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Abstract

Propp and Wilson (1996,1998) described a protocol called coupling
from the past (CFTP) for exact sampling from the steady-state distri-
bution of a Markov chain Monte Carlo (MCMC) process. In it a past
time is identified from which the paths of coupled Markov chains start-
ing at every possible state would have coalesced into a single value by
the present time; this value is then a sample from the steady-state dis-
tribution.

Unfortunately, producing an exact sample typically requires a large
computational effort. We consider the question of how to make efficient
use of the sample values that are generated. In particular, we make use
of regeneration events (cf. Mykland et al., 1995) to aid in the analysis of
MCMC runs. In a regeneration event, the chain is in a fixed reference
distribution; this allows the chain to be broken up into a series of tours
which are independent, or nearly so (though they do not represent draws
from the true stationary distribution).

In this paper we consider using the CFTP and related algorithms to
create tours. In some cases their elements are exactly in the stationary
distribution; their length may be fixed or random. This allows us to
combine the precision of exact sampling with the efficiency of using
entire tours.

Several algorithms and estimators are proposed and analysed.
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1. INTRODUCTION

Propp and Wilson (1996,1998) described a protocol called “coupling from the past”

(CFTP) for exact sampling from a distribution using a coupled Markov chain Monte Carlo

(MCMC) algorithm. Their idea is to consider running copies of the simulation from every

possible starting state at a time in the indefinite past; if these are coupled properly, then

they will all take on the same value by the present (i.e., by time 0). This value must

be a sample from the steady-state distribution. A number of authors have used this idea

to construct exact samplers for various point processes (Häggström et al., 1996; Kendall,

1997, 1998) and for distributions arising as posterior distributions in Bayesian statistical

models (Møller, 1997; Murdoch and Green, 1997; Green and Murdoch, 1998) and in other

applications.

CFTP algorithms improve on traditional MCMC techniques (Gelfand and Smith,

1990; Gelfand et al., 1990; Smith and Roberts, 1993; Tierney, 1994; Gilks, 1996) in that

they guarantee an exact sample from the stationary distribution. In particular, they

sidestep the need for provable bounds on convergence times of the algorithms (as in Meyn

and Tweedie, 1994; Rosenthal, 1995). On the other hand, they require substantial compu-

tation to achieve just a single sample from the stationary distribution; to estimate func-

tionals it may be necessary to obtain many such samples, each one requiring substantial

additional computation.

We are interested in ways to obtain more efficient estimates using exact samples. In

particular, we explore the extent to which previous and subsequent sample values from

the chain (not just the single exact sample) may be used when estimating expected values

under the stationary distribution.

To this end, we note that Mykland et al. (1995) considered MCMC processes in

which regeneration events occur: the process returns at certain random times to a fixed

distribution. The tours between regeneration events are then IID, and sample averages over

the tours may be used to estimate corresponding means of the steady-state distribution.

Such averages are very efficient (i.e., they lead to low-variance estimators) since they make

use of a large number of sample values. Because they are IID, they may be used to form

reliable variance estimates.

Section 2 of this paper describes CFTP in more detail. Section 3 suggests several

ways in which we can modify CFTP to create tours. These tours will not necessarily be

IID as in Mykland et al. (1995), but they will generally be identically distributed, and
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if not independent, will have a structure like an MA(1) time series: non-adjacent tours

will be independent. In Section 4 we show how to use these tours to construct estimators

of means of functionals with respect to the target distribution. Section 5 considers the

validity of these estimators. Section 6 attempts to quantify the computational cost of the

different algorithms, and Section 7 illustrates the methods by computer simulation of a

simple example. Finally, Section 8 discusses the relevance of these results.

2. The CFTP ALGORITHM

Suppose we wish to sample from a probability distribution π(·) on a state space X , and

have constructed an ergodic Markov chain P (x, ·) having π as its stationary distribution.

