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Example: Bayesian Statistics

Let L(y|θ) be the likelihood function (i.e., density

of data y given unknown parameters θ) of a

statistical model, where θ ∈ Θ. (Usually

Θ ⊆ Rd.) Let the prior density of θ be p(θ).

Then the posterior distribution of θ given y is

p(θ|y) ∝ L(y|θ) p(θ) ≡ πu(θ).

[Unnormalised target density; normalisation

constant is p(y).]

Thus, the “posterior mean” of any functional f is

given by:

π(f) =

∫
X f(x)πu(x)dx∫
X πu(x)dx

.

So, Bayesians are anxious (desperate?) to

compute such integrals.

However, may have Θ high-dimensional, πu
complicated, direct integration difficult.

What to do?
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Traditional (Old) Monte Carlo

We’re given a (possibly un-normalised) density

function πu. We want to (say) estimate

expectations with respect to its normalised

version, π:

π(f) = Eπ[f(X)] =

∫
X f(x)πu(x)dx∫
X πu(x)dx

.

Here X high-dimensional, πu complicated, direct

integration difficult.

The Monte Carlo solution:

1. Simulate i.i.d. random variables

X1, X2, . . . , XN ∼ π(x) dx.

2. Estimate π(f) by π̂(f) = (1/N)
∑N
i=1 f(Xi).

Unbiased estimate, variance = O(1/
√
N), errors

have limiting normal distribution (CLT). Good!

Problem: Step 1 not always feasible.
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Other possible sampling algorithms include:

(1) “Rejection sampling”: Suppose g is easy to

sample from, and we can find c <∞ such that

πu(x) ≤ cg(x) for all x ∈ X . Then:

1. Draw Z ∼ g(x)dx, and U ∼ Uniform[0, 1].

2. Output Z if U ≤ πu(Z) / c g(Z).

3. Otherwise, goto 1.

This algorithm outputs an observation from π.

However, we need to find g such that

supx πu(x)/g(x) <∞, and such that

πu(Z) / c g(Z) is often large. Difficult.

(2) “Importance sampling”: Given a sample

X1, X2, . . . Xn ∼ g(x) dx, estimate Eπ[f(X)] by

π̂(f) =

∑n
i=1 f(Xi)w(Xi)∑n

i=1 w(Xi)

where w(x) = πu(x)
g(x) . However, w(x) may be

small, and estimation errors may be large.
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Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is a method

for using Markov chains to draw samples from π.

Surprisingly, can easily generate Markov chain

X0, X1, X2, . . . with stationary distribution π(·).
(Reviewed later on.) Then for large B,

hopefully(!) we have L(XB) ≈ π(·), i.e.

P[XB ∈ A] ≈ π(A) for all A ⊆ X.

Then can estimate π(f) by either

π̂(f) = (1/M)

M∑
i=1

f(X
[i]
B )

(using M indep. repetitions of Markov chain), or

π̂(f) = (1/M)

B+M∑
n=B+1

f(Xn)

(one long chain). Simple! Easy! A godsend!

Furthermore, these Markov chains only need πu
for their implementation, i.e. the normalisation

constant is not needed. Even better!
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History of MCMC in Statistics

MCMC algorithms first used by physicists

Metropolis, Rosenbluth, Rosenbluth, Teller, and

Teller (J. Chemical Physics 1953). [“Metropolis

Algorithm”]

Generalised by Canadian statistician

W.K. Hastings (Biometrika 1970).

[“Metropolis-Hastings Algorithm”]

Markov chains also used by Geman brothers, to

solve Markov random fields for Bayesian image

reconstruction (IEEE 1984). [“Simulated

Annealing” / “Gibbs sampler”]

Two-variable case “Data Augmentation

Algorithm” proposed by Tanner and Wong

(JASA 1984).

Gibbs sampler re-discovered in statistics, esp. by

Gelfand and Smith (JASA, 1990), applied to

various Bayesian inference models. Bayesians

were ecstatic.
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In the 1990s, MCMC’s use in statistics exploded.

