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Summary. This is an expository paper which presents various ideas related to non-
asymptotic rates of convergence for Markov chains. Such rates are of great importance for
stochastic algorithms which are widely used in statistics and in computer science. They
also have applications to analysis of card shuffling and other areas.

In this paper, we attempt to describe various mathematical techniques which have
been used to bound such rates of convergence. In particular, we describe eigenvalue anal-
ysis, random walks on groups, coupling, and minorization conditions. Connections are
made to modern areas of research wherever possible. Elements of linear algebra, probabil-
ity theory, group theory, and measure theory are used, but efforts are made to keep the
presentation elementary and accessible.
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1. Introduction and motivation.

Imagine 1000 lily-pads arranged in a circle, numbered 0 through 999. Suppose a frog
begins on lily-pad number 0, and proceeds as follows. Each minute, she jumps either to
the pad immediately to her right, or to the pad immediately to her left, or to the pad she’s
already on, each with probability 1/3. Thus, after one minute she is equally likely to be
at pad 999, pad 0, or pad 1. After two minutes, she has probability 1/9 of being at pad
998 or pad 2, probability 2/9 of being at pad 999 or pad 1, and probability 3/9 = 1/3 of
being at pad 0.

It is intuitively clear that if we wait for a very large number of minutes, then our
frog will have approximately equal probability of being at any of the 1000 pads. But how
might we prove this assertion? More importantly, how long do we have to wait until this
approximate equality of probabilities occurs? Is 1000 minutes enough? How about 10,000
minutes?

These questions are closely connected to an exciting area of modern mathematical
research, the study of quantitative convergence rates for Markov chains. This research
has many important applications. Perhaps the most important of these is to Markov
chain Monte Carlo algorithms, where a Markov chain is defined in such a way that it will
(hopefully) converge to a certain probability distribution of interest. Knowledge of the time
required until satisfactory convergence takes place is crucial to the proper implementation
of the algorithm. However, such knowledge is often very difficult to obtain in a rigorous
manner.

Examples of such algorithms in applied settings include the Gibbs sampler in statis-
tics (Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney, 1994), approximation
algorithms in computer science (e.g. Jerrum and Sinclair, 1989), and various stochastic
algorithms used in physics (see the review article Sokal, 1989). This is a very active applied
area. However, much of the work suffers from lack of results about convergence rates of
the algorithms being used.

Convergence rates for Markov chains also have applications to card shuffling, in which
the arrangements of the cards have various probabilities of occuring at each step. Analysis
of the underlying Markov chain (in this case a random walk on the symmetric group) gives
information about how many of a given type of shuffle are required to make the distribution
of the card arrangement be approximately uniform. The most famous result of this type
is the result of Bayer and Diaconis (1992) that seven ordinary “riffle” shuffles are required
to properly mix a deck of 52 cards. For additional background see Diaconis (1988).

Finally, Markov chains (in particular random walks on groups) have been proposed
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as a method for generating random matrices to be used for encryption algorithms; see for
example Sloane (1983).

Convergence rates of Markov chains are thus a very important topic in a variety of
applied settings. It is the goal of this paper to present, in an accessible and straightforward
way motivated by simple examples, some of the methods which have been used to obtain
such rates.

It is our hope that this paper will stimulate further research. Indeed, there are many
opportunities for further work in this area. One way to proceed is to examine some of
the applied algorithms which use Markov chains (see for example Smith and Roberts,
1993), and attempt to apply the methods presented here (or develop new methods) to
get bounds on their convergence rates. Rigorous bounds are usually not known for these
applied algorithms, and any results of this kind are of great interest. The tighter and more
general the bounds are, the more use they will be to applied researchers.

In this paper, we present some of the basic results about convergence rates for finite
(and infinite) Markov chains. We shall attempt to make connections to modern research,
but at the same time to keep the presentation elementary and accessible. After the prelimi-
nary material, we shall present the basic connection between Markov chains and eigenvalues
(Section 4). We shall then explore the subject of random walks on groups (Section 5), for
which tremendous progress has been made, which includes our frog’s travels and also in-
cludes most models of card-shuffling. Finally, we shall discuss coupling and minorization
conditions (Section 6), which are robust techniques that have been used to study various
stochastic algorithms in a variety of settings.

Along the way, we shall prove that we would have to wait over 120,000 minutes (over
two months!) for our frog to have approximately equal probability of being at any of the
1000 pads.

None of the results presented here are new. Connections and references to the relevant
literature are given where possible.

2. Basic definitions.

Our frog-process above is an example of a (discrete-time) Markov chain. In general,
a Markov chain consists of a (measurable) state space X , an initial distribution (i.e. prob-
ability measure) µ0 on X , and transition probabilities P (x, dy) which give, for each point
x ∈ X , a distribution P (x, ·) on X (which represents the probabilities of where the Markov
chain will go one step after being at the point x). It is assumed that fA(x) = P (x,A)
is a measurable function of x ∈ X , for each fixed measurable subset A ⊆ X . If X is a
discrete space (e.g. a finite space), then the initial distribution can be specified by the
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vector of non-negative real numbers µ0(x) for x ∈ X , where
∑
x

µ0(x) = 1. Similarly, the

transition probabilities can be specified by the matrix of non-negative real numbers P (x, y)
for x, y ∈ X , where

∑
y

P (x, y) = 1 for each x ∈ X .

In our frog example above, X consists of the integers 0, 1, 2, . . . , 999. Since the frog
starts at the point 0 with probability 1, the initial distribution is specified by µ0(0) = 1,
and µ0(x) = 0 for x 6= 0. Finally, the transition probabilities are specified by P (x, y) = 1/3
if x = y or x and y are adjacent in the circle, and P (x, y) = 0 otherwise.

Given the initial distribution µ0 and transition probabilities P (x, dy), we can induc-
tively define distributions µk on X , representing the probabilities of where the Markov
chain will be after k steps, by

µk(A) =
∫
X

P (x,A) µk−1(dx), k = 1, 2, 3, . . . .

On a discrete space, this can be written more directly as

µk(y) =
∑

x

P (x, y)µk−1(x) .

If we write µk as a row-vector, and P as a matrix with [P ]xy = P (x, y), then this can be
written even more directly as

µk = µk−1P = . . . = µ0P
k .

There is nothing mysterious about these formulae. They simply say that to be at the point
y at time k, we must have been at some point x at time k− 1 (with probability µk−1(x)),
and then jumped from x to y on the next step (with probability P (x, y)).

