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Abstract. We investigate the connections between extremal indices on
the one hand and stability of Markov chains on the other hand. Both
theories relate to the tail behaviour of stochastic processes, and we find
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1 Introduction

It is well-established that maxima of stationary processes with given fixed
stationary distributions are affected by the dependence structure of the pro-
cess. This dependence is effectively captured by the extremal index. However
little is known about how the extremal index is related to more general mix-
ing properties of stationary processes. The aim of this paper is to relate the
extremal index to the concept of geometric ergodicity of Markov chains.

The extremal index, written as θ, takes values in [0, 1], and can be in-
terpreted as an indicator of extremal dependence, with θ = 1 indicating
asymptotic independence of extreme events. On the other hand θ = 0 rep-
resents the case where we can expect strong clusterings of extreme events.
In this case it is natural to expect excursions away from ‘moderate’ val-
ues to extreme regions to persist for random times which have heavy-tailed
distributions. For Markov chains this behaviour is characteristic of non-
geometrically ergodic Markov chains. Thus a natural question to ask is
whether θ = 0 is related to non-geometric ergodicity. In this paper we shall
see that under certain extra conditions, the two conditions are equivalent.

A motivation for this work comes from MCMC, where commonly used
algorithms (such as the Random Walk Metropolis method (RWM) on which
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we shall focus here) successfully identify modal regions of the target density
but have a tendency to underestimate measures of its variation (perhaps its
variance). For examples of this phenomenon, see Fearnhead and Meligotsi-
dou (2004).

A natural explanation for this phenomenon comes from the following
property of the extremal index. Suppose that a stationary sequence {Xn}
has extremal index θ. Suppose that un is a sequence of levels such that
Pr(Xn > un) is asymptotically equivalent to 1/n, and let Tn be the first
hitting time of (un,∞) by the process. Then limn→∞ Pr(Tn/n > x) = e−θx

for positive x, so that the asymptotic expectation of Tn/n is equal to 1/θ if
0 < θ ≤ 1 and limn→∞ E(Tn/n) = ∞ if θ = 0.

In particular, the smaller the extremal index, the longer it will take
before extreme levels are reached in comparison to independent sequences
from the target density. Even for the geometrically ergodic RWM chains
of Theorem 5.1, it will take more than twice as long as for an independent
sequence to arrive at extreme levels. Moreover, if the extremal index is zero,
it will even take an order of magnitude longer. Thus we believe the results of
this paper go some way towards explaining empirically observed phenomena
in MCMC output.

The outline of the paper is as follows. Section 2 contains a few prelim-
inaries concerning extremes of stationary processes and Markov processes.
In section 3 it is shown that Markov chains produced by the random walk
Metropolis algorithm have extremal index equal to zero as soon as the sta-
tionary distribution has a long tail. Geometrically ergodic Markov chains,
on the other hand, are shown in section 4 to have a positive extremal index
as soon as the drift function satisfies a readily verifiable condition. These
results are specialized to the random walk Metropolis algorithm in section 5
where explicit expressions for the extremal index are derived.

2 Preliminaries

Since this paper brings together two theories which have hitherto developed
rather separately, we begin with a brief synopsis of the main concepts we
shall require from both Markov chain theory and extremal indices.

Extremes of stationary processes. Let {Xn} be a (strictly) stationary se-
quence of random variables, that is, a sequence such that for any integers
i ≤ j the law of the random vector (Xi+k, . . . , Xj+k) does not depend on the
integer k. Let F be the stationary marginal distribution function of the se-
quence, that is, F (x) = Pr(X ≤ x). Further, define Mn = max(X1, . . . , Xn).
We are interested in the distribution of extremes of the process; see Leadbet-
ter et al. (1983) for a detailed account of the theory of extremes of stationary
processes.
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The process {Xn} has extremal index θ if for every 0 < τ < ∞ there
exists a real sequence {un(τ)} such that

lim
n→∞

n{1− F (un(τ))} = τ, (2.1)

lim
n→∞

Pr[Mn ≤ un(τ)] = e−τθ; (2.2)

see Leadbetter (1983). A sufficient condition (but not a necessary one)
for (2.1) is that F is continuous in a neighbourhood of its right end-point.
Hence, the crux of the definition lies in (2.2).

