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Abstract

We review and provide new proofs of results used to compare the ef-
ficiency of estimates generated by reversible Markov chain Monte Carlo
(MCMC) algorithms on a general state space. We provide a full proof of
the formula for the asymptotic variance for real-valued functionals on φ-
irreducible reversible Markov chains, first introduced by Kipnis and Varad-
han in [15]. Given two Markov kernels P and Q with stationary measure
π, we say that the Markov kernel P efficiency dominates the Markov kernel
Q if the asymptotic variance with respect to P is at most the asymptotic
variance with respect to Q for every real-valued functional f ∈ L2(π). As-
suming only a basic background in functional analysis, we prove that for
two φ-irreducible reversible Markov kernels P and Q, P efficiency domi-
nates Q if and only if the operator Q−P, where P is the operator on L2(π)
that maps f 7→

∫
f(y)P (·, dy) and similarly for Q, is positive on L2(π),

i.e. ⟨f, (Q−P) f⟩ ≥ 0 for every f ∈ L2(π). We use this result to show
that reversible antithetic kernels are more efficient than i.i.d. sampling, and
that efficiency dominance is a partial ordering on φ-irreducible reversible
Markov kernels. We also provide a proof based on that of Tierney in [26]
that Peskun dominance is a sufficient condition for efficiency dominance for
reversible kernels. Using these results, we show that Markov kernels formed
by randomly selecting other “component” Markov kernels will always effi-
ciency dominate another Markov kernel formed in this way, as long as the
component kernels of the former efficiency dominate those of the latter.
These results on the efficiency dominance of combining component kernels
generalises the results on the efficiency dominance of combined chains in-
troduced by Neal and Rosenthal in [19] from finite state spaces to general
state spaces.
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1 Introduction

A common problem in statistics and other areas, is that of estimating the average
value of a function f : X → R with respect to a probability measure π. The domain
of f , X, is called the state space. When the probability measure π is complicated
and the expected value of f with respect to π, Eπ(f), can’t be computed directly,
Markov chain Monte Carlo (MCMC) algorithms are very effective (see [21]). In
MCMC, the solution is to find a Markov chain {Xk}k∈N with underlying Markov
kernel P , and estimate the expected value of f with respect to π as

Eπ(f) ≈
1

N

N∑
k=1

f(Xk) =: fN .

The advantage is that the Markov kernel P provides much simpler probability
measures at each step, making it easier to compute, while the law of the Markov
chain, Xk, approaches the probability distribution π.

When the chosen function f is in L2(π), i.e. when
∫
X
|f(x)|2 π(dx)

= Eπ(|f |2) < ∞, one measure of the effectiveness of the chosen Markov kernel for
the function f , is the asymptotic variance of f using the kernel P , v(f, P ), defined
as

v(f, P ) := lim
N→∞

[
NVar

(
1

N

N∑
k=1

f(Xk)

)]
= lim

N→∞

[
1

N
Var

(
N∑
k=1

f(Xk)

)]
,

where {Xk}k∈N is a Markov chain with kernel P , started in stationarity (i.e. X1 ∼
π).

Thus if v(f, P ) is finite, we would expect the variance of the estimate fN to be
near v(f, P )/N . Furthermore, if P is φ-irreducible and reversible, a central limit
theorem (CLT) holds whenever v(f, P ) is finite, and the variance of said CLT is

the asymptotic variance, i.e.
√
N
(
fN − Eπ(f)

) d→ N(0, v(f, P )) (see [15]). For
further reference, see [13], [11], [25], [21] and [15].

X1 is not usually sampled from π directly, but if P is φ-irreducible, then we
can get very close to sampling from π directly by running the chain for a number
of iterations before using the samples for estimation.

In practice, it is common not to know in advance which function f will be
needed, or need estimates for multiple functions. In these cases it is useful to have
a Markov chain to run estimates for various functions simultaneously. Thus, we
would like the variance of our estimates, and thus the asymptotic variance, to be
as low as possible for not just one function f : X → R, but as low as possible
for every function f : X → R simultaneously. This gives rise to the notion of an
ordering of Markov kernels based on the asymptotic variance of functions in L2(π).
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Given two Markov kernels P and Q with stationary distribution π, we say that P
efficiency dominates Q if for every f ∈ L2(π), v(f, P ) ≤ v(f,Q).

In this paper, we focus our attention on reversible Markov kernels. Many
important algorithms, most notably the Metropolis-Hastings (MH) algorithm,
are reversible (see [26], [21]). When the target probability density is difficult (or
impossible) to calculate for the use of the MH algorithm, an exact approximation
of the MH algorithm, an algorithm that uses the MH algorithm with an estimator
of the target probability density, could be a viable option. In this case, it’s possible
this exact approximation algorithm run with one estimator efficiency dominate the
same algorithm run with a different estimator. See [2] for more details.

Aside from Section 5, many of the results of this paper are known but are
scattered in the literature, have incomplete or unclear proofs, or are missing proofs
altogether. We present new clear, complete, and accessible proofs, using basic
functional analysis where very technical results were previously used, most notably
in the proof of Theorem 4.1. We show how once Theorem 4.1 is established, many
further results are vastly simplified. This paper is self-contained assuming basic
Markov chain theory and functional analysis.

1.1 Simple Examples

We now present two simple examples, using the theory that will be developped
in the rest of the paper, in order to motivate and provide some explicit examples
of the material.

Example 1.1. As a simple example in finite state spaces, take X = {1, 2, 3} and
π such that π({1}) = 1/2, π({2}) = 1/4, and π({3}) = 1/4. Then let P and Q be
Markov kernels on X such that

P =

0 1
2

1
2

1 0 0
1 0 0

 , and Q =

(
1

3

)1 1 1
2 1

2
1
2

2 1
2

1
2

 .

Note that here we are using the expression of P as

P =

P (1, {1}) P (1, {2}) P (1, {3})
P (2, {1}) P (2, {2}) P (2, {3})
P (3, {1}) P (3, {2}) P (3, {3})

 ,

and similarly for Q.
In order to compare these two Markov kernels, it would be very difficult to

calculate the asymptotic variance directly by definition. Even with the formula
for the asymptotic variance from Theorem 3.1, which simplifies as X is finite to
v(f, P ) = (a2)

2 1+λ2

1−λ2
+ (a3)

2 1+λ3

1−λ3
for every f : X → R, where λ2 and λ3 are
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eigenvalues of Q − P, and a2 and a3 are the coefficients of the second and third
eigenvectors of Q−P in the eigenvector representation of f (see Proposition 2 of
[19]), this is still a task that requires a lot of computation.

However, by using Theorem 4.7, as X is finite we can simply calculate the
eigenvalues of Q − P, which are {2/3, 0, 0}, and as they are all nonnegative, we
can conclude that P efficiency dominates P .

Next we consider an example with a continuous state space.

Example 1.2. Suppose X = R, and π ∼ Exponential(1), i.e. π(dy) = f(y)dy,
where f : R → [0,∞) such that f(y) = e−y if y ≥ 0 and f(y) = 0 if y < 0.

Let h : R → [0,∞) be the density function of the Normal(0, 1) distribution, i.e.

h(y) = 1√
2π
e−

y2

2 for every y ∈ R. Let R be the Markov kernel associated to i.i.d.

sampling from the Normal(0, 1) distribution, i.e. R(x, dy) = 1√
2π
e−

y2

2 dy = h(y)dy
for every x ∈ R.

Let Π denote the Markov kernel associated with i.i.d. sampling from π (i.e.
Π(x, dy) = π(dy) = e−ydy = f(y)dy for every x ∈ X), and let Q be the Markov
kernel associated with the Metropolis-Hastings algorithm with proposal R (see Ex-
ample 6.3 or [21] for more details). Expicitly, we have

Q(x, dy) = α(x, y)R(x, dy) + r(x)δx(dy),

where α(x, y) = min
{
1, f(y)h(x)

f(x)h(y)

}
, r(x) = 1 −

∫∞
−∞ min

{
1, f(y)h(x)

f(x)h(y)

}
h(y)dy, and

δx(dy) is the point mass at x ∈ R, for every x, y ∈ R.
Trying to distinguish which algorithm, if either, of Π and Q efficiency domi-

nates the other would be very difficult given only the definition of the asymptotic
variance. However, with Theorem 6.2, we shall see that it is enough to show that
for every x ∈ R and measurable set A ⊆ R, Π(x,A \ {x}) ≥ Q(x,A \ {x}), i.e.
that Π Peskun-dominates Q (see the end of Section 1 below), in order to prove
that Π efficiency dominates Q. With this in mind, we simply calculate

Q(x,A \ {x}) =

∫
A

α(x, y)h(y)dy =

∫
A∩[0,∞)

α(x, y)h(y)dy

≤
∫
A∩[0,∞)

h(y)dy ≤
∫
A∩[0,∞)

f(y)dy =

∫
A

f(y)dy

= Π(x,A) = Π(x,A \ {x}),

as f(y) = 0 for every y < 0 and f(y) ≤ h(y) for every y ≥ 0, thus proving Π
efficiency dominates Q by Theorem 6.2.

Although these examples are simple, they demonstrate how the theory that
follows allows for a much easier analysis and comparison of many algorithms, that
would otherwise be impossible.
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1.2 Outline of the Paper

In Section 3, we provide a full proof of the formula for the asymptotic variance
of φ-irreducible reversible Markov kernels established by Kipnis and Varadhan in
[15],

v(f, P ) =

∫
[−1,1)

1 + λ

1− λ
Ef,P(dλ).

We also provide a full proof of a useful characterisation of the asymptotic variance
for aperiodic Markov kernels.

In Section 4, we use the above formula as well as some functional analysis
from Section 7, to show that efficiency dominance is equivalent to a much simpler
condition for φ-irreducible reversible kernels; given Markov kernels P and Q, for
every f ∈ L2

0(π), ⟨f,Pf⟩ ≤ ⟨f,Qf⟩ (Theorem 4.1). This equivalent condition is
sometimes called covariance dominance (see [17]). The functional analysis used
in the proof of Theorem 4.1 is derived from the basics in Section 7. We use this
theorem to show that antithetic Markov kernels are more efficient than i.i.d. sam-
pling (Proposition 4.10), and show that efficiency dominance is a partial ordering
(Theorem 4.12).

In Section 5, we generalise the results on the efficiency dominance of combined
chains in [19] from finite state spaces to general state spaces. Given reversible
Markov kernels P1, . . . , Pl and Q1, . . . , Ql, we show that if Qk − Pk is a positive
operator on L2

0(π) for every k, and {α1, . . . , αl} is a set of mixing probabilities
such that P =

∑
αkPk and Q =

∑
αkQk are φ-irreducible, then P efficiency

dominates Q (Theorem 5.1). This can be used to show that a random-scan Gibbs
sampler with more efficient component kernels will always be more efficient. We
also show that for two combined kernels differing in one component, one efficiency
dominates the other if and only if it’s unique component kernel efficiency dominates
the other’s (Corollary 5.2).

In Section 6, we consider Peskun dominance, or dominance off the diagonal
(see [20], [26]). We say that a Markov kernel P Peskun dominates another kernel
Q, if for π-a.e. x ∈ X, for every measurable set A, P (x,A \ {x}) ≥ Q(x,A \ {x}).
In Lemma 6.1, we follow the techniques of Tierney in [26] to show that if P Peskun
dominates Q, then Q−P is a positive operator. We then show that with Theorem
4.1 established, the proof that Peskun dominance implies efficiency dominance is
simplified (Theorem 6.2).