The idea of CFTP is to keep track simultaneously of Markov chain paths starting from all

possible different starting points, from arbitrarily far backwards in time, and to get them

all to coalesce to a single value at time t = 0.

Specifically, define random variables Nx,t and Gt for each t ∈ Z and each x ∈ X , so

that P(Nx,t ∈ A) = P (x, A), and P(Gt ∈ A) = π(A), and Gt+1 = NGt,t. Intuitively, Nx,t

is the “next” value a particular implementation of the Markov chain will take if it is at

the point x at time t, and {Gt} is a run of the Markov chain in stationarity. We require

that Nx,t1 and Ny,t2 are independent if t1 6= t2; however, the joint distribution of Nx1,t

and Nx2,t is left unspecified and may be chosen as convenient.

For notation: for s ≥ t, let Ns
x,t be the value that the chain obtains at time s, if it

follows the path specified by {Nx,t} from time t onwards; thus, N t
x,t = x, and Ns+1

x,t =

NNs
x,t,s

for s ≥ t.

The idea of CFTP is as follows. Suppose we can find a time −T such that N0
x,−T does

not depend on x (that is, all paths from time −T have coalesced to one particular value

by time 0). Then this common value of N0
x,−T must be equal to G0, and hence must be a

draw from the stationary distribution.

Three points are worth noting. First, if we have coalescence from time −T , then we

will also have coalescence from any earlier time. This allows the search for T to be quite

rough; typically one starts with a guess Tg, and then doubles it until coalescence is found.

The resulting multiple of Tg is used as T with no further refinement. The second point

to note is that coalescence will typically occur at some time −T + Tc < 0, but it is still

necessary to carry the value forward to time 0 to avoid a selection time bias. Finally, once

G0 is determined, we may choose to continue the Markov chain forwards in time, say for
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another T0 steps. These four stages of the CFTP algorithm are illustrated schematically

in Figure 1.

Figure 1. A schematic representation of the four stages of the CFTP
algorithm.

This paper will consider the question of how to use the structure of CFTP to estimate

expected values of functionals with respect to π. At one extreme, we could repeatedly run

CFTP, generating IID realisations of G0, and form simple averages. However, this seems

wasteful: most of the information in the Nx,t values is lost. At the other extreme, we

could run CFTP just once to generate the starting value for a long stationary realisation

of the original chain, but this will almost always result in serially dependent values and

complicate the evaluation of the precision of estimators.

3. TOURS USING CFTP

We propose several methods of obtaining tours related to the CFTP algorithm, start-

ing with the default method that makes no use of the Nx,t values:

Repeated CFTP (RCFTP): Run ordinary CFTP to obtain a sample X ∼ π(·). For

some fixed value T0, set X0 = X, and run any convenient implementation of the Markov

chain forwards in time for an additional T0 steps. The T0 + 1 values observed represent

one tour. Repeat independently.

In Figure 1, this would correspond to repeating steps 1 to 4 independently, and using

the values generated from the end of step 3 and throughout step 4 as the tour.

Forward Coupling (FC): Run the chain forwards in time from time 0 until all paths

have coalesced, to obtain a sample X at that time. Run it forwards again until all states
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again coalesce, using the path from X as one tour. Repeat (using the coalescing value of

one run as the starting value of the next run, but not counting it twice).

Because FC does not use CFTP, Figure 1 does not apply perfectly, but FC is much like

applying step 2 repeatedly, and recording one particular path (started where the previous

one ended) as the tour.

Concatenated CFTP (CCFTP): Run ordinary CFTP to obtain a sample X ∼ π(·).
Run it again to obtain a sample Y ∼ π(·), a value of T , and a realization of Nx,t for

t ∈ −T, . . . ,−1. Our first tour of length T consists of the values in the path from X to Y

using Nx,t to define the transitions, counting Y but not X. Repeat using Y in place of X

to generate subsequent tours.