If the random variables Xn are independent, then from elementary cal-
culus

Pr[Mn ≤ un(τ)] =
(

1− 1
n

n{1− F (un(τ))}
)n

→ e−τ , n →∞,

whence the extremal index is θ = 1. Moreover, if {Xn} has extremal index
θ, then, since

Pr[Mn > un(τ)] ≤ n{1− F (un(τ))},

we have 1− e−τθ ≤ τ for every τ , whence 0 ≤ θ ≤ 1.
Let {un} be a real sequence. For integer 1 ≤ l < n define

αn,l = max
I,J

|Pr[M(I) ≤ u, M(J) ≤ u]− Pr[M(I) ≤ u] Pr[M(J) ≤ u]|

where the maximum ranges over all non-empty subsets I and J of {1, . . . , n}
with max I + l ≤ max J and where M(I) = max{Xi : i ∈ I}. Then Lead-
better’s condition D(un) is said to hold if there exists an integer sequence
ln = o(n) such that αn,ln → 0 as n → ∞. Leadbetter’s condition is rather
weak in that is implied by various mixing conditions on the sequence {Xn};
see also section 4.

Let un be such that n{1 − F (un)} converges to some 0 < τ < ∞ as
n →∞. If condition D(un) is satisfied, then by the block-clipping technique
(Loynes, 1965; Leadbetter, 1974),

Pr[Mn ≤ un] = (Pr[Mrn ≤ un])n/rn + o(1), n →∞, (2.3)

for integer sequences rn such that ln = o(rn) and rn = o(n). This property
implies a generalization of the classical extremal types theorem for indepen-
dent stationary sequences (Fisher and Tippett, 1928; Gnedenko, 1943): if
the stationary sequence {Xn} has extremal index θ, if Leadbetter’s condi-
tion D(un(τ)) holds for every 0 < τ < ∞, and if there exist real sequences
an > 0 and bn such that a−1

n (Mn−bn) converges weakly to a non-degenerate
law, then the limit law must be an extreme-value distribution (Leadbetter,
1983, Theorem 2.1).

Moreover, under Leadbetter’s condition, the extremal index admits a
number of intuitively appealing interpretations. Let un and rn be as in (2.3)
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and assume D(un) is satisfied. A comparison of (2.3) with the definition of
the extremal index learns that

E

[
rn∑
i=1

1(Xi > un)

∣∣∣∣∣
rn∑
i=1

1(Xi > un) > 0

]
=

rn{1− F (un)}
Pr[Mrn > un]

→ 1
θ

as n → ∞, that is, the extremal index is the reciprocal of the limit of the
expected size of clusters of exceedances over a high threshold. Moreover, by
O’Brien (1987, Theorem 2.1),

lim
n→∞

Pr[Mrn ≤ un | X0 > un] = θ,

stating that the extremal index is the limiting probability that a high-
threshold exceedance is followed by a run of non-exceedances. For char-
acterizations of the extremal index in terms of point processes or inter-
arrival times between exceedances, see Hsing et al. (1988), Ferro and Segers
(2003), and Segers (2006). Extensions to higher dimensions are studied in
Nandagopalan (1994), Perfekt (1997) and Segers (2006).

The extremal index of stationary Markov chains has been studied in
Rootzén (1988), Smith (1992), Perfekt (1994) and Yun (1998). The crucial
observation is that at extreme levels, Markov chains typically behave as a
random walk or a monotone transformation thereof. The extremal index can
be expressed in terms of this random walk. We will encounter this situation
in section 5 for Markov chains arising from the random walk Metropolis
algorithm.

Markov chains and geometric ergodicity. We shall restrict ourselves in this
paper to Markov chains described by a transition kernel P so that P (x,A) =
Pr(X1 ∈ A|X0 = x). Although the concepts we describe in this section are
rather general, we shall ultimately apply them in the case where the Markov
chain state space is a subset of R. We refer to Meyn and Tweedie (1993) for
details.

We shall assume that the chain is ϕ-irreducible, so that there exists a
non-trivial measure ϕ such that for any Borel set A with ϕ(A) > 0,

Pr(Xn ∈ A for some n | X0 = x) > 0, x ∈ R.