Numerous applications, to e.g.:

• medical statistics (e.g. Carlin, Gilks,

Richardson, many others)

• pedigree analysis (e.g. Geyer/Thompson)

• spatial statistics (e.g. Møller, Kendall,

Thönnes)

• bioinformatics (e.g. Liu)

• image reconstruction (e.g. Besag, Green, . . . )

• automated learning [A.I.] (e.g. Hinton, Neal)

etc. Also many new MCMC algorithms, such as:

• Metropolis-coupled (Geyer) [≈ tempering]

• transdimensional MCMC (Green)

• Metropolis-adjusted Langevin Algorithm

(Roberts/Tweedie)

• perfect MCMC [using a Markov chain to

obtain i.i.d. samples] (Propp/Wilson, Fill,

Murdoch/Green, Møller, Kendall, . . . )
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Also numerous other developments, including:

• MCMC connected to traditional Markov

chain theory (Tierney, JASA 1994);

• research-level book (ed. Gilks, Richardson,

and Spiegelhalter 1996);

• software “BUGS” for automatic application

of Gibbs sampler (Spiegelhalter, Thomas,

Best, Gilks 1996–2001);

• “night of the eleven Bayesians” (three read

papers and discussion in JRSSB 1993);

• near-majority of talks at ISBA and Valencia;

• mathematical research into convergence

properties, optimal design, etc. (e.g.

Meyn/Tweedie, Roberts, Geyer, Robert,

Moulines, R.)

• nearly 500 research papers currently listed on

“MCMC Preprint Server”;

• interactions (finally) with physics (Sokal, . . . ),

computer science (Jerrum/Sinclair, Dyer).
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But is it popular?

Google hit counts:

“markov chain monte carlo”: 33,700

“markov chain monte carlo” + “statistics”: 18,400

“markov chain monte carlo” + “bayesian”: 18,800

“markov chain monte carlo” + “statistics” +

“bayesian”: 13,900

“markov chain monte carlo” + “physics”: 5,610

“markov chain monte carlo” + “computer science”:

4,640

“markov chain monte carlo” + “mathematics”: 7,770

“gibbs sampler”: 9,070

“gibbs sampler” + “statistics”: 6,250

“gibbs sampler” + “bayesian”: 6,370

“gibbs sampler” + “statistics” + “bayesian”: 5,150

“gibbs sampler” + “physics”: 1,350

“metropolis algorithm”: 7,440

“metropolis-hastings”: 5,440

“hastings-metropolis”: 499

“bayesian” + “bugs”: 7,980

“cindy crawford”: 178,000
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How Does MCMC Work?

Let π(·) be a target distribution, on some state

space X (e.g. X = Rd), that we wish to sample

from.

We wish to construct a Markov chain on X , with

transition probabilities P (x, dy), which is

easily run on a computer, and which has π(·) as

its stationary distribution, i.e.∫
x∈X π(dx)P (x, dy) = π(dy).

[And hopefully converges rapidly to π(·) . . . ]

But how can we construct P (x, dy)?

Note: Many different algorithms are used;

different ones work well in different situations.

Here “work well” means easily coded and run,

and converges in moderate number (not just

“order”) of iterations.
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Reversibility

DEFN: A Markov chain is reversible with respect

to π(·) if

π(dx)P (x, dy) = π(dy)P (y, dx) , x, y ∈ X .

FACT: If Markov chain is reversible with respect

to π(·), then π(·) is stationary.

PROOF: If reversible, then∫
x∈X

π(dx)P (x, dy) =

∫
x∈X

π(dy)P (y, dx)

= π(dy)

∫
x∈X

P (y, dx) = π(dy) .

So, suffices to make chain reversible.
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The Metropolis-Hastings Algorithm

Suppose π(·) has a density (w.r.t. something):

π(dx) = π(x) dx .

Suppose Q(x, ·) is some other (simple) Markov

chain, also having a density:

Q(x, dy) = q(x, y) dy .

The Metropolis-Hastings algorithm proceeds as

follows.

Given Xn, generate Yn+1 from Q(Xn, ·).

Then, randomly, either “accept” with probability

α(Xn, Yn+1) and set Xn+1 = Yn+1, or “reject”

with probability 1− α(Xn, Yn+1) and set

Xn+1 = Xn, where

α(x, y) = min
[
1,

π(y)q(y, x)

π(x)q(x, y)

]
.
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FACT: The formula for α(x, y) was chosen “just

right”, so that the resulting Markov chain {Xn} is

reversible with respect to π(·).

PROOF: Need to show

π(dx)P (x, dy) = π(dy)P (y, dx) .

Suffices to assume x 6= y (otherwise trivial).

But for x 6= y,

π(dx)P (x, dy) = [π(x) dx] [q(x, y)α(x, y) dy]

= π(x) q(x, y) min
[
1,

π(y)q(y, x)

π(x)q(x, y)

]
dx dy

= min[π(x) q(x, y), π(y)q(y, x)] dx dy

and similarly

π(dy)P (y, dx) = min[π(x) q(x, y), π(y)q(y, x)] dx dy .
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Thus, the Metropolis-Hastings algorithm proposes

a new state according to the proposal kernel

Q(x, ·), and then either accepts or rejects it, with

just the right probabilities to make π(·) be

reversible (and hence stationary).