Thus, in our frog example, we would have that µ2(998) = µ2(2) = 1/9, µ2(999) =
µ2(1) = 2/9, and µ2(0) = 1/3.

Once we have defined µk for all non-negative integers k, we can ask about convergence
properties. To be quantitative, we define the total variation distance between probability
measures ν1 and ν2 by ‖ν1 − ν2‖ := sup

A⊆X
|ν1(A) − ν2(A)| (where the supremum is taken

over measurable subsets A). (For later reference, we mention two easily-verified facts.
Firstly, if X is finite, then ‖ν1 − ν2‖ = 1

2

∑
x
|ν1(x)− ν2(x)|. Secondly, for any X , we have

‖ν1 − ν2‖ = 1
2 sup

f:X→C
|f(x)|≤1

|Eν1(f) − Eν2(f)| = sup
f:X→R

0≤f(x)≤1

|Eν1(f) − Eν2(f)| where E stands for

expected value). We may now state our
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Fundamental Questions.

(A) Does there exist a probability distribution π on X such that ‖µk−π‖ → 0 as k →∞?

(B) If so, then given ε > 0, how large should k be to ensure that ‖µk − π‖ ≤ ε?

It is these questions which are the focus of the current paper.

3. The simplest non-trivial example.

To get a sense of what convergence properties a Markov chain can have, we consider
what might be called the “simplest non-trivial example”. We consider the state space
X = {0, 1} consisting of just two points. Setting p = P (0, 1), and q = P (1, 0), we may
write P in matrix form as

P =
(

1− p p
q 1− q

)
.

(We leave p and q as arbitrary numbers between 0 and 1.) We further suppose that the
initial distribution is given by µ0(0) = 1, µ0(1) = 0, meaning that we start in state 0 with
probability 1.

This example is simple enough that we can solve for µk explicitly. It is verified by
induction (see Hoel, Port, and Stone, 1972, Section 1.2) that (assuming p + q > 0)

µk(0) =
q

p + q
+
(

1− q

p + q

)
(1− p− q)k .

It immediately follows that

µk(1) = 1 − µk(0) =
p

p + q
−
(

1− q

p + q

)
(1− p− q)k .

(Naturally, if p = q = 0, then µk(0) = 1 and µk(1) = 0 for all k.)
We wish to make a number of observations about this example, since they will general-

ize considerably. First, note that assuming |1−p−q| < 1, we will indeed have convergence.
Setting π(0) = q

p+q and π(1) = p
p+q , we have that

‖µk − π‖ =
(

1− q

p + q

)
|1− p− q|k ,

which decreases exponentially quickly to 0, with rate governed by the quantity 1− p− q.
Second, note that this limiting distribution π is a stationary distribution in the sense

that πP = π, and thus corresponds to a left-eigenvector of the matrix P with eigenvalue
1. It is easily seen (by taking the limit k → ∞ in the equation µk = µk−1P ) that any
limiting distribution π for any Markov chain must be stationary in this sense.
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Third, note that the only time this convergence fails to take place is if p = q = 0
or p = q = 1. If p = q = 0 the Markov chain is decomposable, meaning that the state
space X contains two non-empty disjoint subsets X1 and X2 which are closed, i.e. such
that P (x,X1) = 1 for all x ∈ X1 and P (y,X2) = 1 for all y ∈ X2. If p = q = 1 the Markov
chain is periodic, meaning that the state space X contains disjoint non-empty subsets
X1, . . . ,Xd (with d ≥ 2) such that for x ∈ Xj , P (x,Xj+1) = 1 (where if j = d, then j + 1
is taken to mean 1). The quantity d is the period of the Markov chain; in this example
d = 2. However, if our Markov chain is indecomposable and aperiodic, then it converges
exponentially quickly. We shall see in the next section that all finite Markov chains follow
this rule.

Fourth, it is easily computed that the eigenvalues of the matrix P are 1 and 1−p− q.
The eigenvalue 1, of course, corresponds to the eigenvector π. This computation suggests
that the “non-trivial” eigenvalue 1− p− q is intimately connected with convergence of the
chain. We shall develop this connection in the next section.

Fifth, and perhaps even more intriguing, we compute that the quantity β defined by

β :=
∑

y

min
x

P (x, y)

satisfies β = min(p + q, 2 − p − q), so that 1 − β = |1 − p − q| is the absolute value of
the non-trivial eigenvalue as above. This suggests that the convergence of the chain might
be related to the quantity 1− β, with β defined as above; this relationship is explored in
Section 6 via the method of “coupling”.

Sixth, we compute that π(0)P (0, 1) = π(1)P (1, 0). This implies that this chain is
“reversible”, meaning that when started from the stationary distribution π, then for any
x, y ∈ X , the amount of probability π(x)P (x, y) which moves from x to y, is the same as
the amount of probability π(y)P (y, x) which moves from y to x. Among other things, this
guarantees that its eigenvalues will all be real. However, not all Markov chains have this
property. This issue is discussed briefly in Section 7.

Finally, we consider the even more specialized case in which p = q. This corresponds
to a random walk on the group Z/(2) of integers modulo 2, because we step in the “same
manner” no matter where on X we are. Here the “step distribution” is given by Q(0) =
1− p, Q(1) = p (corresponding to the group element that we will add (modulo 2), at each
step, to our present position). We compute that EQ ((−1)x) = 1 − p − q, the eigenvalue
of the matrix P . (Here (−1)x equals 1 when x = 0, and equals −1 when x = 1.) This
suggests that for random walks on groups, the eigenvalues can be computed simply by
taking certain expected values with respect to the step distribution Q(·). This is discussed
further in Section 5.
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4. The eigenvalue connection.

We let X = {0, 1, . . . , n − 1} be a finite state space, µ0 an initial distribution on X ,
and P be a matrix of transition probabilities on X . The fact that µk = µ0P

k suggests that
we need to control high powers of the transition matrix P . This in turn suggests that the
eigenvalues of P will play an important role. We develop this idea here, drawing heavily
on work of Diaconis and Shashahani (1981), Diaconis (1988), and Belsley (1993). For
additional background, see Feller (1968, Chapter XV I) and Issacson and Madsen (1976).

In studying these eigenvalues, we shall make use of the fact that P has the same
eigenvalues whether it operates on vectors from the right-side or the left-side. We begin
with

Fact 1. Any stochastic matrix P has an eigenvalue equal to 1.

Proof. Define the vector u by u(x) = 1 for all x ∈ X , then it is easily verified that
Pu = u.