In Figure 1, this repeats steps 1 to 3, recording the path from the end of one cycle

through steps 2 and 3 of the next cycle.

We next consider the question of how to use these different tours to efficiently estimate

linear functionals.

4. CONSTRUCTION of ESTIMATORS

If applied N times (with N fixed throughout), each of these methods produces tours

having values which may be relabelled as Xi1, Xi2, . . . , XiTi , i = 1, . . . , N , where Ti is fixed

or random. Thus, one might hope that for a functional g : X → R, we could estimate the

expected value of g with respect to π(·), i.e. π(g) =
∫

g(x)π(dx), by averaging the tour

averages:

π̃(g) = (1/N)
N∑

i=1

∑Ti

j=1 g(Xij)
Ti

.

This estimator is clearly unbiased and consistent for RCFTP. However, the randomness of

Ti in the other methods breaks this consistency, and we need to consider the ratio estimator

used e.g. by Mykland et al. (1995):

π̂(g) =

∑N
i=1

∑Ti

j=1 g(Xij)∑N
i=1 Ti

.

Of course, π̃(g) = π̂(g) for RCFTP.
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Two useful facts are:

1. If the sample values Xij are marginally from π(·), and are independent of the tour

lengths Ti, then E [π̃(g)] = π(g), and in fact π̃(g) is a consistent (as N → ∞) unbiased

estimator of π(g).

2. If the sample values Xij may be strung together to form one long run which follows

the transition law of the chain, then π̂(g) is consistent (as N → ∞). This is standard

regeneration theory; see e.g. Asmussen (1987, Section V-1).

Generally speaking, π̃(g) is preferable to π̂(g) in situations where it is unbiased. As

Mykland et al. (1995) discuss, the ratio estimator π̂(g) can be unstable unless N is large

enough that the mean of Ti can be estimated with small relative error; they recommend

1% relative error as an upper limit to ensure reliability.

5. VALIDITY of the DIFFERENT METHODS

We now consider the question of which of the estimators π̂(g) and π̃(g) are valid (i.e.,

unbiased, at least asymptotically) for each of our proposed methods. We also consider

some other potential advantages and disadvantages of each.

RCFTP is simple, and is easily seen to be valid using π̃(g) (which is the same as π̂(g)

in this case). Moreover, it generates IID tours, so their analysis is very straightforward.

However, it may be inefficient in a computing sense: it runs the CFTP algorithm N times,

but only uses T0 + 1 of the T + T0 samples from each run. Unless T0 is much larger than

the expected time E(T ) to run CFTP, we may be throwing away a large fraction of our

computing effort. We consider the “cost” of the algorithms in the next section.

FC is straightforward and is related to the Mykland et al. (1995) approach. Like

that approach, it does not guarantee that we’re sampling from the stationary distribution.

Indeed, even if we start our chain in stationarity, the tour lengths will not be independent

of the tour values, so that the estimator π̃(g) will not be a valid estimator in general. On

the other hand, since the tour values are part of a single long run of the chain, we see that

π̂(g) will be a valid, consistent estimator of π(g).

We note that one difference between FC and the method of Mykland et al. (1995) is

that the regeneration that occurs when a Mykland et al. (1995) tour returns to its starting

point takes FC the whole next tour to be realized. As a result of this the tours are not

IID; each one is dependent on the value at the end of the previous tour. (The tours still
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have the structure of an MA(1) time series: non-adjacent tours will be independent. This

is still considered a valid regeneration structure; see e.g. Asmussen, 1987, p. 125.) This

may increase the variance of π̂(g) somewhat, though not by more than a factor of 2. It

will also complicate the estimation of the variance.

