the place to define some basic concepts for Hyperfinite Markov

processes.

Definition 7.5. Let π be an internal probability measure on (S, I(S)). We
call π a weakly stationary if there exists an infinite t0 ∈ T such that for any t ≤ t0
and any A ∈ I(S) we have π(A) ≈

∑
i∈S π({i})p(t)(i, A).
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The definition of weakly stationary distribution is similar to the definition of
stationary distribution for discrete time finite Markov processes. However, we only
require π(A) ≈

∑
i∈S π({i})p(t)(i, A) for t no greater than some infinite t0 for

weakly stationary distributions. We use π to denote the Loeb extension of π.

Definition 7.6. A hyperfinite Markov chain is said to be strong regular if for
any A ∈ I(S), any i, j ∈ NS(S) and any non-infinitesimal t ∈ T we have

(7.7) (i ≈ j) =⇒ (Pi(Xt ∈ A) ≈ Pj(Xt ∈ A)).

One might wonder whether Pi(Xt ∈ A) ≈ Pj(Xt ∈ A) for infinitesimal t ∈ T .
This is generally not true.

Example 7.7. Let the time line T = {0, δt, 2δt, . . . ,K} for some infinitesimal

δt and some infinite K. Let the state space S = {−K√
δt
, . . . ,−

√
δt, 0,

√
δt, . . . , K√

δt
}.

For any i ∈ S, we have p(δt)(i, i +
√
δt) = 1

2 and pii−
√
δt = 1

2 . This is Ander-
son’s construction of Brownian motion which motivates the study of infinitesimal
stochastic processes (see [And76]). It can also be viewed as a hyperfinite Markov
process. As the normal distributions with different means converge in total varia-
tional distance, the hyperfinite Brownian motion is strong Feller. However, we have
p(δt)(0,

√
δt) = 1

2 and p(δt)(
√
δt,

√
δt) = 0.

For a general state space Markov processes, the transition probability to a
specific point is usually 0. For hyperfinite Markov process, under some conditions,
we can get infinitesimally close to a specific point with probability 1.

Lemma 7.8. Consider a hyperfinite Markov chain on a state space S and two

states i, j ∈ S, let {U
1
n

j : n ∈ N} be the collection of balls with radius 1
n around j.

Suppose ∀n ∈ N, we have P i({ω : (∃t ∈ NS(T ))(Xt(ω) ∈ U
1
n

j )}) = 1. Then for any

infinite s0 ∈ T , we have P i({ω : ∃t < s0Xt(ω) ≈ j}) = 1.

Proof. Pick any infinite s0 ∈ T and from the hypothesis we know that ∀n ∈ N,

Pi({ω : (∃t ≤ s0)(Xt ∈ U
1
n

j )}) > 1− 1
n .

Consider the set B = {n ∈ ∗N : Pi({ω : (∃t ≤ s0)(Xt ∈ U
1
n
j )}) > 1 − 1

n}, by
the internal definition principle, B is an internal set and contains N. By overspill,
B contains an infinite number in ∗N and we denote it by n0. Thus we have Pi({ω :

(∃t ≤ s0)(Xt ∈ U
1
n0

j )}) > 1 − 1
n0

. Hence P i({ω : (∃t ≤ s0)(Xt ∈ U
1
n0

j )}) = 1. The

set {ω : (∃t ≤ s0)(Xt ≈ j)} is a superset of {ω : (∃t ≤ s0)(Xt ∈ U
1
n0

j )}. Since the

Loeb measure is complete we know that P i({ω : (∃t ≤ s0)(Xt ≈ j)}) = 1. �

.
In the study of standard Markov processes, it is sometimes useful to consider

the product of two i.i.d Markov processes. The similar idea can be applied to
hyperfinite Markov processes.

Definition 7.9. Let {Xt}t∈T be a hyperfinite Markov chain with internal
transition probability {pij}i,j∈S . Let {Yt}t∈T be a i.i.d copy of {Xt}. Then product
chain Zt is defined on the state space S × S with transition probability

(7.8) {q(i,j),(k,l) = pikpjl}i,j,k,l∈S .
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Similarly q(i,j),(k,l) refers to the internal probability of going from point (i, j)
to point (k, l). The following lemma is an immediate consequence of this definition.

Lemma 7.10. Let {Xt}t∈T , {Yt}t∈T and {Zt}t∈T be the same as in Defi-
nition 7.9. Then for any t ∈ T ,any i, j ∈ S and any A,B ∈ I(S) we have

q
(t)
(i,j)(A×B) = p

(t)
i (A)p

(t)
j (B).

Proof. We prove this lemma by internal induction on T .
Fix any i, j ∈ S and any A,B ∈ I(S). We have

p
(δt)
i (A)p

(δt)
j (B)(7.9)

=
∑

(a,b)∈A×B

p
(δt)
i ({a})× p

(δt)
j ({b})(7.10)

=
∑

(a,b)∈A×B

q
(δt)
(i,j)({(a, b)})(7.11)

= q
(δt)
(i,j)(A×B).(7.12)

Hence we have shown the base case.
Suppose we know that the lemma is true for t = k. We now prove the lemma

for k + δt. Fix any i, j ∈ S and any A,B ∈ I(S). We have

p
(k+δt)
i (A)× p

(k+δt)
j (B)(7.13)

=
∑
s∈S

p
(δt)
i ({s})p(k)s (A)×

∑
s′∈S

p
(δt)
j ({s′})p(k)s′ (B)(7.14)

=
∑

(s,s′)∈S×S

p
(δt)
i ({s})p(δt)j ({s′})p(k)s (A)p

(k)
s′ (B)(7.15)

By induction hypothesis, this equals to:

(7.16)
∑

(s,s′)∈S×S

q
(δt)
(i,j)({(s, s

′)})q(k)(s,s′)(A×B) = q
(k+δt)
(i,j) (A× B).

As all the parameters are internal, by internal induction principle we have shown
the result. �

Definition 7.11. Consider a hyperfinite Markov chain {Xt}t∈T and two near-
standard i, j ∈ S. A near-standard (x, y) ∈ S×S is called a near-standard absorbing

point with respect to i, j if P ′
(i,j)((∃t ∈ NS(T ))(Zt ∈ U

1
n
x × U

1
n
y )) = 1 for all n ∈ N

where P ′ denotes the internal probability measure of the product chain {Zt}t∈T

and U
1
n
x , U

1
n
y denote the open ball centered at x, y with radius 1

n ,respectively.

It is a natural to ask when a hyperfinite Markov chain has a near-standard
absorbing point. We start by introducing the following definitions.

Definition 7.12. For any A ∈ I(S), the stopping time τ (A) with respect to a
hyperfinite Markov chain {Xt}t∈T is defined to be τ (A) = min{t ∈ T : Xt ∈ A}.

Definition 7.13. A hyperfinite Markov chain {Xt}t∈T is productively near-
standard open set irreducible if for any i, j ∈ NS(S) and any near-standard open
ball B with non-infinitesimal radius we have P ′

(i,j)(τ (B × B) < ∞) > 0 where
P ′ denotes the internal probability measure of the product chain {Zt}t∈T as in
Definition 7.9.
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Recall that the state space of {Xt}t∈T is a hyperfinite set S ⊂ ∗X where X is a
metric space satisfying the Heine-Borel condition. Let d denote the metric on X. A
near-standard open ball of S is an internal set taking the form {s ∈ S : ∗d(s, s0) < r}
for some near-standard point s0 ∈ S and some near-standard r ∈ ∗R.

Theorem 7.14. Let {Xt}t∈T be a hyperfinite Markov chain with weakly station-
ary distribution π such that π(NS(S)) = 1. Suppose π × π is a weakly stationary
distribution for the product Markov process {Zt}t∈T . If {Xt}t∈T is productively
near-standard open set irreducible then for π × π almost all (i, j) ∈ S × S there
exists an near-standard absorbing point (i0, i0) for (i, j) as in Definition 7.11.

Before we prove this theorem, we first establish the following technical lemma.
Although this lemma takes place in the non-standard universe, the proof of this
lemma is similar to the proof of a similar standard result in [RR04].

Lemma 7.15 ([RR04, Lemma. 20]). Consider a general hyperfinite Markov
chain on a state space S, having a weakly stationary distribution π(·) such that
π(NS(S)) = 1. Suppose that for some internal A ⊂ S, we have P x(τ (A) < ∞) > 0
for π almost all x ∈ S. Then for π-almost-all x ∈ S, P x(τ (A) < ∞) = 1.

Proof. Suppose to the contrary that the conclusion does not hold. That
means π(x ∈ S : Px(τ (A) < ∞) < 1) > 0.

Claim 7.16. There exist l ∈ N, δ ∈ R+ and internal set B ⊂ S with π(B) > 0
such that Px(τ (A) = ∞,max{k ∈ T : Xk ∈ B} < l) ≥ δ for all x ∈ B.

Proof. As π(x ∈ S : P x(τ (A) = ∞) > 0) > 0, This implies that there exist
δ1 ∈ R+ and B1 ∈ F with π(B1) > 0 such that Px(τ (A) < ∞) ≤ 1 − δ1 for
all x ∈ B1 where F denote the Loeb extension of the internal algebra I(S) with
respect to π. By the construction of Loeb measure, we can assume that B1 is
internal. On the other hand, as P x(τ (A) < ∞) > 0 for π almost surely x ∈ S, by
countable additivity, we can find l0 ∈ N and δ2 ∈ R+ and internal B2 ⊂ B1(again
by the construction of Loeb measure) with π(B2) > 0 such that ∀x ∈ B2, P x((∃t ≤
l0 ∧ t ∈ T )(Xt ∈ A)) ≥ δ2. Let η = |{k ∈ N∪{0} : (∃t ∈ T ∩ [k, k+1))(Xk ∈ B2)}|.
Then for any r ∈ N and x ∈ S, we have Px(τ (A) = ∞, η > r(l0 +1)) ≤ P x(τ (A) =
∞|η > r(l0 + 1)) ≤ (1− δ2)

r. In particular, P x(τ (A) = ∞, η = ∞) = 0.
Hence for x ∈ B2, we have

P x(τ (A) = ∞, η < ∞)(7.17)

= 1− P x(τ (A) = ∞, η = ∞)− P x(τ (A) < ∞)(7.18)

≥ 1− 0− (1− δ1) = δ1.(7.19)

By countable additivity again there exist l ∈ N, δ ∈ R+ and B ⊂ B2 (again pick B to
be internal) with π(B) > 0 such that P x(τ (A) = ∞,max{t ∈ T : Xt ∈ B2} < l) ≥ δ
for all x ∈ B. Finally as B ⊂ B2, we have

(7.20) max{t ∈ T : Xt ∈ B2} ≥ max{t ∈ T : Xt ∈ B}
establishing the claim. �

Claim 7.17. Let B, l, δ be as in Claim 7.16. Let K ′ be the biggest hyperinteger
such that K ′l ≤ K where K is the last element in T . Let

(7.21) s = max{k ∈ ∗N : (1 ≤ k ≤ K ′) ∧ (Xkl ∈ B)}
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and s = 0 if the set is empty. Then for all 1 ≤ r ≤ j ∈ N we have

(7.22)
∑
x∈S

π({x})Px(s = r,Xjl �∈ A) � st(π(B)δ).

Proof. Pick any j ∈ N. we have
(7.23)∑
x∈S

π({x})Px(s = r,Xjl �∈ A) =
∑
x∈S

π({x})
∑
y∈B

Px(Xrl = y)Py(s = 0, X(j−r)l �∈ A)

Note that τ (A) = ∞ implies X(j−r)l �∈ A and max{k ∈ T : Xk ∈ B} < l implies
that s = 0. As r, l ∈ N and π is a weakly stationary distribution, we have∑

x∈S

π({x})
∑
y∈B

Px(Xrl = y)Py(s = 0, X(j−r)l �∈ A)(7.24)

≥
∑
x∈S

π({x})
∑
y∈B

Px(Xrl = y)δ(7.25)

≈ π(B)δ.(7.26)

By the definition of standard part, it is easy to see that this claim holds. �
Now we are at the position to prove the theorem. For all j ∈ N, by Claim 7.16,

we have

π(Ac) ≈
∑
x∈S

π({x})Px(Xjl ∈ Ac)(7.27)

=
∑
x∈S

π({x})Px(Xjl �∈ A)(7.28)

≥
j∑

r=1

∑
x∈S

π({x})Px(s = r,Xjl �∈ A)(7.29)

≥
j∑

r=1

st(π(B)δ).(7.30)

As π(B) > 0, so we can pick j ∈ N such that j > 1
st(π(B)δ) . This gives that

π(Ac) > 1 which is a contradiction, proving the result. �
.
We are now at the place to prove Theorem 7.14.

proof of Theorem 7.14. Pick any near-standard i0 ∈ S. Recall that U
1
n

i0

denote the open ball around i0 with radius 1
n . It is clear that U

1
n

i0
× U

1
n

i0
∈ I(S)×

I(S). By Definition 7.13, we have P ′
(i,j)(τ (U

1
n

i0
× U

1
n

i0
) < ∞) > 0 for all n ∈ N

and π × π almost all (i, j) ∈ S × S. As π × π is a weakly stationary distribution,

by Lemma 7.15, we have P ′
(i,j)(τ (U

1
n

i0
× U

1
n

i0
) < ∞) = 1 for π′ almost surely

(i, j) ∈ S × S and every n ∈ N. By Definition 7.11, we know that (i0, i0) is a
near-standard absorbing point for π′ almost all (i, j) ∈ S × S. �

Note that this proof shows that every near-standard point (i, j) is a near-
standard absorbing point for π × π almost all (x, y) ∈ S × S.

In the statement of Theorem 7.14, we require π × π to be a weakly stationary
distribution of the product hyperfinite Markov chain {Zt}t∈T . Recall that t0 is an
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infinite element in T such that π(A) ≈
∑

i∈S π({i})p(t)i (A) for all A ∈ I(S) and all
t ≤ t0.

Lemma 7.18. Let π′ = π × π. For any A,B ∈ I(S) and any t ≤ t0, we have

π′(A × B) ≈
∑

(i,j)∈S×S π′
(i,j)q

(t)
(i,j)(A × B) where q

(t)
(i,j)(A × B) denotes the t-step

transition probability from (i, j) to the set A×B.

Proof. Pick A,B ∈ I(S) and t ≤ t0. Then, by Definition 7.5 and Lemma 7.10,
we have ∑

(i,j)∈S×S

π′({(i, j)})q(t)(i,j)(A×B)(7.31)

=
∑

(i,j)∈S×S

π({i})π({j})p(t)i (A)p
(t)
j (B)(7.32)

= (
∑
i∈S

π({i})p(t)i (A))(
∑
j∈S

π({j})p(t)j (B))(7.33)

≈ π(A)π(B)(7.34)

= π(A×B).(7.35)

�

However, we do not know whether π′ would always be a weakly stationary
distribution since I(S)× I(S) is a bigger σ-algebra than I(S)× I(S). This gives
rise to the following open questions.

Open Problem 1. Does there exists a π′ that fails to be a weakly stationary
distribution of the product hyperfinite Markov process {Zt}t∈T ?

It is natural to ask whether the product of two weakly stationary distributions
is a weakly stationary distribution for the product chain. More generally, suppose
P1, P2 are two internal probability measures on (Ω,A) with P1(A) ≈ P2(A) for all
A ∈ A, is it true that (P1×P1)(B) ≈ (P2×P2)(B) for all B ∈ A⊗A? The answer
to this question is affirmative by the result in [KS04] that the Loeb product space
is uniquely determined by its factor Loeb spaces.

We are now at the place to prove the hyperfinite Markov chain Ergodic theorem.

Theorem 7.19. Consider a strongly regular hyperfinite Markov chain having a
weakly stationary distribution π such that π(NS(S)) = 1. Suppose for π × π almost
surely (i, j) ∈ S × S there exists a near-standard absorbing point (i0, i0) for (i, j).
Then there exists an infinite t0 ∈ T such that for π-almost every x ∈ S, any internal
set A, any infinite t ≤ t0 we have Px(Xt ∈ A) ≈ π(A).

Proof. Let {Xt}t∈T be such a hyperfinite Markov chain with internal tran-

sition probability {p(t)ij }i,j∈S,t∈T . Let {Yt}t∈T be a i.i.d copy of {Xt}t∈T and let

{Zt}t∈T denote the product hyperfinite Markov chain. We use P ′ and P ′ to de-
note the internal probability and Loeb probability of {Zt}t∈T . Let π′({(i, j)}) =
π({i})π({j}).

By the assumption of the theorem, we know that for π′ almost surely (i, j) ∈ S×
S there exists a near-standard absorbing point (i0, i0) for (i, j). As π(NS(S)) = 1,
both i, j can be taken to be near-standard points. Pick an infinite t0 ∈ T such
that π(A) ≈

∑
i∈S π({i})Pi(Xt ∈ A) for all t ≤ t0 and all internal sets A ⊂ S.
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Now fix some internal set A and some infinite time t1 ≤ t0. Let M denote the set
{ω : ∃t < t1 − 1, Xs(ω) ≈ Ys(ω) ≈ i0}. By Definition 7.11, we know that for π′

almost surely (i, j) ∈ S × S and any n ∈ N we have

(7.36) P ′
(i,j)((∃t ∈ NS(T ))(Zt ∈ U

1
n

i0
× U

1
n

i0
)) = 1.

By Lemma 7.8, we know that for π′ almost surely (i, j) ∈ S×S we have P ′
(i,j)(M) =

1. Thus by strongly regularity of the chain, we know that for π′ almost surely
(i, j) ∈ S × S:

|P i(Xt1 ∈ A)− P j(Xt1 ∈ A)|(7.37)

= |P ′
(i,j)(Xt1 ∈ A)− P ′

(i,j)(Yt1 ∈ A)|(7.38)

= |P ′
(i,j)((Xt1 ∈ A) ∩M c)− P ′

(i,j)((Yt1 ∈ A) ∩M c)|(7.39)

≤ P ′
(i,j)(M

c) = 0(7.40)

To see Eq. (7.39), note that |P ′
(i,j)((Xt1 ∈ A) ∩M) − P ′

(i,j)((Yt1 ∈ A) ∩M)| = 0

since {Xt}t∈T is strong regular. Hence we know that for π′ almost surely (i, j) ∈
S × S we have |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≈ 0.

Let the set F = {(i, j) ∈ S × S : |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≈ 0}. We know

that π′(F ) = 1. For each i ∈ S, define Fi = {j ∈ S : (i, j) ∈ F}.

Claim 7.20. For π almost surely i ∈ S, π(Fi) = 1.

Proof. Note that π′ = π× π and is defined on all I(S × S). Fix some n ∈ N.
Let

(7.41) Fn = {(i, j) ∈ S × S : |Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)| ≤ 1

n
}.

For each i ∈ S, let Fn
i = {j ∈ S : (i, j) ∈ Fn}. Note that both Fn and Fn

i are
internal sets. Moreover, as Fn ⊃ F , we know that π′(Fn) = 1. We will show
that, for π almost surely i ∈ S, Fn

i has π measure 1. Let En = {i ∈ S : (∃j ∈
S)((i, j) ∈ Fn)}. By the internal definition principle, En is an internal set. We
first show that π(En) = 1. Suppose not, then there exist a positive ε ∈ R such that
st(π(En)) ≤ 1− ε. As Fn ⊂ En × S, we have

(7.42) π′(Fn) = π(En)× π(S) ≤ 1− ε

Contradicting the fact that π′(Fn) = 1.
Now suppose that there exists a set with positive π measure such that π(Fn

i ) <
1 for every i from this set. By countable additivity and the fact that π(En) = 1,
there exist positive ε1, ε2 ∈ R and an internal set Dn ⊂ En such that π(Dn) = ε1
and π(Fn

i ) < 1− ε2 for all i ∈ Dn. As each Fn
i is internal, the collection {Fn

i : i ∈
Dn} is internal. Then the set A =

⋃
i∈Dn{i} × Fn

i is internal. Thus we have

(7.43) π′(Fn) ≤ π′(Fn ∪A) = π′(Fn \A) + π′(A).

Note that

π′(Fn \A) ≤ π′((En \Dn)× S) ≤ π′((S \Dn)× S) ≤ 1− ε1

(7.44)

π′(A) = st(π(A)) = st(
∑
i∈Dn

π({i})π(Fn
i )) ≤ st(

∑
i∈Dn

π({i})(1− ε2)) = ε1(1− ε2).

(7.45)
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In conclusion, π′(Fn) = π′(Fn \ A) + π′(A) ≤ (1 − ε1) + ε1(1 − ε2) < 1. A
contradiction. Hence, for every n ∈ N, there exists a Bn with π(Bn) = 1 such
that π(Fn

i ) = 1 for every i ∈ Bn. Without loss of generality, we can assume
{Bn}n∈N is a decreasing sequence of sets. Thus, we have π(

⋂
n∈N

Bn) = 1. For
every i ∈

⋂
n∈N

Bn, we know that π(
⋂

n∈N
Fn
i ) = 1. As

⋂
n∈N

Fn
i = Fi, we have the

desired result. �

Thus we have

|Pi(Xt1 ∈ A)− π(A)| ≈ |
∑
j∈S

π({j})(Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A))|(7.46)

≤
∑
j∈S

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|.(7.47)

Recall that Fi = {j ∈ S : |Pi(Xt1 ∈ A) − Pj(Xt1 ∈ A)| ≈ 0}. By the previous
claim, for π almost all i we have π(Fi) = 1. Pick some arbitrary positive ε ∈ R+,
we can find an internal F ′

i ⊂ Fi such that π(F ′
i ) > 1− ε. Now for π almost all i we

have ∑
j∈S

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|(7.48)

=
∑

j∈S\F ′
i

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|

+
∑
j∈F ′

i

π({j})|Pi(Xt1 ∈ A)− Pj(Xt1 ∈ A)|
(7.49)

The first part of the last equation is less than ε and the second part is infinitesimal.
Thus we have

∑
j∈S π({j})|Pi(Xt1 ∈ A) − Pj(Xt1 ∈ A)| � ε. As ε is arbitrary,

we know that
∑

j∈S π({j})|Pi(Xt1 ∈ A) − Pj(Xt1 ∈ A)| is infinitesimal. Hence

we know that for π almost all i ∈ S we have |Pi(Xt1 ∈ A) − π(A)| ≈ 0. As t1 is
arbitrary, we have the desired result. �

An immediate consequence of this theorem is the following result.

Proposition 7.21. Consider a strongly regular hyperfinite Markov chain hav-
ing a weakly stationary distribution π such that π(NS(S)) = 1. Suppose {Xt}t∈T

is productively near-standard open set irreducible and π × π is a weakly stationary
distribution of the product hyperfinite Markov chain {Zt}t∈T . Then there exists an
infinite t0 ∈ T such that for π-almost every x ∈ S, any internal set A, any infinite
t ≤ t0 we have Px(Xt ∈ A) ≈ π(A).

Proof. The proof follows immediately from Theorems 7.14 and 7.19. �

It follows immediately from the construction of Loeb measure that for any
internal A ⊂ S, we have P x(Xt ∈ A) = π(A) for any infinite t ≤ t0. We can extend
this result to all universally Loeb measurable sets.

Lemma 7.22. Let L(I(S)) denote the collection of all universally Loeb measur-
able sets (see Definition 5.8). Under the same assumptions of Theorem 7.19. For
every B ∈ L(I(S)), every infinite t ≤ t0 we have Px(Xt ∈ B) = π(B) for π-almost
every x ∈ S.

Proof. The proof follows directly from the construction of Loeb measures. �
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As X is a metric space satisfying the Heine-Borel condition, we always have
st−1(E) ∈ L(I(S)) for every E ∈ B[X].

We now show that we can actually obtain a stronger type of convergence than
in Theorem 7.19 and Corollary 7.21.

Definition 7.23. Given two hyperfinite probability spaces (S, I(S), P1) and
(S, I(S), P2), the total variation distance is defined to be

(7.50) ‖ P1(·)− P2(·) ‖= sup
A∈I(S)

|P1(A)− P2(A)|.

Lemma 7.24. We have

(7.51) ‖ P1(·)− P2(·) ‖≥ sup
f :S→∗[0,1]

|
∑
i∈S

P1({i})f(i)−
∑
i∈S

P2({i})f(i)|.

The sup is taken over all internal functions.

Proof. |
∑

i∈S P1(i)f(i)−
∑

i∈S P2(i)f(i)| = |
∑

i∈S f(i)(P1(i)−P2(i))|. This
is maximized at f(i) = 1 for P1 > P2 and f(i) = 0 for P1 ≤ P2 (or vice versa).
Note that such f is an internal function. Thus we have |

∑
i∈S f(i)(P1(i)−P2(i))| ≤

|P1(A)− P2(A)| for A = {i ∈ S : P1(i) > P2(i)} (or {i ∈ S : P1(i) ≤ P2(i)}). This
establishes the desired result. �

Consider the general hyperfinite Markov chain, for any fixed x ∈ S and any

t ∈ T it is natural to consider the total variation distance ‖ p
(t)
x (·) − π(·) ‖. Just

as standard Markov chains, we can show that the total variation distance is non-
increasing.