To run this algorithm on a computer, we just

need to be able to run the proposal chain Q(x, ·)
[easy, for appropriate choice of Q], and then do

the accept/reject step [easy, as long as we can

compute the densities at individual points]. Good!

Furthermore we need to compute only ratios of

densities [e.g. π(y) / π(x)], so we don’t require the

normalising constants. Good!

But, how to choose the proposal Q(x, ·)?
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Metropolis-Hastings Variations

There are many different ways of choosing the

proposal density, such as:

• Symmetric Metropolis Algorithm. Here

q(x, y) = q(y, x)

The acceptance probability simplifies to

α(x, y) = min
[
1,

π(y)

π(x)

]
• Symmetric random walk Metropolis.

q(x, y) = q(y − x)

[e.g. Q(x, ·) = N(x, δ2), or

Q(x, ·) = Uniform(x− δ, x+ δ), etc.]
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• Independence sampler. Here

q(x, y) = q(y) ,

i.e. Q(x, ·) does not depend on x.

[Similar to “rejection sampler” . . . but not

identical.]

• Langevin algorithm.

Here the proposal is generated by

Yn+1 ∼ N(Xn + (δ/2)∇ log π(Xn), δ) ,

for some δ > 0.

(Motivated by discrete approximation to a

“Langevin diffusion” processes.)

[How to choose scaling δ? Saturday!]
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The Gibbs Sampler

[a.k.a. “heat bath” or “Glauber dynamics”]

Suppose that π(·) is d-dimensional, i.e. X ⊆ Rd.

Write x = (x1, . . . , xd), and

x(−i) = (x1, . . . , xi−1, xi+1, . . . , xd).

Let πi(y |x(−i)) be the conditional density of π(·),
conditional on knowing that yj = xj for j 6= i:

πi(y |x(−i)) =
gi,x(y)∫
gi,x(z) dzi

,

where gi,x(y) = π(y)1{yj=xj for j 6=i}.

The ith component Gibbs sampler is defined by

Pi(x, dy) = πi(y |x(−i)) dyi .

That is, Pi leaves all components besides i

unchanged, and replaces the ith component by a

draw from the full conditional distribution of π(·)
conditional on all the other components.
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FACT: The ith component Gibbs sampler, Pi, is

reversible with respect to π(·).

(This follows from the definition of conditional

density. In fact, Pi is a special case of a

Metropolis-Hastings algorithm, with α ≡ 1.)

So, Pi leaves π(·) invariant. We then construct

the Gibbs sampler out of Pi, as follows:

• The deterministic-scan Gibbs sampler is

P = P1P2 . . . Pd .

That is, it does the d different Gibbs sampler

components, in order.

• The random-scan Gibbs sampler is

P =
1

d

d∑
i=1

Pi .

That is, it does one of the d different Gibbs

sampler components, chosen uniformly at random.

Either version produces a “zig-zag pattern”.
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Example: Variance Components Model

MODEL:

µ

↙ ↓ ↘
θ1 . . . . . . θK θi ∼ N(µ, σ2

θ)

↓ ↓
Y11, . . . , Y1J YK1, . . . , YKJ Yij ∼ N(θi, σ

2
e)

PRIORS: σ2
θ ∼ IG(a1, b1); σ2

e ∼ IG(a2, b2);

µ ∼ N(µ0, σ
2
0).

OBSERVED DATA: Yij (1 ≤ i ≤ K, 1 ≤ j ≤ J)

TARGET DISTRIBUTION:

π(·) = L(σ2
θ , σ

2
e , µ, θ1, . . . , θK | {Yij}).

How to sample from π(·)???

19



Let πu : RK+3 → [0,∞) be the (unnormalised)

density for π(·).

Then taking into account the factors for all the

model’s various normal (N) and inverse-gamma

(IG) dependencies, we obtain

πu(σ2
θ , σ

2
e , µ, θ1, . . . , θK) ∝

e−b1/σ
2
θσ2
θ
−a1−1

e−b2/σ
2
eσ2
e
−a2−1

e−(µ−µ0)
2/2σ2

0

×
K∏
i=1

[e−(θi−µ)
2/2σ2

θ/σθ]×
K∏
i=1

J∏
j=1

[e−(Yij−θi)
2/2σ2

e/σe] .