We now write the (generalized) eigenvalues of P (counted with algebraic multiplicity)
as λ0, λ1, . . . , λn−1. Without loss of generality we take λ0 = 1. We further set λ∗ =

max
1≤j≤n−1

|λj |, the largest absolute value of the non-trivial eigenvalues of P .

Fact 2. We have λ∗ ≤ 1. Furthermore, if P (x, y) > 0 for all x, y ∈ X , then λ∗ < 1.

Proof. Suppose Pv = λv. Choose an index x so that |v(x)| ≥ |v(y)| for all y ∈ X . Then

|λv(x)| = |(Pv)x| = |
∑

y

P (x, y)v(y)| ≤
∑

y

|v(y)|P (x, y) ≤
∑

y

|v(x)|P (x, y) = |v(x)| ,

so that |λ| ≤ 1. Hence λ∗ ≤ 1.
Now suppose P (x, y) > 0 for all x and y. It is then easily seen that the inequality

above can only be equality if v is a constant vector, i.e. v(0) = v(1) = . . . = v(n−1). This
shows that λ0 = 1 is the only eigenvalue of absolute value 1 in this case. Hence if P is
diagonalizable we are done.

If P is not diagonalizable, then we still need to prove that the eigenvalue λ0 = 1 is not
part of a larger Jordan block. If it were, then for some vector v we would have Pv = v +u,
where u = (1, 1, . . . , 1)t. But then, choosing x ∈ X with <e v(x) ≥ <e v(y) for all y ∈ X ,
we have that

1 + <e v(x) = <e (Pv)x = <e
∑

y

P (x, y)v(y) ≤ <e
∑

y

P (x, y)v(x) = <e v(x) ,
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a contradiction.

The importance of eigenvalues for convergence properties comes from the following.

Fact 3. Suppose P satisfies λ∗ < 1. Then, there is a unique stationary distribution π on

X and, given an initial distribution µ0 and point x ∈ X , there is a constant Cx > 0 such

that

|µk(x)− π(x)| ≤ CxkJ−1(λ∗)k−J+1 .

where J is the size of the largest Jordan block of P . (It follows immediately that ‖µk−π‖ ≤
CkJ−1(λ∗)k−J+1, where C = 1

2

∑
Cx.) In particular, if P is diagonalizable (so that J = 1),

then

|µk(x)− π(x)| ≤
n−1∑
m=1

|amvm(x)||λm|k ≤

(
n−1∑
m=1

|amvm(x)|

)
(λ∗)k ,

where v0, . . . , vn−1 are a basis of right-eigenvectors corresponding to λ0, . . . , λn−1 respec-

tively, and where am are the (unique) complex coefficients satisfying

µ0 = a0v0 + a1v1 + . . . + an−1vn−1 .

If the eigenvectors vj are orthonormal in L2(π), i.e. if
∑
x

vi(x)vj(x)π(x) = δij , then we get

the further bound

∑
x

|µk(x)− π(x)|2π(x) =
n−1∑
m=1

|am|2 |λm|2k ≤

(
n−1∑
m=1

|am|2
)

(λ∗)k .

Proof. We begin by assuming that P is diagonalizable. Then, using that µk = µ0P
k,

that vmP = λmvm, and that λ0 = 1, we have that

µk = a0v0 + a1v1(λ1)k + . . . + an−1vn−1(λn−1)k .

Since λ∗ < 1, we have (λm)k → 0 as k →∞ for 1 ≤ m ≤ n−1, so that µk → a0v0. It follows
that π = a0v0 must be a probability distribution. Hence in particular a0 = (

∑
y

v0(y))−1

so it does not depend on the choice of µ0. Thus,

µk(x)− π(x) = a1v1(x)(λ1)k + . . . + an−1vn−1(x)(λn−1)k .

The stated bound on |µk(x)−π(x)| now follows from the triangle inequality. The expression
for the L2(π) norm of µk − π follows immediately from orthonormality.
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For non-diagonalizable P , we must allow some of the vectors vm to be generalized
eigenvectors in the sense that we may have vmP = λmvm + λm+1. The only differ-
ence from the previous argument is that now µk may contain some additional terms. If
vj , vj+1, . . . , vj+`−1 form a Jordan block of size `, corresponding to the value λm, then we
may have to add to µk extra terms of the form arvs(λm)k0 , with j ≤ r < s ≤ j + `− 1 and
k0 ≥ k − ` + 1. Keeping track of these extra terms, and bounding their number by kJ−1,
the stated conclusion follows.

We illustrate these ideas with a concrete example.

Example.

Consider the Markov chain on the state space X = {1, 2, 3, 4}, with transition proba-
bilities

P =


0.4 0.2 0.3 0.1
0.4 0.4 0.2 0
0.6 0.2 0.1 0.1
0.7 0.1 0 0.2


Suppose the Markov chain starts in the state 1, so that µ0 = (1, 0, 0, 0).

We compute numerically that the matrix P has eigenvalues λ0 = 1, λ1 = 0.2618, λ2 =
0.0382, λ3 = −0.2, with corresponding left-eigenvectors

v0 = (0.4671, 0.2394, 0.2089, 0.0846)

v1 = (−0.4263, 0, 0.4263, 0)

v2 = (−0.0369, 0.2301,−0.5656, 0.3724)

v3 = (−0.2752, 0.4854, 0.0898,−0.3)

In terms of these eigenvectors, the initial state µ0 = (1, 0, 0, 0) can be written as

µ0 = v0 − 1.031 v1 − 0.4518 v2 − 0.2791 v3 .

Now, we have taken v0 to be a probability vector, so we immediately have π(·) = v0(·).
Also, by the eigenvector properties, we have for example that

µk(3) = v0(3)− 1.031(λ1)kv1(3)− 0.4518(λ2)kv2(3)− 0.2791(λ3)kv3(3)

= (0.2089)− 1.031(0.2618)k(0.4263)

− 0.4518(0.0382)k(−0.5656)− 0.2791(−0.2)k(0.0898) .
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Thus, noting that |(1.031)(0.4263) + (0.4518)(0.5656) + (0.2791)(0.0898)| < 0.8, and that
λ∗ = 0.2618, we have that

|µk(3)− π(3)| < 0.8 (0.2618)k ,

from which we can deduce values of k which make µk(3) arbitrarily close to π(3). Other
points in the state space (besides 3) are handled similarly.

Fact 3 gives a nice picture of a Markov chain converging geometrically quickly to
a unique stationary distribution π. However, many Markov chains will not satisfy the
condition that P (x, y) > 0 for all x and y. This raises the question of necessary and
sufficient conditions to have λ∗ < 1. The answer is as follows.