CCFTP has the advantage that each sample in the tour is marginally drawn from

π(·). Unfortunately, the values in each tour will typically not be independent of Ti, so π̃(g)

will still be biased. (This is a manifestation of the “user impatience bias” of the CFTP

algorithm that was discussed by Fill, 1998, Sections 5.2 and 6.1.) For example, if the state

space is the non-negative integers, with P (x, {x+1}) = P (x, {0}) = 1
2 , and with the simple

coupling that all states move up or move to 0 simultaneously, then π{x} = 1/2x+1. If g

is the identity function, π(g) = 1; on the other hand, we may compute that E [π̃(g)] = 1
2 .

Thus, CCFTP requires the ratio estimator π̂(g).

The question is, in view of this bias, can we make use of the extra structure that

CCFTP gives us? One possibility is to modify this algorithm as follows, to make use of a

guaranteed minimum value for T :

Guarantee Time CFTP (GTCFTP): Fix a value Tg > 0 to use as an initial guess

for T in the CFTP algorithm. Run ordinary CFTP to obtain a sample X ∼ π(·). Run

it again to obtain a sample Y ∼ π(·), a value of T ≥ Tg, and a realization of Nx,t for

t ∈ −T, . . . ,−1. Our first tour of length T consists of the final Tg values in the path from

X to Y using Nx,t to define the transitions. Repeat using Y in place of X to generate

subsequent tours.

Like CCFTP, this algorithm repeats steps 1 to 3 of Figure 1, but only Tg of the values

in steps 2 and 3 will be included in the tour.

Because this method fixes Tg, the tour length is fixed and so trivially independent of

the sample values. Since the sample values are marginally distributed as π(·), we conclude

(as in note 1 above) that π̃(g) is an unbiased consistent estimator in this case.

Any of these methods may be modified to include an additional T0 points generated

using a simple implementation of the chain starting from Y , as was done in RCFTP. (This

adds step 4 of Figure 1 after the other steps.) In our cost analysis below and in the

simulations we used this modification.

We have also considered other methods for generating tours, which appeared promising

but turned out not to be valid. For example, CCFTP may be modified to use the value
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Y as the starting value X, yielding independent cyclic tours. Unfortunately, because of

the dependence between Y and T , the marginal π(·) distribution may be lost. Similarly,

Fill (1998) describes an algorithm (see also Fill et al., 1999) based on rejection sampling

that removes the dependence between Y and T , but it also loses the marginal distributions

within the tour. We haven’t found a way to make use of the Nx,t values with either of

these algorithms.

6. COMPUTATIONAL COSTS

The CFTP algorithm requires several tasks. One of these is the evaluation of the

update function Nx,t given x and t. Sometimes this is more difficult than a simple Markov

chain update, because a coalescing update rule is required. On a discrete state space this

might not impose any cost, since many different update rules will coalesce. However, we will

usually choose one with particularly convenient properties for CFTP such as monotonicity

(Propp and Wilson, 1996), and this may cost something. On a continuous state space,

most simple update rules will not coalesce, and more complicated and expensive schemes

are required (Murdoch and Green, 1997; Green and Murdoch, 1998). In either case there

is also the overhead of storing or regenerating random values for subsequent evaluations

of Nx,t at the same time t.

Denote the mean cost (i.e., mean computation time) of one evaluation of Nx,t as U .

If T0 > 0, we also need to compute single updates of the Markov chain forwards in

time. Denote the mean cost of these by M ; as mentioned above, M ≤ U .

The first stage of CFTP searches for a time −T from which all paths coalesce. The

cost of this stage depends on the search strategy. We assume an initial guess Tg will be

tried, and if it fails, it will be doubled until it succeeds. Efficiency is helped by a good

guess: if it is too small, more doublings will be required, and if it is too large, the paths

will coalesce early but still need to be carried forward to time 0. We’ll approximate the

total cost as S(Tg) + C + (T − Tc)U , where S(Tg) > 0 is a function of Tg representing the

time spent computing the failures before the successful T is found, C > 0 is the cost to

determine the number of steps Tc for all states to coalesce to a single state and to simulate

one path through this stage, and (T − Tc)U approximates the cost to carry a single path

forward from the coalescence time to time 0. Typically S(Tg) decreases as Tg increases,

because failures are less likely with larger Tg. However, the overall cost of a large Tg may

be higher, because of the constraint T ≥ Tg.
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We can now calculate the running times of each of our algorithms. These calculations

are summarized below.