(Here {Yij} are observed data – fixed.)

Messy! [Though simpler than many posterior

distributions! Also, πu is positive throughout

(0,∞)2 ×RK+1, larger in “center”, smaller in

“tails”; typical.]

How to sample from πu??

For Gibbs sampler, need full conditionals . . .
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Example (continued)

L(σ2
θ | µ, σ2

e , θ1, . . . , θK , Yij) =

IG

(
a1 + 1

2K, b1 + 1
2

∑
i

(θi − µ)2

)
;

L(σ2
e | µ, σ2

θ , θ1, . . . , θK , Yij) =

IG

a2 + 1
2KJ, b2 + 1

2

∑
i,j

(Yij − θi)2
 ;

L(µ | σ2
θ , σ

2
e , θ1, . . . , θK , Yij) =

N

(
σ2
θµ0 + σ2

0

∑
i θi

σ2
θ +Kσ2

0

,
σ2
θσ

2
0

σ2
θ +Kσ2

0

)
;

L(θi |µ, σ2
θ , σ

2
e , θ1, . . . , θi−1, θi+1, . . . , θK , Yij) =

N
(
Jσ2

θY i+σ
2
eµ

Jσ2
θ
+σ2

e
,

σ2
θσ

2
e

Jσ2
θ
+σ2

e

)
.
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The Gibbs sampler proceeds by updating the

K + 3 variables, in turn (either deterministic or

random scan), according to the above conditional

distributions.

This is feasible since the conditional distributions

are all easily simulated (IG and N).

In fact, it works well! [Gelfand and Smith, 1990]

(Gibbs samplers commonly used for this model

and variants. Also studied theoretically by e.g.

Mykland, Tierney, Yu 1994; R. 1994.)
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Alternatively, can run Metropolis algorithm for

this model.

Let πu : RK+3 → [0,∞) be the unnormalised

density for π(·), as above.

Proceed, given Xn, by:

• Choose Yn+1 ∼ N(Xn, σ
2IK+3) (say);

• Choose Un+1 ∼ Uniform[0, 1].

• If Un+1 < πu(Yn+1) / πu(Xn), then set

Xn+1 = Yn+1 (accept). Otherwise set

Xn+1 = Xn (reject).

Also works well, if σ2 chosen well. [Saturday!]
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General Theory

So, now we know how to construct (and run) lots

of different MCMC algorithms. Good!

But do they converge to the distribution π(·)?
How quickly?

Write Pn(x,A) for the n-step transition law of

the Markov chain:

Pn(x,A) = P(Xn ∈ A |X0 = x) .

Big questions are, is Pn(x, ·) close to π(·) as

n→∞? How large does n need to be?

[Ideally want actual number, e.g. “n = 140”, not

just “polynomially bounded” or even “O(d3) . . . ]
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Recall some standard definitions:

DEFN: A chain is φ-irreducible if there exists a

non-zero measure φ on X such that for all A ⊆ X
with φ(A) > 0, and for all x ∈ X , there exists a

positive integer n = n(x) such that Pn(x,A) > 0.

e.g. if φ(A) = δx∗(A), then this requires that x∗ is

accessible from any state x; for a continuous

Markov chain, φ(·) might instead be e.g. Lebesgue

measure.

DEFN: The chain is aperiodic if there do not

exist d ≥ 2 and disjoint subsets

X1,X2, . . . ,Xd ⊆ X with π(Xi) > 0, such that

P (x,Xi+1) = 1 for all x ∈ Xi (1 ≤ i ≤ d− 1), and

P (x,X1) = 1 for all x ∈ Xd.

DEFN: The total variation distance between two

probability measures ν1(·) and ν2(·) is:

‖ν1(·)− ν2(·)‖ = sup
A
|ν1(A)− ν2(A)| .
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Standard M.C. Convergence Theorem

[Doeblin, Orey, Jain/Jameson, Athreya/Ney,

Nummelin, . . . ; then Tierney.]

THEOREM: If a Markov chain is φ-irreducible

and aperiodic, and has a stationary distribution

π(·), then for π-a.e. x = X0 ∈ X ,

lim
n→∞

‖Pn(x, ·)− π(·)‖ = 0 .

In particular,

lim
n→∞

Pn(x,A) = π(A) , A ⊆ X .