Lemma 7.25. Consider a general hyperfinite Markov chain with weakly station-
ary distribution π. Then for any x ∈ S and any t1, t2 ∈ T such that t1 + t2 ∈ T ,

we have ‖ p
(t1)
x (·)− π(·) ‖�‖ p

(t1+t2)
x (·)− π(·) ‖

Proof. Pick t1, t2 ∈ T such that t1 + t2 ∈ T and any internal set A ⊂ S.

Then we have |p(t1+t2)
x (A)−π(A)| ≈ |

∑
y∈S p

(t1)
xy p

(t2)
y (A)−

∑
y∈S π(y)p

(t2)
y (A)|. Let

f(y) = p
(t2)
y (A). By the internal definition principle, we know that p

(t2)
y (A) is an

internal function. By the previous lemma we know that

(7.52) |p(t1+t2)
x (A)− π(A)| �‖ p(t1)x (·)− π(·) ‖ .

Since this is true for all internal A, we have shown the lemma. �
We conclude this section by introducing the following theorem which gives a

stronger convergence result compared with Theorem 7.19 and Corollary 7.21.

Theorem 7.26. Under the same hypotheses in Theorem 7.19. For π almost
every s ∈ NS(S), the sequence {supB∈L(I(S)) |P s(Xt ∈ B) − π(B)| : t ∈ NS(T )}
converges to 0.

Proof. We need to show that for any positive ε ∈ R there exists a t1 ∈ NS(T )
such that for every t ≥ t1 we have

(7.53) sup
B∈L(I(S))

|P s(Xt ∈ B)− π(B)| < ε.

Pick any real ε > 0, by Theorem 7.19, we know that for any infinite t ≤ t0 we have

‖ p
(t)
s (·)− π(·) ‖< ε

2 . By underspill, there exist a t1 ∈ NS(T ) such that ‖ p
(t1)
s (·)−

π(·) ‖< ε
2 . Fix any t2 ≥ t1. Then by Lemma 7.25 we have ‖ p

(t2)
s (·) − π(·) ‖< ε.
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Now fix any internal set A ⊂ S. By the definition of total variation distance, we
have |Ps(Xt2 ∈ A)− π(A)| < ε. This implies that |P s(Xt2 ∈ A)− π(A)| ≤ ε for all
A ∈ I(S). For external B ∈ L(I(S)), we have

P s(Xt2 ∈ B) = sup{P s(Xt2 ∈ Ai) : Ai ⊂ B,Ai ∈ I(S)}(7.54)

π(B) = sup{π(Ai) : Ai ⊂ B,Ai ∈ I(S)}(7.55)

hence we have |P (t2)

s (B)−π(B)| ≤ ε for all B ∈ L(I(S)). Thus we have the desired
result. �

As st−1(E) ∈ L(I(S)) for all E ∈ B[X], we have

(7.56) lim
t→∞

{ sup
E∈B[X]

|P (t)

x (st−1(E))− π(st−1(E))| : t ∈ NS(T )} = 0.

Note that the statement of Theorem 7.26 is very similar to the statement of the
standard Markov chain Ergodic theorem. We will use this theorem in later chapters
to establish the standard Markov chain Ergodic theorem.





CHAPTER 8

Hyperfinite Representation for Discrete-time
Markov Processes

As one can see from Chapter 7, hyperfinite Markov processes behave like
discrete-time finite state space Markov processes in many ways. Discrete-time
finite state space Markov processes are well-understood and easy to work with.
This makes hyperfinite Markov processes easy to work with. Thus it is desirable to
construct a hyperfinite Markov process for every standard Markov process. In this
chapter, we illustrate this idea by constructing a hyperfinite Markov process for
every discrete-time general state space Markov process. Such hyperfinite Markov
process is called a hyperfinite representation of the standard Markov process. For
continuous-time general state space Markov processes, such construction will be
done in the next chapter.

We start by establishing some basic properties of general Markov processes.
Note that we establish these properties for general state space continuous time
Markov processes. It is easy to see that these properties also hold for discrete-time
general state space Markov processes.

1. General properties of the transition probability

Consider a Markov chain {Xt}t≥0 on (X,B[X]) where X is a metric space
satisfying the Heine-Borel condition. Note that X is then a σ-compact complete
metric space. We shall denote the transition probability of {Xt}t≥0 by

(8.1) {P (t)
x (A) : x ∈ X, t ∈ R+, A ∈ B[X]}.

Once again P
(t)
x (A) refers to the probability of going from x to set A at time

t. For each fixed x ∈ X, t ≥ 0, we know that P
(t)
x (·) is a probability measure on

(X,B[X]). It is sometimes desirable to treat the transition probability as a function
of three variables. Namely, we define a function g : X × R+ × B[X] �→ [0, 1]

by g(x, t, A) = P
(t)
x (A). We will use these to notations of transition probability

interchangeably.
The nonstandard extension of g is then a function from ∗X × ∗R+ × ∗B[X] to

∗[0, 1].

Lemma 8.1. For any given x ∈ ∗X, any t ∈ ∗R+, ∗g(x, t, .) is an internal
finitely-additive probability measure on (∗X, ∗B[X]).

Proof. : Clearly ∗X is internal and ∗B[X] is an internal algebra. The following
sentence is clearly true:

(∀x ∈ X)(∀t ∈ R)(g(x, t, ∅) = 0 ∧ g(x, t,X) = 1 ∧ ((∀A,B ∈ B[X])(g(x, t, A ∪
B) = g(x, t, A) + g(x, t, B)− g(x, t, A ∩B)))).

51
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By the transfer principle and the definition of internal probability space, we
have the desired result. �

Recall that for every fixed A ∈ B[X] and any t ≥ 0, we require that P
(t)
x (A) is

a measurable function from X to [0, 1]. This gives rise to the following lemma.

Lemma 8.2. For each fixed A ∈ ∗B[X] and time point t ∈ ∗R+, ∗g(x, t, A) is a
∗-Borel measurable function from ∗X to ∗[0, 1].

Proof. We know that ∀A ∈ B[X] ∀t ∈ R+ ∀B ∈ B[[0, 1]] {x : g(x, t, A) ∈
B} ∈ B[X]. By the transfer principle, we get the desired result. �

For every x ∈ ∗X and t ∈ ∗R+, we use ∗P
(t)

x (·) or ∗g(x, t, ·) to denote the Loeb
measure with respect to the internal probability measure ∗g(x, t, .).

We now investigate some properties of the internal function ∗g. We first intro-
duce the following definition.

Definition 8.3. For any A,B ∈ B[X], any k1, k2 ∈ R+ and any x ∈ X, let

f
(k1,k2)
x (A,B) be Px(Xk1+k2

∈ B|Xk1
∈ A) when P

(k1)
x (A) > 0 and let f

(k1,k2)
x (A,B)

= 1 otherwise.

Intuitively, f
(k1,k2)
x (A,B) denotes the probability that {Xt}t≥0 reaches set B

at time k1 + k2 conditioned on the chain reaching set A at time k1 had the chain
started at x. For every x ∈ X, every k1, k2 ∈ R+ and every A ∈ B[X] it is

easy to see that f
(k1,k2)
x (A, .) is a probability measure on (X,B[X]) provided that

P
(k1)
x (A) > 0. For those A such that P

(k1)
x (A) > 0, by the definition of conditional

probability, we know that f
(k1,k2)
x (A,B) =

Px(Xk1+k2
∈B∧Xk1

∈A)

P
(k1)
x (A)

. We can view f as

a function from X × R+ × R+ × B[X] × B[X] to [0, 1]. By the transfer principle,
we know that ∗f is an internal function from ∗X × ∗R+ × ∗R+ × ∗B[X]× ∗B[X] to
∗[0, 1]. Moreover, ∗f (k1,k2)

x (A, .) is an internal probability measure on (∗X, ∗B[X])
provided that ∗g(x, k1, A) > 0.

We first establish the following standard result of the functions g and f .

Lemma 8.4. Consider any k1, k2 ∈ R+, any x ∈ X and any two sets A,B ∈
B[X] such that g(x, k1, A) > 0 . If there exists an ε > 0 such that for any two points
x1, x2 ∈ A we have |g(x1, k2, B) − g(x2, k2, B)| ≤ ε, then for any point y ∈ A we

have |g(y, k2, B)− f
(k1,k2)
x (A,B)| ≤ ε.

Proof. Since g(x, k1, A) > 0, we have

(8.2) f (k1,k2)
x (A,B) =

Px(Xk1+k2
∈ B,Xk1

∈ A)

Px(Xk1
∈ A)

=

∫
A
g(s, k2, B)g(x, k1, ds)

g(x, k1, A)
.

For any y ∈ A, we have

(8.3) |g(y, k2, B)− f (k1,k2)
x (A,B)| =

∫
A
|g(y, k2, B)− g(s, k2, B)|g(x, k1.ds)

g(x, k1, A)
.

As |g(x1, k2, B)− g(x2, k2, B)| ≤ ε for any x1, x2 ∈ A, we have

(8.4)

∫
A
|g(y, k2, B)− g(s, k2, B)|g(x, k1.ds)

g(x, k1, A)
≤ ε · g(x, k1, A)

g(x, k1, A)
= ε.

�
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Intuitively, this lemma means that if the probability of going from any two
different points from A to B are similar then it does not matter much which point
in A do we start.

Transferring Lemma 8.4, we obtain the following lemma

Lemma 8.5. Consider any k1, k2 ∈ ∗R+, any x ∈ ∗X and any two internal sets
A,B ∈ ∗B[X] such that g(x, k1, A) > 0. If there exists a positive ε ∈ ∗R such that
for any two points x1, x2 ∈ A we have |∗g(x1, k2, B) − ∗g(x2, k2, B)| ≤ ε, then for

any point y ∈ A we have |∗g(y, k2, B)− ∗f (k1,k2)
x (A,B)| ≤ ε.

In particular, if |∗g(x1, k2, B)− ∗g(x2, k2, B)| ≈ 0 for all x1, x2 in some A then

we have |∗g(y, k2, B) − ∗f (k1,k2)
x (A,B)| ≈ 0 for all y ∈ A. It is easy to see that

Lemmas 8.4 and 8.5 hold for discrete-time Markov processes. We simply restrict
to k1, k2 in N or ∗N,respectively. When k1 = 1 and the context is clear, we write

f
(k2)
x (A,B) instead of f

(k1,k2)
x (A,B).

2. Hyperfinite Representation for Discrete-time Markov Processes

In this section, we consider a discrete-time general state space Markov process
{Xt}t∈N with a metric state space X satisfying the Heine-Borel condition. Let
{Px(.)}x∈X denote the one-step transition probability of {Xt}t∈N. The probability
Px(A) refers to the probability of going from x to A in one step. For general n-step

transition probability P
(n)
x (A), we view it as a function g : X×N×B[X] �→ [0, 1] in

a same way as in last section. The nonstandard extension ∗g is an internal function
from ∗X × ∗N× ∗B[X] to ∗[0, 1]. We start by making the following assumption on
{Xt}t∈N.

Condition DSF. A discrete-time Markov process {Xt}t∈N is called strong
Feller if for every x ∈ X and every ε > 0 there exists δ > 0 such that

(8.5) (∀x1 ∈ X)(|x1 − x| < δ =⇒ ((∀A ∈ B[X])|Px1
(A)− Px(A)| < ε)).

We quote the following lemma regarding total variation distance. This lemma
is the “standard counterpart” of Lemma 7.24.

Lemma 8.6 ([RR04]). Let ν1, ν2 be two different probability measures on some
space (X,F) and let ‖ ν1 − ν2 ‖ denote the total variation distance between ν1, ν2.
Then ‖ ν1 − ν2 ‖= supf :X→[0,1] |

∫
fdν1 −

∫
fdν2| where f is measurable.

An immediate consequence of Lemma 8.6 is the following result which can be
viewed as a discrete-time counterpart of Lemma 7.25.

Lemma 8.7. Consider the discrete-time Markov process {Xt}t∈N with state
space X. For every ε > 0, every x1, x2 ∈ X and every positive k ∈ N we have

((∀A ∈ B[X])(|P (k)
x1

(A)− P (k)
x2

(A)| ≤ ε))

=⇒ ((∀A ∈ B[X])(|P (k+1)
x1

(A)− P (k+1)
x2

(A)| ≤ ε)).
(8.6)

Proof. : Pick any arbitrary ε > 0, any x1, x2 ∈ X and any k ∈ N. We have

sup
A∈B[X]

{|P (k+1)
x1

(A)− P (k+1)
x2

(A)|}(8.7)

= sup
A∈B[X]

{|
∫
y∈X

Py(A)P (k)
x1

(dy)−
∫
y∈X

Py(A)P (k)
x2

(dy)|}(8.8)

≤‖ P (k)
x1

(·)− P (k)
x2

(·) ‖≤ ε.(8.9)
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Thus we have proved the result. �

By the transfer principle and (DSF), we have the following result.

Lemma 8.8. Suppose {Xt}t∈N satisfies (DSF). Let x1 ≈ x2 ∈ NS(∗X). Then
for every positive k ∈ N and every A ∈ ∗B[X] we have ∗g(x1, k, A) ≈ ∗g(x2, k, A).

Proof. Fix x1, x2 ∈ NS(∗X). We first prove the result for k = 1. Let x0 =
st(x1) = st(x2) and let ε be any positive real number. By (DSF) and the transfer
principle, we know that there exists δ ∈ R+ such that

(8.10) (∀x ∈ ∗X)(|x−x0| < δ =⇒ ((∀A ∈ ∗B[X])|∗g(x, 1, A)− ∗g(x0, 1, A)| < ε))

As x1 ≈ x2 ≈ x0 and ε is arbitrary, we know that ∗g(x1, 1, A) ≈ ∗g(x0, 1, A) ≈
∗g(x2, 1, A) for all A ∈ ∗B[X].

We now prove the lemma for all k ∈ N. Again fix some ε ∈ R+. We know that

(8.11) (∀A ∈ ∗B[X])(|∗g(x1, 1, A)− ∗g(x2, 1, A)| < ε).

By the transfer of Lemma 8.7, we know that for every k ∈ N we have

(8.12) (∀A ∈ ∗B[X])(|∗g(x1, k, A)− ∗g(x2, k, A)| < ε).

As ε is arbitrary, we have the desired result. �

We are now at the place to construct a hyperfinite Markov process {X ′
t}t∈N

which represents our standard Markov process {Xt}t∈N. Our first task is to specify
the state space of {X ′

t}t∈N. Pick any positive infinitesimal δ and any positive
infinite number r. Our state space S for {X ′

t}t∈N is simply a (δ, r)-hyperfinite
representation of ∗X. The following properties of S will be used later.

(1) For each s ∈ S, there exists a B(s) ∈ ∗B[X] with diameter no greater
than δ containing s such that B(s1) ∩ B(s2) = ∅ for any two different
s1, s2 ∈ S.

(2) NS(∗X) ⊂
⋃

s∈S B(s).

For every x ∈ ∗X, we know that ∗g(x, 1, .) is an internal probability measure
on (∗X, ∗B[X]). When X is non-compact,

⋃
s∈S B(s) �= ∗X. We can truncate ∗g

to an internal probability measure on
⋃

s∈S B(s).

Definition 8.9. For i ∈ {0, 1}, let g′(x, i, A) :
⋃

s∈S B(s)× ∗B[X] → ∗[0, 1] be
given by:

(8.13) g′(x, i, A) = ∗g(x, i, A ∩
⋃
s∈S

B(s)) + δx(A)∗g(x, i, ∗X \
⋃
s∈S

B(s)).

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

Intuitively, this means that if our ∗Markov chain is trying to reach ∗X \⋃
s∈S B(s) then we would force it to stay at where it is. For any x ∈

⋃
s∈S B(s) and

any A ∈ ∗B[X], it is easy to see that g′(x, 0, A) = 1 if x ∈ A and equals to 0 other-
wise. Clearly, g′(x, 0, .) is an internal probability measure for every x ∈

⋃
s∈S B(s).

We first show that g′ is a valid internal probability measure.

Lemma 8.10. Let B[
⋃

s∈S B(s)] = {A ∩
⋃

s∈S B(s) : A ∈ ∗B[X]}. Then for
any x ∈

⋃
s∈S B(s), the triple (

⋃
s∈S B(s),B[

⋃
s∈S B(s)], g′(x, 1, .)) is an internal

probability space.
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Proof. Fix x ∈
⋃

s∈S B(s). We only need to show that g′(x, 1, .) is an internal
probability measure on (

⋃
s∈S B(s),B[

⋃
s∈S B(s)]).

By definition, it is clear that g′(x, 1, ∅) = 0 and g′(x, 1,
⋃

s∈S B(s)) = 1. Con-
sider two disjoint A,B ∈ B[

⋃
s∈S B(s)], we have:

g′(x, 1, A ∪B)(8.14)

=∗g(x, 1, A ∪B) + δx(A ∪B)∗g(x, 1, ∗X \
⋃
s∈S

B(s))(8.15)

=∗g(x, 1, A) + δx(A)∗g(x, 1, ∗X \
⋃
s∈S

B(s))(8.16)

+ ∗g(x, 1, B) + δx(B)∗g(x, 1, ∗X \
⋃
s∈S

B(s))

=g′(x, 1, A) + g′(x, 1, B).(8.17)

Thus we have the desired result. �

In fact, for x ∈ NS(∗X) = st−1(X), the probability of escaping to infinity is
always infinitesimal.

Lemma 8.11. Suppose {Xt}t∈N satisfies (DSF). Then for any x ∈ NS(∗X) and
any t ∈ N, we have ∗g(x, t, st−1(X)) = 1.

Proof. Pick a x ∈ NS(∗X) and some t ∈ N. Let x0 = st(x). By Lemma 8.8,
we know that ∗g(x, t, A) ≈ ∗g(x0, t, A) for every A ∈ ∗B[X]. Thus we have
∗g(x, t, st−1(X)) = ∗g(x0, t, st

−1(X)) = 1, completing the proof. �

We now define the hyperfinite Markov chain {X ′
t}t∈N on (S, I(S)) from {Xt}t∈N

by specifying its “one-step” transition probability. For i, j ∈ S letG
(0)
ij =g′(i, 0, B(j))

and Gij = g′(i, 1, B(j)). Intuitively, Gij refers to the probability of going from i to
j in one step. For any internal set A ⊂ S and any i ∈ S, Gi(A) =

∑
j∈A Gij . Then

{X ′
t}t∈N is the hyperfinite Markov chain on (S, I(S)) with “one-step” transition

probability {Gij}i,j∈S . We first verify that Gi(·) is an internal probability measure
on (S, I(S)) for every i ∈ S.

Lemma 8.12. For every i ∈ S, Gi(·) and G
(0)
i (·) are internal probability measure

on (S, I(S)).

Proof. Clearly G
(0)
i (A) = 1 if i ∈ A and G

(0)
i (A) = 0 otherwise. Thus G

(0)
i (·)

is an internal probability measure on (S,S).
Now consider Gi(·). By definition, it is clear that

Gi(∅) = g′(i, 1, ∅) = 0

(8.18)

Gi(S)=g′(i, 1,
⋃
s∈S

B(s))=∗g(i, 1,
⋃
s∈S

B(s))+δi(
⋃
s∈S

B(s))∗g(i, 1, ∗X \
⋃
s∈S

B(s))=1.

(8.19)

For hyperfinite additivity, it is sufficient to note that for any two internal sets
A,B ⊂ S and any i ∈ S we have Gi(A ∪B) =

∑
j∈A∪B Gij = Gi(A) +Gi(B). �
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We use G
(t)
i (·) to denote the t-step transition probability of {X ′

t}t∈N. Note that

G
(t)
i (·) is purely determined from the “one-step” transition matrix {Gij}i,j∈S . We

now show that G
(t)
i (·) is an internal probability measure on (S, I(S)).

Lemma 8.13. For any i ∈ S and any t ∈ N, G
(t)
i (·) is an internal probability

measure on (S, I(S)).

Proof. We will prove this by internal induction on t.
For t equals to 0 or 1, we already have the results by Lemma 8.12.
Suppose the result is true for t = t0. We now show that it is true for t = t0+1.

Fix any i ∈ S. For all A ∈ I(S) we have G
(t0+1)
i (A) =

∑
j∈S GijG

(t0)
j (A). Thus

we have G
(t0+1)
i (∅) =

∑
j∈S GijG

(t0)
j (∅) = 0. Similarly we have G

(t0+1)
i (S) =∑

j∈S GijG
(t0)
j (S) = 1. Pick any two disjoint sets A,B ∈ I(S). We have:

(8.20) G
(t0+1)
i (A∪B) =

∑
j∈S

Gij(G
(t0)
j (A)+G

(t0)
j (B)) = G

(t0+1)
j (A)+G

(t0+1)
j (B).

Hence G
(t0+1)
i (·) is an internal probability measure on (S, I(S)). Thus by internal

induction, we have the desired result. �

The following lemma establishes the link between ∗transition probability and
the internal transition probability of {X ′

t}t∈N.

Theorem 8.14. Suppose {Xt}t∈N satisfies (DSF). Then for any n ∈ N, any

x ∈ NS(S) and any A ∈ ∗B[X], ∗g(x, n,
⋃

s∈A∩S B(s)) ≈ G
(n)
x (A ∩ S).

Proof. We prove the theorem by induction on n ∈ N.
Let n = 1. Fix any x ∈ NS(∗X) ∩ S and any A ∈ ∗B[X]. We have

Gx(A ∩ S)(8.21)

= g′(x, 1,
⋃

s∈A∩S

B(s))(8.22)

= ∗g(x, 1,
⋃

s∈A∩S

B(s)) + δx(
⋃

s∈A∩S

B(s))∗g(x, 1, ∗X \
⋃
s∈S

B(s))(8.23)

≈ ∗g(x, 1,
⋃

s∈A∩S

B(s))(8.24)

where the last ≈ follows from Lemma 8.11.
We now prove the general case. Fix any x ∈ NS(∗X) ∩ S and any A ∈ ∗B[X].

Assume the theorem is true for t = k and we will show the result holds for t = k+1.
We have

∗g(x, k + 1,
⋃

s′∈A∩S

B(s′))(8.25)

=(
∑
s∈S

∗g(x, 1, B(s))∗f (k)
x (B(s),

⋃
s′∈A∩S

B(s′))(8.26)

+ ∗g(x, 1, ∗X \
⋃
s∈S

B(s))∗f (k)
x (∗X \

⋃
s∈S

B(s),
⋃

s′∈A∩S

B(s′))

≈
∑
s∈S

∗g(x, 1, B(s))∗f (k)
x (B(s),

⋃
s′∈A∩S

B(s′)).(8.27)
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where the last ≈ follows from Lemma 8.11.
By Lemmas 8.5 and 8.8, we have

∗f (k)
x (B(s),

⋃
s′∈A∩S

B(s′)) ≈ ∗g(s, k,
⋃

s′∈A∩S

B(s′)).

Thus we have
(8.28)∑
s∈S

∗g(x, 1, B(s))∗f (k)
x (B(s),

⋃
s′∈A∩S

B(s′))≈
∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′)).

It remains to show that∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′)) ≈ G(k+1)
x (A ∩ S).

Fix any positive ε ∈ R. By Lemma 8.11, we can pick an internal set M ⊂ NS(S)
such that ∗g(x, 1,

⋃
s∈M B(s)) > 1− ε. We then have

∑
s∈S

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′))

(8.29)

=
∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′))+
∑

s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′)).

(8.30)

By induction hypothesis, we have ∗g(s, k,
⋃

s′∈A∩S B(s′)) ≈ G
(k)
s (A ∩ S) for all

s ∈ M . By Lemma 3.20 we have

(8.31)
∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′)) ≈
∑
s∈M

∗g(x, 1, B(s))G(k)
s (A ∩ S).

As all B(s) are mutually disjoint, x lies in at most one element of the collection
{B(s) : s ∈ M}. Suppose x ∈ B(s0) for some s0 ∈ M . Then we have

|
∑
s∈M

∗g(x, 1, B(s))G(k)
s (A ∩ S)−

∑
s∈M

g′(x, 1, B(s))G(k)
s (A ∩ S)|(8.32)

= |(∗g(x, 1, B(s0))− g′(x, 1, B(s0)))G
(k)
s0 (A ∩ S)|(8.33)

= |∗g(x, 1, ∗X \
⋃
s∈S

B(s))G(k)
s0 (A ∩ S)| ≈ 0(8.34)

where the last ≈ follows from Lemma 8.11. Thus, by Eq. (8.31), we have∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′))(8.35)

≈
∑
s∈M

g′(x, 1, B(s))G(k)
s (A ∩ S)(8.36)

=
∑
s∈M

Gx({s})G(k)
s (A ∩ S).(8.37)

As ∗g(x, 1,
⋃

s∈M B(s)) > 1− ε, we know that

(8.38)
∑

s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′)) < ε.
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On the other hand, we have∑
s∈S\M

Gx({s})G(k)
s (A ∩ S)(8.39)

=
∑

s∈S\M
g′(x, 1, B(s))G(k)

s (A ∩ S)(8.40)

≤
∑

s∈S\M
g′(x, 1, B(s))(8.41)

≤ ∗g(x, 1,
⋃

s∈S\M
B(s)) + ∗g(x, 1, ∗X \

⋃
s∈S

B(s))(8.42)

≈ ∗g(x, 1,
⋃

s∈S\M
B(s)) < ε(8.43)

where the second last ≈ follows from Lemma 8.11.
Thus the difference between

∑
s∈M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′))

+
∑

s∈S\M

∗g(x, 1, B(s))∗g(s, k,
⋃

s′∈A∩S

B(s′))

and
∑

s∈M Gx({s})G(k)
s (A ∩ S) +

∑
s∈S\M Gx({s})G(k)

s (A ∩ S) is less or approxi-

mately to ε. Hence we have

(8.44) |∗g(x, k + 1,
⋃

s′∈A∩S

B(s′))−G(k+1)
x (A ∩ S)| � ε

As our choice of ε is arbitrary, we have ∗g(x, k + 1,
⋃

s′∈A∩S B(s′)) ≈ G
(k+1)
x (A∩S),

completing the proof. �

The following lemma is a slight generalization of [ACH97, Thm 4.1].