2 Background

We are given the probability space (X,F , π), where we assume the state space X
is non-empty.
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2.1 Markov Chain Background

A Markov kernel on (X,F) is a function P : X× F → [0,∞) such that P (x, ·) is
a probability measure for every x ∈ X, and P (·, A) is a measurable function for
every A ∈ F . A time-homogeneous Markov chain {Xn}n∈N on (X,F) has P as
a Markov kernel if for every n ∈ N, P (Xn+1 ∈ A|Xn = x) = P (x,A), for every
x ∈ X and A ∈ F , i.e. the Markov kernel P describes the transition probabilities
of the Markov chain {Xn}n∈N. The Markov kernel P is stationary with respect
to π if

∫
X
P (x,A)π(dx) = π(A) for every A ∈ F . Intuitively, this means that

once the chain {Xn} has reached the distribution π, Xn ∼ π, then it stays at that
distribution π forever, Xn+k ∼ π for every k ∈ N. Thus if the chain {Xn} is
started in stationarity, i.e. X0 ∼ π, then it stays in stationarity, Xn ∼ π for every
n ∈ N.

The Markov kernel P is reversible with respect to π if
P (x, dy)π(dx) = P (y, dx)π(dy), i.e. the probability of starting at x distributed by
π and then jumping to y is the same as the probability of starting at y distributed
by π and then jumping to x. A Markov kernel P is φ-irreducible if there exists a
non-zero σ-finite measure φ on (X,F) such that for every A ∈ F with φ(A) > 0,
for every x ∈ X there exists n ∈ N such that P n(x,A) > 0. Intuitively, the
Markov chain has positive probability of eventually reaching every set of positive
φ measure.

The space L2(π) is defined rigorously as the set of equivalence classes of π-
square-integrable real-valued functions, with two functions f and g being equiva-
lent if f = g π-a.e., i.e. f = g with probability 1. Less rigorously, L2(π) is simply
the set of π-square-integrable real-valued functions. When this set is endowed
with the inner-product ⟨·, ·⟩ : L2(π) × L2(π) → R such that f × g 7→ ⟨f, g⟩ :=∫
X
f(x)g(x)π(dx), this space becomes a real Hilbert space (a vector space that is

complete with respect to the norm generated by the inner product, ∥·∥ :=
√

⟨·, ·⟩).
(When we are also dealing with complex functionals, we define the inner-product
instead to be f × g 7→ ⟨f, g⟩ :=

∫
X
f(x)g(x)π(dx), where α is the complex con-

jugate of α ∈ C, and L2(π) becomes a complex Hilbert space. As we are only
dealing with real-valued functions, we do not need this distinction.)

Recall from Section 1 that for a function f ∈ L2(π), it’s asymptotic variance
with respect to the Markov kernel P , denoted v(f, P ), is defined as v(f, P ) :=

limN→∞

[
NVar

(
1
N

∑N
k=1 f(Xk)

)]
= limN→∞

[
1
N
Var

(∑N
k=1 f(Xk)

)]
, where

{Xk}k∈N is a Markov chain with Markov kernel P started in stationarity. As is
clear from our definition, the asymptotic variance is a measure of the variance of
an MCMC estimate of the mean of f in the limit using the Markov chain {Xk}
with kernel P . Also from Section 1, recall that given two Markov kernels P and
Q, both with stationary measure π, P efficiency dominates Q if v(f, P ) ≤ v(f,Q)
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for every f ∈ L2(π). Thus if P efficiency dominates Q, we should expect to have
better estimates using a Markov chain with kernel P rather than a Markov chain
with kernel Q. As such, when deciding on a Markov kernel to use for MCMC
estimation, if P efficiency dominates Q, we would rather use P (of course, this is
if all other aspects of the kernels, like convergence to π, are similar).

For every Markov kernel P , we can define a linear operator P on the space of
F measurable functions by

Pf(·) :=
∫
y∈X

f(y)P (·, dy).

For every Markov kernel, we denote the associated linear operator defined above
by it’s letter in calligraphics. If P is stationary with respect to π, the image of
P restricted to L2(π) is contained in L2(π), as for every f ∈ L2(π), by Jensen’s
inequality∫

x∈X
|Pf(x)|2 π(dx) ≤

∫∫
x,y∈X

|f(y)|2 P (x, dy)π(dx) =

∫
y∈X

|f(y)|2 π(dy) < ∞.

(2.1)
(2.1 is true for every 1 ≤ r ≤ ∞, not just r = 2. See [3].) In this paper, we will
only deal with functions in L2(π), and thus view P as a map from L2(π) → L2(π),
or a subset thereof.

Notice that the constant function, 1 : X → R such that 1(x) = 1 for every x ∈
X, exists in L2(π) (as π is a probability measure), and furthermore, as P (x, ·) is a
probability measure for every x ∈ X, P1 = 1. Thus 1 is an eigenfunction of P with
eigenvalue 1. We define the space L2

0(π) to be the subspace of L2(π) perpendicular
to 1, or the subspace of L2(π) functions with zero mean, i.e. L2

0(π) := {f ∈
L2(π)|f ⊥ 1} = {f ∈ L2(π)|⟨f,1⟩ = 0} = {f ∈ L2(π)|Eπ(f) = 0}. Notice that
if P is restricted to L2

0(π) and P is stationary with respect to π, then it’s range
is contained in L2

0(π), as for every f ∈ L2
0(π), by Fubini’s Theorem, ⟨Pf,1⟩ =∫

y∈X f(y)
∫
x∈X P (x, dy)π(dx) =

∫
X
f(y)π(dy) = ⟨f,1⟩ = 0.

When considering efficiency dominance, it is enough to look at the smaller
subspace L2

0(π). If P and Q are Markov kernels with stationary measure π, P
efficiency dominates Q if and only if P efficiency dominates Q on the smaller
subspace L2

0(π). The forward implication is trivial as L2
0(π) ⊆ L2(π), and for

the converse, notice that for every f ∈ L2(π), v(f, P ) = v(f0, P ) and v(f,Q) =
v(f0, Q), where f0 := f − Eπ(f) ∈ L2

0(π). Thus when talking about efficiency
dominance, we lose nothing by restricting ourselves to L2

0(π), and we get rid of
the eigenfunction 1. Unless stated otherwise, we will consider P as an operator
on and to L2

0(π).
A Markov kernel P is periodic with period d ≥ 2 if there exists X1, . . . ,Xd ∈

F such that Xk ∩ Xj = ∅ for every j ̸= k, and for every i ∈ {1, . . . , d − 1},
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P (x,Xi+1) = 1 for every x ∈ Xi and P (x,X1) = 1 for every x ∈ Xd. Intuitively,
the Markov chain jumps from Xi to Xi+1, then from Xi+1 to Xi+2 and so on. The
sets X1, . . . ,Xd ∈ F described above are called a periodic decomposition of P . A
Markov kernel P is aperiodic if it is not periodic.

A common definition related to the efficiency of Markov kernels and a common
measure in time-series analysis is the lag-k autocovariance. For an F -measurable
function f , the lag-k autocovariance, denoted γk, is the covariance between f(X0)
and f(Xk), where {Xk}k∈N is a Markov chain run from stationarity with kernel
P , i.e. γk := Covπ,P (f(X0), f(Xk)). When {Xk} is a Markov chain run from
stationarity, {f(Xk)} is a stationary time-series, and the definition of the lag-
k autocovariance is simply the regular definition from the time-series approach.
When the function f is in L2

0(π), notice γk = Eπ,P (f(X0)f(Xk)) = ⟨f,Pkf⟩.
We denote the Markov kernel associated with i.i.d. sampling from π as Π, i.e.

Π : X×F → [0,∞) such that Π(x,A) = π(A) for every x ∈ X and A ∈ F . Notice
that for every f ∈ L2

0(π), Πf(x) = Eπ(f) = 0 for every x ∈ X. Thus Π restricted
to L2

0(π) is the zero function on L2
0(π).

2.2 Functional Analysis Background

Here we present some functional analysis that will be used throughout the paper.
For a proper introduction to functional analysis, see Rudin’s [23], or Conway’s [6].

An operator T on a Hilbert spaceH (i.e. a linear function T : H → H) is called
bounded if there exists C > 0 such that for every f ∈ H, ∥Tf∥ ≤ C ∥f∥. An
elementary result from functional analysis shows that the operator T is continuous
if and only if T is bounded in the above sense. In finite dimensional vector spaces,
all linear operators are bounded and hence continuous. The same is not true in
general. The norm of a bounded operator is defined as the smallest such constant
C > 0 such that the above holds, i.e. ∥T∥ := inf{C > 0 : ∥Tf∥ ≤ C ∥f∥ ,∀f ∈ H}.
A bounded operator T is called invertible if it is bijective, and the inverse of T ,
T−1, is bounded.

Unbounded operators on H are linear operators T such that there is no C > 0
such that ∥Tf∥ ≤ C ∥f∥ for every f ∈ H. Oftentimes, unbounded operators T
are not defined on the whole space H, but only on a subset of H. An unbounded
operator T is densely defined if the domain of T is dense in H.

The adjoint of a bounded operator T is the unique bounded operator T ∗ such
that ⟨Tf, g⟩ = ⟨f, T ∗g⟩ for every f, g ∈ H. Similarly, if T is a densely defined
operator, then the adjoint of T is the linear operator T ∗ such that ⟨Tf, g⟩ =
⟨f, T ∗g⟩ for every f ∈ domain(T ) and g ∈ H such that f 7→ ⟨Tf, g⟩ is a bounded
linear functional on domain(T ). Thus we define domain(T ∗) := {g ∈ H|f 7→
⟨Tf, g⟩ is a bounded linear functional on domain(T )}. These two definitions are
equivalent when T is bounded.
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A bounded operator T is called normal if T commutes with it’s adjoint, TT ∗ =
T ∗T , and self-adjoint if T equals it’s adjoint, T = T ∗. Equivalently, a bounded
operator T self-adjoint if ⟨Tf, g⟩ = ⟨f, Tg⟩ for every f and g ∈ H. A densely
defined operator T is called self-adjoint if T = T ∗ and domain(T ) = domain(T ∗).

P restricted to L2(π) is self-adjoint if and only if P is reversible. As L2
0(π) ⊆

L2(π), if P is reversible with respect to π, then P restricted to L2
0(π) is self-adjoint

as well.
The spectrum of an operator T is the subset

σ(T ) := {λ ∈ C|T − λI is not invertible} of the complex plane, where I is the
identity operator. Note that in the above definition, invertible is meant in the
context of bounded linear operators, i.e. T is bijective and the inverse of T , T−1,
is also bounded. If the operator T is self-adjoint, the spectrum of T is real, i.e.
σ(T ) ⊆ R (see Theorem 12.26 (a) in [23]). It is important to note that in the case
the underlying Hilbert space of the operator T is finite-dimensional, as is the case
for L2(π) and L2

0(π) when X is finite, that the spectrum of T is exactly the set of
eigenvalues of T . When the Hilbert space is not finite-dimensional, the spectrum
also includes limit points and points where T − λI is not surjective.

An operator T on a Hilbert space H is called positive if for every f ∈ H,
⟨f, Tf⟩ ≥ 0. As we shall see in Lemma 4.6, if T is bounded and normal, then T
is positive if and only if the spectrum of T is positive, i.e. σ(T ) ⊆ [0,∞). It is
important to note that when the Hilbert space H is a real Hilbert space, it is not
necessarily true that if T is positive and bounded then T is self-adjoint. This is
an important distinction, as this is true when H is a complex Hilbert space.

Furthermore, as shown by inequality (2.1), (which is equivalent to ∥Pf∥2 ≤
∥f∥2), when P is stationary with respect to π, the norm of P on L2(π) is less
than or equal to 1. This also bounds the spectrum of P to λ ∈ C such that
|λ| ≤ ∥P∥ ≤ 1. If P is reversible, then P is self-adjoint and thus the spectrum of
P is real, σ(P) ⊆ R. Thus if P is reversible with respect to π, then σ(P) ⊆ [−1, 1].