We also assume aperiodicity: there does not exist a partition of the real
line into d subsets, D0, D1, . . . , Dd−1 (d ≥ 2) with Pr(Xn ∈ Di) = 1(i = n
mod d).

An important concept for stability is the notion of a small set. A set C
is small if there exists a positive integer n0, and ε > 0, and some probability
measure ν concentrated on C, such that

Pr(Xn0 ∈ · | X0 = x) ≥ ε ν(·), x ∈ C.
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To make any sense out of stability, we shall require X to be positive
recurrent. Thus we need that for some (and hence for all) small set C with
ϕ(C) > 0 the expected return time to C from ϕ-almost all x is finite. To-
gether with ϕ-irreducibity and aperiodicity, positive recurrence is sufficient
to ensure the existence of a unique invariant and limiting probability mea-
sure, which we shall denote by π. However we shall largely consider a much
stronger form of ergodicity: there exists a function V ≥ 1, finite π-almost
everywhere, and a small set C such that for some constants λ < 1 and b,

PV (x) :=
∫

V (y)P (x,dy) ≤ λV (x) + b1(x ∈ C), x ∈ R. (2.4)

This geometric drift condition implies that the chain is geometrically ergodic
(Mengersen and Tweedie, 1996, Theorem 1.4):

‖Pn(x, · )− π‖V ≤ V (x)Rρn (2.5)

for all positive integer n, all x, and some constants 0 < R < ∞ and 0 < ρ <
1, where ‖µ‖V = sup|g|≤V |

∫
g(y)µ(dy)|.

Random walk Metropolis algorithm. A famous class of Markov chains are
those which are produced by the random walk Metropolis algorithm (Metropo-
lis, 1953). Let π and q be probability densities on the real line, with q
symmetric about zero. Let {Xn} be the stationary Markov chain arising
from the random walk Metropolis algorithm with stationary density π and
with increments generated according to the proposal density q: given Xn, a
random increment Zn+1 is drawn according to the density q; then Xn+1 is
equal to Yn+1 = Xn + Zn+1 with probability α(Xn, Yn+1) and equal to Xn

otherwise, where

α(x, y) =

{
min{π(y)/π(x), 1} if π(x) > 0,

1 if π(x) = 0.

Formally, we can construct the chain starting at time 0 through the recursive
equation

Xi+1 = Xi + Zi+11{Ui+1 ≤ α(Xi, Xi + Zi+1)} (2.6)

for integer i ≥ 0; here {Zi} and {Ui} are independent sequences of inde-
pendent, identically distributed random variables, independent of X0, and
such that the probability density function of Zi is q and the distribution of
Ui is uniform on the interval (0, 1). The process {Xn} thus defined forms a
Markov chain. Under mild regularity conditions, it is ϕ-irreducible, aperi-
odic and has stationarity density π (Roberts and Smith, 1997).
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3 Metropolis chains with extremal index zero

Let {Xn} be the stationary Markov chain (2.6) produced by the random
walk Metropolis algorithm with stationary density π and proposal density
q. Let F be the cumulative distribution function corresponding to π, so
F (x) =

∫ x
−∞ π(z)dz = Pr[Xn ≤ x].

Our first result states that if F has a long tail, the extremal index of the
chain is equal to zero. The assumption is that the stationary distribution is
such that the excess X0−u conditionally on X0 > u converges to infinity as
u → ∞. Indeed, under this assumption, if X0 > u for some large u, it will
take the algorithm a very large number of steps to bridge the gap X0 − u
and to return to the region (−∞, u] again.

Theorem 3.1. Assume that the right end-point of F is infinity and that
there exists m > 0 such that

lim
u→∞

1− F (u + m)
1− F (u)

= 1. (3.1)

Then for every sequence real sequence {un} such that lim supn→∞ n{1 −
F (un)} < ∞ we have

lim
n→∞

Pr[Mn ≤ un] = 1.

In particular, the extremal index of the chain exists and is equal to zero.