Fact 4. A finite Markov chain satisfies λ∗ < 1 if and only if it is both indecomposable

and aperiodic.

Proof. If the Markov chain is decomposable, with disjoint closed subspaces X1 and X2,
define vectors u1 and u2 by uj(x) = 1 if x ∈ Xj , 0 otherwise. Then it is easily seen that
Puj = uj , for j = 1, 2, so that P has multiple eigenvalues 1, and λ∗ = 1.

If the Markov chain is periodic, then there are subspaces X1, . . . ,Xd with P (x,Xj+1) =
1 for x ∈ Xj , 1 ≤ j ≤ d − 1, and P (x,X1) = 1 for x ∈ Xd. Define the vector v by
v(x) = e2πij/d for x ∈ Xj . Then it is easily verified that Pv = e2πi/dv. Thus, e2πi/d is an
eigenvalue of P , so that again λ∗ = 1.

For the converse, assume the Markov chain is indecomposable and aperiodic. Assume
first that the Markov chain contains no transient states, i.e. there is positive probability
of getting from any point x to any other point y (in some finite number of steps). We shall
argue that some power of P has all its entries positive, so that the result will follow from
our previous Fact.

Fix x ∈ X , and let Sx = {k |P k(x, x) > 0}. Our assumptions imply that Sx is infinite
and has gcd 1. The set Sx is also additive, in the sense that if a, b ∈ Sx then a + b ∈ Sx.
It is then a straightforward exercise to verify that there must be some kx > 0 such that
k ∈ Sx for all k ≥ kx.

Find such kx for each x ∈ X , and set k0 =
(
max

x
kx

)
+n. We claim that P k0(x, y) > 0

for all x, y ∈ X . Indeed, given x and y, by assumption there exists rxy such that
P rxy (x, y) > 0, and we may clearly take rxy ≤ n. But then P k0(x, y) ≥ P k0−rxy (x, x)P rxy (x, y) >

0, as desired.
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It remains only to consider transient elements of the Markov chain. Suppose x ∈ X is
transient. Then there exists y ∈ X and r > 0 such that P r(x, y) = ε > 0, but Pm(y, x) = 0
for all m ≥ 0. Set T = {j ∈ X |Pm(j, x) > 0 for some m ≥ 0}, so y 6∈ T . It is then easily
computed that ∑

j∈T

|(vP r)j | ≤
∑
j∈T

|v(j)| − ε |v(x)| .

It follows that if vP = λv with |λ| = 1, then we must have v(x) = 0, so that λ is an
eigenvalue of the Markov chain restricted to X − {x}. This reduces the problem to the
previous case.

We close by observing that this discussion has relied heavily on the fact that the
state space X is finite. On infinite spaces, P is a linear operator but not a finite matrix,
and the notion of eigenvalues must be replaced by the more general notion of spectrum
of an operator. Conclusions about convergence rates are much more difficult in this case,
but some progress has been made. See for example Belsley (1993) for countable state
spaces, and Schervish and Carlin (1992) and Baxter and Rosenthal (1994) for general
(uncountable) state spaces.

5. Random walks on groups.

There is a particular class of Markov chains for which the eigenvalues and eigenvectors
are often immediately available, namely random walks on groups. Here X is a group
(finite for most of the present discussion), and Q(·) is a probability distribution on X (to
be referred to as the “step distribution”). The transition probabilities are then defined
by P (x, y) = Q(x−1y); this has the interpretation that at each step we are multiplying
our previous group element x on the right by a new group element, chosen according to
the distribution Q(·); the probability that this brings us to y is the probability that we
multiplied by the group element x−1y.

Typically we take µ0(id) = 1. Then µ1 = Q, and µk+1 = µk ∗ Q, where ∗ stands for
the convolution of measures.

These random walks on groups are much easier to analyze in terms of convergence
to stationarity than are general Markov chains. The ideas presented here were pioneered
by Diaconis and Shashahani (1981), and were greatly advanced by Diaconis (1988) and
many others. This section draws heavily upon Chapter 3 of Diaconis (1988); in particular,
many of our examples are taken from there. The interested reader is urged to consult this
reference for a deeper treatment of this subject.
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We begin with the elementary

Fact 5. Any random walk P on a finite group X satisfies πP = π, where π is defined

by π(x) = 1/n for all x ∈ X (and where n = |X |). In words, the uniform distribution is

stationary for any random walk on any finite group.

Proof. We have

(πP )y =
∑

x

π(x)P (x, y) = (1/n)
∑

x

Q(x−1y) = (1/n)
∑

z

Q(z) = 1/n = π(y) ,

as desired.

We begin our investigation with the abelian case, in which there are very complete
and satisfying results.

5.1. Finite abelian groups.

All finite abelian (i.e. commutative) groups X are of the form

X = Z/(n1)× Z/(n2)× . . .× Z/(nr) ,

a direct product of cyclic groups. That is, they consist of elements of the form x =
(x1, . . . , xr), with the group operation being addition, done modulo nj in coordinate j. A
random walk on such X is defined in terms of a probability distribution Q(·) on X . This
induces transition probabilities defined by P (x, y) = Q(y − x). (We write y − x instead of
x−1y here simply because we are writing the group operation using additive notation, as
is standard for abelian groups.)

Example #1. Let X = Z/(2), the two-element group, and set Q(1) = p, Q(0) = 1− p.
This corresponds exactly to our “simplest non-trivial example” with q = p.

Example #2. Frog’s Walk. Let X = Z/(n), the integers mod n, and set Q(−1) =
Q(0) = Q(1) = 1/3. This corresponds to our frog’s walk from the Introduction, in which
there are n points arranged in a circle, and the frog either moves one step to the right, one
step to the left, or stays where she is, each with probability 1/3.

Example #3. Bit flipping. Let X = (Z/(2))d, a product of d copies of the two-element
group. Set Q(0) = Q(e1) = . . . = Q(er) = 1/(d + 1), where er is the vector with a 1 in the
r’th spot and 0 elsewhere. This corresponds to a “bit-flipping” random walk on binary

12



d-tuples, where at each stage we do nothing (with probability 1/(d + 1)) or change one of
the d coordinates (chosen uniformly) to its opposite value.

The usefulness of random walks on finite abelian groups comes from the fact that we
can explicitly describe their eigenvalues and eigenvectors. To do this, we need to introduce
characters. For m = (m1, . . . ,md) ∈ X , define

χm(x) = e2πi[(m1x1/n1)+...+(mdxd/nd)] , x ∈ X .

Thus, χm is a function from the state space X to the complex numbers. The following
facts are easily verified.