Given a bounded self-adjoint operator T on the Hilbert spaceH, by the Spectral
Theorem (see Theorem 12.23 of [23], Chapter 9 Theorem 2.2 of [6]), we know that
there exists a spectral measure ET : B(σ(T )) → B(H) such that T =

∫
σ(T )

λET (dλ).
B(σ(T )) denotes the Borel σ-field of σ(T ) ⊆ C and B(H) denotes the set of
bounded operators on the Hilbert space H. So when P is reversible, P is self-
adjoint, and thus by the Spectral Theorem, P =

∫
σ(P)

λ EP(dλ), where EP is the

spectral measure of P .
The spectral measure ET satisfies (i) ET (∅) = 0 and ET ((T )) = I, (ii) for

every A ∈ B(σ(T )), ET (A) ∈ B(H) is a self-adjoint projection, i.e. ET (A) =
ET (A)2 = ET (A)∗, (iii) for every A1, A2 ∈ B(σ(T )), ET (A1 ∩ A2) = ET (A1)ET (A2),
and (iv) for every sequence of disjoint subsets {An}n∈N ⊆ B(σ(T )), ET (∪n∈NAn) =∑

n∈N ET (An).
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Although this definition and the decomposition of T above may seem com-
plicated, recall from linear algebra that when H is finite-dimensional, we can
decompose a self-adjoint operator T as T =

∑n−1
k=0 λkPk, where {λk}n−1

k=0 ⊆ C are
the eigenvalues of T and Pk : H → H is the projection onto the eigenspace of
λk. This is not so different from the above, except that when H is allowed to be
infinite-dimensional, this sum of projections becomes an integral of projections.

For every f ∈ H, we define the induced measure Ef,T on C as Ef,T (A) :=
⟨f, ET (A)f⟩ for every Borel measurable set A ⊆ C. Note that as ET (A) is a
self-adjoint projection for every Borel measurable set A ⊆ C, the measure Ef,T
on C is a positive measure. For every Borel measurable function ϕ : C → C,
the operator ϕ(T ) on H is defined as ϕ(T ) :=

∫
ϕ(λ)ET (dλ). ϕ(T ) is a bounded

operator whenever the function ϕ is bounded. Putting this together with our
definition of Ef,T , for every bounded Borel measureable function ϕ : C → C and
for every f ∈ H,

⟨f, ϕ(T )f⟩ =
∫
σ(T )

ϕ(λ)Ef,T (dλ).

We will also usually assume that the Markov kernel P is φ-irreducible, as
when P is φ-irreducible, the constant function is the only eigenfunction (up to a
scalar multiple) of P with eigenvalue 1 (see Lemma 4.7.4 of [10]). Thus if P is
φ-irreducible, by restricting ourselves to L2

0(π), we get rid of the eigenvalue 1, i.e.
1 is not an eigenvalue of P on L2

0(π). Note however that this does not mean that
1 /∈ σ(P) when restricted to L2

0(π), as (P − I)−1 could still be unbounded.

3 Asymptotic Variance

We now provide a detailed proof of the formula for the asymptotic variance of φ-
irreducible reversible Markov kernels, originally introduced by Kipnis and Varad-
han in [15]. Also in this section, we prove another more familiar and practical
characterisation of the asymptotic variance for φ-irreducible reversible aperiodic
Markov kernels (see [12], [11], and [13]).

Theorem 3.1. If P is a φ-irreducible reversible Markov kernel with stationary
distribution π, then for every f ∈ L2

0(π),

v(f, P ) =

∫
λ∈[−1,1)

1 + λ

1− λ
Ef,P(dλ),

where Ef,P is the measure induced by the spectral measure of P (see Section 2.2).
Note however, that this may still diverge to ∞.
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Proof. For every f ∈ L2
0(π), by expanding the squares of Varπ,P

(∑N
k=1 f(Xk)

)
,

as Eπ(f) = 0 (by definition of L2
0(π)),

1

N
Varπ,P

(
N∑
k=1

f(Xk)

)
= ∥f∥2 + 2

N∑
k=1

(
N − k

N

)
⟨f,Pkf⟩. (3.1)

Thus as ⟨f,Pkf⟩ =
∫
σ(P)

λk Ef,P(dλ) for every k ∈ N,

v(f, P ) = lim
N→∞

[
1

N
Var

(
N∑

n=1

f(Xn)

)]

= lim
N→∞

[
∥f∥2 + 2

N∑
k=1

(
N − k

N

)
⟨f,Pkf⟩

]

= ∥f∥2 + 2 lim
N→∞

[∫
λ∈σ(P)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEf,P(dλ)

]
. (3.2)

In order to deal with the limit in (3.2), we split the integral over σ(P) into three
subsets, (0, 1), (−1, 0] and {−1}. (Recall from Section 2 that σ(P) ⊆ [−1, 1], and
notice that we do not need to worry about {1}, as 1 is not an eigenvalue of P on
L2
0(π) as P is φ-irreducible (see Section 2.1), and thus Ef,P({1}) = 0 by Lemma

3.2 below).
For the first two subsets, for every fixed λ ∈ (−1, 0] ∪ (0, 1) = (−1, 1), notice

that for every N ∈ N,

∞∑
k=1

∣∣∣∣1k≤N(k)

(
N − k

N

)
λk

∣∣∣∣ ≤ ∞∑
k=1

∣∣λk
∣∣ = |λ|

1− |λ|
< ∞,

so the sum is absolutely summable. Thus we can pull the pointwise limit through
and show that for every λ ∈ (−1, 1), by the geometric series

∑∞
k=1 r

k = r
1−r

,

limN→∞
[∑∞

k=1 1k≤N(k)
(
N−k
N

)
λk
]
= λ

1−λ
.

By the Monotone Convergence Theorem for λ ∈ (0, 1) and the Dominated
Convergence Theorem for λ ∈ (−1, 0],

lim
N→∞

[∫
λ∈(0,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEf,P(dλ)

]
=

∫
λ∈(0,1)

λ

1− λ
Ef,P(dλ), (3.3)

and

lim
N→∞

[∫
λ∈(−1,0]

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEf,P(dλ)

]
=

∫
λ∈(−1,0]

λ

1− λ
Ef,P(dλ).

(3.4)
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For the last case, the case of {−1}, notice that for every N ∈ N, (simplifying
the equation found in [19]), denoting the floor of x ∈ R as ⌊x⌋,

∞∑
k=1

1k≤N(k)
N − k

N
(−1)kEf,P({−1}) = Ef,P({−1})N−1

N∑
k=1

[
(−1)k(N − k)

]
= Ef,P({−1})N−1

⌊N/2⌋∑
m=1

[(N − 2m)− (N − 2m+ 1)]

= Ef,P({−1})N−1

⌊N/2⌋∑
m=1

(−1) =

(
⌊−N/2⌋

N

)
Ef,P({−1}).

Thus as limN→∞
⌊−N/2⌋

N
= −1/2, we have the pointwise limit

lim
N→∞

∞∑
k=1

1k≤N(k)

(
N − k

N

)
(−1)kEf,P({−1}) =

(
−1

2

)
Ef,P({−1})

=

(
λ

1− λ

)
Ef,P({λ})|λ=−1. (3.5)

In order to split the integral in (3.2) into our three pieces, (0, 1), (−1, 0] and
{−1}, and pull the limit through, we have to verify that if we do pull the limit
through, we are not performing ∞−∞. To verify this, it is enough to show that∣∣∣limN→∞

∫
λ∈(−1,0]

∑∞
k=1 1k≤N(k)

(
N−k
N

)
λkEf,P(dλ)

∣∣∣ and∣∣limN→∞
∑∞

k=1 1k≤N(k)
(
N−k
N

)
Ef,P({−1})

∣∣ are finite. So by (3.4) and (3.5) above,
we find that∣∣∣limN→∞

∫
λ∈(−1,0]

∑∞
k=1 1k≤N(k)

(
N−k
N

)
λkEf,P(dλ)

∣∣∣ = ∣∣∣∫λ∈(−1,0]
λ

1−λ
Ef,P(dλ)

∣∣∣ < ∞
and

∣∣limN→∞
∑∞

k=1 1k≤N(k)
(
N−k
N

)
Ef,P({−1})

∣∣ = ∣∣(−1
2

)
Ef,P({−1})

∣∣ < ∞.

12



So, denoting H(N, k) := 1k≤N(k)
(
N−k
N

)
, by (3.3), (3.4) and (3.5),

lim
N→∞

[∫
λ∈[−1,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEf,P(dλ)

]

= lim
N→∞

[
∞∑
k=1

H(N, k)(−1)kEf,P({−1}) +
∫
λ∈(−1,0]

∞∑
k=1

H(N, k)λkEf,P(dλ)

+

∫
λ∈(0,1)

∞∑
k=1

H(N, k)λkEf,P(dλ)

]

= lim
N→∞

∞∑
k=1

H(N, k)(−1)kEf,P({−1}) + lim
N→∞

∫
λ∈(−1,0]

∞∑
k=1

H(N, k)λkEf,P(dλ)

+ lim
N→∞

∫
λ∈(0,1)

∞∑
k=1

H(N, k)λkEf,P(dλ)

=

(
λ

1− λ

)
Ef,P({λ})|λ=−1 +

∫
λ∈(−1,0]

λ

1− λ
Ef,P(dλ) +

∫
λ∈(0,1)

λ

1− λ
Ef,P(dλ)

=

∫
λ∈[−1,1)

λ

1− λ
Ef,P(dλ).

Plugging this into (3.2), and as Ef,P({1}) = 0 by Lemma 3.2 below, we have

v(f, P ) = ∥f∥2 + 2 lim
N→∞

[∫
λ∈σ(P)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEf,P(dλ)

]

=

∫
λ∈[−1,1)

Ef,P(dλ) + 2

∫
λ∈[−1,1)

λ

1− λ
Ef,P(dλ)

=

∫
λ∈[−1,1)

1 + λ

1− λ
Ef,P(dλ).

Lemma 3.2. If P is a φ-irreducible Markov kernel reversible with respect to π,
then for every f ∈ L2

0(π), Ef,P({1}) = 0.

Proof. As outlined in [10] Lemma 4.7.4, as P is φ-irreducible, the constant function
is the only eigenfunction of P with eigenvalue 1. Thus 1 is not an eigenvalue of P
when restricted to L2

0(π).
As seen in Theorem 12.29 (b) of [23], for every normal bounded operator T on

a Hilbert space, if λ ∈ C is not an eigenvalue of T , then ET ({λ}) = 0. As P is
reversible with respect to π, P is self-adjoint and thus also normal.
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So applying the above theorem to P , as 1 ∈ C is not an eigenvalue of P ,
EP({1}) = 0. Thus for every f ∈ L2

0(π), Ef,P({1}) = ⟨f, EP({1})f⟩ = ⟨f, 0⟩ =
0.

We now show that if P is aperiodic, then −1 cannot be an eigenvalue of P .

Proposition 3.3. Let P be a Markov kernel reversible with respect to π. If P is
aperiodic then −1 is not an eigenvalue of P : L2

0(π) → L2
0(π).

Proof. We show the contrapositive. That is, we assume that −1 is an eigenvalue
of P , and show that P is not aperiodic, i.e. periodic.

Let f ∈ L2
0(π) be an eigenfunction of P with eigenvalue −1. As P is self-

adjoint (as P is reversible), we can assume that f is real-valued. Let X1 = {x ∈
X : f(x) > 0} = f−1((0,∞)) and X2 = {x ∈ X : f(x) < 0} = f−1((−∞, 0)). As f
is (F ,B(R))-measureable where B(R) is the Borel σ-field on R, X1,X2 ∈ F .

As f is an eigenfunction, f ̸= 0 π-a.e. As f ∈ L2
0(π),

0 = Eπ(f) =

∫
X

f(x)π(dx) =

∫
X1

f(x)π(dx) +

∫
X2

f(x)π(dx).

So, the above combined with the fact that f ̸= 0 π-a.e. gives us that π(X1), π(X2) >
0.