Lemma 8.15. Suppose {Xt}t∈N satisfies (DSF). Then for any Borel set E, any
x ∈ NS(∗X) and any n ∈ N, we have ∗g(x, n, ∗E) ≈ ∗g(x, n, st−1(E)).

Proof. Fix x ∈ NS(∗X) and n ∈ N. Let x0 = st(x). Fix any positive ε ∈ R,
as g(x0, n, .) is a Radon measure, we can find K compact, U open with K ⊂ E ⊂
U such that g(x0, n, U) − g(x0, n,K) < ε

2 . By the transfer principle, we know
that ∗g(x0, n,

∗U) − ∗g(x0, n,
∗K) < ε/2. By (DSF) we know that ∗g(x0, n,

∗U) ≈
∗g(x, n, ∗U) and ∗g(x0, n,

∗K) ≈ ∗g(x, n, ∗K). Hence we know that ∗g(x, n, ∗U) −
∗g(x, n, ∗K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U . Both
∗g(x, n, ∗E) and ∗g(x, n, st−1(E)) lie between ∗g(x, n, ∗U) and ∗g(x, n, ∗K). So
|∗g(x, n, ∗E)−∗g(x, n, st−1(E))| < ε. This is true for any ε and hence ∗g(x, n, ∗E) ≈
∗g(x, n, st−1(E)). �

We are now at the place to establish the link between the transition probability
of {Xt}t∈N and the internal transition probability of {X ′

t}t∈N.

Theorem 8.16. Suppose {Xt}t∈N satisfies (DSF). Then for any s ∈ NS(S),

any n ∈ N and any E ∈ B[X], P
(n)
st(s)(E) = G

(n)

s (st−1(E) ∩ S).
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Proof. Fix any s ∈ NS(S), any n ∈ N and any Borel set E. By Lemma 8.15,

we have P
(n)
st(s)(E)=∗g(st(s), n, ∗E) ≈ ∗g(s, n, ∗E) ≈ ∗g(s, n, st−1(E)). By Eq. (6.19),

we have

(8.45) ∗g(s, n, st−1(E)) = sup{∗g(s, n,
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}.

By Theorem 8.14, we have ∗g(s, n,
⋃

s∈Ai
B(s)) = G

(n)

s (Ai). Thus we have

(8.46)
∗g(s, n, st−1(E)) = sup{G(n)

s (Ai) : Ai ⊂ st−1(E)∩S,Ai ∈ I(S)}=G
(n)

s (st−1(E)∩S).
Hence we have the desired result. �

Thus the transition probability of {Xt}t∈N agrees with the Loeb probability of
{X ′

t}t∈N via standard part map.





CHAPTER 9

Hyperfinite Representation for Continuous-time
Markov Processes

In Section 2, for every standard discrete-time Markov process, we construct a
hyperfinite Markov process that represents it. In this chapter, we extend the results
developed in Chapter 8 to continuous-time Markov processes. Let {Xt}t≥0 be a
continuous-time Markov process on a metric state space X satisfying the Heine-
Borel condition. The transition probability of {Xt}t≥0 is given by

(9.1) {P (t)
x (A) : x ∈ X, t ∈ R+, A ∈ B[X]}.

When we view the transition probability as a function of three variables, we again

use g(x, t, A) to denote the transition probability P
(t)
x (A). We have already es-

tablished some general properties regarding the transition probability g(x, t, A) in
Section 1. We recall some important definitions are results here.

Definition 9.1. For any A,B ∈ B[X], any k1, k2 ∈ R+ and any x ∈ X, let

f
(k1,k2)
x (A,B) be Px(Xk1+k2

∈ B|Xk1
∈ A) when P

(k1)
x (A) > 0 and let f

(k1,k2)
x (A,B)

= 1 otherwise.

Again, f can be viewed as a function of five variables. Let {An : n ∈ N} be a
partition of X consisting of Borel sets and let k1, k2 ∈ R+. For any x ∈ X and any
A ∈ B[X], we have

(9.2) g(x, k1 + k2, A) =
∑
n∈N

g(x, k1, An)f
(k1,k2)
x (An, A).

Intuitively, this means that the Markov chain first go to one of the An’s at time k1
and then go from that An to A in time k2.

As in Section 1, we are interested in the relation between the nonstandard
extensions of g and f . Recall Lemma 8.5 from Section 1.

Lemma 9.2. Consider any k1, k2 ∈ ∗R+, any x ∈ ∗X and any two sets A,B ∈
∗B[X] such that g(x, k1, A) > 0. If there exists a positive ε ∈ ∗R such that for any
two points x1, x2 ∈ A we have |∗g(x1, k2, B)− ∗g(x2, k2, B)| ≤ ε, then for any point

y ∈ A we have |∗g(y, k2, B)− ∗f (k1,k2)
x (A,B)| ≤ ε.

Let the hyperfinite time line T = {δt, . . . ,K} as in Chapter 7. When k1 = δt

and the context is clear, we write f
(k2)
x (A,B) instead of f

(k1,k2)
x (A,B).

In Section 2, we constructed a hyperfinite Markov chain {X ′
t}t∈N which rep-

resents our standard Markov chain {Xt}t∈N. The idea was that the difference be-
tween the transition probability of {Xt}t∈N and the internal transition probability
{X ′

t}t∈N generated from each step is infinitesimal. Since the time-line was discrete,
this implies that the transition probability of {Xt}t∈N and {X ′

t}t∈N agree with each
other. However, for continuous-time Markov process, we need to make sure that if

61
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we add up the errors up to any near-standard time t0 the sum is still infinitesimal.
Thus, instead of taking any hyperfinite representation of ∗X to be our state space
we need to carefully choose our state space for our hyperfinite Markov process.

1. Construction of Hyperfinite State Space

In this section, we will carefully pick a hyperfinite set S ⊂ ∗X to be the
hyperfinite state space for our hyperfinite Markov chain. The set S will be a
(δ0, r)-hyperfinite representation of ∗X for some infinitesimal δ0 and some positive
infinite r. Intuitively, δ0 measures the closeness between the points in S and r
measures the portion of ∗X to be covered by S. We first pick ε0 such that ε0

t
δt ≈ 0

for all t ∈ T . This ε0 will be fixed for the remainder of this section. We first choose
r according to this ε0. We first recall the following definitions from Chapter 2.

Definition 9.3 (Definition 2.8). Let K[X] denote the collection of compact
subsets of X. The Markov chain {Xt}t≥0 is said to be vanishing in distance if for

all t ≥ 0, all K ∈ K[X] and every ε > 0, the set {x ∈ X : P
(t)
x (K) ≥ ε} is contained

in a compact subset of X.

Definition 9.4 (Definition 2.9). A Markov chain {Xt}t≥0 is said to be strong
Feller if for all t > 0, all ε > 0, all x ∈ X, there exists δ > 0 such that:

(9.3) ((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)− P (t)

x (A)| < ε)).

We first introduce the following definition from general topology.

Definition 9.5. Let X be a metric space. For every x ∈ X and every A ⊂ X,
the distance between x and A is defined by d(x,A) = inf{d(x, a) : a ∈ A}.

As promised in Chapter 2, we now give an equivalent formulation of Defini-
tion 2.8 using the metric. It is easier to see the intuition behind Definition 2.8
using the following formulation of “diminishing in transition probability”.

Condition DT. For all t ≥ 0 and all compact K ⊂ X we have:

(1) (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε).
(2) (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K) > r =⇒ g(x, t,K) < ε).

Note that every Markov process with bounded state space satisfies (DT) auto-
matically. We now show that (DT) can be derived from Definitions 2.8 and 2.9.

Theorem 9.6. Suppose a Markov process {Xt}t≥0 has the strong Feller prop-
erty, then it also has property (1) of (DT). Property (2) of (DT) is equivalent to
vanishing in distance whenever the metric on X has the Heine-Borel property.

Proof. We first show that property (1) of (DT) follows automatically from
the strong Feller property. Fix t ≥ 0, K ∈ K[X] and ε > 0. Let Fn = {x ∈ X :
d(x,K) > n}. By countable additivity, for every x ∈ X, there exists n(x) ∈ N such

that P
(t)
x (Fn(x)) < ε. By the strong Feller property, for every x ∈ X, there exists

an open ball U(x) such that P
(t)
y (Fn(x)) < ε for all y ∈ U(x). By compactness of

K, there exists a fixed m ∈ N such that P
(t)
y (Fm) < ε for all y ∈ K. Let r = m+ s

where s is the diameter of K. By the triangle inequality, if x ∈ K and A ∈ B[X]

with d(x,A) > r then A ⊂ Fm. Hence, if d(x,A) > r then P
(t)
x (A) < ε.

We now show that property (2) of (DT) is equivalent to vanishing in distance
whenever the metric on X has the Heine-Borel property. Logically, property (2) of
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(DT) is equivalent to: for all t ≥ 0, all K ∈ K[X] and all ε > 0, there exists r > 0
such that

(9.4) {x ∈ X : P (t)
x (K) ≥ ε} ⊂ {x ∈ X : d(x,K) ≤ r}.

Suppose {Xt}t≥0 has property (2) of (DT) and the metric on X has the Heine-
Borel property. As the metric on X has the Heine-Borel property, the set {x ∈ X :
d(x,K) ≤ r} is compact so {Xt}t≥0 is vanishing in distance.

Suppose {Xt}t≥0 is vanishing in distance. Fix t ≥ 0, K ∈ K[X] and ε > 0.

The set {x ∈ X : P
(t)
x (K) ≥ ε} is contained in some compact set T ⊂ X. As T is

compact, there exists some r > 0 such that {x ∈ X : P
(t)
x (K) ≥ ε} ⊂ T ⊂ {x ∈ X :

d(x,K) ≤ r}. Hence {Xt}t≥0 has property (2) of (DT). �
As we will always assume that {Xt}t≥0 is vanishing in distance and strong

Feller, we shall use (DT) instead of Definition 2.8 from now on. The following
condition is an alternative condition to (DT), but stronger.

Condition SDT. For all t ≥ 0 we have

(9.5) (∀ε > 0)(∃r > 0)(∀x ∈ X)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε).

It is easy to see that (SDT) implies (DT).

Example 9.7. The Ornstein-Uhlenbeck is a continuous time stochastic process
{Xt}t≥0 satisfies the stochastic differential equation:

(9.6) dXt = θ(μ−Xt)dt+ σdWt.

where θ > 0, μ > 0 and σ > 0 are parameters and Wt denote the Wiener process.
The Ornstein-Uhlenbeck process is a stationary Gauss-Markov process. Note that
the Ornstein-Uhlenbeck process satisfies (DT) but not (SDT). As the state space of
the Ornstein-Uhlenbeck process satisfies the Heine-Borel condition, by Theorem 9.6,
the Ornstein-Uhlenbeck process also satisfies Definition 2.8.

An open ball centered at some x0 ∈ ∗X with radius r is simply the set

(9.7) {x ∈ ∗X : ∗d(x, x0) ≤ r}.
We usually use U(x0, r) to denote such set.

Theorem 9.8. Suppose (DT) holds. For every positive ε ∈ ∗R, there exists an
open ball U(a, r) centered at some standard point a with radius r such that:

(1) ∗g(x, δt, ∗X \ U(a, r)) < ε for all x ∈ NS(∗X).
(2) ∗g(y, t, A) < ε for all y ∈ ∗X \ U(a, r), all near-standard A ∈ ∗B[X] and

all t ∈ T .

where U(a, r) = {x ∈ ∗X : ∗d(x, a) ≤ r}.
Proof. : Fix a positive ε ∈ ∗R. Let X =

⋃
n∈N

Kn . For every n ∈ N, by

the transfer of condition 1 of (DT), there exists r ∈ ∗R+ such that the following
formula ψn(r) holds:

(9.8) (∀x ∈ ∗Kn)(∀A ∈ ∗B[X])(∗d(x,A) > r =⇒ ∗g(x, δt, A) < ε).

It is easy to see that {ψn(r) : n ∈ N} is a family of finitely satisfiable internal
formulas. By the saturation principle, there is a rδt such that

(9.9) (∀x ∈
⋃
n∈N

∗Kn)(∀A ∈ ∗B[X])(∗d(x,A) > rδt =⇒ ∗g(x, δt, A) < ε).
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Claim 9.9. For every n ∈ N, the formula φn(r)

(9.10) (∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn) < ε))).

is satisfiable.

Proof. Fix some n ∈ N. For every t ∈ T , by the transfer of condition 2 of
(DT), there exists r ∈ ∗R+ such that the following formula holds:

(9.11) (∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ∗g(x, t, ∗Kn) < ε).

Define h : T → ∗R+ by

(9.12) h(t) = min{r ∈ ∗R+ : (∀x ∈ ∗X)(∗d(x, ∗Kn) > r =⇒ ∗g(x, t, ∗Kn) < ε)}
By the internal definition principle, h is an internal function thus h(T ) is a hyper-
finite set. Let rn = max{r : r ∈ h(T )}. Then rn witnesses the satisfiability of the
formula φn(r). �

For any k ∈ N, it is easy to see that max{rni
: i ≤ k} witnesses the satisfiability

of {φni
(r) : i ≤ k}. Hence the family {φn(r) : n ∈ N} is finitely satisfiable. By the

saturation principle, there exists a r′ satisfies all φn(r) simultaneously. This means

(9.13) (∀x ∈ ∗X)(∀n ∈ N)(∗d(x, ∗Kn) > r′ =⇒ ((∀t ∈ T )(∗g(x, t, ∗Kn) < ε))).

Consider any near-standard internal set A.

Claim 9.10. There exists n ∈ N such that A ⊂ ∗Kn.

Proof. Suppose not. Then Mn = {a ∈ A : a �∈ ∗Kn} is non-empty for
every n ∈ N. It is easy to see that any finite intersection of these is non-empty.
By saturation, we know that

⋂
n∈N

Mn �= ∅. Hence there exists a ∈ A such that
a �∈

⋃
n∈N

∗Kn. By Theorem 3.28, we know that
⋃

n∈N

∗Kn = NS(∗X). This
contradicts with the fact that A is near-standard. �

Thus, we know that for every x ∈ ∗X and every near-standard A ∈ ∗B[X] we
have

(9.14) ((∀n ∈ N)(∗d(x, ∗Kn) > r′)) =⇒ ((∀t ∈ T )(∗g(x, t, A) < ε)).

Pick an infinite r∞ ∈ ∗R>0. Let a be any standard element in X and let r =
2max{rδt, r′, r∞}. We claim that U(a, r) satisfies the two conditions of this lemma.
By the choice of r, we know that ∗d(x, ∗X \ U(a, r)) > rδt for all x ∈

⋃
n∈N

∗Kn.
As

⋃
n∈N

∗Kn = NS(∗X), by Eq. (9.9), we have

(9.15) (∀x ∈ NS(∗X))(∗g(x, δt, ∗X \ U(a, r)) < ε).

Fix any y ∈ ∗X \U(a, r) and any near-standard A ∈ ∗B[X]. By the choice of r, we
know that ∗d(y, ∗Kn) > r′ for all n ∈ N. Thus, by Eq. (9.14) we have ∗g(y, t, A) < ε
for all t ∈ T . As our choices of y and A are arbitrary, we have the desired result. �

For the particular ε0 fixed above, we can find a standard a0 ∈ ∗X and some
positive infinite r1 ∈ ∗R such that the open ball U(a0, r1) satisfies the conditions
in Theorem 9.8. We fix a0 and r1 for the remainder of this section.

Lemma 9.11. Suppose (DT) holds. There exists a positive infinite r0 > 2r1
such that

(9.16) (∀y ∈ U(a0, 2r1))(
∗g(y, δt, ∗X \ U(a0, r0)) < ε0).
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Proof. By the transfer of the Heine-Borel condition, U(a0, 2r1) is a
∗compact

set. Then the proof follows easily from the transfer of condition 1 of (DT). Note
that we can always pick r0 to be bigger than 2r1. �

We will see how do we use Lemma 9.11 in Theorem 9.20. We now fix r0
for the remainder of this section. An immediate consequence of Theorem 9.8
and Lemma 9.11 is:

Lemma 9.12. Suppose (DT) holds. For any x ∈ X, any t ∈ T , any near-

standard internal set A ⊂ ∗X we have ∗f (t)
x (∗X \ U(a0, 2r0), A) < 2ε0.

Proof. Fix a x ∈ ∗X, a near-standard internal set A and some t ∈ T . By
Theorem 9.8, we know that (∀y ∈ ∗X \ U(a0, 2r0))(

∗g(y, t, A) < ε0). This means
that for any y1, y2 ∈ ∗X \ U(a0, 2r0) we have |∗g(y1, t, A) − ∗g(y2, t, A)| < ε0. By
Lemma 8.5, we know that for any y ∈ ∗X \ U(a0, 2r0) we have

(9.17) |∗g(y, t, A)− ∗f (t)
x (∗X \ U(a0, 2r0), A)| < ε0

which then implies that ∗f (t)
x (∗X \ U(a0, 2r0), A) < 2ε0. �

Thus, our hyperfinite state space S is a (δ0, 2r0)-hyperfinite representation
of ∗X such that

⋃
s∈S B(s) = U(a0, 2r0). We now choose an appropriate δ0 to

partition U(a0, 2r0) into hyperfinitely pieces. We use the strong Feller condition to
control the diameter of each B(s) for s ∈ S. For reader’s convenience, we restate
the strong Feller condition below:

Condition SF. The Markov chain{Xt}t≥0 is said to be strong Feller if for
every t > 0, every x ∈ X and every ε > 0 there exists δ > 0 such that
(9.18)

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)−P (t)

x (A)| < ε)).

Note that this δ depends on ε, t and x. View the transition probability as the
function g and by the transfer principle, we have for every t ∈ T \{0},every ε ∈ ∗R+

and every x ∈ ∗X there exists δ ∈ ∗R+ such that:

(9.19) ((∀y ∈ ∗X)(d(x, y) < δ =⇒ (∀A ∈ ∗B[X])|∗g(y, t, A)− ∗g(x, t, A)| < ε)).

We can then show that the total variation distance between transition proba-
bilities for Markov processes is non-increasing. The following lemma is a “standard
counterpart” of Lemma 7.25. The proof is identical to Lemma 8.7 hence omitted.

Lemma 9.13. Consider a standard Markov process with transition probability

measure P
(t)
x (·), then for every ε ∈ R+, every x1, x2 ∈ X, every t1, t2 ∈ R+ and

every A ∈ B[X] we have

(9.20) (|P (t1)
x1

(A)− P (t1)
x2

(A)| ≤ ε =⇒ |P (t1+t2)
x1

(A)− P (t1+t2)
x2

(A)| ≤ ε).

Apply the transfer principle to the above lemma and restrict out time line to
T , we know that for every ε ∈ ∗R+, every x1, x2 ∈ ∗X ,every t1, t2 ∈ T+ and every
A ∈ ∗B[X] we have:

(9.21) ((|∗P (t1)
x1

(A)− ∗P (t1)
x2

(A)| ≤ ε) =⇒ (|∗P (t1+t2)
x1

(A)− ∗P (t1+t2)
x2

(A)| ≤ ε)).

where ∗P (t)
x (A) = ∗g(x, t, A).

(SF) ensures the uniform continuity of the transition probability g(x, t, A) with
respect to x as is shown by the following lemma.
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Lemma 9.14. Suppose (SF) holds. There exists δ0 ∈ ∗R+ such that for any
x1, x2 ∈ U(a0, 2r0) with |x1 − x2| < δ0 we have |∗g(x1, t, A)− ∗g(x2, t, A)| < ε0 for
all A ∈ ∗B[X] and all t ∈ T+.

Proof. By the transfer of strong Feller, for every x ∈ U(a0, 2r0) there exists
δx ∈ ∗R+ such that:
(9.22)

(∀y ∈ ∗X)(d(x, y) < δx =⇒ (∀A ∈ ∗B[X])|∗g(x, δt, A)− ∗g(y, δt, A)| < ε0
2
).

The internal collection L = {U(x, δx
2 ) : x ∈ U(a0, 2r0)} of open balls forms an

open cover of U(a0, 2r0). By the transfer of Heine-Borel condition, we know that
U(a0, 2r0) is ∗compact hence there exists a hyperfinite subset of the cover L that

covers U(a0, 2r0). Denote this hyperfinite subcover by F = {B(xi,
δxi

2 ) : i ≤ N}
for some N ∈ ∗N. The set Δ = { δxi

2 : i ≤ N} is a hyperfinite set thus there exists

a minimum element of Δ. Let δ0 = min{ δxi

2 : i ≤ N}.
Pick any x, y ∈ U(a0, 2r0) with d(x, y) < δ0. We have x ∈ U(xi,

δxi

2 ) for some
i ≤ N . Then we have ∗d(y, xi) ≤ ∗d(y, x) + ∗d(x, xi) ≤ δxi

. Thus both x, y are
in U(xi, δxi

). This means that (∀A ∈ ∗B[X])(|∗g(x, δt, A) − ∗g(y, δt, A)| < ε0).
By Eq. (9.21), we know that (∀A ∈ ∗B[X])(∀t ∈ T |∗g(x, t, A) − ∗g(y, t, A)| < ε0),
completing the proof. �

Now we have determined a0,r0 and δ0. We now construct a (δ0, 2r0)-hyperfinite
representation set S with

⋃
s∈S B(s) = U(a0, 2r0). The following lemma is an

immediate consequence.

Theorem 9.15. Suppose (SF) holds. Let S be a (δ0, 2r0)-hyperfinite repre-
sentation with

⋃
s∈S B(s) = U(a0, 2r0). For any s ∈ S, any x1, x2 ∈ B(s), any

A ∈ ∗B[X] and any t ∈ T+ we have |∗g(x1, t, A)− ∗g(x2, t, A)| < ε0

An immediate consequence of the above lemma is:

Lemma 9.16. Suppose (SF) holds. Let S be a (δ0, 2r0)-hyperfinite representa-
tion with

⋃
s∈S B(s) = U(a0, 2r0). For for any s ∈ S, any y ∈ B(s), any x ∈ ∗X,

any A ∈ ∗B[X] and any t ∈ T+ we have |∗g(y, t, A)− ∗f (t)
x (B(s), A)| < ε0.

Proof. First recall that we use ∗f (t)
x (B(s), A) to denote ∗f (δt,t)

x (B(s), A). This
lemma then follows easily by applying Lemma 8.4 to Theorem 9.15. �

For the remainder of this paper we shall fix our hyperfinite state space S to be
a (δ0, 2r0)-hyperfinite representation of ∗X with

⋃
s∈S B(s) = U(a0, 2r0). That is:

(1)
⋃

s∈S B(s) = U(a0, 2r0).
(2) {B(s) : s ∈ S} is a mutually disjoint collection of ∗Borel sets with diame-

ters no greater than δ0.

This S will be the state space of our hyperfinite Markov process which is a
hyperfinite representation of our standard Markov process {Xt}t≥0.

2. Construction of Hyperfinite Markov Processess

In the last section, we have constructed the hyperfinite state space S to be
a (δ0, 2r0)-hyperfinite representation of ∗X. In this section, we will construct a
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hyperfinite Markov {X ′
t}t∈T process on S which is hyperfinite representation of our

standard Markov process {Xt}t≥0.
The following definition is very similar to Definition 8.9.

Definition 9.17. Let g′(x, δt, A) :
⋃

s∈S B(s)× ∗B[X] → ∗[0, 1] be given by:

(9.23) g′(x, δt, A) = ∗g(x, δt, A ∩
⋃
s∈S

B(s)) + δx(A)∗g(x, δt, ∗X \
⋃
s∈S

B(s)).

where δx(A) = 1 if x ∈ A and δx(A) = 0 if otherwise.

For any i, j ∈ S, letG
(δt)
i ({j})=g′(i, δt, B(j)) and letG

(δt)
i (A)=

∑
j∈A G

(δt)
i ({j})

for all internal A ⊂ S. For any internal A ⊂ S, G
(0)
i (A) = 1 if i ∈ A and G0

i (A) = 0
otherwise.