1. χm(x + y) = χm(x)χm(y).
2. χm(0) = 1. |χm(x)| = 1. χm(−x) = χm(x).
3. 〈χm, χj〉 = δmj , where the inner product is defined by 〈f, g〉 = (1/n)

∑
x

f(x)g(x). In

words, the characters are orthonormal in L2(π). In particular, they form a basis for
all functions on X .

4.
∑
m

χm(x) = n δx0.

These properties imply the following key fact.

Fact 6. For each m ∈ X , we have

χm P = λm χm ,

where

λm = EQ(χm) .

In words, for each m, χm is an eigenvector of P corresponding to the eigenvalue EQ(χm).

Proof. We have

(χm P )y =
∑

x

χm(x) P (x, y) =
∑

x

χm(−x)Q(y − x) =
∑

z

χm(z − y) Q(z)

=
∑

z

χm(z)χm(−y) Q(z) = EQ(χm)χm(y) ,

as desired.

This fact immediately gives us all of the eigenvalues of the random walk, which is a
significant achievement. (For example, in the simplest non-trivial example with q = p, it
correctly predicts the eigenvalue EQ ((−1)x) = 1 − 2p.) Combining this with Fact 3, and
recalling that the characters are orthonormal in L2(π), we have

13



Fact 7. A random walk on a finite abelian group satisfies

‖µk − π‖ ≤ 1
2

√∑
m6=0

|λm|2k ≤ (
√

n/2)(λ∗)k ,

where λm = EQ(χm).

Proof. We have from Fact 3 (since the χm are orthonormal) that∑
x

|µk(x)− π(x)|2π(x) =
∑
m6=0

|am|2 |λm|2k ,

where λm = EQ(χm) as in Fact 6. Recalling that π(x) = 1/n = am, this reduces to∑
x

|µk(x)− π(x)|2 = (1/n)
∑
m6=0

|λm|2k .

The result now follows from

4 ‖µk − π‖2 =

(∑
x

|µk(x)− π(x)|

)2

≤ n
∑

x

|µk(x)− π(x)|2 ,

by the Cauchy-Schwarz inequality.

Let us now apply this bound to the second and third examples above. For the frog’s
walk, we have

λm = EQ(χm) = (1/3) + (2/3) cos (2πm/n) .

It follows that λ∗ = (1/3) + (2/3) cos (2π/n). Using just λ∗ in our bound above, we have
(assuming n ≥ 3, and using that cos(x) ≤ 1− x2/4 for 0 ≤ x ≤

√
6, and that 1− x ≤ e−x

for any x) that

‖µk − π‖ ≤ (
√

n/2)(λ∗)k ≤ (
√

n/2)e−
2π2

3n2 k .

This bound is small if k is large compared to n2 log n. We can actually get rid of the log n

term by using the stronger bound with all the eigenvalues:

‖µk − π‖2 ≤ 1
4

n−1∑
m=1

(λm)2k

≤
dn−1

4 e∑
m=1

e−
4π2m2

3n2 k

≤
∞∑

m=1

e−
4π2m
3n2 k

=
e−

4π2

3n2 k

1− e−
4π2

3n2 k
.

14



This last expression is small if k is large compared to n2.
One might wonder if the order n2 can be reduced still further. In fact, it cannot. To

see this, we produce a lower bound as follows. First note that

Eµk
(χm) = (EQ(χm))k

.

(This is similar to the fact that the characteristic function of a sum of independent random
variables is the product of the individual characteristic functions.) This statement can
easily be proved by induction. It can also be seen directly by noting that the quantity on
the left is the eigenvalue of P k corresponding to the eigenvector χm, and is thus the k’th
power of the corresponding eigenvalue for P .

It is further seen directly (or from the fact that χm is orthonormal to χ0 ≡ 1) that
Eπ(χm) = 0 for m 6= 0. It now follows from our third equivalent definition of variation
distance that

‖µk − π‖ ≥ 1
2
|Eµk

(χ1)| =
1
2
|EQ(χ1)|k =

1
2
|1
3

+
2
3

cos(
2π

n
)|k .

(We could have chosen any other character χm with m 6= 0 in place of χ1.)
Taking n =1000 and k =10,000, this equals 0.438. Thus, our frog would have to take

considerably more than 10,000 steps to have approximately equal chance of being at any
of her 1000 lily pads. To make this less than 0.1, we need k = 122, 302.

More generally, for n ≥ 5 this lower bound implies that

‖µk − π‖ ≥ 1
2

(
1− 1

3

(
2π

n

)2
)k

≥ 1
2

(
1− k

3

(
2π

n

)2
)

.

It is easily seen that this quantity will be far from 0 unless k is large compared to n2. Thus,
O(n2) iterations are, for large n, both necessary and sufficient to converge to uniformity
for this process.

For the “bit-flipping” process, Example #3 above, we have χm(x) = (−1)m·x, where
m · x = m1x1 + . . . + mdxd. It is easily computed that

λm = EQ(χm) = 1− 2N(m)
d + 1

,

where N(m) stands for the number of 1’s in the binary d-tuple m. Hence, λ∗ = 1 − 2
d+1 .

Using this directly, and recalling that n = |X | = 2d, we have

‖µk − π‖ ≤ 2d−1

(
1− 2

d + 1

)k

≤ 2de−2k/(d+1) ,
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which is small provided k is large compared to d2.

As in the previous example, we can do better by using all the eigenvalues. Indeed,
there are

(
d
j

)
choices for m which have N(m) = j. Hence, we have (cf. Diaconis, 1988,

Section 3C) that

‖µk − π‖2 ≤ 1
4

d∑
j=1

(
d

j

)
|1− 2j

d + 1
|2k

≤ 1
2

d d+1
2 e∑

j=1

(
d

j

)
(1− 2j

d + 1
)2k

≤ 1
2

∞∑
j=1

dj

j!
e−

4j
d+1 k

=
1
2

(
ede

− 4k
d+1 − 1

)
.

This last expression is small if k is of the form 1
4d log d + Cd with C large. This result is

in fact the “correct” answer. Indeed, it can be shown (Diaconis, 1988) that to first order
in d, precisely 1

4d log d iterations are required to get close to uniform. Such a sharp result
as this, giving the number of iterations exactly to first order in the size of the group, is
the essence of the “cut-off phenomenon”; see Diaconis and Shashahani (1981), Aldous and
Diaconis (1987), Diaconis (1988), and Rosenthal (1994c).