So, as Pf = −f for π-a.e. x ∈ X and P is reversible with respect to π,∫
X1

f(x)π(dx) = −
∫
X2

f(x)π(dx) =

∫
X2

Pf(x)π(dx) =

∫
y∈X

f(y)P (y,X2)π(dy).

Similarly,
∫
X
f(x)P (x,X1)π(dx) =

∫
X2

f(x)π(dx).
We now claim that P is periodic with respect to X1 and X2. So assume for

a contradiction there exists E ∈ F such that π(E) > 0, E ⊆ X1 and for every
x ∈ E, P (x,X2) < 1. Then by definition of X2,∫
X
f(x)P (x,X2)π(dx) =

∫
X1

f(x)π(dx) >
∫
X1

f(x)P (x,X2)π(dx)

≥
∫
X
f(x)P (x,X2)π(dx), a clear contradiction.

So for π-a.e. x ∈ X1, P (x,X2) = 1. Similarly, for π-a.e. x ∈ X2, P (x,X1) = 1.
Thus P is periodic with period d ≥ 2.

This proposition, combined with Theorem 3.1, gives us a characterization of
v(f, P ) as sums of autocovariances, γk (recall from Section 2.1), when P is aperiodic
(see [11], [12], [13]). Though this characterization will not be used in this paper,
it is perhaps more common and easier to interpret from a statistical point of view.

Proposition 3.4. If P is an aperiodic φ-irreducible Markov kernel reversible with
respect to π, then for every f ∈ L2

0(π),

v(f, P ) = ∥f∥2 + 2
∞∑
k=1

⟨f,Pkf⟩ = γ0 + 2
∞∑
k=1

γk.
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Remark. Even if P is periodic, Proposition 3.4 is still true for all f ∈ L2
0(π) that

are perpendicular to the eigenfunctions of P with eigenvalue −1. (This ensures
Ef,P({−1}) = 0).

Proof. Let f ∈ L2
0(π). By Proposition 3.3, −1 is not an eigenvalue of P . So,

just as in the proof of Lemma 3.2, again by Theorem 12.29 (b) of [23], as P is
self-adjoint and thus normal, Ef,P({−1}) = 0. So by Theorem 3.1, v(f, P ) =∫
λ∈[−1,1)

1+λ
1−λ

Ef,P(dλ) = ∥f∥2 + 2
∫
λ∈(−1,1)

λ
1−λ

Ef,P(dλ).
Recalling the geometric series

∑∞
k=1 λ

k = λ
1−λ

for λ ∈ (−1, 1), by the Monotone
Convergence Theorem for λ ∈ (0, 1) and by the Dominated Convergenve Theorem
for λ ∈ (−1, 0], we have∫

λ∈(−1,1)

λ

1− λ
Ef,P(dλ) =

∫
λ∈(−1,1)

∞∑
k=1

λkEf,P(dλ) =
∞∑
k=1

∫
λ∈(−1,1)

λkEf,P(dλ).

So the asymptotic variance becomes v(f, P ) = ∥f∥2+2
∫
λ∈(−1,1)

λ
1−λ

Ef,P(dλ) =
∥f∥2 + 2

∑∞
k=1

∫
λ∈(−1,1)

λkEf,P(dλ) = ∥f∥2 + 2
∑∞

k=1⟨f,Pkf⟩ = γ0 + 2
∑∞

k=1 γk, as

Eπ(f) = 0.

Remark. In the non-reversible case, it is not guaranteed that the asymptotic vari-
ance exists (either a real number or infinite). However, the existence of the “λ-
asymptotic variance,” vλ(f, P ) := ∥f∥2 + 2

∑∞
k=1 λ

k⟨f,Pkf⟩, for λ ∈ [0, 1) (where
λ is simply a parameter, not an element of the spectrum of P), is guaranteed to
exist (though may be infinite). As such, progress has been made comparing the
λ-asymptotic variance of non-reversible kernels, rather than the asymptotic vari-
ance, as in [1], and we are left with the problem of showing vλ(f, P ) converges
to v(f, P ), i.e. limλ↑1 vλ(f, P ) = v(f, P ). Noting that as in [26] we can write
vλ(f, P ) = ⟨f, (I − λP)−1 (I − λP) f⟩, an easy application of the Spectral Theo-
rem and the Dominated and Monotone Convergence Theorems as we have done in
the proofs of Theorem 3.1 and Proposition 3.4 shows that limλ↑1 vλ(f, P ) = v(f, P )
whenever P is φ-irreducible and reversible (not necessarily aperiodic).

4 Efficiency Dominance Equivalence

In this section, we use some basic functional analysis to prove our most useful
equivalent condition for efficiency dominance for φ-irreducible reversible Markov
kernels, simplifying the proof and staying away from overly technical arguments.
We then use this equivalent condition to show how reversible antithetic Markov
kernels are more efficient than i.i.d. sampling, and show that efficiency dominance
is a partial ordering on φ-irreducible reversible kernels.
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We state the equivalent condition theorem here, and then cover a brief exam-
ple before introducing the lemmas we need from functional analysis proving each
direction of the equivalence. We prove said lemmas in Section 7.

Theorem 4.1. If P and Q are φ-irreducible Markov kernels reversible with respect
to π, then P efficiency dominates Q if and only if

⟨f,Pf⟩ ≤ ⟨f,Qf⟩, ∀f ∈ L2
0(π). (4.1)

Remark. The condition that P and Q be φ-irreducible can actually be dropped,
i.e. if P and Q are simply Markov kernels reversible with respect to π, then P
efficiency dominates Q if and only if (4.1) holds.

This follows by recognizing that every function in the eigenspace of P with
respect to the eigenvalue 1, i.e. every f ∈ EP,1 := {f ∈ L2

0(π) : Pf = f} =
null(P−I), has unbounded asymptotic variance (by (3.1), v(f, P ) = limN→∞[∥f∥2
+ 2

∑N
k=1(

N−k
N

)⟨f,Pkf⟩] = ∥f∥2 [limN→∞(1 + 2
∑N

k=1
N−k
N

)] = ∞). Thus as
eigenspaces are closed, L2

0(π) = EP,1

⊕
E⊥

P,1, where E⊥
P,1 = {g ∈ L2

0(π) : ⟨f, g⟩ =
0,∀f ∈ EP,1} and

⊕
is the direct product of Hilbert spaces, and we can follow the

same arguments as the φ-irreducible case on restricted subspcaes.

Example 4.2 (Data Augmentation Algorithms and their Sandwich Variants).
Say we want to estimate samples from the probability density fX : X → [0,∞)
on (X,X , µ). If we have access to conditional densities fX|Y (·|y) and fY |X(·|x) on
the spaces (X,X , µ) and another space (Y,Y , ν) respectively (where there exists a
density f : X×Y → [0,∞) with fX(x) =

∫
Y
f(x, y)ν(dy)) then we can implement

a data augmentation (DA) MCMC algorithm to estimate from fX .
The DA MCMC algorithm works as follows. If {Xk}∞k=0 is our Markov chain,

after starting X0 according to some initial distribution, given Xk = x ∈ X, we
sample from fY |X(·|x) to get a y ∈ Y, and then sample again from fX|Y (·|y) to
get our value x′ ∈ X, and set Xk+1 = x′. The Markov kernel according to this
algorithm is PDA(x, dx

′) =
∫
Y
fX|Y (x

′|y)fY |X(y|x)ν(dy)µ(dx′)
Oftentimes the DA algorithm can be inefficient, and we can improve perfor-

mance by adding a middle step. Given a Markov kernel R on (Y,Y), after we
have our sample y ∈ Y by sampling from fY |X(·|x), we sample from R(y, ·) to
get another sample in Y, y′ ∈ Y, and then use this value to finish the loop by
sampling from fX|Y (·|y′). This algorithm is dubbed the sandwich DA algorithm,
as the middle step of sampling from R(y, ·) is “sandwiched” between the outer
steps of the DA algorithm. This MCMC algorithm has Markov kernel PS(x, dx

′) =∫∫
Y
fX|Y (x

′|y′)R(y, dy′)fY |X(y|x)ν(dy)µ(dx′).
The following diagram illustrates the DA and sandwich DA MCMC algorithms,
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with the DA algorithm on the left and the sandwich DA algorithm on the right.

Y X Y

fX|Y

fY |X
fY |X

R

fX|Y

This general form of the sandwich DA algorithm was first introduced in [14].
For a more detailed analysis and background on the comparison between the DA
and sandwich DA algorithms, see [14]. We follow their analysis here to show that
under suitable conditions, the sandwich DA algorithm efficiency dominates the DA
algorithm.

Using the definition of conditional densities, it is not hard to see that
PDA(x, dx

′)fX(x)µ(dx) = PDA(x
′, dx)fX(x

′)µ(dx′), i.e. that the DA algorithm is
reversible with respect to fXµ. If the Markov kernel R is reversible with respect to
fY ν, a similar argument will show that the sandwich DA algorithm is reversible
with respect to fXµ as well.

We let TX : L2
0(Y,Y , fY ν) → L2

0(X,X , fXµ) such that

Th(x) =

∫
y∈Y

h(y)fY |X(y|x)ν(dy), ∀h ∈ L2
0(fY ),∀x ∈ X

(where L2
0(fY ) := L2

0(Y,Y , fY ν)). We similarly define TX : L2
0(fX) → L2

0(fY ).
Then notice that given the DA kernel PDA and the sandwich DA kernel PS, we
have

PDA = TXTY , PS = TXRTY , T ∗
X = TY . (4.2)

A common condition on the Markov kernel R is that it is idempotent, i.e.∫
z∈Y R(y, dz)R(z, dy′) = R(y, dy′) for every y ∈ Y, or equivalently, R2 = R. So,
if the sandwich algorithm as given is such that R is reversible and idempotent, then
notice that by (4.2), for every g ∈ L2

0(fX),

⟨g,PSg⟩ = ⟨g, TXRTY g⟩ = ⟨TY g,RTY g⟩ = ⟨RTY g,RTY g⟩
≤ ⟨TY g, TY g⟩ = ⟨g, TXTY g⟩ = ⟨g,PDAg⟩.

Thus PS and PDA satisfy (4.1), and thus be Theorem 4.1 the sandwich DA algo-
rithm efficiency dominates the DA algorithm.

To prove the “if” direction of Theorem 4.1, we follow an approach similar to the
one seen in [17], but with some notable differences. The most important difference,
is the use of the following lemma instead of some overly technical results from [4].
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The following lemma, Lemma 4.3, is a generalisation of some results found in
Chapter V of [5] from finite dimensional vector spaces to general Hilbert spaces.
The finite dimensional version of Lemma 4.3 is also presented in [19] as Lemma
24.

Lemma 4.3. If T and N are self-adjoint bounded linear operators on a Hilbert
space H, such that σ(T ), σ(N) ⊆ (0,∞), then ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ H,
if and only if ⟨f, T−1f⟩ ≥ ⟨f,N−1f⟩, for ever f ∈ H.

Lemma 4.3 is proven in Section 7.1, where we discuss the differences in Lemma
4.3 between finite dimensional (as shown in [19]) and general Hilbert spaces.

We now prove the “if” direction of Theorem 4.1 with the help of Lemma 4.3.

Proof of “if” Direction of Theorem 4.1.
Say P and Q satisfy (4.1). For every η ∈ [0, 1), let TP,η = I − ηP and

TQ,η = I − ηQ. Then as ∥P∥ , ∥Q∥ ≤ 1, by the Cauchy-Schwartz inequality,
for every f ∈ L2

0(π), |⟨f,Pf⟩| ≤ ∥f∥2 and |⟨f,Qf⟩| ≤ ∥f∥2. So again by the
Cauchy-Schwartz inequality, for every f ∈ L2

0(π),

∥TP,ηf∥ ∥f∥ ≥ |⟨TP,ηf, f⟩|
=
∣∣∥f∥2 − η⟨f,Pf⟩

∣∣
≥ |1− η| ∥f∥2 .