The following two lemmas are identical to Lemmas 8.10, 8.12 and 8.13 after

substituting δt for 1. Likewise, G
(t)
i (·) denotes the t-step transition probability of

{X ′
t}t∈T which is purely generated from {G(δt)

i (·)}i∈S .

Lemma 9.18. Let B[
⋃

s∈S B(s)] = {A ∩
⋃

s∈S B(s) : A ∈ ∗B[X]}. Then for
any x ∈

⋃
s∈S B(s) we have (

⋃
s∈S B(s),B[

⋃
s∈S B(s)], g′(x, δt, .)) is an internal

probability space.

Lemma 9.19. For any i ∈ S and any t ∈ T , we know that G
(t)
i (·) is an internal

probability measure on (S, I(S)).

For any i ∈ S and any t ∈ T we shall use G
(t)

i (·) to denote the Loeb extension

of the internal probability measure G
(t)
i (·) on (S, I(S)).

In order for the hyperfinite Markov chain {X ′
t}t∈T to be a good representation

of {Xt}t≥0, one of the key properties which needs to be shown is that the internal
transition probability of {X ′

t}t∈T agrees with the transition probability of {Xt}t≥0

up to an infinitesimal. The following technical result is a key step towards showing
this property (recall that ε0 is a positive infinitesimal such that ε0

t
δt ≈ 0 for all

t ∈ T ). This result is similar to Theorem 8.14 but is more complicated.

Theorem 9.20. Suppose (DT), (SF) hold. Then for any t ∈ T , any x ∈ S and
any near-standard A ∈ ∗B[X], we have

(9.24) |∗g(x, t,
⋃

s′∈A∩S

B(s′))−G(t)
x (A ∩ S)| ≤ ε0 + 5ε0

t− δt

δt
.

In particular, we have |∗g(x, t,
⋃

s′∈A∩S B(s′))−G
(t)
x (A ∩ S)| ≈ 0 for all t ∈ T , all

x ∈ S and all near-standard A ∈ ∗B[X].

Proof. We will prove the result by internal induction on t ∈ T .
We first prove the theorem for t = 0. As x ∈ S, it is easy to see that x ∈⋃

s′∈A∩S B(s′) if and only if x ∈ A∩S. Hence ∗g(x, 0,
⋃

s′∈A∩S B(s′)) = G
(0)
x (A∩S)
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We now show the case where t = δt. Pick any near-standard set A ∈ ∗B[X]
and any x ∈ S. By definition, we have:

G(δt)
x (A ∩ S) = g′(x, δt,

⋃
s′∈A∩S

B(s′))

(9.25)

= ∗g(x, δt,
⋃

s′∈A∩S

B(s′)) + δx(
⋃

s′∈A∩S

B(s′))∗g(x, δt, ∗X \
⋃
s∈S

B(s)).(9.26)

For any x ∈
⋃

s′∈A∩S B(s′), by Theorem 9.8 and the fact that
⋃

s′∈A∩S B(s′) is
near-standard, we have ∗g(x, δt, ∗X \

⋃
s∈S B(s)) < ε0 since

∗d(x, ∗X\
⋃

s∈S B(s)) >

r0. Thus we have |∗g(x, δt,
⋃

s′∈A∩S B(s′))−G
(δt)
x (A ∩ S)| < ε0.

We now prove the induction case. Assume the statement is true for some t ∈ T .
We now show that it is true for t + δt. Fix a near-standard A ∈ ∗B[X] and any
x ∈ S. We know that:

∗g(x, t+δt,
⋃

s′∈A∩S B(s′)) =
∑

s∈S
∗g(x, δt, B(s))∗f (t)

x (B(s),
⋃

s′∈A∩S B(s′))+
∗g(x, δt, ∗X \

⋃
s∈S B(s))∗f (t)

x (∗X \
⋃

s∈S B(s),
⋃

s′∈A∩S B(s′)).

Consider ∗g(x, δt, ∗X \
⋃

s∈S B(s))∗f (t)
x (∗X \

⋃
s∈S B(s),

⋃
s′∈A∩S B(s′)). By

Lemma 9.12, we have ∗f (t)
x (∗X \

⋃
s∈S B(s),

⋃
s′∈A∩S B(s′)) < 2ε0. Thus we con-

clude that:

(9.27)

|∗g(x, t+ δt,
⋃

s′∈A∩S

B(s′))−
∑
s∈S

∗g(x, δt, B(s))∗f (t)
x (B(s),

⋃
s′∈A∩S

B(s′))| < 2ε0.

By the construction of our hyperfinite representation S and Lemma 9.16, we

know that for any s ∈ S we have |∗g(s, t,
⋃

s′∈A∩S B(s′))−∗f (t)
x (B(s),

⋃
s′∈A∩S B(s′))|

< ε0. By the transfer of Lemma 3.20, we have that:

|
∑
s∈S

∗g(x, δt, B(s))∗f (t)
x (B(s),

⋃
s′∈A∩S

B(s′))

−
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))| < ε0.
(9.28)

Let us now consider the formulas
∑

s∈S
∗g(x, δt, B(s))∗g(s, t,

⋃
s′∈A∩S B(s′))

and
∑

s∈S g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S B(s′)). There exists an unique s0 ∈ S such
that x ∈ B(s0). This means that ∗g(x, δt, B(s)) is the same as g′(x, δt, B(s)) for
all s �= s0. Thus we have:

|
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))|

(9.29)

= |∗g(x, δt, B(s0))− g′(x, δt, B(s0))|∗g(s0, t,
⋃

s′∈A∩S

B(s′)).

(9.30)
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Recall the properties of r1 constructed after Theorem 9.8. If ∗d(s0, y) > r1 for
all near-standard y ∈ NS(∗X), by Theorem 9.8, we have ∗g(s0, t,

⋃
s′∈A∩S B(s′)) <

ε0. This implies that

(9.31) |∗g(s0, δt, B(s))− g′(s0, δt, B(s))|∗g(s0, t,
⋃

s′∈A∩S

B(s′)) < ε0.

If there exists some x0 ∈ NS(∗X) such that ∗d(s0, x0) < r1 then s0 ∈ U(a0, 2r1). By
the definition of g′ and Lemma 9.11, we know that ∗g(s0, δt,

∗X \
⋃

s∈S B(s)) < ε0.
As x ∈ B(s0), by Theorem 9.15, we know that

(9.32) |∗g(x, δt, B(s0))− g′(x, δt, B(s0))| = |∗g(x, δt, ∗X \
⋃
s∈S

B(s))| < 2ε0.

To conclude we have:

|
∑
s∈S

∗g(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))

−
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))| < 2ε0.
(9.33)

Finally by induction hypothesis and the transfer of Lemma 3.20 we know that:

|
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−G(t+δt)
x (A ∩ S)|(9.34)

= |
∑
s∈S

g′(x, δt, B(s))∗g(s, t,
⋃

s′∈A∩S

B(s′))−
∑
s∈S

g′(x, δt, B(s))G(t)
s (A ∩ S)|(9.35)

≤ |∗g(s, t,
⋃

s′∈A∩S

B(s′))−G(t)
s (A ∩ S)| ≤ ε0 + 5ε0

t− δt

δt
.(9.36)

Thus by Eq. (9.27), Eq. (9.28), Eq. (9.33) and Eq. (9.36) we conclude that

|∗g(x, t+ δt,
⋃

s′∈A∩S

B(s′))−G(t+δt)
x (A ∩ S)|(9.37)

≤ ε0 + 4ε0
t− δt

δt
+ 5ε0 = ε0 + 5ε0

t

δt
.(9.38)

As all the parameters in this statement are internal, by internal induction principle,
we have shown the statement. As ε0

t
δt ≈ 0 for all t ∈ T , in particular, we have

|∗g(x, t,
⋃

s′∈A∩S B(s′)) − G
(t)
x (A ∩ S)| ≈ 0 for all t ∈ T , all x ∈ S and all near-

standard A ∈ ∗B[X]. �

As the state space X is σ-compact, by Lemma 5.5 and Theorem 5.9, we know
that st−1(A) is universally Loeb measurable for A ∈ B[X]. We now extend Theo-
rem 9.20 to establish the relationship between ∗g and G.

Theorem 9.21. For any x ∈
⋃

s∈S B(s) let sx denote the unique element in S
such that x ∈ B(sx). Then, under (DT), (SF), for any E ∈ B[X] and any t ∈ T ,

we have ∗g(x, t, st−1(E)) = G
(t)

sx (st
−1(E) ∩ S) for any x ∈ ∗X.

Proof. When t = 0, ∗g(x, 0, st−1(E)) is 1 if x ∈ st−1(E) and is 0 otherwise.
Note that x ∈ st−1(E) if and only if sx ∈ st−1(E) ∩ S. Hence ∗g(x, t, st−1(E)) =

G
(t)

sx (st
−1(E) ∩ S).
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We now prove the case for t > 0. By the transfer principle, we know that for
any x ∈ ∗X and any t ∈ T we have ∗g(x, t, .) is an internal probability measure.
By the construction of Loeb measures (Eq. (6.19)), for t > 0 we have

(9.39) ∗g(x, t, st−1(E)) = sup{∗g(x, t,
⋃

s∈Ai

B(s)) : Ai ⊂ st−1(E) ∩ S,Ai ∈ I(S)}.

As the distance between x and sx is less than δ0, by Theorem 9.15 we know that
|∗g(x, t,

⋃
s∈Ai

B(s))− ∗g(sx, t,
⋃

s∈Ai
B(s))| < ε0. By Theorem 9.20, we know that

|∗g(sx, t,
⋃

s∈Ai
B(s)) − G

(t)
sx (Ai)| ≈ 0 as Ai is a near-standard internal set. Thus

we know that ∗g(x, t,
⋃

s∈Ai
B(s)) = G

(t)

sx (Ai). Thus we know that
(9.40)
∗g(x, t, st−1(E)) = sup{Gsx(Ai) : Ai ⊂ st−1(E)∩S,Ai ∈ I(S)} = G

(t)

sx (st
−1(E)∩S)

finishing the proof. �

One of the desired properties for a hyperfinite Markov chain is strong regularity.
Recall from Definition 7.6 that a hyperfinite Markov chain is strong regular if for
any A ∈ I(S), any non-infinitesimal t ∈ T and any i ≈ j ∈ NS(S) we have

G
(t)
i (A) ≈ G

(t)
j (A). We now show that {X ′

t} satisfies strong regularity. We first
prove the following “locally continuous” property for ∗g.

Lemma 9.22. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from
∗X ,any t ∈ ∗R+ that is not infinitesimal and any A ∈ ∗B[X] we have ∗g(x1, t, A) ≈
∗g(x2, t, A).

Proof. Fix two near-standard x1, x2 from ∗X. Let x0 = st(x1) = st(x2). Fix
some t0 ∈ ∗R+ that is not infinitesimal and also fix some positive ε ∈ R. Pick some
standard t′ ∈ R+ with t′ ≤ t0. By strong Feller we can pick a δ ∈ R+ such that
(∀y ∈ X)(|y − x0| < δ =⇒ ((∀A ∈ B[X])|g(y, t′, A) − g(x0, t

′, A)| < ε)). By the
transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(9.41) (∀A ∈ ∗B[X])(|∗g(x1, t
′, A)− ∗g(x2, t

′, A)| < ε).

As t′ ≤ t0, by Eq. (9.21), we know that |∗g(x1, t0, A) − ∗g(x2, t0, A)| < ε for all
A ∈ ∗B[X]. Since our choice of ε is arbitrary, we can conclude that ∗g(x1, t0, A) ≈
∗g(x2, t0, A) for all A ∈ ∗B[X]. �

An immediate consequence of this lemma is the following:

Lemma 9.23. Suppose (SF) holds. For any two near-standard x1 ≈ x2 from
∗X ,any t ∈ ∗R+ that is not infinitesimal and any universally Loeb measurable set
A we have ∗g(x1, t, A) = ∗g(x2, t, A).

Next we show that the internal measure ∗g(x, t, .) concentrates on the near-
standard part of ∗X for near-standard x and standard t.

Lemma 9.24. Suppose (SF) holds. For any Borel set E, any x ∈ NS(∗X) and
any t ∈ R+ we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).

Proof. Fix any x ∈ NS(∗X) and any t ∈ R+. Let x0 = st(x). Fix any

ε, as the probability measure P
(t)
x0 (·) is Radon, we can find K compact, U open

with K ⊂ E ⊂ U and P
(t)
x0 (U) − P

(t)
x0 (K) < ε/2. By the transfer principle,

we know that ∗g(x0, t,
∗U) − ∗g(x0, t,

∗K) < ε/2. By Lemma 9.22, we know



2. CONSTRUCTION OF HYPERFINITE MARKOV PROCESSESS 71

that ∗g(x0, t,
∗U) ≈ ∗g(x, t, ∗U) and ∗g(x0, t,

∗K) ≈ ∗g(x, t, ∗K). Hence we know
∗g(x, t, ∗U)−∗g(x, t, ∗K) < ε. Note that ∗K ⊂ st−1(K) ⊂ st−1(E) ⊂ st−1(U) ⊂ ∗U .
Both ∗g(x, t, ∗E) and ∗g(x, t, st−1(E)) lie between ∗g(x, t, ∗U) and ∗g(x, t, ∗K). So
|∗g(x, t, ∗E)− ∗g(x, t, st−1(E))| < ε. This is true for any ε and hence ∗g(x, t, ∗E) ≈
∗g(x, t, st−1(E)). �

We are now at the place to establish that {X ′
t} is strong regular. Note that

the time line T = {0, δt, ....,K} contains all the rational numbers but none of the
irrational numbers.

Theorem 9.25. Suppose (DT), (SF) hold. For any two near-standard s1 ≈ s2
from S, any t ∈ T that is not infinitesimal and any A ∈ I(S) we have G

(t)
s1 (A) ≈

G
(t)
s2 (A).

Proof. Fix any two near-standard s1 ≈ s2 ∈ S and any non-infinitesimal
t ∈ T . Pick a non-zero t′ ∈ Q such that t′ ≤ t. By Theorem 9.21, we know that
∗g(x, t, st−1(E)) = G

(t)

sx (st
−1(E) ∩ S). Fix any ε ∈ R+ and any A ∈ I(S), we now

consider Gt′

s1(A) and Gt′

s2(A). By Lemma 9.24, we can find a near-standard Ai ∈
I(S) such that |G(t′)

s1 (A)−G
(t′)
s1 (Ai)| < ε

3 and |G(t′)
s2 (A)−G

(t′)
s2 (Ai)| < ε

3 . As Ai is

near-standard, by Theorem 9.20, we know that G
(t′)
s1 (Ai) ≈ ∗g(s1, t

′,
⋃

s∈Ai∩S B(s))

and G
(t′)
s2 (Ai) ≈ ∗g(s2, t

′,
⋃

s∈Ai∩S B(s)). Moreover,by Lemma 9.22, we know that

|∗g(s1, t′,
⋃

s∈Ai∩S B(s))−∗g(s2, t
′,
⋃

s∈Ai∩S B(s))| ≈ 0. Hence we know |G(t′)
s1 (Ai)−

G
(t′)
s2 (Ai)| ≈ 0. Thus we have |G(t′)

s1 (A)−G
(t′)
s2 (A)| < ε. As our choice ε is arbitrary,

we know that |G(t′)
s1 (A)−G

(t′)
s2 (A)| ≈ 0. Hence we know that ‖ G

(t′)
s1 (·)−G

(t′)
s1 (·) ‖≈ 0

where ‖ G
(t′)
s1 (·)−G

(t′)
s1 (·) ‖ denotes the total variation distance between G

(t′)
s1 and

G
(t′)
s1 . By Lemma 7.25, we know that ‖ G

(t)
s1 (·) − G

(t)
s1 (·) ‖≈ 0 hence finishes the

proof. �
We are now able to establish to following theorem which is an immediate con-

sequence of Theorem 9.25.

Lemma 9.26. Suppose (DT), (SF) hold. For any two near-standard s1 ≈ s2
from S, any t ∈ T that is not infinitesimal and any universally Loeb measurable set

A we have G
(t)

s1 (A) = G
(t)

s2 (A).

There exists a natural link between the transition probability g of {Xt} and
its nonstandard extension ∗g. We have already established a strong link between
∗g and the internal transition probability G of {X ′

t}. We have also established the
“ local continuity” of ∗g. We are now at the place to establish the relationship
between the internal transition probability of {X ′

t} and the transition probability
of {Xt}.

Theorem 9.27. Suppose (DT), (SF) hold. For any s ∈ NS(S), any non-

negative t ∈ Q and any E ∈ B[X], we have P
(t)
st(s)(E) = G

(t)

s (st−1(E) ∩ S).

Proof. We first prove the theorem when t = 0. Fix any s ∈ NS(S) and any

E ∈ B[X]. We know that P
(t)
st(s)(E) = 1 if st(s) ∈ E and P

(t)
st(s)(E) = 0 otherwise.

For any x ∈ S and A ∈ I(S), note that G
(0)
x (A) = 1 if and only if x ∈ A and

G
(0)
x (A) = 0 otherwise. This establishes the theorem for t = 0.
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We now prove the result for positive t ∈ Q. Fix any s ∈ NS(S), any positive
t ∈ Q and any E ∈ B[X]. By Lemmas 9.22 and 9.24 and Theorem 9.21, we know
that
(9.42)

g(st(s), t, E) = ∗g(st(s), t, ∗E) ≈ ∗g(s, t, ∗E) ≈ ∗g(s, t, st−1(E)) = G
(t)

s (st−1(E)∩S).
Thus we have for any s ∈ NS(S), any non-zero t ∈ Q+ and any E ∈ B[X]:

P
(t))
st(s)(E) = G

(t)

s (st−1(E) ∩ S). �

It is desirable to extend Theorem 9.27 to all non-negative t ∈ R. In order to do
this, we need some continuity condition of the transition probability with respect
to time.

Condition OC. The Markov chain {Xt} is said to be continuous in time if
there exists a basis B0 such that g(x, t, U) is a continuous function of t > 0 for
every x ∈ X and every U which is a finite intersection of elements from B0.

It is easy to see that g(x, t, U) is continuous function of t > 0 for every x ∈ X
and every U which is a finite union of elements from B0. Note that (OC) is weaker
than assuming g(x, t, U) is a continuous function of t > 0 for every x ∈ X and every
open set U . We establish this by the following counterexample.

Example 9.28. Let μn be the uniform probability measure on the set { 1
n , . . . , 1}

for every n ≥ 1. Let μ be the Lebesgue measure on [0, 1]. It is easy to see that
μn(I) converges to μ(A) for every open interval I. However, it is not the case that
μn(U) converges to μ(U) for every open set. To see this, let U be an open set
containing the the set of rational numbers Q such that μ(Q) ≤ 1

2 . We can find such

U since μ(Q) = 0. We know limn→∞ μn(U) = 1 which does not equal to μ(U) = 1
2 .

Let us fix a basis B0 satisfying the conditions in (OC) for the remainder of this
section.

Lemma 9.29. Suppose (SF), (OC) hold. For any near-standard x1 ≈ x2, any
non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any U which is a finite
intersection of elements in B0, we have ∗g(x1, t1,

∗U) ≈ ∗g(x2, t2,
∗U).

Proof. Fix near-standard x1 ≈ x2 ∈ ∗X, some U ⊂ X which is a finite
intersection of elements in B0 and some ε ∈ R+. Also fix two non-infinitesimal
t1, t2 ∈ NS(∗R+) such that t1 ≈ t2. Let x0 ∈ X and t0 ∈ R+ denote the standard
parts of x1, x2 and t1, t2,respectively. Note that t0 > 0.

As U is a finite intersection of elements from B0, by (OC), there exists δ ∈ R+

such that

(9.43) (∀t ∈ R+)((|t− t0| < δ) =⇒ (|g(x0, t, U)− g(x0, t0, U)| < ε)).

By the transfer principle, we know that

(9.44) (∀t ∈ ∗R+)((|t− t0| < δ) =⇒ (|∗g(x0, t,
∗U)− ∗g(x0, t0,

∗U)| < ε)).

Since ε is arbitrary and st(t1) = st(t2) = t0, we have

(9.45) ∗g(x0, t1,
∗U) ≈ ∗g(x0, t0,

∗U) ≈ ∗g(x0, t2,
∗U).

By Lemma 9.22, we then have

(9.46) ∗g(x1, t1,
∗U) ≈ ∗g(x0, t1,

∗U) ≈ ∗g(x0, t2,
∗U) ≈ ∗g(x2, t2,

∗U),

completing the proof. �



2. CONSTRUCTION OF HYPERFINITE MARKOV PROCESSESS 73

The next lemma establishes the relation between U and st−1(U).

Lemma 9.30. Suppose (SF), (OC) hold. For any U which is a finite intersection
of elements from B0, any x ∈ NS(∗X) and any t ∈ NS(∗R+) we have ∗g(x, t, ∗U) ≈
∗g(x, t, st−1(U)).

Proof. Fix some U which is a finite intersection of elements from B0, some
x ∈ NS(∗X) and some t ∈ NS(∗R+). As st−1(U) ⊂ ∗U , it is sufficient to show
that ∗g(x, t, ∗U) − ∗g(x, t, st−1(U)) < ε for every ε ∈ R+. Fix some ε1 ∈ R+. By
Lemma 9.29, we know that

(9.47) ∗g(x, t, ∗U) ≈ ∗g(st(x), st(t), ∗U).

Let U =
⋃

n∈N
Un where Un ∈ B0 for all n ∈ N. As X is a metric space satisfying

the Heine-Borel condition, X is locally compact. Thus, without loss of generality,
we can assume that Un ⊂ U for all n ∈ N. By the continuity of probability and the
transfer principle, there exists a N ∈ N such that

(9.48) ∗g(st(x), st(t), ∗U)− ∗g(st(x), st(t), ∗(
⋃

n≤N

)Un) < ε1.

By Lemma 9.29 again, we know that ∗g(x, t, ∗U) − ∗g(x, t, ∗(
⋃

n≤N )Un) < ε1.

As
⋃

n≤N Un ⊂ U , we know that ∗(
⋃

n≤N )Un ⊂ st−1(U). Hence we know that
∗g(x, t, ∗U) − ∗g(x, t, st−1(U)) < ε1. As the choice of ε1 is arbitrary, we have the
desired result. �

Before we extend Theorem 9.27 to all non-negative t ∈ R, we introduce the
following concept.

Definition 9.31. A class C of subsets of some space X is called a π-system if
it is closed under finite intersections.

π-system can be used to determine the uniqueness of measures.

Lemma 9.32 ([Kal02, Lemma 1.17]). Let μ and ν be bounded measures on
some measurable space (Ω,A), and let C be a π-system in Ω such that Ω ∈ C and
σ(C) = A where σ(C) denote the σ-algebra generated by C. Then μ = ν if and only
if μ(A) = ν(A) for all A ∈ C.

Lemma 9.32 allows us to obtain slightly stronger results than Lemmas 9.29
and 9.30.

Lemma 9.33. Suppose (SF), (OC) hold. For any near-standard x1 ≈ x2, any
non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and any E ∈ B[X], we have
∗g(x1, t1,

∗E) ≈ ∗g(x2, t2,
∗E).

Proof. Fix two near-standard x1 ≈ x2 and two near-standard t1 ≈ t2. Let
μ1(A) = ∗g(x1, t1,

∗A) and μ2(A) = ∗g(x2, t2,
∗A) for all A ∈ B[X]. It is easy to

see that both μ1 and μ2 are probability measures on X. By Lemma 9.29, we know
that μ1(U) = μ2(U) for any U which is a finite intersection of elements in B0. By
Lemma 9.32, we have the desired result. �

By using essentially the same argument, we have

Lemma 9.34. Suppose (SF), (OC) hold. For any E ∈ B[X], any x ∈ NS(∗X)
and any t ∈ NS(∗R+) we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).
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We are now at the place to extend Theorem 9.27 to all non-negative t ∈ R.

Theorem 9.35. Suppose (DT), (SF), (OC) hold. For any s ∈ NS(S), any non-

infinitesimal t ∈ NS(T ) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E)∩S).

Proof. Fix any s ∈ NS(S), any non-infinitesimal t ∈ NS(T ) and any E ∈
B[X]. By Lemmas 9.33 and 9.34, we know that

(9.49) g(st(s), st(t), E) = ∗g(st(s), st(t), ∗E) ≈ ∗g(s, t, ∗E) ≈ ∗g(s, t, st−1(E)).

By Theorem 9.21, we know that ∗g(s, t, st−1(E)) = G
(t)

s (st−1(E) ∩ S). Thus we

know that g(st(s), st(t), E) = G
(t)

s (st−1(E) ∩ S), completing the proof. �
It is possible to weaken (OC) to: g(x, t, U) is a continuous function of t > 0

for x ∈ X and U ∈ B0. From the proof of Theorem 9.35, we can show that

g(st(s), st(t), U) = G
(t)

s (st−1(U) ∩ S) for all U ∈ B0. Then the question is: if two
finite Borel measures on some metric space agree on all open balls, do they agree
on all Borel sets? Unfortunately, this is not true even for compact metric spaces.

Theorem 9.36 ([Dav71, Theorem .2]). There exists a compact metric space Ω,
and two distinct probability Borel measures μ1, μ2 on Ω, such that μ1(U) = μ2(U)
for every open ball U ⊂ Ω.