Method Computational Cost # Samples Estimator

RCFTP S(Tg) + C + (T − Tc)U + T0M T0 + 1 π̃(g)

FC C + T0M T + T0 π̂(g)

CCFTP S(Tg) + C + (T − Tc)U + T0M T + T0 π̂(g)

GTCFTP S(Tg) + C + (T − Tc)U + T0M Tg + T0 π̃(g)

Figure 2. A summary of the methods.

RCFTP costs S(Tg)+C +(T −Tc)U +T0M to achieve one tour of fixed length T0 +1.

Separate tours are IID, and the estimator π̃(g) may be used.

FC costs C +T0M to achieve one tour of random length T +T0. Since the tour values

and T are not independent, π̃(g) will not produce consistent estimates and π̂(g) must be

used. Note that C has a different distribution under forward and backward coupling. The

coalescence time Tc depends on the realization of Nx,t and the time t from which we start

all paths. In forward coupling, the starting time is fixed at t = 0. In backward coupling,

CFTP searches backwards until it finds a time t = −T for which T > Tc; this search

is biased towards smaller values of Tc (and thus smaller cost C, as well). (To see this,

suppose that in CFTP we increase our guess by one each time it fails, instead of doubling

it. Then we will always find the minimal T , and we know that paths from time −(T − 1)

will not coalesce. A simple calculation then shows that P (T > x) in CFTP is the same

as P (Tc > x) in FC; since Tc ≤ T in CFTP, we see the bias mentioned above.) However,

when doubling is used in the search, very little selection bias occurs and the distributions

of Tc and C are quite similar under both coupling methods.

CCFTP has an initial one-time-only cost of S(Tg) + C + (T − Tc)U to generate the

first perfect sample X. From then on, it costs S(Tg) + C + (T − Tc)U + T0M each time to

achieve a tour of random length T + T0 ≥ Tg + T0. As with FC, π̂(g) must be used.

GTCFTP costs S(Tg) + C + (T − Tc)U + T0M to achieve a tour of fixed length

Tg + T0. Separate tours are MA(1), but the estimate π̃(g) may be used. This method

may be preferable to RCFTP if the correlation of successive tour means is sufficiently low,
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because the tours are longer for the same approximate cost. It is more expensive than FC;

this extra expense buys the π̃(g) estimator, but is it worth the cost? We will approach

this question by examining an example.

7. EXAMPLE

The Markov chain in our example is a random walk on the integers from 0 to 20, with

equal probability of stepping up or down by one unit, and steps outside the range being

rejected. Here π is the uniform distribution with mass 1/21 on each state. It is particularly

easy to couple this chain, because the simple coupling obtained by attempting the same

jump from every state (i.e. Nx,t = max[0,min(20, x ± 1)]) is a monotone coupling: paths

from different starting points can never cross, but are certain to eventually coalesce. Only

the two paths starting from states 0 and 20 need to be simulated to determine coalescence,

and the coalescing update rule is as efficient to simulate as any other.

Figure 3. CFTP applied to the monotone coupling of the random walk
example. The four attempts at coalescence are shown in thin lines; the
solid black path is the value of Gt. The underlined range of Xt values
would be averaged by the RCFTP algorithm.
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Figure 3 illustrates CFTP on this example. Here Tg was taken to be 25, but the paths

started at t = −25 did not coalesce, nor did those started at the doublings to t = −50 or

−100. The paths started from t = −200 did all coalesce, at t = −81; the coalesced values

were carried forward (using the same jumps as for the previous attempts) to time 0, and

then further forward to time T0 = 100. In RCFTP, g evaluated at the last 101 values

would be averaged into the estimate π̃(g).