Thus for every f ∈ L2
0(π), ∥TP,ηf∥ , ∥TQ,ηf∥ ≥ |1− η| ∥f∥. As η ∈ [0, 1), |1− η| >

0, and as TP,η and TQ,η are both normal (as they are self-adjoint) TP,η and TQ,η are
both invertible, in the sense of bounded linear operators, i.e. the inverse of TP,η

and TQ,η are bounded, and 0 /∈ σ(TP,η), σ(TQ,η) (by Lemma 7.2).
As ∥P∥ , ∥Q∥ ≤ 1 and P and Q are self-adjoint (as P and Q are reversible),

σ(P), σ(Q) ⊆ [−1, 1]. Thus for every η ∈ [0, 1), σ(TP,η), σ(TQ,η) ⊆ (0, 2) ⊆ (0,∞).
So for every η ∈ [0, 1), as TP,η and TQ,η are both self-adjoint, and for every

f ∈ L2
0(π), ⟨f, TQ,ηf⟩ = ∥f∥2 − η⟨f,Qf⟩ ≤ ∥f∥2 − η⟨f,Pf⟩ = ⟨f, TP,ηf⟩, by

Lemma 4.3, ⟨f, T−1
Q,ηf⟩ ≥ ⟨f, T−1

P,ηf⟩, for every f ∈ L2
0(π).

Notice that for every η ∈ [0, 1), T−1
P,η = (I − ηP) (I − ηP)−1+ηP (I − ηP)−1 =

I + ηP (I − ηP)−1. So, for every f ∈ L2
0(π),

∥f∥2 + η⟨f,P (I − ηP)−1 f⟩ = ⟨f, T−1
P,ηf⟩

≤ ⟨f, T−1
Q,ηf⟩ = ∥f∥2 + η⟨f,Q (I − ηQ)−1 f⟩,

so for every f ∈ L2
0(π), ⟨f,P (I − ηP)−1 f⟩ ≤ ⟨f,Q (I − ηQ)−1 f⟩.

Thus by the Monotone Convergence Theorem for λ ∈ (0, 1) and the Dominated
Convergence Theorem for λ ∈ [−1, 0], for every f ∈ L2

0(π),
limη→1−

∫
[−1,1)

λ
1−ηλ

Ef,P(dλ) =
∫
[−1,1)

λ
1−λ

Ef,P(dλ), and similarly for Q.
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As P and Q are φ-irreducible and reversible with respect to π, by Theorem
3.1, for every f ∈ L2

0(π),

v(f, P ) =

∫
[−1,1)

1 + λ

1− λ
Ef,P(dλ) = ∥f∥2 + 2

∫
[−1,1)

λ

1− λ
Ef,P(dλ)

= ∥f∥2 + 2 lim
η→1−

∫
[−1,1)

λ

1− ηλ
Ef,P(dλ) = ∥f∥2 + 2 lim

η→1−
⟨f,P (I − ηP)−1 f⟩

≤ ∥f∥2 + 2 lim
η→1−

⟨f,Q (I − ηQ)−1 f⟩ = ∥f∥2 + 2 lim
η→1−

∫
[−1,1)

λ

1− ηλ
Ef,Q(dλ)

= ∥f∥2 + 2

∫
[−1,1)

λ

1− λ
Ef,Q(dλ) =

∫
[−1,1)

1 + λ

1− λ
Ef,Q(dλ) = v(f,Q).

So as v(f, P ) ≤ v(f,Q) for every f ∈ L2
0(π), v(f, P ) ≤ v(f,Q) for every f ∈ L2(π)

(see Section 2.1), thus P efficiency dominates Q.

Remark. For the other direction of Theorem 4.1, it is hard to make use of any
arguments utilising Lemma 4.3. If P effieciency dominates Q, we are given that
each individual f ∈ L2

0(π) satisfies limη→1−⟨f, T−1
P,ηf⟩ ≤ limη→1−⟨f, T−1

Q,ηf⟩. As we
can’t apply Lemma 4.3 to the limits above, it seems the most we can do is fix an
ϵ > 0, and by the above limit for every f ∈ L2

0(π) there exists ηf ∈ [0, 1) such

that for every ηf ≤ η < 1, ⟨f, T−1
P,ηf⟩ ≤ ⟨f, T−1

Q,ηf⟩ + ϵ ∥f∥2 = ⟨f,
(
T−1
Q,ηf

+ ϵI
)
f⟩.

However, this results in a possible different ηf for every f ∈ L2
0(π), and it’s not

obvious that sup{ηf : f ∈ L2
0(π)} < 1, leaving us with no single η ∈ [0, 1) such that

the above inequality holds for every f ∈ L2
0(π) to allow us to apply Lemma 4.3.

Due to the difficulties in applying Lemma 4.3 in the only if direction of Theorem
4.1, we make use of the following lemma, which appears as Corollary 3.1 from [17].

Lemma 4.4. Let T and N be injective self-adjoint positive bounded linear op-
erators on the Hilbert space H (though T−1/2 and N−1/2 may be unbounded).
If domain(T−1/2) ⊆ domain(N−1/2) and for every f ∈ domain(T−1/2) we have∥∥N−1/2f

∥∥ ≤
∥∥T−1/2f

∥∥, then ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ H.

See Section 7.2 for the proof of Lemma 4.4.
We must also make use of the fact that the space of functions with finite

asymptotic variance is the domain of (I − P)−1/2. This was first stated in [15],
using a test function argument. We take a different approach and provide a proof
using the ideas of the Spectral Theorem. In particular, it uses some ideas from
the proof of Theorem X.4.7 from [6].

Lemma 4.5. If P is a φ-irreducible Markov kernel reversible with respect to π,
then {

f ∈ L2
0(π) : v(f, P ) < ∞

}
= domain

(
(I − P)−1/2

)
.
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Proof. Let ϕ : [−1, 1] → R such that ϕ(λ) = (1− λ)−1/2 for every λ ∈ [−1, 1) and
ϕ(1) = 0.

Even though ϕ is unbounded, it still follows from spectral theory that
∫
ϕdEP =∫

(1− λ)−1/2 EP(dλ) = (I − P)−1/2, the inverse operator of (I − P)1/2, including
equality of domains (for a formal argument, see [8] Theorem XII.2.9). Thus our
problem reduces to showing that {f ∈ L2

0(π) : v(f, P ) < ∞} = domain
(∫

ϕdEP
)
.

Now notice that for every f ∈ L2
0(π), as Ef,P({1}) = 0 by Lemma 3.2,∫

[−1,1)

(
1

1− λ

)
Ef,P(dλ) =

∫
[−1,1)

|ϕ(λ)|2 Ef,P(dλ) =
∫

|ϕ|2 dEf,P .

Thus by Theorem 3.1, for every f ∈ L2
0(π), v(f, P ) =

∫
[−1,1)

(
1+λ
1−λ

)
Ef,P(dλ), so

v(f, P ) < ∞ if and only if

∫
[−1,1)

(
1

1− λ

)
Ef,P(dλ) =

∫
|ϕ|2 dEf,P < ∞.

Thus we would like to show that
∫
|ϕ|2 dEf,P is finite if and only if f ∈

domain
(∫

ϕdEP
)
.

For every n ∈ N, let ϕn := 1(|ϕ|<n) ϕ and ∆n := ϕ−1(−n, n) = ϕ−1
n (R). Then

notice ∪∞
k=1∆n = R and ∆n is a Borel set for every n as ϕ is Borel measurable.

As ϕ is positive, notice ϕn ≤ ϕn+1 for every n. Thus as ϕn → ϕ pointwise for
every λ ∈ σ(P), by the Monotone Convergence Theorem,∫

|ϕn|2 dEf,P →
∫

|ϕ|2 dEf,P . (4.3)

As ϕn is bounded for every n, by definition of ϕn we have∫
|ϕn|2 dEf,P =

∥∥∥∥(∫ ϕndEP
)
f

∥∥∥∥2
=

∥∥∥∥(∫ ϕdEP
)
EP (∪n

k=1∆k) f

∥∥∥∥2
=

∥∥∥∥EP (∪n
k=1∆k)

(∫
ϕdEP

)
f

∥∥∥∥2 .
Thus as EP(∪n

k=1∆k) → EP(R) = I as n → ∞ in the strong operator topology
(i.e. ∥EP(∪n

k=1∆k)f − f∥ → 0 for every f ∈ L2
0(π)), we have∫

|ϕn|2 dEf,P =

∥∥∥∥EP (∪n
k=1∆k)

(∫
ϕdEP

)
f

∥∥∥∥2 →
∥∥∥∥(∫ ϕdEP

)
f

∥∥∥∥2 . (4.4)
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Thus by (4.3) and (4.4) we have∫
|ϕ|2 dEf,P = lim

n→∞

∫
|ϕn|2 dEf,P =

∥∥∥∥(∫ ϕdEP
)
f

∥∥∥∥2 . (4.5)

Thus as
∥∥(∫ ϕdEP

)
f
∥∥2 < ∞ if and only if f ∈ domain

(∫
ϕdEP

)
, this com-

pletes the proof.

Remark. In [15], Kipnis and Varadhan state that {f ∈ L2
0(π) : v(f, P ) < ∞} =

range
[
(I − P)1/2

]
. As range

[
(I − P)1/2

]
= domain

[
(I − P)−1/2

]
, these are

equivalent.

Now we are ready to prove the “only if” direction of Theorem 4.1, as outlined
in [17]. Recall the “only if” direction of Theorem 4.1; if P and Q are φ-irreducible
Markov kernels reversible with respect to π, such that P efficiency dominates Q,
then ⟨f,Pf⟩ ≤ ⟨f,Qf⟩, for every f ∈ L2

0(π).

Proof of “only if” Direction of Theorem 4.1.
As P efficiency dominates Q, if f ∈ L2

0(π) such that v(f,Q) < ∞, then
v(f, P ) ≤ v(f,Q) < ∞. Thus {f ∈ L2

0(π) : v(f,Q) < ∞} ⊆ {f ∈ L2
0(π) :

v(f, P ) < ∞}. So by Lemma 4.5, we have

domain
[
(I − Q)−1/2

]
⊆ domain

[
(I − P)−1/2

]
. (4.6)

By Theorem 3.1, for every f ∈ L2
0(π), v(f, P ) =

∫
[−1,1)

1+λ
1−λ

Ef,P(dλ) and v(f,Q)

=
∫
[−1,1)

1+λ
1−λ

Ef,Q(dλ). Thus as
∫
[−1,1)

1+λ
1−λ

Ef,P(dλ) = ∥f∥2 + 2
∫
[−1,1)

λ
1−λ

Ef,P(dλ)
and

∫
[−1,1)

1
1−λ

Ef,P(dλ) = ∥f∥2 +
∫
[−1,1)

λ
1−λ

Ef,P(dλ) and similarly for Q, as P

efficiency dominates Q, for every f ∈ L2
0(π),∫

[−1,1)

1

1− λ
Ef,P(dλ) ≤

∫
[−1,1)

1

1− λ
Ef,Q(dλ). (4.7)

Furthermore, by (4.5) in the proof of Lemma 4.5, (recall that ϕ(λ) = (1 −
λ)−1/2 in the proof of Lemma 4.5), for every f ∈ domain

[
(I − P)−1/2

]
,∫

[−1,1)

(
1

1− λ

)
Ef,P(dλ) =

∥∥∥(I − P)−1/2 f
∥∥∥2 ,

and similarly
∫
[−1,1)

(
1

1−λ

)
Ef,Q(dλ) =

∥∥∥(I − Q)−1/2 f
∥∥∥2. Thus by (4.6) and (4.7),

for every f ∈ domain
[
(I − Q)−1/2

]
,∥∥∥(I − P)−1/2 f
∥∥∥2 ≤ ∥∥∥(I − Q)−1/2 f

∥∥∥2 .
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So, by Lemma 4.4, with T = (I − Q) and N = (I − P), for every f ∈ L2
0(π),

⟨f, (I − Q) f⟩ ≤ ⟨f, (I − P) f⟩, and thus

⟨f,Pf⟩ ≤ ⟨f,Qf⟩.