5.2. Finite non-abelian groups.

For non-abelian groups, the situation is more complicated, but we can still make use of
the “characters” of the group to find eigenvalues, at least under the additional assumption
that our step distribution is “conjugate-invariant”.

Let X be a finite, non-abelian group (such as the symmetric group S`, which cor-
responds to shuffling a deck of cards). Such a group has associated with it irreducible
representations ρ0, ρ1, . . . , ρr, where ρm : X → Mdm

(C) is a function taking the group
X into the set of dm × dm complex matrices, which is multiplicative in the sense that
ρm(xy) = ρm(x)ρm(y) and that ρm(id) = Idm

. (Here the multiplication on the left is in
the group, while the multiplication on the right is matrix multiplication.)

It is known that these irreducible representations satisfy
∑
m

(dm)2 = |X |, i.e. that there

are as many “representation entries” as there are elements of the group. Furthermore we
may assume that ρm(x−1) = ρm(x)∗, the conjugate transpose of ρm(x). (In words, we
may assume the matrices ρm(x) are unitary.) It is then true that these “representation
entries” are orthogonal under the appropriate inner product.
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The connection with the abelian case comes as follows. The characters of the group
are given by χm = tr ρm, the trace of the matrix. For abelian groups, we have dm = 1 for
all m, so that the character and the representation are essentially the same; in that case,
the current situation reduces to the previous one. In general, we have that

∑
m

dmχm(s) =

n δs,id; again, if dm = 1 for all m, this reduces to the previous case. Also, once again, the
characters are orthonormal in L2(π).

In this generality, one cannot obtain simple formulas for the eigenvalues of the transi-
tion matrix P . Indeed, the matrix for P need not even be diagonalizable. However, let us
assume that the step distribution Q(·) is conjugate-invariant, in the sense that Q(x−1yx) =
Q(y) for all x, y ∈ X . That is easily seen to imply that ρm(x−1)EQ(ρm)ρm(x) = EQ(ρm)
for all m and for all x ∈ X . In words, the matrix EQ(ρm) commutes with every matrix of
the form ρm(x), for x ∈ X . A well-known result from group representation theory, Schur’s
Lemma, then implies that EQ(χm) is a scalar matrix, i.e. a multiple of the identity. It
follows by taking traces that

EQ(ρm) = (EQ(χm)/dm) Idm
,

where Idm
is the dm × dm identity matrix.

Under this “conjugate-invariant” assumption, we have

Fact 8. Let P correspond to a conjugate-invariant random walk on a finite group X as

above. For 0 ≤ m ≤ r, and 1 ≤ i, j ≤ dm, we have

ρm(ij) P = (EQ(χm)/dm) ρm(ij) .

In words, the vector whose value at the point x ∈ X is the complex conjugate of the ij

entry of the matrix ρm(x), is an eigenvector for P , with eigenvalue EQ(χm)/dm.

Proof. For g ∈ X , we have(
ρm(ij) P

)
g

=
∑
x∈X

ρm(ij)(x) P (g, x)

=
∑
x∈X

ρm(ij)(x) Q(x−1g)

=
∑
y∈X

ρm(ij)(gy−1) Q(y)

=
∑

y

Q(y)
∑

z

ρm(iz)(g)ρ∗m(jz)(y)

=
∑

z

(ρm(g))iz (EQ(ρm)∗)jz

= (EQ(χm)/dm)
(
ρm(g)

)
ij

,
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where we have used that EQ(ρm) is diagonal, with diagonal entries EQ(χm)/dm.

It follows immediately that the eigenvalues of P are precisely EQ(χm)/dm, each re-
peated (dm)2 times. It also follows that the vector χm is an eigenvector with this same
eigenvalue, which directly generalizes the abelian case. Furthermore, as mentioned above,
the characters χm are again orthonormal in L2(π). By exact analogy with our discussion
there, we have

Fact 9. The variation distance to the uniform distribution π satisfies

‖µk − π‖ ≤ 1
2

√∑
m6=0

(dm)2|λm|2k ≤ (
√

n/2)(λ∗)k ,

with n = |X | and with λm = EQ(χm)/dm.

Example: Random Transpositions. Consider the symmetric group S`, with step
distribution given by Q(id) = 1/`, Q((ij)) = 2/`2 for all i 6= j. This corresponds to
shuffling a deck of cards by choosing a random card uniformly with the left hand, choosing
a random card uniformly with the right hand, and interchanging their positions in the
deck (and doing nothing if we happened to pick the same card with both hands). Bounds
on the distance to stationarity then correspond to bounds on how long the deck of cards
must be shuffled until it is well mixed.

This was the example that motivated Diaconis and Shashahani (1981) to develop
the modern, quantitative study of random walks on groups. To do a careful analysis
of this model requires detailed knowledge of the representation theory of the symmetric
group, which is rather involved. We note here simply that χ1 for the symmetric group
is the function that assigns to each group element, one less than the number of points
in {1, 2, . . . , `} that it leaves fixed. Thus, χ1(id) = ` − 1, and χ1((ij)) = ` − 3. Also,
d1 = `− 1. Hence, the eigenvalue corresponding to χ1 is given by

λ1 = EQ(χ1)/d1 =
(1/`)(`− 1) + (1− (1/`))(`− 3)

`− 1
= 1− 2

`
≤ e−2/` .

Now, it so happens (though we cannot prove it here) that for this random walk, λ∗ = λ1.
Thus, using our bound developed above, we have that

‖µk − π‖ ≤
√

`!/2(λ∗)k ≤ e` log `e−2k/` ,
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which is small if k is large compared to `2 log `. Diaconis and Shashahani (1981) did a much
more careful analysis of this process, using all the eigenvalues, and proved that to first or-
der in `, 1

2` log ` steps were necessary and sufficient, again proving a cut-off phenomenon.

A number of other random walks on finite groups have been considered and shown
to exhibit a cut-off phenomenon, including Random Transvections (Hildebrand, 1992) and
Rank-One Deformations (Belsley, 1993). Bayer and Diaconis (1992) analyzed ordinary “rif-
fle” card shuffles on the symmetric group, and proved a cut-off phenomenon at (3/2) log2 `

iterations. In particular, for ` = 52, they showed that about 7 such shuffles were required
to get close to stationarity. This shuffle is not conjugate-invariant; thus, their methods
were somewhat different from the above, and involved deriving exact expressions for µk

for this random walk.
Finally, we mention that similar analyses to the above have been carried out for

conjugate-invariant random walks on (infinite) compact Lie groups, such as those proposed
for encryption algorithms by Sloane (1983). In Rosenthal (1994a), a process of “random
rotations” on the orthogonal group SO(n) was shown to converge to Haar measure with a
cut-off at 1

2n log n. In Porod (1993), generalizations of a process of “random reflections”
were shown to exhibit the cut-off phenomenon on all of the classical compact Lie groups
(orthogonal, unitary, and symplectic). The basic method of proof in these examples is the
same as for finite groups. However, here the number of eigenvalues is infinite, so there is
the additional complication that bounds are required are infinite sums.