Figure 4. Illustration of the CFTP-based algorithms through four cy-
cles. They differ only in the sample values used in the estimates, as
indicated by the underlines: solid for RCFTP, dotted for CCFTP, and
dashed for GTCFTP. In this figure, the times t have been shifted to
positive values in all cycles after the first.

Figure 4 compares RCFTP with CCFTP and GTCFTP, with Tg = T0 = 100. All

three algorithms are based on the same application of CFTP; the differences lie in which

values of Gt are employed in estimating π(g). RCFTP used the IID cycles of length 101

starting at times 0, 300, 600 and 1100. CCFTP used all values from time 100 onwards,

divided into 2 cycles of length 300 and one of length 500. These cycles are not independent,

nor are the cycles of fixed length 200 used by the GTCFTP algorithm. Figure 5 illustrates

the FC algorithm, again with T0 = 100.
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The same simulation allowed us to form estimates of some of the computational tim-

ings. The times depend to a large degree on the computer (a 233 Mhz Pentium PC),

the compiler (Delphi Pascal version 3) and the programmer (the first author), but should

give a rough idea of the relative magnitudes. The counts of steps depend only on the

algorithms. We observed that the distribution of steps to coalescence was skewed to the

right, with a median of Tc = 120 steps (with the 1st and 3rd quartiles at 86 and 182

steps respectively, hereafter written as Tc = 120[86, 182]). Simulating to coalescence took

a median time of C = 39[29, 56] µs. Simulating Gt from coalescence to the sample at time

0 took a median time of 39[23, 67] steps. The time taken to do a single step update was

U = M = 0.30[0.23, 0.54] µs. In this simulation Tg was set to 1, making the search times

S(Tg) quite large: 703[441, 1207] µs. (In a separate simulation with Tg = 100, this was

reduced to 406[402, 804] µs.)

Figure 5. Illustration of FC through four cycles. The line below the
plot indicates the sample values used in the estimator; the ticks on it
mark the beginning of each cycle.

In order to compare the cost efficiency of the different algorithms, we simulated cal-

culation of π̂(g) or π̃(g) for g(x) = I(x = 0), the indicator of residency in state 0. Our

simulation consisted of 1000 runs of the chain under 128 different conditions: all com-
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binations of forward vs. backward coupling (all 3 CFTP estimators can be calculated

from the same backward coupled run), values of N = 2, 25, 100, 400 (note that all algo-

rithms except RCFTP make no use of the first cycle’s values in the estimator), values of

Tg = 1, 25, 100, 400, and values of T0 = 0, 25, 100, 400.

For each of the simulations we calculated the computational efficiency, defined as the

ratio of the precision (inverse sample variance) to the total computational cost averaged

over the 1000 simulations. As can be seen in Figure 6, CCFTP and FC gave the most

computationally efficient estimators; both make use of all simulated values, so we would

expect this. Somewhat surprisingly, large values of N were always more efficient than small

values. This is partly explained by the fact that FC, CCFTP and GTCFTP all discard the

first cycle; it is likely also partly caused by the instability of the ratio estimator for small

N . (Only N = 400 attained 1% relative error in estimating the mean cycle length.) The

value Tg predictably played a strong part in determining the efficiency of GTCFTP and

had a small influence on RCFTP (and none at all on FC, where it isn’t used). Likewise

T0 affected the efficiency of RCFTP most strongly.

Figure 6. Mean log2 efficiency in estimating π(X = 0). The numbers
shown are the values of the variables N , Tg and T0, plotted at the
position corresponding to the mean of the base 2 log efficiency. The
horizontal lines show the overall mean for each algorithm.

This figure shows a fairly small range. Most of the simulations lie within a factor

of 8 of each other in efficiency. The only method that clearly stands out as inefficient is
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RCFTP with T0 = 0, i.e. the naive generation of an IID sample by CFTP one observation

at a time.