Condition (4.1) is clearly equivalent to ⟨f, (Q−P) f⟩ ≥ 0 for every f ∈ L2
0(π),

i.e. equivalent to Q−P being a positive operator. We can relate this back to the
spectrum of the operator Q−P with the following lemma.

Lemma 4.6. If T is a bounded self-adjoint linear operator on a Hilbert space H,
then T is positive if and only if σ(T ) ⊆ [0,∞).

Proof. For the forward direction, if λ < 0, then for every f ∈ H such that f ̸= 0,
by the Cauchy-Schwartz inequality,

∥(T − λ)f∥ ∥f∥ ≥ |⟨(T − λ)f, f⟩|
= |⟨Tf, f⟩ − λ ∥f∥2 |
≥ ⟨Tf, f⟩+ |λ| ∥f∥2 (as λ < 0 and by assumption)

≥ |λ| ∥f∥2 . (by assumption)

Thus as f ̸= 0 and λ ̸= 0,

∥(T − λ)f∥ ≥ |λ| ∥f∥ > 0.

Thus as T − λ is normal (as it is self-adjoint), T − λ is invertible (by Lemma 7.2),
and λ ̸∈ σ(T ) by definition.

For the converse, if σ(T ) ⊆ [0,∞), then as Ef,T is a positive measure for every
f ∈ H (as ET (A) is a self-adjoint projection for every Borel set A),

⟨f, Tf⟩ =
∫
λ∈σ(T )

λEf,T (dλ) =
∫
λ∈[0,∞)

λEf,T (dλ) ≥ 0, f ∈ H.

This gives us the following.

Theorem 4.7. If P and Q are φ-irreducible Markov kernels reversible with respect
to π, then P efficiency dominates Q if and only if σ(Q−P) ⊆ [0,∞).

Proof. By Theorem 4.1, P efficiency-dominates Q if and only if P and Q satisfy
(4.1). As P and Q are both bounded linear operators, this is equivalent to

⟨f, (Q−P)f⟩ ≥ 0, for every f ∈ L2
0(π),

or in other words equivalent to Q−P being a positive operator.
Thus as Q− P is a bounded self-adjoint linear operator on L2

0(π), by Lemma
4.6, Q−P is a positive operator if and only if σ(Q−P) ⊆ [0,∞).
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Proposition 4.8. If P and Q are φ-irreducible Markov kernels reversible with
respect to π such that supσ(P) ≤ inf σ(Q), then P efficiency dominates Q.

Proof. Firstly, notice that for every f ∈ L2
0(π),

⟨f,Pf⟩ =
∫
σ(P)

λEf,P(dλ) ≤ supσ(P)

∫
σ(P)

Ef,P(dλ) = supσ(P) · ∥f∥2 ,

and similarly ⟨f,Qf⟩ ≥ inf σ(Q) · ∥f∥2. Thus for every f ∈ L2
0(π),

⟨f, (Q−P) f⟩ ≥ (inf σ(Q)− supσ(P)) ∥f∥2 ≥ 0,

and thus by Theorem 4.1 P efficiency dominates Q.

Example 4.9. In [24], the authors prove positivity (i.e. that σ(P) ⊆ [0,∞)) for
many general state space MCMC algorithms. In particular, they use the fact that
conjugation of a positive operator by a bounded operator is again a positive oper-
ator, i.e. they show that the corresponding Markov operator P of each algorithm
is of the form MTM∗, where M : H → L2

0(π) is a bounded linear operator from
some Hilbert space H, M∗ : L2

0(π) → H is it’s adjoint operator (see Section 2.2),
and T : H → H is a self-adjoint positive operator on H.

For context, let n ≥ 1, K ⊆ Rn with nonempty interior, and f : K → [0,∞)
be a possibly unnormalised probability density. The authors in [24] prove positivity
for the following algorithms.

1. Hit-and-Run Algorithm.

� Starting at xk ∈ K, choose a direction θ in the n − 1 dimensional
unit sphere uniformly at random, and then sample xk+1 ∈ K from f
restricted to the one dimensional subset {x + δθ : δ ∈ R such that x +
δθ ∈ K}.

2. Random Scan Gibbs Sampler Algorithm.

� Starting at xk ∈ K, choose an axis j ∈ {1, . . . , n} unformly at random,
and then sample xk+1 ∈ K from f restricted to the one dimensional
subset {x + δej : δ ∈ R such that x + δej ∈ K}, where ej is the jth
coordinate vector of Rn.

3. Slice Sampler Algorithm.

� (Simple Slice Sampler) Starting at xk ∈ K, choose a level t ∈ (0, f(xk)]
uniformly at random, and then sample xk+1 ∈ K uniformly at random
from the set {x ∈ K : f(x) ≥ t} =: f−1([t,∞)). (In [24], they prove
positivity for more general slice sampler algorithms, allowing for more
general transitions once a level t is chosen, not only uniform transi-
tions.)
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4. Metropolis Algorithm.

� Given any Markov kernel Q that is reversible with respect to Lebesgue
measure and positive, given xk ∈ K, generate a sample y ∈ K from
Q(xk, ·), and accept the proposal and set xk+1 = y with probability

α(xk, y) = min{1, f(y)
f(x)

} and reject the proposal and set xk+1 = xk with

probability 1− α(xk, y).

Recall from Section 2.1 that Π ≡ 0, where Π is the Markov kernel corresponding
to i.i.d. sampling from π. Thus clearly σ(Π) = {0}, and as the above algorithms
are positive, denoting their Markov operator as P, σ(P) ⊆ [0,∞). So, in particular
inf σ(P) ≥ 0 = sup σ(Π), and thus by Proposition 4.8, we find that i.i.d. sampling
efficiency dominates each of the above algorithms.

As seen in [12], antithetic methods can lead to improved efficiency of MCMC
methods. In this paper, we define antithetic Markov kernels as Markov kernels
P such that σ(P) ⊆ [−1, 0] when restricted to L2

0(π). We will show here that
antithetic reversible Markov kernels are more efficient than i.i.d. sampling from π
directly.

Proposition 4.10. Let P be a φ-irreducible Markov kernel reversible with respect
to π. Then P is antithetic if and only if P efficiency dominates Π (the Markov
kernel corresponding to i.i.d. sampling from π).

Proof. Recall from Section 2.1 that Π ≡ 0 on L2
0(π), and thus σ(Π) = {0}.

So say P is antithetic. Then supσ(P) ≤ 0 = inf σ(Π), and by Proposition 4.8,
P efficiency dominates Π.

On the other hand if P efficiency dominates Π, then by Proposition 4.8,
supσ(P) ≤ inf σ(Π) = 0, and thus σ(P) ⊆ (−∞, 0] ∩ [−1, 1] = [−1, 0], so P is
antithetic.

Example 4.11. Take (X,F , π) = ([0, 1] ,B,m) where B is the Borel σ-field
on [0, 1] and m is the Lebesgue measure on [0, 1], i.e. (X,F , π) is the uniform
probability space.

Denote the left and right half of [0, 1] by L and R respectively, i.e. L = [0, 1/2]
and R = (1/2, 1]. Then let P be the Markov kernel that jumps from the left half L
to the right half R uniformly and similarly from the right half R to the left half L
uniformly, i.e. P (x, dy) = 2 (1L(x)m|R(dy) + 1R(x)m|L(dy)).

P is clearly reversible (and φ-irreducible). Furthermore, notice that for every
f ∈ L2

0(m), as 0 = Em(f) =
∫
fdm =

∫
L
fdm +

∫
R
fdm, −

∫
L
fdm =

∫
R
fdm,

24



and so

⟨f,Pf⟩ = 2

∫∫
[0,1]

f(x)f(y) (1L(x)m|R(dy) + 1R(x)m|L(dy))m(dx)

= 2

(∫
x∈L

∫
y∈R

f(x)f(y)m(dy)m(dx) +

∫
x∈R

∫
y∈L

f(x)f(y)m(dy)m(dx)

)
= 2

((∫
L

fdm

)(∫
R

fdm

)
+

(∫
R

fdm

)(∫
L

fdm

))
= 2

((∫
L

fdm

)(
−
∫
L

fdm

)
+

(
−
∫
L

fdm

)(∫
L

fdm

))
= −4

(∫
L

fdm

)2

≤ 0.

Thus we see that −P is a positive operator, and thus by Lemma 4.6, −σ(P) =
σ(−P) ⊆ [0,∞), and thus σ(P) ⊆ (−∞, 0]. As P is an operator arising from a
Markov kernel, we have σ(P) ⊆ [−1, 0], so P is antithetic.

Thus by Proposition 4.10, P efficiency dominates i.i.d. sampling. So, for every
square-integrable Borel function f on the interval [0, 1], we can achieve a lower
variance in our Monte Carlo estimate using a Markov chain with P as it’s kernel
than by i.i.d. sampling.

The above example illustrates even in very simple scenarios, we can improve
our estimates using MCMC algorithms over i.i.d. sampling.

We now show that efficiency dominance is partial ordering on the set of φ-
irreducible reversible Markov kernels reversible with respect to π.

Theorem 4.12. Efficiency dominance is a partial order on φ-irreducible reversible
Markov kernels, reversible with respect to π (reversible with respect to the same
probability measure).

Proof. Reflexivity is trivial.
Suppose P and Q are φ-irreducible reversible Markov kernels reversible with

respect to π such that P efficiency dominates Q and Q efficiency dominates P .
Then by Theorem 4.1, for every f ∈ L2

0(π),

⟨f,Pf⟩ ≤ ⟨f,Qf⟩ and ⟨f,Pf⟩ ≥ ⟨f,Qf⟩,

so ⟨f,Pf⟩ = ⟨f,Qf⟩ for every f ∈ L2
0(π). Thus ⟨f, (Q − P)f⟩ = 0 for every

f ∈ L2
0(π). So for every g, h ∈ L2

0(π), as Q and P are self-adjoint,

0 = ⟨g + h, (Q−P)(g + h)⟩
= ⟨g, (Q−P)g⟩+ ⟨h, (Q−P)h⟩+ 2⟨g, (Q−P)h⟩
= 2⟨g, (Q−P)h⟩.
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So for every g, h ∈ L2
0(π), ⟨g, (Q − P)h⟩ = 0. Thus Q − P = 0, so P = Q, and

thus P = Q. So the relation is antisymmetric.
Suppose P,Q and R are φ-irreducible reversible Markov kernels reversible with

respect to π, such that P efficiency dominates Q and Q efficiency dominates R.
Then by Theorem 4.1, for every f ∈ L2

0(π), ⟨f, (R−Q)f⟩ ≥ 0 and ⟨f, (Q−P)f⟩ ≥
0. So, for every f ∈ L2

0(π),

⟨f, (R−P)f⟩ = ⟨f, (R−Q)f⟩+ ⟨f, (Q−P)f⟩ ≥ 0.

And thus by Theorem 4.1, we have P efficiency dominates R, so the relation is
transitive.

5 Combining Chains

In this section, we generalise the results of Neal and Rosenthal in [19] on the
efficiency dominance of combined chains from finite state spaces to general state
spaces. We state the most general result first, a sufficient condition for the effiency
dominance of combined kernels, and then a simple Corollary following from it.

Theorem 5.1. Let P1, . . . , Pl and Q1, . . . , Ql be Markov kernels reversible with
respect to π. Let α1, . . . , αl be mixing probabilities (i.e. αk ≥ 0 for every k, and∑

αk = 1) such that P =
∑

αkPk and Q =
∑

αkQk are φ-irreducible.
If Qk − Pk is a positive operator (i.e. σ(Qk − Pk) ⊆ [0,∞)) for every k, then

P efficiency dominates Q.