However, we do have an affirmative answer of the above question for metric
spaces we normally encounter.

Theorem 9.37 ([PT91]). Whenever finite Borel measures μ and ν over a
separable Banach space agree on all open balls, then μ = ν.

The following definition of “continuous in time” is weaker than (OC).

Condition WC. The Markov chain {Xt} is said to be weakly continuous in

time if for any open ball A ⊂ X, and any x ∈ X, the function t �→ P
(t)
x (A) is a

right continuous function for t > 0. Moreover, for any t0 ∈ R+, any x ∈ X and any

E ∈ B[X] we have limt↑t0 P
(t)
x (E) always exists although it not necessarily equals

to P
(t0)
x (E).

This condition is usually assumed for all the continuous time Markov processes.
An immediate implication of this definition is the following lemma:

Lemma 9.38. Suppose (SF), (WC) hold. For any near-standard x1 ≈ x2, any
non-infinitesimal t1, t2 ∈ NS(∗R+) such that t1 ≈ t2 and t1, t2 ≥ st(t1) and any
open ball A we have ∗g(x1, t1,

∗A) ≈ ∗g(x2, t2,
∗A).

Proof. The proof is similar to the proof of Lemma 9.29. �
This lemma, just like Lemma 9.29, is stronger than Lemma 9.22 since t1 and

t2 need not be standard positive real numbers. We now generalize Lemma 9.24 to
all t ∈ NS(∗R). Before proving it, we first recall the following theorem.

Theorem 9.39 (Vitali-Hahn-Saks Theorem). Let μn be a sequence of countably
additive functions defined on some fixed σ-algebra Σ, with values in a given Banach
space B such that

(9.50) lim
n→∞

μn(X) = μ(X).

exists for every X ∈ Σ, then μ is countably additive.
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An immediate consequence of Theorem 9.39 is that the limit of probability mea-
sures remain a probability measure. The following lemma generalizes Lemma 9.24
to all t ∈ NS(∗R).

Lemma 9.40. Suppose (SF), (WC) hold. For any x ∈ NS(∗X) and for any non-
infinitesimal t ∈ NS(∗R) we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)) for all E ∈ B[X].
Moreover, ∗g(x, t, st−1(X)) = 1 for all x ∈ NS(∗X) and all t ∈ NS(∗R).

Proof. Pick any x ∈ NS(∗X), any t ∈ NS(∗R) and any E ∈ B[X]. Let
x0 = st(x) and t0 = st(t). We first show the result for t < t0. For any B ∈ B[X],
let h(x0, t0, B) denote lims↑t0 g(x0, s, B). By Vitali-Hahn-Saks theorem, h is a
probability measure on (X,B[X]). Since X is a Polish space, h is a Radon measure.
By Lemma 6.8, we know that ∗h(x0, t0, st

−1(X)) = 1. As t ≈ t0, we know that
∗g(x0, t,

∗B) ≈ ∗h(x0, t0,
∗B) for all B ∈ B[X]. Pick some ε ∈ R+ and choose K

compact, U open with K ⊂ E ⊂ U and h(x0, t0, U)− h(x0, t0,K) < ε
2 . We have

|∗g(x0, t, st
−1(E))− ∗h(x0, t0, st

−1(E))|
(9.51)

� |∗g(x0, t, st
−1(E))− ∗g(x0, t,

∗K)|+ |∗h(x0, t0,
∗K)− ∗h(x0, t0, st

−1(E))| � ε

(9.52)

As ε is arbitrary, we have ∗g(x0, t, st
−1(E)) = ∗h(x0, t0, st

−1(E)). Hence we have
∗g(x0, t, st

−1(E)) = ∗g(x0, t,
∗E). By Lemma 9.22, we know that ∗g(x0, t,D) ≈

∗g(x, t,D) for all D ∈ ∗B[X]. Thus, we have ∗g(x0, t, st
−1(E)) = ∗g(x, t, st−1(E))

and ∗g(x0, t,
∗E) ≈ ∗g(x, t, ∗E). Hence we have ∗g(x, t, st−1(E)) = ∗g(x, t, ∗E).

For t ≥ t0, we can simply take h(x0, t0, B) to be g(x0, t0, B) for every B ∈ B[X].
Suppose there exist some x0 ∈ NS(∗X) and some infinitesimal t0 such that

∗g(x0, t0, st
−1(X)) < 1. This implies that there exist n ∈ N and A ∈ ∗B[X] such

that

(9.53) (A ∩ st−1(X) = ∅) ∧ (∗g(x0, t0, A) >
1

n
).

Pick some positive t1 ∈ R.

Claim 9.41. ∗f (t0,t1)
x0

(A, ∗K) ≈ 0 for all compact K ⊂ X.

Proof. Pick some compact subset K and some positive ε ∈ R. By condition
(2) of (DT), there exists positive r ∈ R such that

(9.54) (∀x ∈ X)(d(x,K) > r =⇒ g(x, t1,K) < ε).

By the transfer principle, we know that ∗g(x, t1,
∗K) ≈ 0 for all x ∈ A. By

Lemma 8.5, we have ∗f (t0,t1)
x0

(A, ∗K) ≈ 0. �

Fix some compact K ⊂ X. Note that
(9.55)
∗g(x0, t0+t1,K)=∗g(x0, t0, A)∗f (t0,t1)

x0
(A, ∗K)+∗g(x0, t0,

∗X\A)∗f (t0,t1)
x0

(∗X\A, ∗K).

Hence ∗g(x0, t0 + t1,K) � 1− 1
n . As this is true for all compact K ⊂ X, we know

that ∗g(x0, t0 + t1, st
−1(X)) ≤ 1 − 1

n . This is a contradiction hence we have the
desired result. �

A consequence of this lemma is the following result:
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Lemma 9.42. Suppose (SF), (WC) hold. For any s ∈ NS(S) and any t ∈ NS(T )

we have G
(t)
s (S) = G

(t)

s (NS(S)) = 1.

Proof. Fix any s∈NS(S) and any t ∈ NS(T ). By Theorem 9.21 and Lemma 9.40,
we know that

(9.56) G
(t)

s (st−1(X) ∩ S) = ∗g(s, t, st−1(X)) = 1.

�
Assuming (WC) instead of (OC), we have the following result which is similar

to Theorem 9.35.

Theorem 9.43. Suppose (DT), (SF), (WC) hold. Suppose the state space X
of {Xt}t≥0 is a separable Banach space. Then for any s ∈ NS(S), any t ∈ NS(T )

with t > st(t) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S).

Proof. We require X to be a separable Banach space to apply Theorem 9.37.
The proof is similar to the proof of Theorem 9.35 hence omitted. �



CHAPTER 10

Markov Chain Ergodic Theorem

In the last chapter, we established the relationship between the transition prob-
ability of {Xt}t≥0 and {X ′

t}t∈T . In this chapter, we will show that {X ′
t}t∈T inherits

some other key properties from {Xt}t≥0. Most importantly, we show that if π is a
stationary distribution then its nonstandard counterpart is a weakly stationary dis-
tribution. Finally we will establish the Markov chain Ergodic theorem for {Xt}t≥0

by showing that {X ′
t}t∈T converges.

Let π be a stationary distribution for our standard Markov process {Xt}t≥0.
We now show that π′, the hyperfinite representation measure of π, is a weakly
stationary distribution for {X ′

t}t∈T .
Since X is a Polish space equipped with Borel σ-algebra, the stationary distri-

bution π for {Xt} must be a Radon measure. We first establish the following fact
of stationary distributions.

Lemma 10.1. For any t ∈ R+, any finite partition of X with Borel sets
A1, ...., An, B of X and any A ∈ B[X] such that:

(1) for each Ai ∈ {A1, ...., An} there exists an εi ∈ R+ such that for any

x, y ∈ Ai we have |P (t)
x (A)− P

(t)
y (A)| < εi.

(2) there exists an ε ∈ R+ such that π(B) < ε.

We have |π(A)−
∑

i≤n π(Ai)P
(t)
xi (A)| ≤

∑
i≤n π(Ai)εi + ε for any xi ∈ Ai.

Proof. Fix a t ∈ R+ and suppose there exists such a finite partition
A1, ...., An, B of X satisfying the two conditions in the lemma. Pick any A ∈ B[X]
and any xi ∈ Ai. We then have:

|π(A)−
∑
i≤n

π(Ai)P
(t)
xi

(A)|(10.1)

= |
∫
X

P (t)
x (A)π(dx)−

∑
i≤n

(

∫
Ai

π(dx))P (t)
xi

(A)|(10.2)

= |
∑
i≤n

∫
Ai

P (t)
x (A)π(dx) +

∫
B

P (t)
x (A)π(dx)−

∑
i≤n

∫
Ai

P (t)
xi

(A)π(dx)|(10.3)

≤ |
∑
i≤n

(

∫
Ai

(P (t)
x (A)− P (t)

xi
(A))π(dx))|+ ε(10.4)

≤
∑
i≤n

(

∫
Ai

εiπ(dx)) + ε(10.5)

=
∑
i≤n

π(Ai)εi + ε.(10.6)

�
77
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Write P
(t)
x (A) as g(x, t, A) and then apply the transfer principle, we have the

following lemma:

Lemma 10.2. For any t ∈ ∗R+, for any hyperfinite partition of ∗X with ∗Borel
sets A1, ...., AN , B of ∗X and any A ∈ ∗B[X] such that:

(1) for each Ai ∈ {A1, ...., AN} there exists an εi ∈ ∗R+ such that for any
x, y ∈ Ai |∗g(x, t, A)− ∗g(x, t, A)| < εi.

(2) there exists an ε ∈ ∗R+ such that π(B) < ε.

We have

(10.7) |∗π(A)−
∑
i≤N

∗π(Ai)
∗g(xi, t, A)| ≤

∑
i≤N

∗π(Ai)εi + ε.

for any xi ∈ Ai

Recall the definition of weakly stationary distribution:

Definition 10.3. An internal distribution π′ on (S, I(S)) is called weakly sta-
tionary with respect to the Markov chain {X ′

t}t∈T if there exists an infinite t0 ∈ T

such that for every t ≤ t0 and every A ∈ I(S) we have π′(A)≈
∑

s∈S π′({s})G(t)
s (A).

We now construct a weak-stationary distribution for {X ′
t}t∈T from the station-

ary distribution π of {Xt}t≥0.

Definition 10.4. Define an internal probability measure π′ on (S, I(S)) as
following:

(1) For all s ∈ S let π′({s}) =
∗π(B(s))

∗π(
⋃

s′∈S B(s′)) .

(2) For all internal sets A ⊂ S let π′(A) =
∑

s∈A π′({s}).

The following lemma is a direct consequence of Definition 10.4.

Lemma 10.5. π′ is an internal probability measure on (S, I(S)). Moreover, for
any A ∈ B[X], we have π(A) = π′(st−1(A) ∩ S).

Proof. Clearly π′ is an internal measure on (S, I(S)). The second part of the
lemma follows directly from Theorem 6.11. �

We now show that π′ is a weakly stationary distribution for {X ′
t}.

Theorem 10.6. Suppose (DT), (SF), (WC) hold. Then π′ is a weakly station-
ary distribution for {X ′

t}t∈T .

Proof. Fix an internal set A ∈ S and some near-standard t ∈ T . Consider
the hyperfinite partition F = {B(s1), ...., B(sN ), ∗X \

⋃
s∈S B(s)} of ∗X where

S = {s1, s2, ..., sN} is the state space of {X ′
t}. Note that every member of F is an

member of ∗B[X]. By Theorem 9.15 and Eq. (9.21), we know that

(10.8) (∀i ≤ N)(∀x, y ∈ B(si))(∀C ∈ ∗B[X])(|∗g(x, t, C)− ∗g(y, t, C)| < ε0).

Let B =
⋃

s∈AB(s) then B ∈ ∗B[X] since it is a hyperfinite union of ∗Borel sets.
As π is a Radon measure, we know that there exists an infinitesimal ε1 such that
∗π(∗X \

⋃
s∈S B(s)) = ε1.

By Lemma 10.2 , we have

(10.9) |∗π(B)−
∑
i≤N

∗π(B(si))
∗g(si, t, B)| ≤

∑
i≤N

∗π(B(si))ε0 + ε1 ≤ ε0 + ε1 ≈ 0.
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By Definition 10.4, we know that π′(A)=
∗π(B)

∗π(
⋃

s′∈S B(s′)) and π′(si)=
∗π(B(si))

∗π(
⋃

s′∈S B(s′)) .

Thus, we have

(10.10) |π′(A)−
∑
i≤N

π′(si)
∗g(si, t, B)| ≈ 0.

Fix positive ε ∈ R. As π′ concentrates on NS(S), there is a near-standard internal
set C with π′(C) > 1− ε. Thus we have

(10.11) |
∑
s∈S

π′({s})∗g(si, t, B)−
∑
s∈C

π′({s})∗g(si, t, B)| < ε

Claim 10.7. Suppose (DT), (SF), (WC) hold. Then ∗g(s, t, B) ≈ G
(t)
s (A) for

all s ∈ NS(S) and t ∈ NS(T ).

Proof. Fix n0 ∈ N, s ∈ NS(S) and t ∈ NS(T ). By Lemma 9.42, there

exist near-standard Ai ∈ I(S) with Ai ⊂ A such that G
(t)
s (A) − G

(t)
s (Ai) < 1

n0
.

By Lemma 9.40, there exist near-standard Ci ∈ ∗B[X] with Ci ⊂ B such that
∗g(s, t, B) − ∗g(s, t, Ci) <

1
n0

. As X is σ-compact, let X =
⋃

n∈N
Kn where {Kn :

n ∈ N} is a sequence of non-decreasing compact sets. Without loss of generality,
we can assume Ci ⊂ ∗Km for some m ∈ N. As Km is compact, there exists
a near-standard Bi ∈ I(S) such that ∗Km ∈

⋃
s∈Bi

B(s). Thus, we have Ci ⊂⋃
s∈Bi

B(s) ⊂ B. By the construction of B, it is easy to see that Bi ⊂ A. Note
that, by Theorem 9.20, we have

(10.12) ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′)) ≈ G(t)
s (Ai ∪Bi)

Thus we have

|∗g(s, t, B)−G(t)
s (A)|(10.13)

≈ |∗g(s, t, B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′)) +G(t)
s (Ai ∪Bi)−G(t)

s (A)|(10.14)

≤ |∗g(s, t, B)− ∗g(s, t,
⋃

s′∈Ai∪Bi

B(s′))|+ |G(t)
s (Ai ∪Bi)−G(t)

s (A)| < 2

n0
(10.15)

As the choice of n0 is arbitrary, we have the desired result. �

As C is near-standard, by Lemma 3.20, we have

(10.16) |
∑
s∈C

π′({s})∗g(si, t, B)−
∑
s∈C

π′({s})G(t)
s (A)| ≈ 0.

By the construction of C again, we have

(10.17) |
∑
s∈C

π′({s})G(t)
s (A)−

∑
s∈S

π′({s})G(t)
s (A)| < ε.

By Eqs. (10.10), (10.11), (10.16) and (10.17), we have

(10.18) |π′(A)−
∑
s∈S

π′({s})G(t)
s (A)| < 2ε.

As the choice of ε is arbitrary, we have π′(A) ≈
∑

s∈S π′({s})G(t)
s (A) for all t ∈

NS(T ).
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Consider the set D = {t ∈ T : (∀A ∈ I(S))(|π′(A) −
∑

s∈S π′({s})G(t)
s (A)| <

1
t )}. This is an internal set and contains all t ∈ NS(T ). Suppose there is no infinite
t0 such that D contains all the infinite t no greater than t0. This implies T \ D
contains arbitrarily small infinite element hence, by underspill, T \D contains some
t0 ∈ NS(T ). This contradicts with the fact that D contains all t ∈ NS(T ). Thus π′

is a weakly stationary distribution of {X ′
t}t∈T .

�

Note that if π is a stationary distribution of {Xt}t≥0 then π×π is a stationary
distribution of {Xt ×Xt}t≥0. Thus, we have the following lemma.

Lemma 10.8. Suppose (DT), (SF) hold. Then π′ × π′ is a weakly stationary
distribution of {X ′

t ×X ′
t}t∈T .

Proof. It is straightforward to verify that S ×S is a (δ0, r)-hyperfinite repre-
sentation of ∗X × ∗X. Since π × π is a stationary distribution, by Theorem 10.6,
(π× π)′ is a weakly stationary distribution of {X ′

t ×X ′
t}t∈T . In order to finish the

proof, it is sufficient to show that (π × π)′ = π′ × π′.
Pick any (s1, s2) ∈ S×S. As {B(s) : s ∈ S} is a collection of mutually disjoint

sets, we have

(π × π)′({(s1, s2)}) =
∗(π × π)(B(s1)×B(s2))

∗(π × π)(
⋃

s∈S B(s)×
⋃

s∈S B(s))
(10.19)

=
∗π(B(s1))

∗π(
⋃

s∈S B(s))
·

∗π(B(s2))
∗π(

⋃
s∈S B(s))

(10.20)

= π′(s1)π
′(s2).(10.21)

Hence we have (π × π)′ = π′ × π′, completing the proof. �

In order to show that {X ′
t}t∈T converges to π′, by Theorem 7.19, it remains

to show that for π′ × π′-almost surely (i, j) ∈ S × S there exists a near-standard
absorbing point i0. By Theorem 7.14, it is enough to show that {X ′

t}t∈T is pro-
ductively near-standard open set irreducible. We first recall the definition of pro-
ductively near-standard open set irreducible. We now impose some conditions on
{Xt}t≥0 to show that {X ′

t}t∈T is productively near-standard open set irreducible.
We first recall the following definitions.

Definition 10.9. A Markov chain {Xt}t≥0 with state space X is said to be
open set irreducible on X if for every open ball B ⊆ X and any x ∈ X, there exists

t ∈ R+ such that P
(t)
x (B) > 0.

An internal set B ⊂ S is an open ball if B = {s ∈ S : ∗d(s, s0) < r} for some
s0 ∈ S and r ∈ ∗R. An open ball is near-standard if it contains only near-standard
elements.

Definition 10.10. A hyperfinite Markov chain {Yt}t∈T is called near-standard
open set irreducible if for any near-standard s ∈ S, any near-standard open ball
B ⊂ ∗X with non-infinitesimal radius we have P i(τ (B) < ∞) > 0

We first establish the connection between open set irreducibility of {Xt}t≥0

and {X ′
t}t∈T . Note that the consequence of the following theorem implies the

near-standard open-set irreducibility of {X ′
t}t∈T .
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Theorem 10.11. Suppose (DT), (SF), (WC) hold. If {Xt}t≥0 is open set
irreducible, then for any near-standard s ∈ S, any near-standard open ball B with

non-infinitesimal radius there is a positive t ∈ NS(T ) such that G
(t)

s (B) > 0.

Proof. Consider any near-standard open ball B ⊂ S with non-infinitesimal
radius k. Without loss of generality let B = {s ∈ S : ∗d(s, s0) < r} for some
near-standard s0 ∈ S and some near-standard r ∈ ∗R+. Let A be the ball in X

centered at st(s0) with radius st(r)
2 .

Claim 10.12. st−1(A) ∩ S ⊂ B.

Proof. Pick any point x ∈ st−1(A)∩S. There exists a ∈ A such that x ∈ μ(a).

We then have ∗d(x, s0) ≤ ∗d(x, a) + ∗d(a, st(s0)) +
∗d(st(s0), s0) � st(r)

2 . Thus
∗d(x, s0) � st(r)

2 < r. This implies that st−1(A) ∩ S ⊂ B. �

Consider any near-standard s ∈ S, there exists a x ∈ X such that x = st(s). As

{Xt}t≥0 is open set irreducible, there exists a t ∈ R+ such that P
(t)
x (A) > 0. Pick

t′ ∈ T such that t′ ≈ t and t′ ≥ t. By Lemma 9.38, Lemma 9.40 and Theorem 9.21,
we know that

P (t)
x (A) = g(x, t, A) = ∗g(x, t, ∗A) ≈ ∗g(s, t′, ∗A)

≈ ∗g(s, t′, st−1(A)) = G
(t′)
s (st−1(A) ∩ S).

(10.22)

Then we have st((G
(t)
s (B))) > 0. �

Let {X ′
t}t∈T and {Y ′

t }t∈T be two i.i.d hyperfinite Markov chains on (S, I(S))
both with internal transition probability {G(δt)

i j)}i,j∈S . Let {Z ′
t}t∈T be the product

hyperfinite Markov chain live on (S × S, I(S × S)) with respect to {X ′
t}t∈T and

{Y ′
t }t∈T . Recall that the internal transition probability of {Z ′

t}t∈T is then defined
to be

(10.23) F
(δt)
(i,j)({(a, b)}) = G

(δt)
i ({a})×G

(δt)
j ({b}).

where (F
(δt)
(i,j)({(a, b)}) denote the internal probability of Z ′

t starts at (i, j) and reach

(a, b) at δt.
Before we prove that {Z ′

t}t∈T is near-standard open set irreducible, we impose
the following condition on the standard joint Markov chain.

Definition 10.13. The Markov chain {Xt}t≥0 is productively open set irre-
ducible if the joint Markov chain {Xt × Yt}t≥0 is open set irreducible on X × X
where {Yt}t≥0 is an independent identical copy of {Xt}t≥0.

The following lemma gives a sufficient condition for a Markov process being
productively open set irreducible.

Lemma 10.14. Let {Xt}t≥0 be an open set irreducible Markov process. If there

exists t0 ∈ R+ such that for any open set A and any x ∈ A, we have P
(t)
x (A) > 0

for all t ≥ t0. Then {Xt}t∈R is productively open set irreducible.

Proof. Consider a basic open set A×B. Suppose {Xt} reaches A first. Then
{Xt} will wait for {Yt} to reach B. �
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Most of the diffusion processes satisfy the condition of this lemma.
Recall that {X ′

t}t∈T is productively near-standard open set irreducible if {Z ′
t}t∈T

is near-standard open set irreducible.

Lemma 10.15. Suppose (DT), (SF), (WC) hold. If {Xt}t≥0 is productively
open set irreducible, then {X ′

t}t∈T is productively near-standard open set irreducible.

Proof. Let {Yt}t≥0 denote an independent identical copy of {Xt}t≥0. We use
P to denote the transition probability of Xt and Yt. Let {Zt}t∈R be the product
chain of {Xt} and {Yt}. We use Q to denote the transition probability of the joint
chain Zt. Let {Y ′

t }t∈T denote an independent identical copy of {X ′
t}t∈T . We use G

to denote the internal transition probability of X ′
t and Y ′

t and use F to denote the
internal transition probability of the product hyperifnite chain Z ′

t. It is sufficient
to show that {Z ′

t}t∈T is near-standard open set irreducible.
Pick any near-standard open ball B with non-infinitesimal radius from S × S

and fix some near-standard (i, j) ∈ S × S. Then there exists (x, y) ∈ X ×X such
that (i, j) ∈ μ((x, y)). We can find two open balls B1, B2 ∈ S with non-infinitesimal
radius such that B1 × B2 ⊂ B. As in Theorem 10.11, we can find two open balls
A1, A2 such that st−1(A1) ∩ S ⊂ B1 and st−1(A2) ∩ S ⊂ B2,respectively. Thus in
conclusion we have (st−1(A1)∩S)×(st−1(A2)∩S) = (st−1(A1×A2))∩(S×S) ⊂ B.
As {Xt}t≥0 is productively open set irreducible, there exists t ∈ R+ such that

Q
(t)
(x,y)(A1 × A2) > 0. By (WC), we can pick t to be a rational number. By the

definition of {Zt}t≥0 and Theorem 9.27, we have
(10.24)

Q
(t)
(x,y)(A1 ×A2) = P (t)

x (A1)× P (t)
y (A2) = G

(t)

i (st−1(A1) ∩ S)×G
(t)

j (st−1(A2) ∩ S).

By Lemma 7.10 and the construction of Loeb measure, we know that

(10.25) G
(t)

i (st−1(A1)∩S)×G
(t)

j (st−1(A2)∩S) = F
(t)

(i,j)(st
−1(A1×A2))∩ (S×S)).

Thus F
(t)

(i,j)(st
−1(A1 × A2)) ∩ (S × S)) > 0. As (st−1(A1 × A2)) ∩ (S × S) ⊂ B we

have that F
(t)

(i,j)(B) > 0, completing the proof. �

Now we are at the place to prove the main theorem of this paper.

Theorem 10.16. Let {Xt}t≥0 be a general-state-space continuous in time
Markov chain on some metric space X satisfying the Heine-Borel condition. Sup-
pose {Xt}t≥0 is productively open set irreducible and has a stationary distribution
π. Suppose {Xt}t≥0 is vanishing in distance and also satisfies (SF), (WC). Then

for π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.