Proof. Let ε > 0. Denote lim supn→∞ n{1−F (un)} = C < ∞. There exists
x > 0 such that

∫ −x
−∞ q ≤ ε/C. We have

Pr[Mn > un] = Pr[Xn > un] +
n−1∑
i=1

Pr[Xi > un,max(Xi+1, . . . , Xn) ≤ un]

≤ Pr[X1 > un] + (n− 1) Pr[X1 > un, X2 ≤ un]
≤ Pr[X1 > un] + n Pr[un < X1 ≤ un + x]

+ n Pr[X1 > un + x,X2 ≤ un].

Equation (3.1) clearly implies that

lim
u→∞

1− F (u + y)
1− F (u)

= 1

for every real y, whence

n Pr[un < X1 ≤ un + x]

= n{1− F (un)}
(

1− 1− F (un + x)
1− F (un)

)
→ 0, n →∞.
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Further, if, conditionally on X1 > un + x, we have X2 ≤ un, then the
proposed increment X2 −X1 must have been smaller than −x, so

Pr[X2 ≤ un | X1 > un + x] ≤
∫ −x

−∞
q(z)dz ≤ ε/C.

Hence
lim sup

n→∞
Pr[Mn > un] ≤ ε.

Since ε was arbitrary, we conclude that limn→∞ Pr[Mn > un] = 0.

Observe that condition (3.1) for a single positive m implies the same
condition for all positive m. An interpretation is that, conditionally on
X > u, the excess X − u converges in probability to infinity as u →∞:

lim
u→∞

Pr[X − u > m | X > u] = 1, m ≥ 0.

In the following lemma, some simple sufficient conditions for condition (3.1),
reproduced as condition (iii) in the lemma, are given in terms of the sta-
tionary density π.

Lemma 3.2. Let π be a probability density on the real line such that
π(x) > 0 for all sufficiently large x. Consider the following three conditions:

(i) the function log π is absolutely continuous in a neighbourhood of infin-
ity and (log π)′(x) → 0 as x →∞;

(ii) π(u + m)/π(u) → 1 as u →∞ for every m ≥ 0;

(iii)
∫∞
u+m π(z)dz

/ ∫∞
u π(z)dz → 1 as u →∞ for every m ≥ 0.

Then (i) implies (ii), and (ii) implies (iii), which is just (3.1) when the
density of F is π.

Proof. (i) implies (ii). For ε > 0 we can find uε such that |(log π)′(u)| ≤ ε
for all u ≥ uε. For such u and for m ≥ 0,

exp(−mε) ≤ π(u + m)/π(u) ≤ exp(mε).

Since ε > 0 was arbitrary, we conclude that limu→∞ π(u + m)/π(u) = 1.
(ii) implies (iii). Fix m > 0 and ε > 0. By (ii), there exists u0, depending

on m and ε, such that |π(u + m)/π(u) − 1| ≤ ε for all u ≥ u0. For such u,
we have∫ ∞

u+m
π(x)dx =

∫ ∞

u

π(x + m)
π(x)

π(x)dx ≤ (1 + ε)
∫ ∞

u
π(x)dx

and, similarly,
∫∞
u+m π ≥ (1 − ε)

∫∞
u π. Since ε was arbitrary, we arrive at

(iii).
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Condition (ii) in Lemma 3.2 is satisfied if π behaves asymptotically as a
power function, that is, if π(x) ∼ cx−τ for some c > 0 and τ > 0. This in-
cludes for instance the Student t and the Pareto distributions. Condition (ii)
in Lemma 3.2 is also satisfied if π behaves asymptotically as a Weibull den-
sity with a tail which is longer than the one of the Exponential distribution,
that is, if π(x) ∼ c1 exp(−c2x

β) for c1 > 0, c2 > 0, and 0 < β < 1.
In Mengersen and Tweedie (1996, Theorem 3.4), stationary densities π

are considered for which π is positive and log π is absolutely continuous on
a neighbourhood of infinity and for which the limit

lim
x→∞

(log π)′(x) = −η (3.2)

exists in [−∞, 0]. Under some extra conditions, the Markov chain arising
from the random walk Metropolis algorithm is found to be geometrically
ergodic if and only if η > 0. By Theorem 3.1 and Lemma 3.2, in the
complementary case, η = 0, the extremal index of the Markov chain is zero.
A natural question is then whether the converse also holds: if (3.2) holds
with η > 0, then is it true that the extremal index of the chain is positive?
We come back to this question in section 5.

