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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are very widely used to estimate
of expected values in a variety of settings, especially for Bayesian inference (see
e.g. [2] and the many references therein).

It has been pointed out by various authors (e.g. [12, 4]) that in addition to
providing an estimate, it is also important to quantify the error in the estimate,
hopefully by providing confidence intervals for the value being estimated.

Such error estimation and confidence intervals are usually obtained via Markov
chain Central Limit Theorems (CLTs), see e.g. [15, Theorem 4] and [3, 9, 13, 10].
Indeed, CLTs are often considered essential for this purpose, e.g. [11, p. 131]
writes “The CLT is the basis of all error estimation in Monte Carlo”. However,
establishing CLTs for MCMC requires the verification of challenging properties
like geometric ergodicity, which is often difficult in applied problems. This makes
confidence intervals harder to obtain in MCMC applications.

In this short note, we show (Theorem 1) that for typical MCMC applications,
as long as the asymptotic variance can be estimated, a confidence interval (or
at least an upper-bound on a confidence interval) can be obtained quite simply,
via Chebychev’s inequality, without requiring any sort of CLT or distributional
convergence at all.

2. Assumptions

Let {Xn} be a Markov chain on a state space X which converges to a target
distribution π. Let h : X → R be some functional, and assume we wish to
estimate the stationary expected value of h, i.e. π(h) :=

∫
h(x)π(dx), by the

usual MCMC estimate, en = 1
n

∑n
i=1 h(Xi).
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In typical MCMC applications, the estimate en will have variance O(1/n)
and bias O(1/n) (see e.g. [6, page 21]). Consistent with this, we assume:

(A1) (Order 1/n variance.) The limit V := limn→∞ nVar(en) exists and is in
(0,∞).

(A2) (Smaller-order bias.) limn→∞ n1/2|E(en)− π(h)| = 0.

We also require an estimator of the asymptotic variance value V . Such esti-
mators are quite common, and can be obtained in many different ways, including
repeated runs, integrated autocorrelation times, batch means, window estima-
tors, regenerations, and more; see e.g. [5, Section 3] and [8, 10, 7], etc. We thus
assume:

(A3)(Variance estimator.) There is an estimator σ̂2
n of V , such that limn→∞ σ̂2

n=
V in probability.

3. Main result

Under the above mild assumptions, our result is as follows:

Theorem 1. Assume (A1)–(A3) above, fix 0 < α < 1 and ε > 0, and define
the interval

In,ε :=
(
en − n−1/2σ̂nα

−1/2(1 + ε), en + n−1/2σ̂nα
−1/2(1 + ε)

)
.

Then
lim inf
n→∞

P
(
π(h) ∈ In,ε

)
≥ 1− α ,

i.e. the interval In,ε includes the true expected value π(h) with asymptotic prob-
ability at least 1−α, i.e. In,ε has asymptotic coverage probability at least 1−α.

Theorem 1 may be interpreted as saying that the interval In,ε contains an
asymptotic (1− α)-confidence interval for π(h), i.e. it is an overly-conservative
confidence interval. Since the main purpose of MCMC confidence intervals is
to provide approximate guarantees for estimates, this conservativeness is not a
major limitation.

Most commonly, the significance level α = 0.05. In that case, the usual CLT-
derived 95% asymptotic confidence interval for π(h) would be given by [en −
1.96 σ̂n/

√
n, en + 1.96 σ̂n/

√
n]. By contrast, taking α = 0.05 and ε = 0.001,

our interval is computed to be In,ε = [en − 4.48 σ̂n/
√
n, en + 4.48 σ̂n/

√
n].

So, Theorem 1 can be interpreted as saying that even without establishing a
Markov chain CLT, the usual MCMC asymptotic 95% confidence interval still
applies, except with “1.96” replaced by “4.48”, i.e. multiplying by just under 2.3
(and with the asymptotic coverage probability being ≥ 95% instead of exactly
95%, i.e. being overly conservative). Given the difficulty of establishing CLTs
for MCMC algorithms, it seems easier to instead simply multiply the confidence
interval width by 2.3.
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4. Proof of Theorem 1

For any an > 0, we have by the triangle inequality that

P
(
|en − π(h)| ≥ an

)
= P

(∣∣∣
(
en −E(en)

)
+
(
E(en)− π(h)

)∣∣∣ ≥ an

)

≤ P
(
|en −E(en)|+ |E(en)− π(h)| ≥ an

)

= P
(
|en −E(en)| ≥ an − |E(en)− π(h)|

)
.

Hence, if
an − |E(en)− π(h)| > 0 , (∗)

then by Chebychev’s inequality (e.g. [14, Proposition 5.1.2]),

P
(
|en − π(h)| ≥ an

)
≤ Var(en)

/(
an − |E(en)− π(h)|

)2

.

We now set an =
√

V/nα. Then by (A2), limn→∞ |E(en) − π(h)| / an = 0.
Hence, (∗) is satisfied for all sufficiently large n, and as n → ∞, we have from
the above and (A1) that

lim sup
n→∞

P(|en−π(h)| ≥ an) ≤ lim sup
n→∞

(V/n a2n) = lim sup
n→∞

(V/n (V/nα)) = α .

It remains to replace the true variance coefficient V by its estimator σ̂2
n. For

this, let ε > 0. Then by (A3), lim supn→∞ P(σ̂2
n(1 + ε)2 ≤ V ) = 0. Therefore,

lim sup
n→∞

P
(
|en − π(h)| ≥ n−1/2σ̂nα

−1/2(1 + ε)
)

= lim sup
n→∞

P
(
|en − π(h)| ≥

√
σ̂2
n(1 + ε)2/nα

)

≤ lim sup
n→∞

[
P
(
|en − π(h)| ≥

√
V/nα or σ̂2

n(1 + ε)2 ≤ V
) ]

≤ lim sup
n→∞

[
P
(
|en − π(h)| ≥

√
V/nα

)
+P

(
σ̂2
n(1 + ε)2 ≤ V

)]

≤ α+ 0 = α .

Taking complements, we obtain that

lim inf
n→∞

P
(
|en − π(h)| < n−1/2σ̂nα

−1/2(1 + ε)
)

≥ 1− α .

Finally, note that |en − π(h)| < n−1/2σ̂nα
−1/2(1 + ε) if and only if π(h) ∈ In,ε.

Hence, this completes the proof of Theorem 1.

Remark. The recent paper [1] also obtains confidence intervals for MCMC
without requiring CLTs. However, its results apply only to reversible chains,
and require knowledge of the spectrum of a complicated kernel φ, and pro-
ceed by establishing convergence in distribution to a complicated generalised
T-distribution which appears to be difficult and challenging to work with, so
they cannot be described as “simple”.
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