6. Coupling and minorization conditions.

Often, Markov chains of interest will not have the restrictive structure of a random
walk on group. Thus, it is necessary to consider other approaches to bounding their
convergence. In this section, we present an approach which does not use eigenvalues at all.
Rather, it uses probabilistic ideas directly.
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6.1. Coupling.

The basic idea of coupling is the following. Suppose we have two random variables X

and Y , defined jointly on some space X . If we write L(X) and L(Y ) for their respective
probability distributions, then we can write

‖L(X)− L(Y )‖ = sup
A
|P (X ∈ A)− P (Y ∈ A)|

= sup
A
|P (X ∈ A,X = Y ) + P (X ∈ A,X 6= Y )

− P (Y ∈ A, Y = X)− P (Y ∈ A, Y 6= X)|

= sup
A
|P (X ∈ A,X 6= Y )− P (Y ∈ A, Y 6= X)|

≤ P (X 6= Y ) .

Thus, the variation distance between the laws of two random variables is bounded by the

probability that they are unequal.
We shall make use of this fact as follows. Given a Markov chain P on a space X , with

initial distribution µ0, suppose we can find a new Markov chain (Xk, Yk) on X × X with
(i) X0 ∼ µ0;
(ii) Y0 ∼ π;
(iii) P (Xk+1 ∈ A | Xk) = P (Xk, A);
(iv) P (Yk+1 ∈ A | Yk) = P (Yk, A).
(v) There is a random time T such that Xk = Yk for all k ≥ T .

In words, the chain Xk starts in the distribution µ0 and proceeds according to the
transitions P (·, ·). The chain Yk starts in the distribution π and proceeds according to the
same transitions P (·, ·). However, the joint law of (Xk, Yk) is arbitrary, except that after
some time T (called the coupling time), the two processes become equal.

The benefit of the above “coupling” is as follows. Since Xk is updated from P (·, ·), we
have L(Xk) = µk. Also, since Yk is also updated from P (·, ·), and since the distribution π

is stationary, we have L(Yk) = π for all k. It follows that

‖µk − π‖ = ‖L(Xk)− L(Yk)‖ ≤ P (Xk 6= Yk) ≤ P (T > k) .

Thus, if we can find a coupling as above, we get an immediate bound on ‖µk − π‖ simply
in terms of the tail probabilities of the coupling time T .

There is a huge literature on coupling, and it has a long history in Markov chain theory.
See for example Aldous (1983), Lindvall (1992), and references therein. We shall here
concentrate on a particularly simple and elegant use of coupling, related to minorization
conditions.

20



6.2. Uniform minorization conditions.

Suppose a Markov chain satisfies an inequality of the form

P k0(x, A) ≥ β ζ(A) , x ∈ R, A ⊆ X

where k0 is a positive integer, R is a subset of the state space X , β > 0, and ζ(·) is some
probability distribution on X .

Such an inequality is called a minorization condition for a Markov chain, and says
that the transition probabilities from a set R all have common overlap of at least size β.
Minorization conditions were developed by Athreya and Ney (1978), Nummelin (1984),
and others. We shall see that they can help us define a coupling to get bounds on the
chain’s rate of convergence.

We consider here the uniform case in which R = X , i.e. in which the minorization
condition holds on the entire state space. (This is sometimes called the Doeblin condition.)
We further assume for simplicity that k0 = 1.

We shall now use this minorization condition to define a coupling. First define (Xk, Zk)
jointly as follows. Choose X0 ∼ µ0 and Z0 ∼ π independently. Then, given Xk and Zk,
choose Xk+1 and Zk+1 by flipping an independent coin that has probability β of coming
up heads, and then

(a) If the coin is heads, choose a point z ∈ X distributed independently according to ζ(·),
and set Xk+1 = Zk+1 = z.

(b) If the coin is tails, then choose Xk+1 and Zk+1 independently with

P (Xk+1 ∈ A) =
P (Xk, A)− β ζ(A)

1− β
;

P (Zk+1 ∈ A) =
P (Zk, A)− β ζ(A)

1− β
.

(Note that the minorization condition ensures that these choices are in fact from
probability distributions.)

These probabilities have been chosen precisely so that P (Xk+1 ∈ A | Xk) = P (Xk, A)
(and similarly for Zk+1). The point is, option (a) forces Xk+1 to be equal to Zk+1, and
this chance of becoming equal is good for getting coupling bounds.

Let T be the first time the coin comes up heads. Then define Yk by

Yk =

{
Zk, k ≤ T ;

Xk, k > T .
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Thus, Yk is essentially the same as Zk, except that after the Markov chains become equal
at time T , they will remain equal forever.

The combined chain (Xk, Yk) is now a coupling with coupling time T . Also, since we
had probability β of choosing option (a) each time, we see that P (T > k) = (1− β)k. Our
above inequality immediately gives the following.

Fact 10. Suppose a Markov chain satisfies P (x,A) ≥ β ζ(A), for all x ∈ X and for all

measurable subsets A ⊆ X , for some probability distribution ζ(·) on X . Then given any

initial distribution µ0 and stationary distribution π, we have

‖µk − π‖ ≤ (1− β)k .

This fact goes back to Doob (1953), and been used in Roberts and Polson (1994),
Rosenthal (1993a), and many other places. It is quite powerful. For example, it immedi-
ately generalizes our earlier result that, on a finite state space, if all entries of the matrix
P are positive then the chain converges geometrically quickly. In fact, now we require
only that some column of P be all positive (and furthermore we immediately obtain a
quantitative bound on convergence in that case).

It is easily seen that, given a Markov chain P (x, ·), the largest value of β that we can
use as above should be given by

β =
∫
X

inf
x∈X

P (x, dy) ,

which on a discrete space reduces to

β =
∑
y∈X

min
x∈X

P (x, y) .

In words, we may take β to be the sum of the minimum values of the entries in each
column of P . (Note that β = 1 if and only if P (x, ·) does not depend on x, in which
case the Markov chain converges exactly after a single step.) We can then immediately
conclude that ‖µk − π‖ ≤ (1−β)k. Note that this was precisely our finding in the simplest
non-trivial example of Section 3.