Proof. By definition of a positive operator (Section 2.2), for every k ∈ {1, . . . , l},
we have

⟨f, (Qk − Pk) f⟩ ≥ 0, ∀f ∈ L2
0(π).

So, for every f ∈ L2
0(π),

⟨f, (Q−P) f⟩ =
∑

αk⟨f, (Qk − Pk) f⟩ ≥ 0.

Thus as P and Q are also φ-irreducible (and reversible as each Pk and Qk are re-
versible), P and Q satisfy (4.1), and thus by Theorem 4.1, P effieciency dominates
Q.

Remark. If the Markov kernels P1, · · · , Pl and Q1, . . . , Ql are φ-irreducible, then
Theorem 5.1 can be restated as follows. Let P1, . . . , Pl and Q1, . . . , Ql be φ-
irreducible Markov kernels reversible with respect to π and α1, . . . , αl be mixing
probabilities. If Pk efficiency dominates Qk for every k, then P =

∑
αkPk effi-

ciency dominates Q =
∑

αkQk.
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The converse of Theorem 5.1 is not true, even in the case where P1, . . . , Pl

and Q1, . . . , Ql are φ-irreducible. For a simple counter example, take l = 2, and
let P1 and P2 be any φ-irreducible Markov kernels, reversible with respect to a
probability measure π such that P1 efficiency dominates P2, but P2 does not
efficiency dominate P1. Then by taking Q1 = P2, Q2 = P1 and α1 = α2 = 1/2,
we have P = 1/2 (P1 + P2) and Q = 1/2 (Q1 +Q2) = 1/2 (P1 + P2), so P = Q.
Thus as efficiency dominance is reflexive by Theorem 4.12, P efficiency dominates
Q. However, by assumption P2 does not efficiency dominates P1 = Q2, thus the
components do not efficiency dominate each other.

What is true is the following.

Corollary 5.2. Let P , Q and R be Markov kernels reversible with respect to π,
such that P and Q are φ-irreducible. Then for every α ∈ (0, 1), P efficiency
dominates Q if and only if αP + (1− α)R efficiency dominates αQ+ (1− α)R.

Proof. As P and Q are φ-irreducible, αP + (1− α)R and αQ+ (1− α)R are also
φ-irreducible (to see this use the same σ-finite measure and the fact that for every
x ∈ X and A ∈ F , (αP + (1− α)R)n (x,A) ≥ αnP n(x,A)).

If P efficiency dominates Q, by Theorem 5.1, αP+(1−α)R efficiency dominates
αQ+ (1− α)R.

If αP + (1− α)R efficiency dominates αQ+ (1− α)R, by Theorem 4.7,

σ(Q−P) = σ(α−1 [αQ+ (1− α)R− (αP + (1− α)R)]) ⊆ [0,∞),

so by Theorem 4.7 again, P efficiency dominates Q.

Thus when swapping only one component, the new combined chain efficiency
dominates the old combined chain if and only if the new component efficiency
dominates the old component.

Example 5.3. For n ≥ 1, say we are interested in a possibly unnormalised prob-
ability density f : Rn → [0,∞) (here we assume that Rn is equipped with the
usual Borel σ-field and Lebesgue measure). Then recall from Example 4.9, that
the random scan Gibbs sampler algorithm works by randomly choosing an axis
in Rn, and updating only the jth coordinate using the marginal distribution of f
on that axis given the last point, i.e. given xk = (x

(1)
k , . . . , x

(n)
k ) ∈ Rn, choose

an axis j ∈ {1, . . . , n} uniformly at random, pick x
(j)
k+1 according to the one-

dimensional probability distribution fj(·|(x(1)
k , . . . , x

(j−1)
k , x

(j+1)
k , . . . , x

(n)
k ), where fj

is the marginal distribution in the jth coordinate, and set xk+1 =

(x
(1)
k , . . . , x

(j−1)
k , x

(j)
k+1, x

(j+1)
k , . . . , x

(n)
k ).

For every measurable set A ⊆ Rn, x = (x(1), . . . , x(n)) ∈ Rn and j ∈ {1, . . . , n},
let Aj(x) := {y(j) ∈ Rn : (x(1), . . . , x(j−1), y(j), x(j+1), . . . , x(n)) ∈ A}. Then this
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algorithm has Markov kernel

Q(x,A) =
1

n

n∑
j=1

Qj(x,A) =
1

n

n∑
j=1

∫
Aj(x)

f(x(1), . . . , x(j−1), t, x(j+1), . . . , x(n))dt∫
R
f(x(1), . . . , x(j−1), t, x(j+1), . . . , x(n))dt

,

for every x ∈ Rn and measurable A ⊆ Rn, where Qj is the Markov kernel asso-
ciated to updating the jth coordinate. Notice that for every j ∈ {1, . . . , n}, the
Markov kernel Qj corresponding to updating the jth coordinate, is simply i.i.d.
sampling from the one-dimensional probability distribution fj given the other n−1
coordinates (as described in the above paragraph).

Thus in order to find a more efficient algorithm than Gibbs sampling, by The-
orem 5.1, it suffices to simply find an algorithm that efficiency dominates i.i.d.
sampling in one dimension, and then the sum of this new algorithm applied to
each coordinates marginal distribution, as described above, will efficiency domi-
nate Gibbs sampling. Some work in this direction can be found in [18] for discrete
state spaces.

6 Peskun Dominance

In this section, we show that Theorem 4.7, once established, simplifies the proof
that Peskun dominance implies efficiency dominance. Peskun dominance is another
widely used condition, introduced by Peskun in [20] for finite state spaces, and
generalized to general state spaces by Tierney in [26]. We shall see that it is a
stronger condition than efficiency dominance. We follow the techniques of Tierney
(see [26]) to establish a key lemma, then show that with Theorem 4.7 already
established, this lemma immediately gives us our result. For a different proof of
the fact that Peskun dominance implies efficiency dominance in the finite state
space case, see [19].

We start with our key lemma.

Lemma 6.1. If P and Q are Markov kernels reversible with respect to π, such
that P Peskun dominates Q, then Q−P is a positive operator.

Proof. For every x ∈ X, let δx : F → {0, 1} be the measure such that

δx(E) =

{
1, x ∈ E

0, o.w.
for every E ∈ F .

Then notice that as P and Q are reversible with respect to π,

π(dx)(δx(dy) + P (x, dy)−Q(x, dy)) = π(dy)(δy(dx) + P (y, dx)−Q(y, dx)).
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Thus for every f ∈ L2
0(π), we have

⟨f, (Q−P)f⟩ =
∫∫

x,y∈X
f(x)f(y)(Q(x, dy)− P (x, dy))π(dx)

=

∫
x∈X

f(x)2π(dx)

−
∫∫

x,y∈X
f(x)f(y)(δx(dy) + P (x, dy)−Q(x, dy))π(dx)

=
1

2

∫∫
x,y∈X

(f(x)− f(y))2 (δx(dy) + P (x, dy)−Q(x, dy))π(dx).

As P Peskun dominates Q, (δx(·) + P (x, ·)−Q(x, ·)) is a positive measure for
π-almost every x ∈ X. Thus

1

2

∫∫
x,y∈X

(f(x)− f(y))2 (δx(dy) + P (x, dy)−Q(x, dy))π(dx) ≥ 0.

As f ∈ L2
0(π) is arbitrary, Q−P is a positive operator.

Now with Theorem 4.7 we can easily show the following.

Theorem 6.2. If P and Q are φ-irreducible Markov kernels reversible with respect
to π, such that P Peskun dominates Q, then P efficiency dominates Q.

Proof. By Lemma 6.1, Q−P is a positive operator (i.e. σ(Q−P) ⊆ [0,∞)), and
thus by Theorem 4.7, P efficiency dominates Q.

In [26], Theorem 6.2 is used to show that given a set of proposal kernels, the
Metropolis-Hastings algorithm that samples from a weighted sum of the proposal
kernels and then performs the accept/reject step efficiency dominates the weighted
sum of Metropolis-Hastings algorithms with said proposal kernels. We consider
this example next.

Example 6.3. Say we are interested in sampling from a possibly unnormalised
probability density f : X → [0,∞) on (X,X , µ). One of the most common algo-
rithms we can use is the Metropolis-Hastings (MH) algorithm.

Let Q(x, dy) = q(x, y)µ(dy) be any other proposal Markov kernel that is abso-
lutely continuous with respect to µ. Then if {Xk}∞k=0 is the Markov chain run by
the Metropolis-Hastings algorithm, then given Xk = x ∈ X, we first use Q(x, ·)
to generate a sample y ∈ X, and with probability α(x, y) = min

{
1, f(y)q(y,x)

f(x)q(x,y)

}
we set Xk+1 = y, otherwise the chain stays at x, i.e. Xk+1 = x. This chain
has Markov kernel P (x, dy) = α(x, y)Q(x, dy) + r(x)δx(dy), where r(x) := 1 −
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∫
X
α(x, y)Q(x, dy) and δx is the point mass measure at x ∈ X, i.e. δx(A) = 1

if x ∈ A and δx(A) = 0 if x /∈ A for every A ∈ X . Thus for every x ∈ X
and every subset A ∈ X such that x /∈ A, P (x,A) =

∫
y∈A α(x, y)Q(x, dy) =∫

y∈A α(x, y)q(x, y)µ(dy).
When deciding on a proposal kernel Q to use, we oftentimes consider a sum

of simpler kernels, i.e. given {Qn}N−1
n=0 and {βn}N−1

n=0 such that
∑N−1

n=0 βn = 1, we

might take Q =
∑N−1

n=0 βnQn. Now we have two natural options. We can either
use the MH algorithm of the kernel Q =

∑
βnQn, where we denote the kernel of

this algorithm as P , or we can use the sum of MH algorithms
∑N−1

n=0 βnPn, where
each Pn is the kernel arising from the MH algorithm with proposal Qn. We will
show, as is shown in [26], that the MH algorithm run from the combined proposal
Q, P , efficiency dominates the sum of MH algorithms.

For every x ∈ X and A ∈ X ,

P (x,A \ {x}) =

∫
A\{x}

α(x, y)q(x, y)µ(dy)

=

∫
A\{x}

min

{
q(x, y),

(
f(y)

f(x)

)
q(y, x)

}
µ(dy)

≥
∫
A\{x}

N−1∑
n=0

βn min

{
qn(x, y),

(
f(y)

f(x)

)
qn(y, x)

}
µ(dy)

=
N−1∑
n=0

βn

∫
A\{x}

αn(x, y)qn(x, y)µ(dy) =
N−1∑
n=0

βnPn(x,A \ {x}),

where α(x, y) = min
{
1, f(y)q(y,x)

f(x)q(x,y)

}
and αn(x, y) = min

{
1, f(y)qn(y,x)

f(x)qn(x,y)

}
are the ac-

ceptance probabilities of their respective MH algorithm.
As A ∈ X was arbitrary, P Peskun dominates

∑N−1
n=0 βnPn, and thus by Theo-

rem 6.2, P efficiency dominates
∑N−1

n=0 βnPn.

The converse of Theorem 6.2 is not true. In fact, we have already seen a
simple example of a kernel that efficiency dominates but doesn’t Peskun dominate
another kernel.

Example 6.4 (Example 4.11, Continued). We have already seen that the Markov
kernel P of Example 4.11 efficiency dominates i.i.d. sampling on the interval [0, 1].
It is also easy to see that P does not Peskun dominate i.i.d. sampling.