4 Geometrically ergodic Markov chains

In this section we consider a general Markov chain which is geometrically
ergodic in the sense of equation (2.5); see Mengersen and Tweedie (1996,
Theorem 1.4). We will show that under a mild condition on the drift func-
tion, V , the extremal index of the chain, provided it exists, must be positive.
It remains an open question whether this extra condition on the drift func-
tion is also necessary for the extremal index to be positive.

Let {Xn} be a stationary Markov chain with transition kernel P and
stationary distribution π. Let x+ be the right end-point of the station-
ary distribution, that is, x+ = sup{x : π(x,∞) > 0}, and assume that
π({x+}) = 0.

Theorem 4.1. Assume that {Xn} is a stationary Markov chain, geo-
metrically ergodic in the sense of (2.5) with drift function V ≥ 1. If V is
non-decreasing on [x0, x+) for some x0 < x+ and if

lim sup
u↑x+

E
[

V (X)
V (u)

∣∣∣∣ X > u

]
< ∞, (4.1)

then the extremal index of the chain, provided it exists, is positive.
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Proof. For u ∈ [x0, x+) and for positive integer k, by equation (2.5),

Pr[Xk > u | X0 > u]

=
∫ x+

u
P k(x, (u,∞))

π(dx)
π(u,∞)

≤
∫ x+

u

∫ x+

u

V (y)
V (x)

P k(x,dy)
π(dx)

π(u,∞)

≤
∫ x+

u

1
V (x)

(
RV (x)ρk +

∫ ∞

u
V (y)π(dy)

)
π(dx)

π(u,∞)

≤ Rρk +
∫ x+

u

V (y)
V (u)

π(dx)

and thus

Pr[Xk > u | X0 > u] ≤ Rρk + Pr[X > u]E
[

V (X)
V (u)

∣∣∣∣ X > u

]
. (4.2)

Denote

C := lim sup
u↑x+

E
[

V (X)
V (u)

∣∣∣∣ X > u

]
< ∞.

Let {un} be a real sequence such that limn→∞ n Pr[X > un] = (2C)−1. Let
k be a positive integer such that

R

∞∑
i=k

ρi <
1
2
.

and denote rn = bn/kc. We have

Pr[Mn > un]

≥ Pr
[

max
j=1,...,rn

Xjk > un

]
= Pr[Xrnk > un] +

rn−1∑
j=1

Pr
[
Xjk > un, max

i=j+1,...,rn

Xik ≤ un

]

≥ rn Pr[X > un]
(

1− Pr
[

max
i=k,...,n

Xi > un | X0 > un

])
.

By equation (4.2),

Pr
[

max
i=k,...,n

Xi > un | X0 > un

]
≤

n∑
i=k

Pr[Xi > un | X0 > un]

≤ R

∞∑
i=k

ρi + n Pr[X > un]E
[

V (X)
V (un)

∣∣∣∣ X > un

]
.
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Our choices for {un} and k imply

lim sup
n→∞

Pr[ max
i=k,...,n

Xi > un | X0 > un] < 1.

This inequality in combination with the lower bound for Pr[Mn > un] above
yields

lim inf
n→∞

Pr[Mn > un] > 0.

But since limn→∞ Pr[Mn > un] = 1 − exp{(2C)−1θ}, we conclude that
θ > 0.

Note that in Theorem 4.1, Leadbetter’s classical condition D(un) is not
explicitly assumed. However, this assumption is hidden in the assumption
of geometric ergodicity, as can be seen as follows. From Meyn and Tweedie
(1993, section 16.1.2), it follows that if a Markov chain is geometrically
ergodic in the sense of (2.5), then there exists a constant 0 < R̃ < ∞ such
that, with 0 < ρ < 1 as in equation (2.5),

Cov[f(X0), g(Xk)] ≤ R̃ρk

for all measurable functions f and g with |f | ≤ 1 and |g| ≤ 1; see in
particular Meyn and Tweedie (1993, equation (16.17)). By the Markov
property, the inequality in the above display implies

Cov[f(. . . , X−1, X0), g(Xk, Xk+1, . . .)] ≤ R̃ρk

for measurable functions f and g bounded in absolute value by 1. Taking f
and g to be indicator functions shows that

|Pr(A ∩B)− Pr(A) Pr(B)| ≤ R̃ρk

for all events A ∈ σ(Xi : i ≤ 0) and B ∈ σ(Xi : i ≥ k); see also Doukhan
(1994, p. 3). The above inequality in turn clearly implies Leadbetter’s con-
dition D(un), with much to spare.