Furthermore, if h : X → R with π(|h|) <∞,

lim
n→∞

(1/n)

n∑
i=1

h(Xi) = π(h) w.p. 1

Also, “usually” have a central limit theorem:

n−1/2
n∑
i=1

[h(Xi)− π(h)] ⇒ N(0, σ2)

for some σ2 > 0 [more later].
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So, if chain is φ-irreducible and aperiodic, and has

stationary distribution π(·), then it will converge

in distribution to π(·) from π-a.e. starting value.

Good!

Now, in MCMC, always start with π(·)
stationary. Good.

Furthermore, usually easy to verify that chain is

φ-irreducible, where e.g. φ is Lebesgue measure

on appropriate region. Good.

Also, aperiodicity almost always holds, e.g. for

virtually any Metropolis algorithm or Gibbs

sampler. Good.

So, the theorem guarantees that “most” MCMC

algorithms will asymptotically converge to π(·).
Good.

But questions remain . . .
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Time to Stationarity

So now we have a Markov chain, and we know

L(Xn)→ π(·). How large should B be, so that

L(XB) ≈ π(·)? [“Burn-in time.”]

Ideally, can prove that ‖L(XB)− π(·)‖ < ε for

appropriate B. A few of us have wasted——— spent our

lives on this question, with some successes for

various non-trivial MCMC algorithms. But for

complicated Markov chains, it is very difficult and

time-consuming.

Instead, practitioners use “convergence

diagnostics”, i.e. do statistical analysis of the

realised output X1, X2, . . . , XB , to see if the

values “seem stable”.

Typically, do multiple chain runs from different

starting values [“overdispersed starting

distribution”], and see if they all converge to

approximately the same distribution. (e.g.

Gelman/Rubin, 1992)
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No guarantees, though!

Example: “Witch’s Hat”

X = [0, 1]d (d large)

πu(x) = 1 + δ−d+11S(x), where δ > 0 very small,

and

S = {x ∈ X : xi < δ ∀i} .

Then π(S) ≈ 1.

However, unless X0 ∈ S, or “get lucky” and find

Xn ∈ S, then Gibbs Sampler or Metropolis

algorithm may well miss S entirely.

Convergence diagnostics would suggest

π(·) ≈ Uniform(X ). Wrong!!

Chain converges extremely slowly, but is still

“geometrically ergodic”. Misleading!!

Overall, the “convergence time problem” remains

largely unresolved . . . but usually okay in practice.

[This is the motivation for perfect MCMC.]
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Qualitative Convergence

DEFN: Say the chain is geometrically ergodic if

‖Pn(x, ·)− π(·)‖ ≤ C(x) ρn , n = 1, 2, 3, . . .

for some ρ < 1, where C(x) <∞ for π-a.e. x ∈ X .

[Always holds if state space is finite.]

[Other “qualitative rates” also possible.]

If chain is geometrically ergodic, then “probably

converges quickly”. Good (?).

Also, have CLT whenever π(|f |2+ε) <∞: good

for estimating distribution of error.

[FACT: If chain reversible and geometrically

ergodic, then have CLT whenever π(|f |2) <∞.

What if not reversible?? Open question!]

But does it matter??

30



Example #1: RWM for Cauchy

Let X = R, and let π1(x) = 1/(1 + x2) be

(unnormalised) Cauchy distribution.

Then RWM for π1 (with, say, X0 = 0 and

Q(x, ·) = Uniform[x− 1, x+ 1]) is ergodic but not

geometrically ergodic.

Now let π2(x) = π1(x)1(|x| < 10100).

Then RWM for π2 (again with, say, X0 = 0 and

Q(x, ·) = Uniform[x− 1, x+ 1]) is geometrically

ergodic.

And yet, RWM on π1 or on π2 is indistinguishable

when run on any physical computer for any

remotely feasible amount of time.

[Similarly, “witch’s hat” example is geometrically

ergodic but still converges very poorly.]

So, geometric ergodicity doesn’t matter??
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Example #2: Independence sampler

Let π(x) = e−x, with proposal q(x, y) = ke−ky for

some k > 0.

We consider two possible choices:

1. k = 0.01 (geometrically ergodic, CLT)

2. k = 5 (not geometrically ergodic, no CLT)

Both algorithms were run for one million

iterations started at the mean value of π (i.e.

X0 = 1). The experiment was repeated 55 times

for each case producing the following results.
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Figure 1: Sample means and kernel density estima-

tors of true mean (1.0). Case k = 0.01 has small,

symmetric error. Case k = 5 has large, skewed

error.
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Figure 2: Two different sample paths from the k =

5 simulation study.
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How to establish geometric ergodicity?