Proof. As {Xt} is vanishing in distance and satisfies (SF), by Theorem 9.6,
we know that {Xt}t≥0 satisfies (DT). Let {X ′

t}t∈T denote the corresponding hy-
perfinite Markov chain on the hyperfinite set S. We use P to denote the transition
probability of {Xt}t≥0 and use G to denote the internal transition probability for
{X ′

t}t∈T . Let π
′ be defined as in Definition 10.4. By Theorem 10.6, we know that

π′ is a weakly stationary distribution for {X ′
t}t∈T . We first show that the inter-

nal transition probability of {X ′
t}t∈T converges to π′. As {Xt}t≥0 is productively

open set irreducible, by Lemma 10.15, we know that {X ′
t}t∈T is productively near-

standard open set irreducible. By Theorem 9.25, we know that {X ′
t}t∈T is strong
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regular. Thus by Theorems 7.19 and 7.26, we know that for π′ almost surely s ∈ S

and any A ∈ L(I(S)), limt→∞ supB∈L(I(S)) |G
(t)

s (B)− π′(B)| = 0.

Now fix any A ∈ B[X]. Then by Theorem 5.9, we know that st−1(A) ∈ L(I(S)).
Consider any x ∈ X and any s ∈ st−1({x}) ∩ S. By Theorem 9.27, we know that

for any t ∈ Q+ we have P
(t)
x (A) = G

(t)

s (st−1(A) ∩ S). By Lemma 10.5, we know
that π(A) = π′(st−1(A) ∩ S). Suppose that there exists a set B ∈ B[X] with

π(B) > 0 such that, for any x ∈ B, P
(t)
x (·) does not converge to π(·) in total

variation distance. This means that for any s ∈ st−1(B) ∩ S we have

(10.26) sup
A∈B[X]

|G(t)

s (st−1(A) ∩ S)− π′(st−1(A) ∩ S)| � 0.

where we can restrict t to Q+ ⊂ T since total variation distance is non-increasing.
However, as π(B) > 0, we know that π′(st−1(B)∩ S) > 0. This contradict the fact

that for π′ almost surely s, limt→∞ supB∈L(I(S)) |G
(t)

s (B) − π′(B)| = 0. Hence we
have the desired result. �

Using Theorems 9.6 and 10.16 and results in Chapter 2, we can obtain Theo-
rem 2.16. We restate it here.

Theorem 10.17. Let {Xt}t≥0 be a general state space continuous-time Markov
chain with separable locally compact metric state space (X, d). Suppose {Xt}t≥0

is productively open set irreducible and has a stationary distribution π. Suppose
{Xt}t≥0 is vanishing in distance, strong Feller and weakly continuous. Then for

π-almost surely x ∈ X we have limt→∞ supA∈B[X] |P
(t)
x (A)− π(A)| = 0.





CHAPTER 11

The Feller Condition

In Chapters 8 and 10, our analysis depend on the strong Feller condition ((SF)).
In the literature, however, it is sometimes more desirable to replace strong Feller
condition with a weaker condition which we call Feller condition. In this chapter, we
will discuss the difference between strong Feller and Feller conditions. Moreover,
we will construct a hyperfinite representation {X ′

t}t∈T of {Xt}t≥0 under Feller
condition. Finally, we will establish some of the key properties of {X ′

t}t∈T inherited
from {Xt}t≥0.

We first recall the definition of strong Feller.

Remark 11.1. (SF) The Markov chain{Xt}t≥0 is said to be strong Feller if for
any t > 0 and any ε > 0 we have:
(11.1)

(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ (∀A ∈ B[X])|P (t)
y (A)−P (t)

x (A)| < ε)).

We then introduce the Feller condition.

Condition WF. The Markov chain{Xt}t≥0 is said to be Feller if for all t > 0
and all ε > 0 we have:
(11.2)

(∀A ∈ B[X])(∀x ∈ X)(∃δ > 0)((∀y ∈ X)(d(x, y) < δ =⇒ |P (t)
y (A)−P (t)

x (A)| < ε)).

As one can see, the choice of δ in (WF) depends on the Borel set A. We present
the following Feller Markov process which is not strong Feller.

Example 11.2 (suggested by Neal Madras). [MS10, Page. 889] Let {Xt}t∈N

be a discrete-time Markov processes with state space [−π, π]. For every n ∈ N,

let 1+sin(ny)
2π be the density of P 1

n
(dy). Let μ be the Lebesgue measure on [−π, π]

divided by 2π and let μ(A) = P0(A) for all Borel sets A.

Claim 11.3. limn→∞ P 1
n
(A) = μ(A) for all Borel sets A.

Proof. Let A be an internal with end points a and b.

lim
n→∞

P 1
n
(A) = lim

n→∞

∫ b

a

1 + sin(ny)

2π
dy(11.3)

= lim
n→∞

(
b− a

2π
− cos(nb)− cos(na)

2nπ
)(11.4)

=
b− a

2π
= μ(A)(11.5)

By Theorem 9.37, we have the desired result. �

Claim 11.4. supA∈B[[−π,π]] |P 1
n
(A)− μ(A)| ≥ 1

π for all n ∈ N

85
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Proof. Let A be an internal with end points a and b. Then we have |P 1
n
(A)−

μ(A)| = | cos(nb)−cos(na)
2nπ |. For any m ∈ N, we can find an open set Um which is a

union of m open intervals (a1, b1), . . . , (am, bm) such that cos(nbn)− cos(nan) = 2
for all n ≤ m. Then |P 1

m
(Um)− μ(Um)| = 1

π , completing the proof. �

1. Hyperfinite Representation under the Feller Condition

In this section, we will show that, by carefully picking a hyperfinite representa-
tion, we can construct a hyperfinite Markov process {X ′

t}t∈T which is a hyperfinite

representation of {Xt}t≥0. We use P
(t)
x (A) to denote the transition probability of

{Xt}t≥0. When we view the transition probability as a function of three variables,
we denote it by g(x, t, A).

The state space of {X ′
t}t∈T is a hyperfinite representation S of ∗X. By Defini-

tion 6.3, the hyperfinite set S should be a (δ0, r0)-hyperfinite representation of ∗X
for some positive infinitesimal δ0 and some positive infinite number r0. We need to
pick δ0 and r0 carefully. Recall that the time line T = {0, δt, . . . ,K}. Let ε0 be a
positive infinitesimal such that ε0

t
δt ≈ 0 for all t ∈ T . We can pick r0 the same way

as we did in Chapter 8. Recall (DT) and Theorem 9.8 from Chapter 8.

Remark 11.5 ((DT)). The Markov chain {Xt}t≥0 is said to be vanish in dis-
tance if for all t ≥ 0 and all K ∈ K[X] we have:

(1) (∀ε > 0)(∃r > 0)(∀x ∈ K)(∀A ∈ B[X])(d(x,A) > r =⇒ g(x, t, A) < ε).
(2) (∀ε > 0)(∃r > 0)(∀x ∈ X)(d(x,K) > r =⇒ g(x, t,K) < ε).

where K denote the collection of all compact sets of X.

By mimicking the proof of Theorem 9.6, we immediately obtain the following
result.

Lemma 11.6. If a Markov process has the weak Feller property, then it also
satisfies property (1) from (DT).

From (DT), we have the following lemma.

Lemma 11.7 (Theorem 9.8). Suppose (DT) holds. For every positive ε ∈ ∗R,
there exists an open ball centered at some standard point a with radius r such that:

(1) ∗g(x, δt, ∗X \ U(a, r)) < ε for all x ∈ NS(∗X).
(2) ∗g(y, t, A) < ε for all y ∈ ∗X \ U(a, r), all near-standard A ∈ ∗B[X] and

all t ∈ T .

where U(a, r) = {x ∈ ∗X : ∗d(x, a) ≤ r}.

Fix a standard a0 ∈ X. For the particular ε0, we can find a r1 such that the
ball U(a0, r1) satisfies the conditions in Lemma 11.7.

Recall the following results from Chapter 8

Lemma 11.8 (Lemma 9.11). Suppose (DT) holds. There exists a positive infi-
nite r0 > 2r1 such that

(11.6) (∀y ∈ U(a0, 2r1))(
∗g(y, δt, ∗X \ U(a0, r0)) < ε0).

Just as in Chapter 8,we fix a0, r1 and r0 for the remainder of this section.

Lemma 11.9 (Lemma 9.12). Suppose (DT) holds. For any x ∈ X, any t ∈ T ,

any near-standard internal set A ⊂ ∗X we have ∗f (t)
x (∗X \ U(a0, r0), A) < 2ε0.
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Just as in Chapter 8, our hyperfinite state space will cover U(a0, 2r0). We will
choose δ0 to partition U(a0, 2r0) into ∗Borel sets with diameters no greater than
δ0.

We start by picking an arbitrary positive infinitesimal δ1 and let S1 be a
(δ1, 2r0)-hyperfinite representation of ∗X such that {B1(s) : s ∈ S1} = U(a0, 2r0).
We fix S1 for the remainder of this section.

Lemma 11.10. Suppose (DT), (WF) hold. There exists a positive infinitesimal
δ0 such that for any x1, x2 ∈ U(a0, 2r0) with |x1−x2| < δ0 we have for all A ∈ I(S1)
and all t ∈ T+:

(11.7) |∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))| < ε0

Proof. Fix a A ∈ I(S1). By the transfer of (WF), for every x ∈ U(a0, 2r0)
there exists δx ∈ ∗R+ such that ∀y ∈ ∗X we have

(11.8) d(x, y) < δx =⇒ |∗g(x, δt,
⋃
s∈A

B1(s))− ∗g(y, δt,
⋃
s∈A

B1(s))| <
ε0
2
.

The collection {U(x, δx
2 ) : x ∈ U(a0, 2r0)} forms an open cover of U(a0, 2r0). By

the transfer of Heine-Borel condition, U(a0, 2r0) is ∗compact hence there exists a
hyperfinite subset of the cover {U(x, δx2 ) : x ∈ U(a0, 2r0)} that covers U(a0, 2r0).

Denote this hyperfinite subcover by F = {U(xi,
δxi

2 ) : i ≤ N} where { δxi

2 : i ≤ N}
is a hyperfinite set. Let δA = min{ δxi

2 : i ≤ N}.
Pick any x, y ∈ U(a0, 2r0) with d(x, y) < δA. We know that x ∈ B(xi,

δxi

2 ) for
some i ≤ N and ∗d(y, xi) ≤ ∗d(y, x) + ∗d(x, xi) ≤ δxi

. Thus both x, y are in some
B(xi, δxi

). This means that

(11.9) |∗g(x, δt,
⋃
s∈A

B1(s))− ∗g(y, δt,
⋃
s∈A

B1(s))| < ε0.

Let M = {δA : A ∈ I(S)}. Note that M is a hyperfinite set hence there exists
a minimum element, denoted by δδt. We can carry out this argument for every
t ∈ T . Let δt denote the minimum element for time t and consider the hyperfinite
set {δt : t ∈ T}. This set again has a minimum element δ0. It is easy to check that
this δ0 satisfies the condition of this lemma. �

Definition 11.11. Let S, S′ be two hyperfinite representations of ∗X. The
hyperfinite representation S′ is a refinement of S if for every A ∈ I(S) there
exists a A′ ∈ I(S′) such that

⋃
s∈A B(s) =

⋃
s′∈A′ B′(s′). The set A′ is called

an enlargement of A.

Let S′ be a refinement of S. For any A ∈ I(S), note that the enlargement A′

is unique. Fix δ0 in Lemma 11.10 for the remainder of this section. We present the
following result.

Lemma 11.12. There exists a (δ0, 2r0)-hyperfinite representation S with⋃
s∈S B(s) = U(a0, 2r0) such that S is a refinement of S1.

Proof. Fix an arbitrary (δ0, 2r0)-hyperfinite representation H such that the
collection {BH(h) : h ∈ H} = U(a0, 2r0). For every s ∈ S1, let

(11.10) M(s) = {BH(h) : BH(h) ∩B1(s) �= ∅}.
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Note that M(s) is hyperfinite for every s ∈ S1. Let

(11.11) N(s) = {BH(h) ∩B1(s) : BH(h) ∈ M(s)}.

Note that N(s) is also hyperfinite for every s ∈ S1. It is easy to see that
⋃

s∈S1
N(s)

=
⋃

s∈S1
B1(s) = U(a0, 2r0). Note that

⋃
s∈S1

N(s) is a collection of mutually
disjoint ∗ Borel set with diameter no greater than δ2. Pick one point from each
element of

⋃
s∈S1

N(s) and form a hyperfinite set S. This S is a hyperfinite set
satisfying all the conditions of this lemma. �

For each s ∈ S, we use B(s) to denote the corresponding ∗Borel set. By the
construction in Lemma 11.12, we can see that every B(s) is a subset of B1(s

′) for
some s′ ∈ S1 and every B1(s

′) is a hyperfinite union of B(s).
By Lemmas 11.10 and 11.12, we have the following result:

Theorem 11.13. Let S1, S be the same hyperfinite representations as in
Lemma 11.12. Then for any s ∈ S, any x1, x2 ∈ B(s), any A ∈ I(S1) and any
t ∈ T+ we have

(11.12) |∗g(x1, t,
⋃
s∈A

B1(s))− ∗g(x2, t,
⋃
s∈A

B1(s))| < ε0.

An immediate consequence of this theorem is:

Proposition 11.14. Let S1, S be the same hyperfinite representations as in
Lemma 11.12. For for any s ∈ S, any y ∈ B(s), any x ∈ ∗X, any A ∈ I(S1) and

any t ∈ T+ we have |∗g(y, t,
⋃

s∈A B1(s))− ∗f (t)
x (B(s),

⋃
s∈A B1(s))| < ε0.

We fix S constructed above for the remainder of this section. In summary, S1

is a (δ1, 2r0)-hyperfinite representation of ∗X for some infinitesimal δ1 such that
{B1(s) : s ∈ S1} covers U(a0, 2r0). S is a refinement of S1 satisfying the following
conditions:

(1) The diameter of B(s) is less than δ0 for all s ∈ S.
(2)

⋃
s∈S B(s) = U(a0, 2r0).

We let S be the hyperfinite state space of our hyperfinite Markov process. Note
that for any x ∈ NS(∗X) and any y ∈ ∗X \

⋃
s∈S B(s), we have ∗d(x, y) > r0.

We construct {X ′
t}t∈T on S in a similar way as in Chapter 8. Let g′(x, δt, A) =

∗g(x, δt, A ∩
⋃

s∈S B(s))+δx(A)∗g(x, δt, ∗X \
⋃

s∈S B(s)) where δx(A) = 1 if x ∈ A

and δx(A) = 0 if otherwise. For i, j ∈ S let G
(δt)
ij = g′(i, δt, B(j)) be the “one-step”

internal transition probability of {X ′
t}t∈T . We use G

(t)
i (·) to denote the t-step

internal transition measure. By Lemmas 8.12 and 8.13, we know that G
(t)
i (·) is an

internal probability measure on (S, I(S)) for all t ∈ T .
Similar to Theorem 9.20, we have the following theorem. The two proofs are

similar to each other.

Theorem 11.15. Suppose (DT), (WF) hold. For any t ∈ T , any x ∈ S and
any near-standard A ∈ I(S1), we have

(11.13) |∗g(x, t,
⋃

s∈AS

B(s))−G(t)
x (AS)| ≤ ε0 + 5ε0

t− δt

δt
.



1. HYPERFINITE REPRESENTATION UNDER THE FELLER CONDITION 89

where AS is the enlargement of A. In particular, for all t ∈ T , all x ∈ S and all
near-standard A ∈ I(S1) we have

(11.14) |∗g(x, t,
⋃

s∈AS

B(s))−G(t)
x (AS)| ≈ 0

Proof. : In the proof of Theorem 9.20, by (SF), we know that for any s0 ∈ S
and any t ∈ T+
(11.15)

(∀x1, x2 ∈ B(s0))(∀A ∈ I(S))(|∗g(x1, t,
⋃
s∈A

B(s))− ∗g(x2, t,
⋃
s∈A

B(s))| < ε0).

Under (WF), by Theorem 11.13 and Corollary 11.14 and the fact that S is a
refinement of S1, we know that for any s0 ∈ S and any t ∈ T+

(11.16)

(∀x1, x2 ∈ B(s0))(∀A ∈ I(S1))(|∗g(x1, t,
⋃

s∈AS

B(s))− ∗g(x2, t,
⋃

s∈AS

B(s))| < ε0).

We use this formula to replace the Eq. (11.15) in the proof of Theorem 9.20. Then
the rest of the proof is identical to the proof of Theorem 9.20. �

In Chapter 8, we have shown that {X ′
t} is a hyperfinite representation of

{Xt}t≥0 in terms of transition probability. We first establish a similar result as
Theorem 9.21.

Theorem 11.16. Suppose (DT), (WF) hold. For any x ∈
⋃

s∈S B(s) let sx
denote the unique element in S such that x ∈ B(sx). Then for any E ∈ B[X] and

any t ∈ T , we have ∗g(x, t, st−1(E)) = G
(t)

sx (st
−1(E) ∩ S).

Proof. We first prove the case when t = 0. ∗g(x, 0, st−1(E)) is 1 if x ∈ st−1(E)
and is 0 otherwise. Note that x ∈ st−1(E) if and only if sx ∈ st−1(E) ∩ S. Hence
∗g(x, 0, st−1(E)) = G

(0)

sx (st−1(E) ∩ S).
We now prove the case for t > 0. Fix some x ∈

⋃
s∈S B(s), some t > 0 and

some E ∈ B[X]. By the construction in Theorem 6.11 and Eq. (6.19), we know
that for every t > 0:

(11.17) ∗g(x, t, st−1(E)) = sup{∗g(x, t,
⋃
s∈A

B1(s)) : A ⊂ st−1(E) ∩ S1, A ∈ I(S1)}

By Theorem 11.13, we have |∗g(x, t,
⋃

s∈A B1(s))− ∗g(sx, t,
⋃

s∈A B1(s))| < ε0. By

Theorem 11.15, we know that |∗g(sx, t,
⋃

s∈A B1(s))−G
(t)
sx (AS)| ≈ 0. Thus we know

that ∗g(x, t,
⋃

s∈A B1(s)) = G
(t)

sx (AS). Hence we have

(11.18) ∗g(x, t, st−1(E)) = sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S1)}.

Claim 11.17.

(11.19) G
(t)

sx (st
−1(E) ∩ S) = sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S1)}.

Proof. Let B be an internal subset of S such that B ⊂ st−1(E)∩ S. For any
b ∈ B, there exists a sb ∈ S1 such that b ∈ B1(sb). Let A = {sb : b ∈ B}. Then
A ∈ I(S1) and it is easy to see that B ⊂ AS ⊂ st−1(E)∩ S. Thus we can conclude
that

(11.20) sup{G(t)

sx (AS) : A ⊂ st−1(E) ∩ S2, A ∈ I(S2)} = G
(t)

sx (st
−1(E) ∩ S).
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�
Thus we have the desired result. �
The next lemma establishes a weaker form of local continuity of ∗g.

Lemma 11.18. Suppose (WF) holds. For any two near-standard x1 ≈ x2 from
∗X ,any t ∈ R+ and any A ∈ B[X] we have ∗g(x1, t,

∗A) ≈ ∗g(x2, t,
∗A).

Proof. Fix two near-standard x1, x2 from ∗X. Let x0 = st(x1) = st(x2). Also
fix t ∈ R+ and A ∈ B[X]. Pick ε ∈ R+. By (WF), we can pick a δ ∈ R+ such that

(11.21) (∀y ∈ X)(|y − x0| < δ =⇒ (|g(y, t, A)− g(x0, t, A)| < ε)).

By the transfer principle and the fact that x1 ≈ x2 ≈ x0 we know that

(11.22) (|∗g(x1, t,
∗A)− ∗g(x2, t,

∗A)| < ε).

As ε is arbitrary, this completes the proof. �
As Lemma 9.24, the next lemma establishes the link between ∗E and st−1(E)

for every E ∈ B[X].

Lemma 11.19. Suppose (WF) holds. For any Borel set E, any x ∈ NS(∗X)
and any t ∈ R+ we have ∗g(x, t, ∗E) ≈ ∗g(x, t, st−1(E)).

Proof. The proof uses Lemma 11.18 and is similar to the proof of Lemma 9.24.
�

Lemmas 11.18 and 11.19 allow us to obtain the result in Theorem 9.27 under
weaker assumptions.

Theorem 11.20. Suppose (DT), (WF) hold. For any s ∈ NS(S), any non-

negative t ∈ Q and any E ∈ B[X], we have P
(t)
st(s)(E) = G

(t)

s (st−1(E) ∩ S).

Proof. The proof uses Lemmas 11.18 and 11.19 and is similar to the proof of
Theorem 9.27. �

In order to extend the result in Theorem 11.20 to all non-negative t ∈ R, we
follow the same path as Chapter 8. Recall that we needed (OC):

Condition OC 1. The Markov chain {Xt} is said to be continuous in time
if for any open ball U ⊂ X and any x ∈ X, we have g(x, t, U) being a continuous
function for t > 0.

Using the same proof as in Chapter 8, we obtain the following result.

Theorem 11.21. Suppose (DT), (OC), (WF) hold. For any s ∈ NS(S), any

t ∈ NS(T ) and any E ∈ B[X], we have P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S).

Thus, in conclusion, we have the following theorem.

Theorem 11.22. Let {Xt}t≥0 be a continuous time Markov process on a metric
state space satisfying the Heine-Borel condition. Suppose {Xt}t≥0 satisfies (DT),
(OC), (WF). Then there exists a hyperfinite Markov process {X ′

t}t∈T with state
space S ⊂ ∗X such that for all s ∈ NS(S) and all t ∈ NS(T )

(11.23) (∀E ∈ B[X])(P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S)).

where P and G denote the transition probability of {Xt}t≥0 and {X ′
t}t∈T , respec-

tively.
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This theorem shows that, given a standard Markov process, we can almost al-
ways use a hyperfinite Markov process to represent it. In [And76], Robert Ander-
son discussed such hyperfinite representation for Brownian motion. In this paper,
we extend his idea to cover a large class of general Markov processes.

2. A Weaker Markov Chain Ergodic Theorem

In Chapter 10, we have shown the Markov chain Ergodic theorem under strong
Feller condition. In this section, under Feller condition, we give a proof of a weaker
form of the Markov Chain Ergodic theorem. In order to do this, we start by showing
that {X ′

t}t∈T inherits some key properties from {Xt}t≥0.
Let π be a stationary distribution of {Xt}t≥0. As in Definition 10.4, we define

an internal probability measure π′ on (S, I(S)) by letting π′({s}) =
∗π(B(s))

∗π(
⋃

s′∈S B(s′))

for every s ∈ S. By Lemma 10.5, for any A ∈ B[X] we have π(A) = π′(st−1(A)∩S).
This π′ is a weakly stationary for some internal subsets of S.

Theorem 11.23. Suppose (DT), (WF) hold. There exists an infinite t0 ∈ T
such that for every A ∈ I(S1) and every t ≤ t0 we have

(11.24) π′(AS) ≈
∑
i∈S

π′(i)G
(t)
i (AS).

where AS is the enlargement of A.

Proof. The proof is similar to the proof of Theorem 10.6. We use Theo-
rem 11.15 instead of Theorem 9.20. �

Condition CS. There exists a countable basis B of bounded open sets of X
such that any finite intersection of elements from B is a continuity set with respect
to π and g(x, t, .) for all x ∈ X and t > 0.

We shall fix this countable basis B for the remainder of this section. (CS)
allows us to prove the following lemma.

Lemma 11.24. Suppose (CS) holds. Then we have π(O) = π′((∗O ∩ S1)S)
where O is a finite intersection of elements from B.

Proof. Let O be a finite intersection of elements of B and let O denote the
closure of O. By the construction of π′, we know that π′(st−1(O) ∩ S) = π(O) =
π(O) = π′(st−1(O) ∩ S). In order to finish the proof, it is sufficient to prove the
following claim.

Claim 11.25. st−1(O) ∩ S ⊂ (∗O ∩ S1)S ⊂ st−1(O) ∩ S.

Proof. Pick any point s ∈ st−1(O) ∩ S. Then s ∈ B1(s
′) for some s′ ∈ S1.

Note also that s ∈ μ(y) for some y ∈ O. As O is open, we have μ(y) ⊂ ∗O which
implies that B1(s

′) ⊂ ∗O which again implies that s ∈ (∗O ∩ S1)S .
Now pick some point y ∈ (∗O ∩ S1)S . Then y ∈ B1(y

′) for some y′ ∈ ∗O ∩ S1.
As y is near-standard, we know that y′ is near-standard hence y′ ∈ μ(x) for some
x ∈ X. Suppose x �∈ O. Then there exists an open ball U(x) centered at x such
that U(x)∩O = ∅. This would imply that y′ �∈ ∗O which is a contradiction. Hence
x ∈ O. This means that y ∈ μ(x) ⊂ st−1(O), completing the proof. �

This finishes the proof of this lemma. �
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In order to show that the hyperfinite Markov chain {X ′
t}t∈T converges, we need

to establish the strong regularity (at least for finite intersection of open balls) for
{X ′

t}t∈T .
We first prove the following lemma which is analogous to Theorem 11.22.

Theorem 11.26. Suppose (DT), (OC), (WF), (CS) hold. For any s ∈ NS(S)

and any t ∈ NS(T ) we have g(st(s), st(t), O) ≈ G
(t)
s ((∗O∩S1)S) where O is a finite

intersection of elements from B.