Example. Consider the Markov chain on X = {1, 2, 3, 4, 5} with transition matrix

P =


0.2 0.2 0.3 0.3 0
0.4 0 0.3 0.3 0
0.2 0.2 0.4 0.1 0.1
0.2 0.1 0.3 0.1 0.3
0.2 0 0.5 0.3 0
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We see by inspection that the column minimums are 0.2, 0, 0.3, 0.1, 0, respectively. Thus
we may take β = 0.2 + 0.3 + 0.1 = 0.6, and immediately conclude that ‖µk − π‖ ≤ (0.4)k.
(Note that here Q(1) = 1/3, Q(3) = 1/2, and Q(4) = 1/6.)

Example. Let X = [0, 1] (the interval from 0 to 1), and set

P (x, dy) =
1 + x + y

3
2 + x

dy .

We see by inspection that P (x, dy) ≥ 2
3 dy for all x and y, so that we may take β = 2

3 to
conclude that ‖µk − π‖ ≤ (1/3)k. We can do even better by finding the best β as above:

β =

1∫
0

(
inf

0≤x≤1

1 + x + y
3
2 + x

)
dy =

1
2∫

0

2
3
(1 + y)dy +

1∫
1
2

2
5
(2 + y)dy =

29
30

.

Hence, we actually have ‖µk − π‖ ≤ (1/30)k. (Note that here Q(·) has density (with re-
spect to dy) given by 30

29
2
3 (1 + y) for 0 ≤ y ≤ 1

2 , and by 30
29

2
5 (2 + y) for 1

2 < y ≤ 1.)

These two examples will probably convince the reader that the minorization method
is sometimes very powerful. On the other hand, the best value of β above will often be
0; for example, this is certainly true for the Frog’s Walk discussed in the introduction.
One way to get around this difficulty is to replace P by P k0 in the minorization condition,
which requires replacing k by [k/k0] in the conclusion. In principle this approach should
usually work well, but in practice it may be very difficult to compute or estimate quantities
related to P k0 . See Rosenthal (1993a) for one attempt in this direction.

Another method is to restrict the values of x in the minorization condition to being
in some subset R ⊆ X , as we now discuss.
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6.3. Minorization conditions on subsets.

Suppose that instead of the uniform minorization condition as above, we have a mi-
norization condition which holds only on a subset R ⊆ X . Then our above bound, which
was based on coupling with probability β at each step, cannot be applied. Various other
approaches have been used in this case. We very briefly outline them here.

If one allows the subset R to be arbitrarily large (in fact, to grow as a function of k),
then it may be possible to bound the probability of escaping from R, and draw conclusions
about ‖µk − π‖ in that way; see Rosenthal (1991).

In any case, each time our coupled process (Xk, Yk) visits the subset R × R, it has
probability β of coupling. Using “drift conditions”, it may be possible to bound the number
of such returns to R × R, and then use coupling as in the uniform case; see Rosenthal
(1993b).

A related approach is presented in Meyn and Tweedie (1993), who use minorizations,
drift conditions, splittings, and careful bounding to obtain bounds on ‖µk − π‖ directly,
without introducing a second, coupled chain.

Instead of trying to bound ‖µk − π‖ directly, or use coupling, another approach is as
follows. Consider a single Markov chain Xk, and each time it is in the subset R, with
probability β update it according to ζ(·). Call the times of such updatings regeneration
times. Then, it is easily seen that the distribution of Xk depends only on the time since the
last regeneration time. Thus, if these “times since the last regeneration” converge, then
the original chain Xk must also converge. This is the essential idea behind convergence
results in Athreya and Ney (1978), Nummelin (1984), Asmussen (1990), Mykland et al
(1992), and elsewhere.

7. Other approaches.

There are many other methods of bounding convergence rates of Markov chains, many
of which have been applied to a number of examples of interest. We briefly mention some
of these methods here.

For certain Markov chains including birth-death chains (i.e. Markov chains on the
integers, which can move at most distance 1 on a given step), the eigenvalues and eigen-
vectors are related to the “orthogonal polynomials”. Classically-known results can be used
to get good bounds on convergence rates. See Belsley (1993) and references therein.

Related to the coupling and minorization bounds presented herein is the method of
strong stopping times (Aldous and Diaconis, 1986, 1987). Essentially, if the reference
measure ζ(·) in the minorization condition happens to be the stationary distribution π(·),
then one can construct a random time τ such that the law of Xτ is precisely π(·), and such
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that Xτ is independent of τ . Such a time τ is a strong stopping time, and it is easily seen
that ‖µk − π‖ ≤ P (τ > k). Another method of constructing strong stopping times is by
constructing a dual Markov chain that keeps track of “how stationary” the Markov chain
has become; see Diaconis and Fill (1990).

A different and very beautiful method of bounding convergence to certain specific
distributions (e.g. normal, poisson) is the method of Stein (1971) and Chen (1975). This
involves characterizing the distribution of interest through some “identity” that it satisfies,
and then seeing to what extent the distribution µk approximately satisfies that identity.
In certain cases the technique has been simplified to the point where it is very usable. See
Arratia et al. (1989) and Barbour et al. (1992).

Finally, geometric arguments involving “paths” on graphs have recently been used to
bound eigenvalues of Markov chains, with great success in certain examples; see Jerrum
and Sinclair (1989) and Diaconis and Stroock (1991). Geometric approaches have also
been used to allow different Markov chains to be “compared” to each other, so that known
information about one Markov chain can be used to obtain information about related
chains; see Diaconis and Saloff-Coste (1993).

Some of these approaches use reversibility of a Markov chain, meaning that the identity
π(dx)P (x, dy) = π(dy)P (y, dx) holds for all x, y ∈ X . This is equivalent to saying that,
if the chain starts in the stationary distribution π(·), it has the same law whether time
runs forwards or backwards. This immediately implies that P is a self-adjoint operator on
L2(π) (and hence its eigenvalues are all real). Such structure is discussed and exploited in
in Diaconis and Stroock (1991), Keilson (1979), and elsewhere. In Fill (1991), it is shown
how to make use of reversibility to obtain bounds on convergence, even if the original
Markov chain P is nonreversible.

Most of the above work has been concerned primarily with convergence in total varia-
tion distance (or the related separation distance). There are of course many other notions
of distance between probability measures that could be used, such as relative entropy, etc.
See Su (1994) for a start in this direction.

Naturally, these few words scarcely begin to cover the depth of work that has been
applied to convergence questions. The reader is strongly encouraged to consult these and
other references for further information.
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