DEFN: A subset C ⊆ X is small if there exists a

positive integer n0, ε > 0, and a probability ν

such that the following minorisation condition

holds [“overlap”]:

Pn0(x,A) ≥ εν(A) , x ∈ C, A ⊆ X .

THEOREM: If chain φ-irreducible and aperiodic

with invariant measure π, and there exists a small

set C, and constants 0 < λ < 1, b <∞ and a

π-a.e. finite function V : X → [1,∞], with

drift condition∫
X
P (x, dy)V (y) ≤ λV (x) + b1C(x) ,

then chain is geometrically ergodic.

Idea: Drift condition forces many returns to C.

Then minorisation condition gives probability ε of

“forgetting past” each time chain is in C.

35



Minorisation and drift conditions also used to

bound time to stationarity [Meyn/Tweedie,

Rosenthal, Roberts/Tweedie, . . . ]. (Take n0 = 1.)

Imagine running two copies {Xn} and {X ′n}.

Start with X0 = x and X ′0 ∼ π(·).

Given Xn and X ′n, choose Xn+1 and X ′n+1 by:

1. If Xn = X ′n, choose Xn+1 = X ′n+1 ∼ P (Xn, ·).

2. Else, if (Xn, X
′
n) ∈ C × C, then:

(a) w.p. ε, choose

Xn+1 = X ′n+1 ∼ ν(·);
(b) else, w.p. 1− ε,

independently choose

Xn+1 ∼
1

1− ε
[P (Xn, ·)− ε ν(·)] ,

X ′n+1 ∼
1

1− ε
[P (X ′n, ·)− ε ν(·)] .

3. Else, just independently choose

Xn+1 ∼ P (Xn, ·) and X ′n+1 ∼ P (X ′n, ·).
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Coupling inequality says

‖Pn(x, ·)− π(·)‖ ≤ P[Xn 6= X ′n].

Can use this to explicitly bound ‖Pn(x, ·)− π(·)‖
in terms of ε, λ, b, and supx∈C PV (x). [R., JASA

1995]

Idea: Drift condition forces many returns to

C × C. Then minorisation condition gives

probability ε of coupling, each time

(Xn, X
′
n) ∈ C × C.

For Gibbs sampler on version of variance

components model, with published data (K = 15),

for appropriate x, get ‖P 140(x, ·)− π(·)‖ < 0.01.

[R., Stat. and Comput. 1996]

Good! Explicit!

But in general, difficult to obtain explicit bounds

in complicated models.
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Harris Recurrence

Why just “from π-a.e. starting value”?

EXAMPLE:

Let P be any φ-irreducible, aperiodic Markov

chain on X = R, with densities

P (x, dy) = p(x, y) dy, and with continuous

stationary distribution π(·).

Let P ′ be defined as follows. Let P ′(x, ·) = P (x, ·)
whenever x is not a positive integer. For x a

positive integer, let

P ′(x, ·) = (1/x2)π(·) + (1− 1/x2) δx+1(·) .

Then π(·) is stationary for P ′, and P ′ is still

φ-irreducible and aperiodic.

But if X0 = 3 (say), then could have Xn = n+ 3

for all n, so that ‖L(Xn)− π(·)‖ 6→ 0.

[Not “Harris recurrent”.]
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DEFN: Say a chain is Harris recurrent if for all

B ⊆ X with π(B) > 0, and all x ∈ X ,

P[∃n; Xn ∈ B |X0 = x] = 1 .

(Stronger than π-irreducibility.)

THEOREM: If chain Harris recurrent, then

convergence theorem holds from every starting

point (not just π-a.e. starting point).

For example, this always holds if

P (x, dy) = p(x, y)π(dy), or for any Metropolis

algorithm with a π-irreducible proposal.

Virtually all MCMC algorithms used in practice

are Harris recurrent; the issue has received a lot

of [too much?] attention in statistics.
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Summary

• Markov chains used very often in statistics

(esp. Bayesian) to approximately sample from

complicated distributions π(·).

• Applications to many applied areas.

• MCMC algorithms very easily constructed

(Metropolis-Hastings, Gibbs sampler).

• Asymptotic convergence usually guaranteed

(by φ-irreducibility and aperiodicity).

• “Time to stationarity” a big issue; can

sometime prove bounds, otherwise use

diagnostics, or just hope (usually okay).

• CLT’s used to estimate error distributions.

• Qualitative convergence rates (esp. geometric

ergodicity) often important; established by

minorisation and drift conditions.
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