Take for example x = 0 ∈ [0, 1] and A = [0, 1/2] = L ∈ B. Then as P jumps
from the left half of the interval L to the right half of the interval R uniformly, as 0
is in the left half, clearly P (0, L \ {0}) ≤ P (0, L) = 0. Conversely, as single points
have zero mass in Lebesgue measure, clearly M(0, L\{0}) = m(L\{0}) = m(L) =
1/2 (where M is the operator associated to i.i.d. sampling on ([0, 1],B,m)).
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Even in finite state spaces Peskun dominance is not a necessary condition for
efficiency dominance. For a simple example in the finite state space case, see
Section 7 of [19]. Although Peskun dominance can be an easier condition to check,
as is clear here, efficiency dominance is a much more general condition.

7 Functional Analysis Lemmas

We seperate this section into two subsections. In the first subsection, we follow a
parrallel approach to that of Neal and Rosenthal in [19] in the finite case, substi-
tuting linear algebra for functional analysis where appropriate, to prove Lemma
4.3. In the second subsection, we follow the techniques of Mira and Geyer in [17]
to prove Lemma 4.4.

7.1 Proof of Lemma 4.3

As shown in [17], Lemma 4.3 follows from some more general results in [4]. How-
ever, these general results are very technical, and require much more than basic
functional analysis to prove. So we present a different approach using basic func-
tional analysis. These techniques are similar to what has been done in Chapter
V of [5], as presented by Neal and Rosenthal in [19], but generalized for general
Hilbert spaces rather than finite dimensional vector spaces.

We begin with some lemmas about bounded self-adjoint linear operators on a
Hilbert space H.

Lemma 7.1. If X, Y, and Z are bounded linear operators on a Hilbert space H such
that ⟨f,Xf⟩ ≤ ⟨f, Y f⟩ for every f ∈ H, and Z is self-adjoint, then ⟨f, ZXZf⟩ ≤
⟨f, ZY Zf⟩ for every f ∈ H.

Proof. For every f ∈ H, Zf ∈ H, so

⟨f, ZXZf⟩ = ⟨Zf,XZf⟩ ≤ ⟨Zf, Y Zf⟩ = ⟨f, ZY Zf⟩.

This is where the finite state space case differs from the general case. In the fi-
nite state space case, L2

0(π) is a finite dimensional vector space, and thus in order to
prove that ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ V if and only if ⟨f, T−1f⟩ ≥ ⟨f,N−1f⟩
for every f ∈ V, when T and N are self-adjoint operators, the only additional as-
sumption needed is that T and N are strictly positive, i.e. that for every f ̸= 0 ∈ V,
⟨f, Tf⟩, ⟨f,Nf⟩ > 0. This is presented by Neal and Rosenthal in [19], Section 8.
However, in the general case, as L2

0(π) may not be finite dimensional, T and N
being strictly positive is not a strong enough assumption. In the general case, it
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is possible for T to be strictly positive and self-adjoint, but not be invertible in
the bounded sense. Thus it is possible that 0 ∈ σ(T ). So, we must use a slightly
stronger assumption. We must assume that σ(T ), σ(N) ⊆ (0,∞). In the finite
case, this is equivalent to being strictly positive, however it is stronger in general.

The following lemma is Theorem 12.12 from [23]. We present a more detailed
proof below.

Lemma 7.2. If T is a normal bounded linear operator on a Hilbert space H, then
there exists δ > 0 such that δ ∥f∥ ≤ ∥Tf∥ for every f ∈ H if and only if T is
invertible.

Proof. For the forward implication, we will show that as T is normal, by the
assumption it will follow that T is bijective, and then by the assumption once
more the inverse of T is bounded.

Firstly, notice that for every f ∈ H such that f ̸= 0, ∥Tf∥ ≥ δ ∥f∥ > 0, so
Tf ̸= 0. As Tf ̸= 0 for every f ̸= 0 ∈ H, T is injective.

As T is normal and injective, T ∗ is also injective, and as T is normal
range(T )⊥ = null(T ∗) = {0}, so the range of T is dense in H.

Now we will show that the range of T is closed, and thus T is surjective as the
range of T is also dense in H. For any f ∈ range(T ), there exists {gn}n∈N ⊆ H
such that Tgn → f . So for every m,n ∈ N, by our assumption

∥gn − gm∥ = δ−1δ ∥gn − gm∥ ≤ δ−1 ∥Tgn − Tgm∥ ,

so {gn} ⊆ H is Cauchy as {Tgn} converges. Thus as H is complete (as it is a
Hilbert space), there exists g ∈ H such that gn → g. As T is bounded, it is also
continuous, and thus Tgn → Tg, and as the limits are unique and Tgn → f as
well, Tg = f and f ∈ range(T ). So range(T ) is closed.

So as T is bijective, there exists an operator T−1 such that TT−1f = f for
every f ∈ H. By our assumption, letting C = δ−1, we have

C ∥f∥ = C
∥∥TT−1f

∥∥ ≥
∥∥T−1f

∥∥
for every f ∈ H, and so T−1 is bounded.

For the converse, say T is invertible. Then let δ = ∥T−1∥−1
. Then for every

f ∈ H, by definition of δ,

δ ∥f∥ = δ
∥∥T−1Tf

∥∥ ≤ δ
∥∥T−1

∥∥ ∥Tf∥ = ∥Tf∥ .

Remark. The assumption that T be normal in the preceding lemma is only to
show us that T is bijective in the “only if” direction. In general, if T is a bounded
linear operator, not necessarily normal, if T is bijective and there exists δ > 0 such
that ∥Tf∥ ≥ δ ∥f∥ for every f ∈ H, then T is invertible. Furthermore, the “if”
direction of Lemma 7.2 does not require that T be normal.
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And now we can prove Lemma 4.3.

Proof of Lemma 4.3. Say ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ H.
As σ(N) ⊆ (0,∞), N is invertible, and N−1/2 is a well defined bounded self-

adjoint linear operator. Similarly, T 1/2 is also a well defined bounded self-adjoint
linear operator.

So, for every f ∈ H, we have

⟨f,N−1/2TN−1/2f⟩ = ⟨T 1/2N−1/2f, T 1/2N−1/2f⟩ =
∥∥T 1/2N−1/2f

∥∥2 ≥ 0.

Furthermore, as σ(T ) ⊆ (0,∞), T is invertible, so by Lemma 7.2, there exists
δT > 0 such that ∥Tf∥ ≥ δT ∥f∥ for every f ∈ H. Also, notice that σ(N−1/2) ⊆
(0,∞), thus by Lemma 7.2, there exists δ1 > 0 such that

∥∥N−1/2f
∥∥ ≥ δ1 ∥f∥ for

every f ∈ H. So, for every f ∈ H,∥∥N−1/2TN−1/2f
∥∥ ≥ δ1

∥∥TN−1/2f
∥∥ ≥ δ1δT

∥∥N−1/2f
∥∥ ≥ δ1δT δ1 ∥f∥ ,

so by Lemma 7.2, N−1/2TN−1/2 is invertible, and thus 0 ̸∈ σ(N−1/2TN−1/2).
By using Lemma 7.1 with X = T , Y = N and Z = N−1/2, for every f ∈ H,

⟨f,N−1/2TN−1/2f⟩ ≤ ⟨f,N−1/2NN−1/2f⟩ = ∥f∥2 .

So if λ > 1, for any f ∈ H, as 0 ≤ ⟨N−1/2TN−1/2f, f⟩ ≤ ∥f∥2, by the Cauchy-
Schwartz inequality,

∥∥(N−1/2TN−1/2 − λ)f
∥∥ ≥ |1− λ| ∥f∥, and as |1− λ| > 0, by

Lemma 7.2, (N−1/2TN−1/2 − λ) is invertible, so λ ̸∈ σ(N−1/2TN−1/2).
Thus we have σ(N−1/2TN−1/2) ⊆ (0, 1].
Let K denote the inverse of N−1/2TN−1/2, i.e. let K = (N−1/2TN−1/2)−1.

Furthermore, we have σ(K) ⊆ [1,∞). So for every f ∈ H, ∥f∥2 ≤ ⟨f,Kf⟩.
So by using Lemma 7.1, with X = I, Y = K and Z = N−1/2, for every f ∈ H,

⟨f,N−1f⟩ = ⟨f,N−1/2IN−1/2f⟩
≤ ⟨f,N−1/2KN−1/2f⟩
= ⟨f,N−1/2(N−1/2TN−1/2)−1N−1/2f⟩
= ⟨f,N−1/2N1/2T−1N1/2N−1/2f⟩
= ⟨f, T−1f⟩.

For the other direction, replace N with T−1 and T with N−1.

7.2 Proof of Lemma 4.4

Here we follow the same steps of [17] to prove Lemma 4.4.
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Lemma 7.3. If T is a self-adjoint, injective, positive and bounded operator on the
Hilbert space H, then domain(T−1) ⊆ domain(T−1/2).

Proof. Let f ∈ domain(T−1) = range(T ). Then there exists g ∈ H such that
Tg = f . So, as T is positive, T 1/2 is well-defined, so T 1/2g = h ∈ H. Thus notice
T 1/2h = T 1/2T 1/2g = Tg = f , so f ∈ range(T 1/2) = domain(T−1/2).

The next lemma is a generalization of Lemma 3.1 of [17] from real Hilbert
spaces to possibly complex ones. This generalization is simple but unnecessary for
us, as we are dealing with real Hilbert spaces anyways.

Lemma 7.4. If T is a self-adjoint, injective, positive and bounded linear operator
on the Hilbert space H, then for every f ∈ H,

⟨f, Tf⟩ = sup
g∈domain(T−1/2)

[
⟨g, f⟩+ ⟨f, g⟩ − ⟨T−1.2g, T−1/2g⟩

]
.

Proof. As T is injective and self-adjoint, the inverse of T , T−1 : range(T ) → H, is
densely defined and self-adjoint (see Proposition X.2.4 (b) of [6]).

For every f ∈ range(T ) = domain(T−1), there exists g ∈ H such that Tg = f .
Thus as T is positive and self-adjoint,

⟨f, T−1f⟩ = ⟨Tg, g⟩ = ⟨g, Tg⟩ ≥ 0,

so T−1 is also positive. In particular, this means that T 1/2 and T−1/2 are well-
defined.

By Lemma 7.3, domain(T−1) ⊆ domain(T−1/2). So, let f ∈ H. Let h = Tf .
Then for every g ∈ domain(T−1/2) = range(T 1/2),

⟨f,Tf⟩ −
(
⟨g, f⟩+ ⟨f, g⟩ − ⟨T−1/2g, T−1/2g⟩

)
= ⟨T 1/2f, T 1/2f⟩ − ⟨g, T−1h⟩ − ⟨T−1h, g⟩+ ⟨T−1/2g, T−1/2g⟩
= ⟨T−1/2h, T−1/2h⟩ − ⟨T−1/2g, T−1/2h⟩ − ⟨T−1/2h, T−1/2g⟩+ ⟨T−1/2g, T−1/2g⟩
= ⟨T−1/2(h− g), T−1/2(h− g)⟩

=
∥∥T−1/2(h− g)

∥∥2
≥ 0.

As h ∈ domain(T−1) and domain(T−1) ⊆ domain(T−1/2), h ∈ domain(T−1/2).
So, as T is self-adjoint,

⟨h, f⟩+ ⟨f, h⟩ − ⟨T−1/2h, T−1/2h⟩ = ⟨Tf, f⟩+ ⟨f, Tf⟩ − ⟨Tf, T−1Tf⟩ = ⟨f, Tf⟩.
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With Lemma 7.4 established, the proof of Lemma 4.4 is straightforward.

Proof of Lemma 4.4. Let f ∈ H. Then by Lemma 7.4,

⟨f, Tf⟩ = sup
g∈domain(T−1/2)

⟨g, f⟩+ ⟨f, g⟩ − ⟨T−1/2g, T−1/2g⟩

≤ sup
g∈domain(N−1/2)

⟨g, f⟩+ ⟨f, g⟩ − ⟨N−1/2g,N−1/2g⟩

= ⟨f,Nf⟩.
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