Proof. By Theorem 11.22, we know that P
st(t)
st(s)(O) = G

(t)

s (st−1(O) ∩ S) and

P
st(t)
st(s)(O) = G

(t)

s (st−1(O)∩ S) where O denote the closure of O. By (CS), we know

that P
st(t)
st(s)(O) = P

st(t)
st(s)(O). Then the result follows from Claim 11.25. �

We now show that {X ′
t} is strong regular for open balls.

Lemma 11.27. Suppose (DT), (OC), (WF), (CS) hold. For every s1 ≈ s2 ∈
NS(T ), there exists an infinite t1 ∈ T such that G

(t)
s1 ((

∗O∩S1)S) ≈ G
(t)
s2 ((

∗O∩S1)S)
for and all t ≤ t1 and all O which is a finite intersection of elements from B.

Proof. Pick s1 ≈ s2 ∈ NS(S) and let O be a finite intersection of elements
from B. Let x = st(s1) = st(s2). By Theorem 11.26, for any t ∈ NS(T ), we know

that G
(t)
s1 ((

∗O ∩ S1)S) ≈ g(x, st(t), O) and G
(t)
s2 ((

∗O ∩ S1)S) ≈ g(x, st(t), O). Hence

we have G
(t)
s1 ((

∗O ∩ S1)S) ≈ G
(t)
s2 ((

∗O ∩ S1)S) for all t ∈ NS(T ). Consider the
following set

(11.25) TO = {t ∈ T : |G(t)
s1 ((

∗O ∩ S1)S)−G(t)
s2 ((

∗O ∩ S1)S)| <
1

t
}.

The set TO contains all the near-standard t ∈ T hence it contains an infinite tO ∈ T
by overspill. As every countable descending infinite reals has an infinite lower
bound, there exists an infinite t1 which is smaller than every element in {tO : O ∈
B}. �

By using essentially the same argument as in Theorem 7.19, we have the fol-
lowing result for {X ′

t}t∈T . The proof is omitted.

Theorem 11.28. Suppose (DT), (OC), (WF), (CS) hold. Suppose {Xt}t≥0

is productively open set irreducible with stationary distribution π. Let π′ be the
internal probability measure defined in Theorem 11.23. Then for π′-almost every
s ∈ S there exists an infinite t′ ∈ T such that

(11.26) G(t)
s ((∗O ∩ S1)S) ≈ π′((∗O ∩ S1)S)

for all infinite t ≤ t′ and all O which is a finite intersection of elements from B.

This immediately gives rise to the following standard result.

Lemma 11.29. Suppose (DT), (OC), (WF), (CS) hold. Suppose {Xt}t≥0 is
productively open set irreducible with stationary distribution π. Then for π-almost
surely x ∈ X we have limt→∞ g(x, t, O) = π(O) for all O which is a finite intersec-
tion of elements from B.

Proof. Suppose not. Then there exist an set B and some O which is a finite
intersection of elements from B with π(B) > 0 such that g(x, t, O) does not converge
to π(O) for x ∈ B. Fix a x0 ∈ B and let s0 be an element in S with s0 ≈ x0.
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Then there exists an ε > 0 and a unbounded sequence of real numbers {kn : n ∈ N}
with |g(x0, kn, O)− π(O)| > ε for all n ∈ N. By Theorem 11.26 and Lemma 11.24,

we have |G(kn)
s0 ((∗O ∩ S1)S) − π′((∗O ∩ S1)S)| > ε for all n ∈ N. Let t′ be the

same infinite element in T as in Theorem 11.28. By overspill, there is an infinite

t0 < t′ such that |G(t0)
s0 ((∗O ∩ S1)S) − π′((∗O ∩ S1)S)| > ε. As x0 and s0 are

arbitrary, we have for every s ∈ st−1(B) ∩ S there is an infinite ts < t′ such that

|G(ts)
s0 ((∗O∩S1)S)−π′((∗O∩S1)S)| > ε. As π′(st−1(B)∩S) = π(B), this contradicts

with Theorem 11.28 hence completing the proof. �
We now generalize the convergence to all Borel sets. We will need the following

definition.

Definition 11.30 ([RS86, Page. 85]). Let Pn and P be probability measures
on a metric space X with Borel σ-algebra B[X]. A subclass C of B[X] is a conver-
gence determining class if weak convergence Pn to P is equivalent to Pn(A) → P (A)
for all P -continuity sets A ∈ C.

For separable metric spaces, we have the following result.

Lemma 11.31 ([Mol05, Page. 416]). Let Pn and P be probability measures on
a separable metric space X with Borel σ-algebra B[X]. A class C of Borel sets is
a convergence determining class if C is closed under finite intersections and each
open set in X is at most a countable union of elements in C.

Theorem 11.32. Suppose {Xt}t≥0 is vanishing in distance and its state space
has the Heine-Borel property. Suppose (??) hold. Suppose {Xt}t≥0 is productively
open set irreducible with stationary distribution π. Then for π-almost surely x ∈ X

we have P
(t)
x (·) weakly converges to π(·).

Proof. By Theorem 9.6 and Lemma 11.6, we know that {Xt}t≥0 satisfies
(DT). Let B′ to be the smallest set containing B such that B′ is closed under

finite intersection. By Lemma 11.29, we know that limt→∞ P
(t)
x (A) = π(A) for all

A ∈ B′. The theorem then follows from Lemma 11.31. �
By using similar argument as in Theorem 2.16, we obtain the following theorem.

Theorem 11.33. Suppose {Xt}t≥0 is vanishing in distance and its state space
is a separable σ-compact metric space. Suppose (??) hold. Suppose {Xt}t≥0 is
productively open set irreducible with stationary distribution π. Then for π-almost

surely x ∈ X we have P
(t)
x (·) weakly converges to π(·).

As one can see, with Feller condition, we can only show that {X ′
t}t∈T is strong

regular for some particular class of sets. In order to prove some result like Theo-
rem 10.16, we need {X ′

t}t∈T to be strong regular on a larger class of sets.

Open Problem 2. Suppose (WF) holds. Is it possible to pick a hyperfinite

representation S1 such that G
(t)
x (AS) ≈ G

(t)
y (AS) for all x ≈ y, all t ∈ T and all

A ∈ I(S1)?





CHAPTER 12

Push-down Results

In Chapter 8, we discuss how to construct a corresponding hyperfinite Markov
process for every standard general Markov processes satisfying certain conditions.
In this chapter, we discuss the reverse procedure of constructing stationary distri-
butions and Markov processes from weakly stationary distributions and hyperfinite
Markov processes. Generally, we begin with an internal measure on ∗X and use
standard part map to push the corresponding Loeb measure down to X. We start
this chapter by introducing the following classical result.

Theorem 12.1 ([CNOSP95, Thm. 13.4.1]). Let X be a Heine-Borel metric
space equipped with Borel σ-algebra B[X]. Let M be an internal probability measure
defined on (∗X, ∗B[X]). Let

(12.1) C = {C ⊂ X : st−1(C) ∈ ∗B[X]}.
Define a measure μ on the sets C by: μ(C) = M(st−1(C)). Then μ is the completion
of a regular Borel measure on X.

Proof. We first show that the collection C is a σ-algebra. Obviously ∅ ∈ C. By
Lemma 6.10, we know thatX ∈ C. We now show that it is closed under complement.
Suppose A ∈ C. It is easy to see that st−1(Ac) = (NS(∗X) \ st−1(A)). By Theo-

rem 5.1 and the fact that ∗B[X] is a σ-algebra, Ac ∈ C. We now show that C is closed
under countable union. Suppose {Ai : i ∈ N} be a countable collection of pairwise
disjoint elements from C. It is easy to see that

⋃
i∈ω(st

−1(Ai) = st−1(
⋃

i∈ω Ai).

As st−1(Ai) ∈ ∗B[X] for every i ∈ N, we have st−1(
⋃

i∈ω Ai) ∈ ∗B[X]. Hence⋃
i∈ω Ai ∈ C.
We now show that μ is a well-defined measure on (X, C). Clearly μ(∅) = 0.

Suppose {Ai}i∈ω is a mutually disjoint collection from C. We have

(12.2) μ(
⋃
i∈ω

Ai) = M(st−1(
⋃
i∈ω

Ai)) = M(
⋃
i∈ω

(st−1(Ai))).

As Ai’s are mutually disjoint, we know that st−1(Ai)’s are mutually disjoint. Thus,

(12.3) M(
⋃
i∈ω

(st−1(Ai))) =
∑
i∈ω

M(st−1(Ai)) =
∑
i∈ω

μ(Ai).

This shows that μ is countably additive.
Finally we need to show that such μ is the completion of a regular Borel

measure. By universal Loeb measurability (Theorems 5.1 and 5.9), we know that

st−1(B) ∈ ∗B[X] for all B ∈ B[X]. Consider any B ∈ B[X] such that μ(B) = 0
and any C ⊂ B. It is clear that st−1(C) ⊂ st−1(B). As the Loeb measure M is a
complete measure, we know that M(st−1(C)) = 0 since M(st−1(B)) = 0. Thus we
have μ(C) = 0, completing the proof. �

95
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Note that the measure μ constructed in Theorem 12.1 need not have the same
total measure as M . For example, if the internal measure M concentrates on
some infinite element then μ would be a null measure. However, if we require
M(NS(∗X)) = st(M(∗X)) then μ(X) = st(M(∗X)). In particular, if M is an
internal probability measure with M(NS(∗X)) = 1 then μ is the completion of a
regular Borel probability measure on X. Such μ is called a push-down measure of
M and is denoted by Mp.

The following corollary is an immediate consequence of Theorem 12.1.

Proposition 12.2. Let X be a Heine-Borel metric space equipped with Borel σ-
algebra B[X] and let SX be a hyperfinite representation of X. Let M be an internal
probability measure defined on (SX , I[SX ]). Let

(12.4) C = {C ⊂ X : st−1(C) ∩ SX ∈ I[SX ]}.

Then the push-down measure Mp on the sets C given by Mp(C) = M(st−1(C)∩SX)
is the completion of a regular Borel measure on X.

The following theorem shows the close connection between an internal proba-
bility measure and its push-down measure under integration.

Lemma 12.3. Let X be a metric space equipped with Borel σ-algebra B[X],
let ν be an internal probability measure on (∗X, ∗B[X]) with ν(NS(∗X)) = 1. let
f : X → R be a bounded measurable function. Define g : NS(∗X) → R by g(s) =
f(st(s)). Then g is integrable with respect to ν restricted to NS(∗X) and we have∫
X
fdνp =

∫
NS(∗X)

g dν.

Proof. As ν(NS(∗X)) = 1, the push-down measure νp is a probability measure

on (X,B[X]). For every n ∈ N and k ∈ Z, define Fn,k = f−1([ kn ,
k+1
n )) and

Gn,k = g−1([ kn ,
k+1
n )). As f is bounded, the collection Fn = {Fn,k : k ∈ Z} \ {∅}

forms a finite partition of X, and similarly for Gn = {Gn,k : k ∈ Z} \ {∅} and ∗X.
Note that Gn,k = st−1(Fn,k) for every n ∈ N and k ∈ Z. By Lemma 6.10, Gn,k is

ν-measurable. For every n ∈ N, define f̂n : X → R and ĝn : ∗X → R by putting

f̂n = k
n on Fn,k and ĝn = k

n on Gn,k for every k ∈ Z. Thus f̂n (resp., ĝn) is a
simple (resp., ∗simple) function on the partition Fn (resp., Gn). By construction

f̂n ≤ f < f̂n+
1
n and ĝn ≤ g < ĝn+

1
n . It follows that

∫
X
fdνp = limn→∞

∫
X
f̂ndνp.

By Theorem 12.1, we have ν(Gn,k) = νp(Fn,k) for every n ∈ N and k ∈ Z. Thus,
for every n ∈ N and k ∈ Z, we have

(12.5)

∫
X

f̂ndνp =
k

n
νp(Fn,k) =

k

n
ν(Gn,k) =

∫
NS(∗X)

ĝndν

Hence we have limn→∞
∫
NS(∗X)

ĝndν exists and
∫
NS(∗X)

g dν =
∫
X
fdνp, completing

the proof. �

1. Construction of Standard Markov Processes

In Chapter 8, we discussed how to construct a hyperfinite Markov process
from a standard Markov process. In this section, we discuss the reverse direction.
Starting with a hyperfinite Markov process, we will construct a standard Markov
process from it.
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Let X be a metric space satisfying the Heine-Borel condition. Let S be a
hyperfinite representation of ∗X. Let {Yt}t∈T be a hyperfinite Markov process on

S with transition probability G
(t)
s (·) satisfying the following condition:

(1) For all s1, s2 ∈ NS(S) and all t1, t2 ∈ NS(T ):

(12.6) (s1 ≈ s2 ∧ t1 ≈ t2) =⇒ (∀A ∈ I[S]G(t1)

s1 (A) = G
(t2)

s2 (A))

(2)

(12.7) (∀s ∈ NS(S))(∀t ∈ NS(T ))(G
(t)

s (NS(S)) = 1).

For every x ∈ X, every h ∈ R+ and every A ∈ B[X], define

(12.8) g(x, h,A) = G
(t)

s (st−1(A) ∩ S)

where s ≈ x and t ≈ h. Such g(x, h,A) is well-defined because of Eq. (12.6). By
Theorem 12.1 and Eq. (12.7), it is easy to see that g(x, h, .) is a probability measure
on (X,B[X]) for x ∈ X and h ∈ R+. In fact, g(x, h, ·) is the push-down measure of

the internal probability measure G
(t)
s (·).

We would like to show that {g(x, h, .)}x∈X,h≥0 is the transition probability
measure of a Markov process on (X,B[X]). We first recall Definition 4.17 and The-
orem 4.18.

Definition 12.4. Suppose that (Ω,Γ, P ) is a Loeb space, that X is a Hausdorff
space, and that f is a measurable (possibly external) function from Ω to X. An
internal function F : Ω → ∗X is a lifting of f provided that f = st(F ) almost surely
with respect to P .

Theorem 12.5 ([ACH97, Theorem 4.6.4]). Let (Ω,Γ, P ) be a Loeb space, and
let f : Ω → R be a measurable function. Then f is Loeb integrable if and only if it
has a S-integrable lifting.

We are now at the place to establish the following result.

Lemma 12.6. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Then for any
t1, t2 ∈ NS(T ), any s0 ∈ S and any E ∈ B[X], the internal transition probability

G
(t2)

s (st−1(E) ∩ S) is a G
(t1)

s0 (·)-integrable function of s.

Proof. Fix t1, t2 ∈ NS(T ), s0 ∈ NS(S) and E ∈ B[X]. By Eqs. (12.6)

and (12.7), we know that g(st(s), st(t2), E) = G
(t2)

s (st−1(E) ∩ S) for all s ∈ NS(S).
The proof will be finished by Theorem 4.18 and the following claim.

Claim 12.7. The internal function ∗g(·, st(t2), ∗E) : S �→ ∗[0, 1] is a S-integrable

lifting of G
(t2)

s (st−1(E)∩S) : S �→ ∗[0, 1] with respect to the internal probability mea-

sure G
(t1)
s0 (·).

Proof. As G
(t1)
s0 (·) is an internal probability measure concentrating on a hy-

perfinite set, by Corollary 4.14, it is easy to see that ∗g(·, st(t2), ∗E) is S-integrable.

As g(st(s), st(t2), E) = G
(t2)

s (st−1(E)∩S), it is sufficient to show that ∗g(·, st(t2), ∗E)
is a S-continuous function on NS(S). Pick some x1 ∈ X and ε ∈ R+. Let s1 ∈ S

be any element such that s1 ≈ x1. Let M = {s ∈ S : (∀A ∈ I[S])(|G(t2)
s (A) −
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G
(t2)
s1 (A)| < ε}. By Eq. (12.6), M contains every element in S which is infinitesi-

mally close to s1. By overspill, there is a δ ∈ R+ such that

(12.9) (∀s ∈ S)(∗d(s, s1) < δ =⇒ (∀A ∈ I[S])(|G(t2)
s (A)−G(t2)

s1 (A)| < ε

2
)).

This clearly implies that
(12.10)

(∀s∈S)(∗d(s, s1)<δ =⇒ (∀E ∈ B[X])(|G(t2)

s (st−1(E)∩S)−G
(t2)

s1 (st−1(E)∩S)| < ε)).

By the construction of g(·, st(t2), E), we have |g(x, st(t2), E)− g(x1, st(t2), E)| < ε
for all x ∈ X such that d(x, x1) <

δ
2 . Hence g(·, st(t2), E) is a continuous function

for every x ∈ X which implies that ∗g(·, st(t2), E) is S-continuous on NS(S). �

�

We now establish the following result on “Markov property” of G
(t)

s (st−1(E)∩
S).

Lemma 12.8. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). For any t1, t2 ∈
NS(T ), s0 ∈ NS(S) and E ∈ B[X], we have

(12.11) G
(t1+t2)

s0 (st−1(E) ∩ S) ≈
∫

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds).

Proof. Pick some E ∈ B[X], some s0 ∈ NS(S) and some t1, t2 ∈ NS(T ). For

any set A ∈ I[S] with st−1(E) ∩ S ⊂ A, we have G
(t2)

s (st−1(E) ∩ S) ≤ G
(t2)

s (A).
Hence we have

(12.12)

∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≤
∫

G
(t2)

s (A)G
(t1)

s0 (ds).

By Corollary 4.14, we have

(12.13)

∫
G

(t2)

s (A)G
(t1)

s0 (ds) = st(

∫
G(t2)

s (A)G(t1)
s0 (ds)) = st(G(t1+t2)

s0 (A))

Hence, we have
(12.14)∫

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≤ inf{st(G(t1+t2)
s0 (A)) : st−1(E) ∩ S ⊂ A ∈ I[S]}.

Similarly, we have
(12.15)∫

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds) ≥ sup{st(G(t1+t2)
s0 (B)) : st−1(E) ∩ S ⊃ B ∈ I[S]}.

Hence, by the construction of Loeb measure, we have

(12.16) G
(t1+t2)

s0
(st−1(E) ∩ S) ≈

∫
G

(t2)

s (st−1(E) ∩ S)G
(t1)

s0
(ds).

�

We now establish the main result of this section.

Theorem 12.9. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). Then for
any h1, h2 ∈ R+, any x0 ∈ X and any E ∈ B[X] we have

(12.17) g(x0, h1 + h2, E) =

∫
g(x, h2, E)g(x0, h1, dx).
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This means that the family of functions {g(x, h, ·)}x∈X,h≥0 have the semi-group
property.

Proof. Fix h1, h2 ∈ R+, x0 ∈ X and E ∈ B[X]. Let s0 ∈ S be some element
such that s0 ≈ x0 and let t1, t2 ∈ NS(T ) such that t1 ≈ h1 and t2 ≈ h2. By the
construction of g and Lemma 12.8, we have

(12.18) g(x0, h1+h2, E) = G
(t1+t2)

s0 (st−1(E)∩S) =
∫

G
(t2)

s (st−1(E)∩S)G(t1)

s0 (ds).

By Eq. (12.6), we know that g(x, h2, E) = G
(t2)

s (st−1(E) ∩ S) provided that s ≈ x.
In Claim 12.7, we know that g(·, h2, E) is a continuous function hence we have
∗g(s, h2,

∗E) ≈ G
(t2)

s (st−1(E) ∩ S) for all s ∈ NS(S).
Thus, by Lemma 12.3, we have∫

S

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds)(12.19)

=

∫
NS(S)

G
(t2)

s (st−1(E) ∩ S)G
(t1)

s0 (ds)(12.20)

=

∫
NS(S)

st(∗g(s, h2,
∗E))G

(t1)

s0 (ds)(12.21)

=

∫
NS(S)

g(st(s), h2, E)G
(t1)

s0 (ds)(12.22)

=

∫
X

g(x, h2, E)g(x0, h1, dx).(12.23)

Note that the last step follows from Lemma 12.3. Hence we have the desired
result. �

As the transition probabilities {g(x, h, .)}x∈X,h≥0 have the semigroup property,
we know that {g(x, h, .)}x∈X,h≥0 defines a standard continuous-time Markov process
on the state space X with Borel σ-algebra B[X]. In fact, if we define X : Ω ×
[0,∞) → X by X(ω, h) = st(Y (ω, h+)) where h+ is the smallest element in T
greater than or equal to h then {Xh}h≥0 is a standard continuous-time Markov
process obtained from pushing-down the hyperfinite Markov process {Yt}t∈T .

2. Push down of Weakly Stationary Distributions

Recall from Definition 7.5 that an internal probability measure π on (S, I[S])
is a weakly stationary distribution if there is an infinite t0 such that

(12.24) (∀t ≤ t0)(∀A ∈ I(S))(π(A) ≈
∑
i∈S

π({i})p(t)(i, A))

p(t)(i, A) denote the t-step internal transition probability of a hyperfinite Markov
process.

In Section 1, we established how to construct a standard Markov process
{Xt}t≥0 on the state space X from a hyperfinite Markov process {Yt}t∈T on a
state space S satisfying certain properties. Note that S is a hyperfinite representa-
tion of X. It is natural to ask: if Π is a weakly stationary distribution of {Yt}t∈T , is
the push-down Πp a stationary distribution of {Xt}t≥0? We will show that, if {Yt}
satisfies Eqs. (12.6) and (12.7) then Πp is a stationary distribution on {Xt}t≥0.
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For the remainder of this section, let {G(t)
s (·)}s∈S,t∈T denote the transition

probabilities of {Yt}t∈T . Let {Xt}t≥0 be the standard Markov process on the state
space X constructed from {Yt} as in Section 1. Let {g(x, h, ·)}x∈X,h≥0 denote
the transition probabilities of {Xt}t≥0. Moreover, let Π be a weakly stationary

distribution of {Yt}t∈T such that Π(NS(S)) = 1. Let Πp be the push down measure
of Π defined in Theorem 12.1. It is easy to see that Πp is a probability measure on
(X,B[X]).

We first establish the following lemma.

Lemma 12.10. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Then for any

t ∈ NS(T ) and any E ∈ B[X], the transition probability G
(t)

s (st−1(E) ∩ S) is a
Π-integrable function of s.

Proof. The proof of this lemma is similar to Lemma 12.6. �

Lemma 12.11. Suppose {Yt}t∈T satisfies Eqs. (12.6) and (12.7). Then for any
t ∈ NS(T ) and any E ∈ B[X], we have

(12.25) Π(st−1(E) ∩ S) ≈
∫

G(t)
s (st−1(E) ∩ S)Π(ds).

Proof. The proof is similar to Lemma 12.8 �

We now show that the push-down measure of the weakly stationary distribution
Π is a stationary distribution for {Xt}t≥0.

Theorem 12.12. Suppose {Yt}t≥0 satisfies Eqs. (12.6) and (12.7). Let Π be a

weakly stationary distribution of {Yt}t∈T with Π(NS(S)) = 1. Then the push-down
measure Πp of Π is a stationary distribution of {Xt}t≥0.

Proof. By Theorem 12.1 and the fact that Π(NS(S)) = 1, we know that Πp

is a probability measure on (X,B[X]).
Fix t0∈R+ andA∈B[X]. It is sufficient to show that Πp(A)=

∫
g(x, t0, A)Πp(dx).

Let t be any element in T such that t ≈ t0. By the construction of Πp and
Lemma 12.11, we have

(12.26) Πp(A) = Π(st−1(A) ∩ S) =

∫
G(t)

s (st−1(A) ∩ S)Π(ds).

By the construction of g, we know that g(x, t0, A) = G
(t)
s (st−1(A)∩S) provided

that s ≈ x. By a similar argument as in Theorem 12.9, we have∫
S

G
(t)

s (st−1(A) ∩ S)Π(ds)(12.27)

=

∫
NS(S)

st(∗g(s, t0,
∗A))Π(ds)(12.28)

=

∫
X

g(x, t0, A)Πp(dx).(12.29)

Hence completing the proof. �

Suppose we start with a standard Markov process {Xt}t≥0 satisfying (DT),
(SF), (WC). Note that such {Xt}t≥0 may not necessarily have a stationary distri-
bution. An simple example of such {Xt}t≥0 is Brownian motion. The hyperfinite
representation {X ′

t}t∈T of {Xt}t≥0 satisfies Eqs. (12.6) and (12.7). Thus, if there



3. EXISTENCE OF STATIONARY DISTRIBUTIONS 101

is a weakly stationary distribution Π of {X ′
t}t∈T with Π(NS(SX)) = 1 then there is

a stationary distribution of {Xt}t≥0. This provides an alternative approach for es-
tablishing the existence of stationary distributions for standard Markov processes.
This will be discussed in detail in the next section.

3. Existence of Stationary Distributions

The existence of stationary distribution for discrete-time Markov processes with
finite state space is well-understood (e.g [Ros06, Section 8.4]). The situation is
much more complicated for Markov processes with non-finite state spaces. The
stationary distribution may not exist at all even for well-behaved Markov processes
(e.g Brownian motion). By using the method developed in this paper, we con-
sider the hyperfinite counterpart of the original general-state space Markov process
{Xt}t≥0. Assuming the state space is compact, we show that a stationary distri-
bution exists under mild regularity conditions.