8. DISCUSSION and CONCLUSIONS

Exact sampling methods represent an important new development in the use of

Markov chains to estimate the means of functionals with respect to complicated probability

distributions. However, such methods are computationally intensive, and it is important

to use the resulting values efficiently.

In this paper, we have proposed a number of modified algorithms and estimators

designed to make use of values available from the exact sampling methods. We have proved

the unbiasedness of certain estimators associated with them, and we have considered the

computational costs involved (both theoretically and through simulation).

These algorithms are all roughly comparable in efficiency, provided some effort is

made to obtain more than a single observation from each coupling run. If IID unbiased

tours are needed, use RCFTP with Tg just large enough to avoid long search times, and

large T0 for efficiency. N should be large enough to allow a stable variance estimate from

an IID sample (say 30 or more). If unbiased MA(1) tours are sufficient, GTCFTP will

generally be more efficient. Here larger values of either Tg or T0 will result in greater

efficiency. However, when simple MCMC steps are easier to simulate than coalescing ones

(i.e. U > M), large T0 should be the choice. If exact unbiasedness is not needed, FC

is probably the simplest algorithm to implement and we would recommend its use when

N is large enough to make the estimator stable. For large samples, CCFTP will produce

essentially the same estimates as FC for given length of chain (since all simulated values in

the chain are used except for a few at the beginning and the end), but it is more difficult

to implement, so we do not recommend its use. Finally, in cases where regeneration events

are available, the Mykland et al. (1995) algorithm should do at least as well as FC.

Overall we conclude that these methods are useful, efficient ways to make good use of

exact sampling. They are all better than naive use of a single perfect value per CFTP run.

They may even alleviate the need for clever coupling algorithms that coalesce rapidly: if a

slower than necessary coupler is chosen, all algorithms but RCFTP will still gain precision

from the values observed during the search for T .
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Häggström, O., Lieshout, M. N. M., and Møller, J. (1996). Characterisation results

and Markov chain Monte Carlo algorithms including exact simulation for some spatial point

processes. Technical Report R-96-2040, Department of Mathematics, Aalborg University.

To appear in Bernoulli.

Kendall, W. S. (1997). On some weighted Boolean models. In D. Jeulin, editor,

Advances in Theory and Applications of Random Sets, pp. 105–120. World Scientific

Publishing Company, Singapore.

Kendall, W. (1998). Perfect simulation for the area-interaction point process. In

Accardi, L. and Heyde, C. C., editors, Probability Towards 2000. Springer, New York.

Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for convergence rates of

Markov chains. Annals of Applied Probability, 4:981–1011.

15



Møller, J. (1997). Perfect simulation of conditionally specified models. Technical

Report R-97-2006, Department of Mathematics, Aalborg University. To appear in J. Roy.

Stat. Soc., ser. B.

Murdoch, D. J. and Green, P. J. (1997). Exact sampling from a continuous state

space. Scandinavian Journal of Statistics, 25:483–502.

Mykland, P., Tierney, L., and Yu, B. (1995). Regeneration in Markov chain samplers.

Journal of the American Statistical Association, 90:233–241.

Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains

and applications to statistical mechanics. Random Structures and Algorithms, 9:223–252.

Propp, J. G. and Wilson, D. B. (1998). How to get a perfectly random sample from

a generic Markov chain and generate a random spanning tree of a directed graph. Journal

of Algorithms, 27:170–217.

Rosenthal, J. S. (1995). Minorization conditions and convergence rates for Markov

chain Monte Carlo. Journal of the American Statistical Association, 90:558–566.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs

sampler and related Markov chain Monte Carlo methods (with discussion). Journal of the

Royal Statistical Association, Series B, 55:3–24.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-

sion). Annals of Statistics, 22:1701–1762.

16