We start by quoting the following results for finite-state space discrete-time
Markov processes.

Definition 12.13. A n × n matrix P is regular if some power of P has only
positive entries.

Theorem 12.14. Let P be the transition matrix of some finite-state space
discrete-time Markov process {Yt}t∈N. Suppose P is regular. Then there exists
a matrix W with all rows the same vector w such that limn→∞ Pn = W. Moreover,
w is the unique stationary distribution of {Yt}t∈N.

Definition 12.15. A n× n matrix P is irreducible if for every pair of i, j ≤ n
there is nij ∈ N such that the (i, j)-th entry of Pnij is positive.

The following theorem give a sufficient condition for P being regular.

Theorem 12.16. Let P be the transition matrix of some finite-state space
discrete-time Markov process {Yt}t∈N. If P is irreducible and at least one element
in the diagonal of P is positive, then P is regular.

For an arbitrary hyperfinite Markov process, we can form its transition matrix
as we did for finite Markov process.

Definition 12.17. Let K ∈ ∗N. A K ×K (hyperfinite) matrix P is ∗regular
if some hyperfinite power of P has only positive entries. A K × K matrix P is
∗irreducible if for any i, j ≤ K there is nij ∈ ∗N such that the (i, j)-th entry of Pnij

is positive.

Similarly, we have the following result for hyperfinite Markov processes.

Theorem 12.18. Let P be the hyperfinite transition matrix for some hyperfinite
Markov process {Yt}t∈T with state space S. Suppose P is ∗regular. Then there
exists a unique ∗stationary distribution Π for {Yt}t∈T , i.e for every s ∈ S, we have

Π({s}) =
∑

k∈S Π({k})P (δt)
ks .

Proof. The proof follows from the transfer of Theorem 12.14. �

Note that if Π is ∗stationary then Π is weakly stationary as in Definition 7.5.
The following theorem gives a sufficient condition for regularity of P.
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Theorem 12.19. Let P be the transition matrix of some hyperfinite Markov
process {Yt}t∈T with state space S. If P is ∗irreducible and at least one element in
the diagonal of P is positive, then P is ∗regular.

By ∗irreducible, we simply mean that for any i, j ∈ S there exists n ∈ ∗N such

that P
(n)
ij > 0. The proof of this theorem follows from transfer of Theorem 12.16.

We now turn our attention to standard continuous-time Markov process {Xt}t≥0

and its corresponding hyperfinite Markov process {X ′
t}t∈T . We have the following

result:

Theorem 12.20. Let {Xt}t≥0 be a Markov process on a compact metric space
X and let {X ′

t}t∈T be a hyperfinite Markov process on SX satisfying Eq. (11.23).
Let P be the hyperfinite transition matrix of {X ′

t}t∈T . If P is ∗regular, then there
exists a stationary distribution for {Xt}t≥0.

Proof. By Theorem 12.18, there exists a unique ∗stationary distribution Π
for {X ′

t}t∈T . Let Πp denote the push-down measure of Π. As X is compact, by
Theorem 12.12, Πp is a stationary distribution of {Xt}t≥0. �

Given a standard Markov process {Xt}t≥0. It is not difficult to find the hyper-
finite transition matrix of {X ′

t}t∈T . Thus Theorem 12.20 provides a way to look
for stationary distributions.

Example 12.21 (Brownian motion). Let {Xt}t≥0 be the standard Brownian
motion. Clearly {Xt}t≥0 satisfies all the conditions in Theorem 9.35. Let {X ′

t}t∈T

be the corresponding hyperfinite Markov process. The transition matrix of {X ′
t}t∈T

is regular (in fact G
(δt)
s1 ({s2}) > 0 for all s1, s2 ∈ S). By Theorem 12.18, there exists

a ∗stationary distribution Π of {X ′
t}t∈T .

Standard Brownian motion does not have a stationary distribution. It does have
a stationary measure which is the Lebesgue measure on R. From a nonstandard
prospective, as we can see from this example, there exists a ∗stationary distribution
of {X ′

t}t∈T . However, this ∗statioanry distribution will concentrate on the infinite
portion of ∗R since otherwise its push-down will be a stationary distribution for
the standard Brownian motion.



CHAPTER 13

Merging of Markov Processes

In Chapter 10, we discussed the total variance convergence of the transition
probabilities to stationary distributions for Markov processes satisfying certain
properties. In particular, we required our Markov chain to be productively open
set irreducible and to satisfy (DT), (SF), (OC) and (CS). However, such Markov
processes do not necessarily have a stationary distribution. A simple example is
standard Brownian motion. However, the transition probabilities of the standard
Brownian motion “merge” in the following sense.

Definition 13.1. A Markov process {Xt}t≥0 has the merging property if for
every two points x, y ∈ X, we have

(13.1) lim
t→∞

‖ P (t)
x (·)− P (t)

y (·) ‖= 0

where P
(t)
x (·) denotes the transition measure and ‖ P

(t)
x (·) − P

(t)
y (·) ‖ denotes the

total variation distance between P
(t)
x (·) and P

(t)
y (·).

[SCZ11] discuss the merging property for time-inhomogeneous finite Markov
processes. In this chapter, we focus on time-homogeneous general Markov processes.
For merging result of general probability measures, see [DDF88].

In this chapter, we give sufficient conditions to ensure that Markov processes
have the merging property. The following definition is analogous to Definition 7.11.

Definition 13.2. Given a Markov process {Xt}t≥0 on some state space X and
fix some x1, x2 ∈ X. An element (y1, y2) ∈ X ×X is an absorbing point of (x1, x2)
if for all n ∈ N

(13.2) Q(x1,x2)(∃t Zt ∈ U(y1,
1

n
)× U(y2,

1

n
)) = 1.

where Q denote the probability measure of the product Markov chain {Zt}t≥0 of
{Xt}t≥0 and a i.i.d copy of {Xt}t≥0, and U(y, 1

n ) is the open ball centered at y

with radius 1
n .

Fix an infinitesimal ε0 such that ε0 · ( t
δt ) ≈ 0 for all t ∈ T . As in Chapter 9,

we construct a hyperfinite Markov process {X ′
t}t∈T on some (δ0, r0)-hyperfinite

representation of ∗X where δ0 and r0 are chosen with respect to this ε0. Moreover,
by Proposition 3.12 and Theorem 6.6, we can assume our hyperfinite state space
S contains every x ∈ X. The hyperfinite transition probabilities for {X ′

t}t∈T are
defined in the same way as in the paragraph before Lemma 8.12 and are denoted

by {G(t)
i (·)}i∈S,t∈T .

Lemma 13.3. Suppose {Xt}t≥0 satisfies (DT), (SF), (OC). Suppose (y1, y2) ∈
X ×X is an absorbing point of some x1, x2 ∈ X. Then (y1, y2) is a near-standard
absorbing point of x1, x2 for the hyperfinite Markov chain {X ′

t}t∈T .

103
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Proof. As {Xt}t≥0 satisfies (DT), (SF), (OC), by Theorem 9.35, we have

(13.3) P
(st(t))
st(s) (E) = G

(t)

s (st−1(E) ∩ S)

hence implies that {X ′
t}t∈T satisfies Eqs. (12.6) and (12.7). Let {Xp

t }t≥0 denote
the standard Markov process obtained from pushing down {X ′

t}t∈T as in Section 1.

By the construction of {Xp
t }t≥0, we know that p

(t)
x (E) = P

(t)
x (E) for all x ∈ X,

t ≥ 0 and E ∈ B[X] where p and P denote the probability measure for {Xp
t }t≥0

and {Xt}t≥0, respectively.
Now fix some x1, x2 ∈ X. There exists (y1, y2) ∈ X ×X which is an absorbing

point for x1, x2. Fix an open ball U1 × U2 centered at (y1, y2). By Definition 13.2,
we know that Q(x1,x2)(∃t > 0 Zt ∈ U1 × U2) = 1. This implies that

(13.4) q(x1,x2)(∃t > 0 Zp
t ∈ U1 × U2) = 1

where q denote the probability measure of the product Markov chain {Zp
t }t≥0 ob-

tained from {Xp
t }t≥0 and its i.i.d copy. By the construction of {Xp

t }t≥0, we know
that

(13.5) F (x1,x2)(∃t ∈ NS(T ) Z ′
t ∈ (st−1(U1)× st−1(U2)) ∩ (S × S)) = 1

where F denote the probability measure of the product hyperfinite Markov chain
{Z ′

t}t∈T obtained from {X ′
t}t∈T and its i.i.d copy. As st−1(U) ⊂ ∗U for any open

set U , we know that F (x1,x2)(∃t ∈ NS(T ) Z ′
t ∈ (∗U1 × ∗U2) ∩ (S × S)) = 1. As our

choice of U1 ×U2 is arbitrary, this shows that (y1, y2) is a near-standard absorbing
point of x1, x2. �

The proof of the following theorem is similar to the proof of Theorem 7.19.

Theorem 13.4. Suppose {Xt}t≥0 satisfies (DT), (SF), (OC) and for every
x1, x2 ∈ X there exists a absorbing point (y, y) ∈ X×X. Then for every x1, x2 ∈ X,

every infinite t ∈ T and every A ∈ ∗B[X] we have G
(t)
x1 (A) ≈ G

(t)
x2 (A).

Proof. Let {X ′
t}t∈T be a corresponding hyperfinite Markov chain of {Xt}t≥0.

Let {Yt}t∈T be a i.i.d copy of {X ′
t}t∈T and let {Zt}t∈T denote the product hyper-

finite Markov chain of {X ′
t}t∈T and {Yt}t∈T . We use G′ and G′ for the internal

probability and Loeb probability of {Zt}t∈T .
Fix x1, x2 ∈ X. By assumption, there exists a standard absorbing point y.

Pick an infinite t0 ∈ T and fix some internal set A ⊂ S. Define

(13.6) M = {ω : ∃t < t0 − 1, X ′
t(ω) ≈ Yt(ω) ≈ y}.

By Lemma 13.3, for all n ∈ N, we have

(13.7) F (x1,x2)(∃t ∈ NS(T ) Z ′
t ∈ (∗U(y,

1

n
)× ∗U(y,

1

n
)) ∩ (S × S)) = 1.

where F denote the internal transition probability for the product hyperfinite
Markov chain {Z ′

t}t∈T obtained from {X ′
t}t∈T and its i.i.d copy. By Lemma 7.8,

we know that F (x1,x2)(M) = 1. By Theorem 9.25, we know that {X ′
t}t∈T is strong
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regular. Thus we have:

|G(t0)

x1
(A)−G

(t)

j (A)|(13.8)

= |F (x1,x2)(X
′
t0 ∈ A)− F (x1,x2)(Yt0 ∈ A)|(13.9)

= |F (x1,x2)((X
′
t0 ∈ A) ∩M)− F (x1,x2)((Yt0 ∈ A) ∩M)|(13.10)

= 0.(13.11)

�
We now establish the following merging result for the standard Markov process

{Xt}t≥0.

Theorem 13.5. Suppose {Xt}t≥0 satisfies (DT), (SF), (OC) and for every
x1, x2 ∈ X there exists a standard absorbing point y. Then {Xt}t≥0 has the merging
property.

Proof. Pick a real ε > 0 and fix two standard x1, x2 ∈ X. By Theorem 13.4,

we know that |G(t)
x1 (A)−G

(t)
x2 (A)| < ε for all infinite t ∈ T and all A ∈ ∗B[X]. Let

M = {t ∈ T : (∀A ∈ ∗B[X])(|G(t)
x1 (A)−G

(t)
x2 (A)| < ε)}. By the underspill principle,

there exists a t0 ∈ NS(T ) such that |G(t0)
x1 (A) − G

(t0)
x2 (A)| < ε for all A ∈ ∗B[X].

Pick a standard t1 > t0 and let t2 ∈ T be the first element greater than t1.

Claim 13.6. |G(t2)
x1 (A)−G

(t2)
x2 (A)| < ε for all A ∈ ∗B[X].

Proof. Pick t3 ∈ T such that t0 + t3 = t2 and any A ∈ ∗B[X]. Then we have

|G(t2)
x1

(A)−G(t2)
x2

(A)|(13.12)

≈ |
∑
y∈S

G(t1)
x1

({y})G(t2)
y (A)−

∑
y∈S

G(t1)
x2

({y})G(t2)
y (A)|(13.13)

Let f(y) = G
(t2)
y (A). By the internal definition principle, we know thatG

(t2)
y (A)

is an internal function with value between ∗[0, 1]. By Lemma 7.24, we know that

(13.14) |G(t2)
x1

(A)−G(t2)
x2

(A)| �‖ G(t1)
x1

(·)−G(t1)
x2

(·) ‖ .

Since this is true for all internal A, we have established the claim. �
By the construction of Loeb measure, we know that

(13.15) (∀B ∈ B[X])(|G(t2)

x1
(st−1(B) ∩ S)−G

(t2)

x2
(st−1(B) ∩ S)| < ε).

By Theorem 9.35 and the fact that t2 ≈ t1, we know that |P (t1)
x1 (B)−P

(t1)
x2 (B)| < ε

for all B ∈ B[X]. This shows that {Xt}t≥0 has the merging property. �





CHAPTER 14

Miscellaneous Remarks

(1) There has been a rich literature on hyperfinite representations. In this
paper, we cut ∗X into hyperfinitely “small” pieces (denoted by {B(s) :
s ∈ SX}) such that ∗g(x, 1, A) ≈ g(y, 1, A) for all A ∈ ∗B[X] for if x
and y are in the same “small” piece B(s). This also depends on (DSF)
which states that the transition probability is a continuous function of
starting points with respect to total variation norm. In [Loe74], Loeb
showed that, for any Hausdorff topological space X, there is a hyperfinite
partition BF of ∗X consisting of ∗Borel sets which is finer than any finite
Borel-measurable partition of X. That is, there exists N ∈ ∗N and {Ai :
i ≤ N} ∈ P(∗B[X]) such that

• For any i, j ≤ N , we have Ai �= ∅ and Ai ∩ Aj = ∅.
• ∗X =

⋃
i≤N Ai.

• For every bounded measurable function f , we have

(14.1) sup
x∈Ai

∗f(x)− inf
x∈Ai

∗f(x) ≈ 0

for every i ≤ N .
Now consider a discrete-time Markov process with state space X. There
is a hyperfinite set S ⊂ ∗X and a hyperfinite partition {B(s) : s ∈ S}
of ∗X consisting of ∗Borel such that for all s ∈ S, any x, y ∈ B(S) and
any A ∈ B[X] we have |∗g(x, 1, ∗A)− ∗g(y, 1, ∗A)| ≈ 0. However, it is not
clear whether |∗g(x, 1, B)− ∗g(y, 1, B)| ≈ 0 for all B ∈ ∗B[X]. A affirma-
tive answer to this question may imply that (DSF) can be eliminated in
establishing the Markov chain ergodic theorem for discrete-time Markov
processes.

(2) The following nonstandard measure theoretical question is related to the
previous point. Let X be a topological space and let (X,B[X]) be a Borel-
measurable space. The question is: is an internal probability measure on
(∗X, ∗B[X]) determined by its value on {∗A : A ∈ B[X]}? For nonstan-
dard extensions of standard probability measures on (X,B[X]), the answer
is affirmative by the transfer principle. For general internal probability
measures on (∗X, ∗B[X]), the answer is false. We can have two internal
probability measures concentrating on two different infinitesimals. They
are very different internal measures but they agree on the nonstandard
extensions of all standard Borel sets. We are interested in the case in
between.

Open Problem 3. Let X be a topological space and let (X,B[X]) be
a Borel-measurable space. Let P be a probability measure on (X,B[X])
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and let P1 be an internal probability measure on (∗X, ∗B[X]). Suppose
P1(

∗A) ≈ ∗P (∗A) for all A ∈ B[X], is it true that P1 = ∗P?

We do have the following partial result.

Lemma 14.1. Let us consider ([0, 1],B[[0, 1]]) and let P be a probabil-
ity measure on it. Let P1 be an internal probability measure on (∗[0, 1],
∗B[[0, 1]]) such that P1(

∗A) ≈ ∗P (∗A) for all A ∈ B[[0, 1]]. Then P1(I) =
∗P (I) where I is an interval contained in ∗[0, 1].

Proof. It is easy to see that P1 = ∗P if P has countable support.
Suppose P has uncountable support. Then there is an interval [a, b] ⊂
[0, 1] such that P ([a, b]) > 0 and P ({x}) = 0 for all x ∈ [a, b]. Thus,
without loss of generality, we can assume P is non-atomic on [0, 1]. Let
(x, y) ⊂ ∗[0, 1] be a ∗interval with infinitesimal length. There is a a ∈ [0, 1]
such that (x, y) ⊂ ∗(a, a + 1

n ) for all n ∈ N. As limn→∞ P ((a, a+ 1
n )) =

0, we know that P1((x, y)) ≈ 0. Pick x1, x2 ∈ ∗[0, 1]. Without loss
of generality, we can assume x1 < x2. We then have P1((x1, x2)) ≈
P1((st(x1), st(x2)) ≈ ∗P ((st(x1), st(x2)) ≈ ∗P ((x1, x2)). �

It should not be too hard to extend this lemma to more general metric
spaces. Note that the collection of ∗intervals forms a basis of ∗[0, 1]. An
affirmative answer to Open Problem 3 may follow from a variation of
Theorem 9.37.

(3) It is possible to weaken the conditions mentioned in the Markov chain
ergodic theorem (Theorem 10.16). In particular, it would be interesting
to reduce (SF) to (WF). In Chapter 11, we constructed a hyperfinite
representation {X ′

t}t∈T of {Xt}t≥0 under the Feller condition. The prob-
lem with the Markov chain ergodic theorem is: we do not know whether
{X ′

t}t∈T is strong regular. Recall that {X ′
t}t∈T is strong regular if for any

A ∈ I[S], any i, j ∈ NS(S) and any t ∈ T we have:

(14.2) (i ≈ j) =⇒ (G(t)
x (A) ≈ G(t)

y (A)).

where S denotes the state space of {X ′
t}t∈T . This is related to the fol-

lowing question: Suppose {Xt}t≥0 satisfies (WF). For any B ∈ ∗B[X],
any x, y ∈ NS(∗X) and any t ∈ T , is it true that ∗g(x, t, B) ≈ ∗g(y, t, B)?
An affirmative answer of this question will imply that {X ′

t}t∈T is strong
regular. By the transfer of (WF), it is not hard to see that ∗g(x, t, ∗A) ≈
∗g(y, t, ∗A) for all x ≈ y ∈ NS(∗X), all t ∈ R+ and all A ∈ B[X]. Thus,
an affirmative answer to Open Problem 3 should allow us to reduce (SF)
to (WF) in the Markov chain ergodic theorem (Theorem 10.16).

(4) In Section 2, we showed that the transition probability converges to the
stationary distribution weakly. We achieve this by showing that the tran-
sition probability converges to the stationary distribution for every open
ball which is also a continuity set. It is reasonable to expect such con-
vergence holds for all open balls, even all open sets. Such a result will
“almost” imply the Markov chain ergodic theorem by the following result.

Lemma 14.2. Let (X, T ) be a topological space and let (X,B[X]) be
a Borel-measurable space. Let {Pn : n ∈ N} and P be Radon probability
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measures on (X,B[X]). Suppose

(14.3) lim
n→∞

sup
U∈T

|Pn(U)− P (U)| = 0.

Then (Pn : n ∈ N) converges to P in total variation distance.

Proof. Pick ε > 0. There is a n0 ∈ N such that supU∈T |Pn(U) −
P (U)| < ε

4 for all n > n0. Let K(X) denote the collection of compact
subsets of X. Then we have supK∈K(X) |Pn(K) − P (K)| < ε

4 for all

n > n0. Fix B ∈ B[X] and n1 > n0. Without loss of generality, we can
assume that Pn1

(B) ≥ P (B). As Pn1
is Radon, we can choose K compact,

U open with K ⊂ B ⊂ U such that Pn1
(U)− Pn1

(K) < ε
4 . We then have

|Pn1
(B)− P (B)|(14.4)

≤ |Pn1
(U)− P (K)|(14.5)

≤ |Pn1
(U)− Pn1

(K)|+ |Pn1
(K)− P (K)|(14.6)

≤ ε

2
.(14.7)

This implies that supB∈B[X] |Pn1
(B)−P (B)| < ε. Thus we have (Pn : n ∈

N) converges to P in total variation distance. �
Note that the lemma remains true if we replace convergence in total

variation by limn→∞ Pn(A) = P (A) both in condition and conclusion.
(5) Discrete-time Markov processes with finite state space can be character-

ized by its transition matrix. The same is true for hyperfinite Markov
processes. The Markov chain ergodic theorem as well as the existence
of stationary distribution are well understood for discrete-time Markov
processes with finite state space. In Theorem 12.20, we establish a ex-
istence of stationary distribution result for general Markov processes via
studying its hyperfinite counterpart. Let {Xt}t≥0 be a standard Markov
process and let {X ′

t}t∈T be its hyperfinite representation. Under moder-
ate conditions, we showed that there is a ∗stationary distribution Π for
{X ′

t}t∈T . Note that every ∗stationary distribution is a weakly stationary
distribution. By Theorem 7.26, under those conditions in Theorem 10.16,
we know that the internal transition probability of {X ′

t}t∈T converges to
the ∗stationary distribution Π. This shows that the Loeb extension of Π
is the same as the Loeb extension of any other weakly stationary distri-
butions. However, it seems that a weakly stationary distribution would
differ from a ∗stationary distribution in general. We raise the following
two questions.

Open Problem 4. Is there an example of a hyperfinite Markov pro-
cess where its ∗stationary distribution differs from some of its weakly sta-
tionary distribution?

Open Problem 5. Is there an example of a hyperfinite Markov pro-
cess where the internal transition probability does not converge to the
∗stationary distribution in the sense of Theorem 7.26?

(6) For general state space continuous-time Markov processes, the Markov
chain ergodic theorem applies to Harris recurrent chains. A Harris chain
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is a Markov chain where the chain returns to a particular part of the state
space infinitely many times.

Definition 14.3. Let {Xt}t≥0 be a Markov process on a general state
spaceX. The Markov chain {Xt} is Harris recurrent if there exists A ⊂ X,
t0 > 0, 0 < ε < 1, and a probability measure μ on X such that

• P (τA < ∞|X0 = x) = 1 for all x ∈ X where τA denotes the stopping
time to set A.

• P
(t0)
x (B) > εμ(B) for all measurable B ⊂ X and all x ∈ A.

The set A is called a small set.

The first equation ensures that {Xt} will always get into A, no matter
where it starts. The second equation implies that, once we are in A, Xn+t0

is chosen according to μ with probability ε. For two i.i.d Markov processes
{Xt}t≥0 and {Yt}t≥0 starting at two different points in A, then the two
chains will couple in t0 steps with probability ε.

Let {Xt}t≥0 be a continuous-time Markov process on a general state
spaceX and let δ > 0. The δ-skeleton chain of {Xt}t≥0 is the discrete-time
process {Xδ, X2δ, . . . }. As the total variation distance is non-increasing,
the convergence in total variation distance on the δ-skeleton chain will im-
ply the Markov chain ergodic theorem on {Xt}t≥0. The following version
of the Markov chain ergodic theorem is taken from [MT93a]. Note that
the skeleton condition is usually hard to check.

Theorem 14.4 ([MT93a, Thm. 6.1]). Suppose that {Xt}t≥0 is a Har-
ris recurrent Markov process with stationary distribution π. Then {Xt} is
ergodic if at least one of its skeleton chains is irreducible.

Recall that the Markov chain ergodic theorem states that, under mod-
erate conditions, the transition probabilities will converge to its stationary
distribution for almost all x ∈ X. The property of Harris recurrent allows
us to replace “almost all” by all. For a non-Harris chain, it needs not
converge on a null set.

Example 14.5 ([RR06, Example. 3]). Let X = {1, 2, . . . }. Let
P1({1}) = 1, and for x ≥ 2, Px({1}) = 1

x2 and Px({x+1}) = 1− 1
x2 . The

chain has a stationary distribution π which is the degenerate measure on
{1}. Moreover, the chain is aperiodic and π-irreducible. On the other
hand, for x ≥ 2, we have

(14.8) P [(∀n)(Xn = x+ n)|X0 = x] =

∞∏
i=x

(1− 1

i2
) =

x− 1

x
> 0

Hence the convergence only holds if we start at {1}.
The Markov chain ergodic theorem developed in this paper (Theo-

rem 10.16) do not have such restrictions. It does not require the skeleton
condition on the underlying Markov process nor does it require the Markov
chain to be Harris recurrent.
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1319 Abed Bounemoura and Jacques Féjoz, Hamiltonian Perturbation Theory for
Ultra-Differentiable Functions, 2021

1318 Chao Wang, Zhifei Zhang, Weiren Zhao, and Yunrui Zheng, Local
Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with
Free Boundary, 2021

1317 Eric M. Rains and S. Ole Warnaar, Bounded Littlewood Identities, 2021

1316 Ulrich Bunke and David Gepner, Differential Function Spectra, the Differential
Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory, 2021
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