Given that the extremal index of a Markov chain is positive, it is of
course of interest to find an explicit expression for it. In section 5 we will do
this for Markov chains arising from the random walk Metropolis algorithm.
The following auxiliary result, showing that the impact of an extreme value
cannot last indefinitely long, will be useful there.

Lemma 4.2. Under the conditions of Theorem 4.1, for all real sequences
{un} and all positive integer sequences {rn} such that un < x+, un → x+,
rn →∞, and rn Pr[X > un] → 0 as n →∞,

lim
k→∞

lim sup
n→∞

rn∑
i=k

Pr[Xi > un | X0 > un] = 0. (4.3)
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Proof. By equation (2.5), we have for all n such that un ≥ x0,

rn∑
i=k

Pr[Xi > un | X0 > un]

≤ R
∞∑

i=k

ρi + rn Pr[X > un]E
[

V (X)
V (un)

∣∣∣∣ X > un

]
.

Let first n tend to infinity and then k tend to infinity to arrive at the stated
equation.

Typically, equation (4.3) is imposed as an extra condition (Smith, 1992;
Perfekt, 1994) which in applications has to be verified on an ad hoc basis.
So the merit of Lemma 4.2 is to show that the condition can be reduced to
a readily verifiable assumption on the drift function.

5 Metropolis chains with positive extremal index

We come back to the Markov chain {Xn} arising from the random walk
Metropolis algorithm in equation (2.6). This time, we are interested in
the case where the chain is geometrically ergodic and therefore, under the
conditions of Theorem 4.1, its extremal index, provided it exists, is positive.
In particular, we seek explicit expressions for the extremal index.

For simplicity, we restrict attention to the case where the stationarity
density π is ultimately positive, log π is ultimately absolutely continuous,
and there exists 0 < η ≤ ∞ such that

lim
x→∞

(log π)′(x) = −η. (5.1)

Note that if η in (5.1) would be equal to zero, then by Theorem 3.1 and
Lemma 3.2, the extremal index of the chain would be equal to zero. This is
why we force η in (5.1) to be positive.

There are two subcases: η = ∞ and 0 < η < ∞. We concentrate on these
two cases in Theorems 5.1 and 5.3, respectively. Examples of the first case
are density functions π(x) which are eventually proportional to exp(−cxβ)
for c > 0 and β > 1; examples of the second case are density functions π(x)
which are eventually proportional to exp(−ηx).

In the first case, η = ∞, the stationary distribution is such that the
excess Xi − u conditionally on Xi > u converges in probability to zero as
u → ∞; see the proof of Theorem 5.1 below. Moreover, the acceptance
probability α(x, y) satisfies α(x, x + z) → 0 if z > 0 and α(x, x + z) → 1
if z < 0 as x → ∞. So for a high threshold u, conditionally on Xi > u,
there are two equally likely things which can happen: either the proposed
increment Zi+1 is positive, in which case the increment is rejected with very
high probability, and thus Xi+1 = Xi; or the proposed increment Zi+1 is
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negative, in which case the increment is accepted, and thus Xi+1 = Xi+Zi+1,
which is then not larger than un with very high probability. Since in all cases
the new value Xi+1 is still large, the same reasoning applies for the next step.
A more formal analysis then yields the following result.

Theorem 5.1. Let {Xn} be the stationary Markov chain arising from
the random walk Metropolis algorithm with stationary density π. Assume
that the chain is geometrically ergodic with drift function V , that this V
is non-decreasing on a neighbourhood of infinity, and that (4.1) holds. If
η = ∞ in equation (5.1), then the extremal index of the chain exists and is
equal to θ = 1/2.

Proof. Let 0 < τ < ∞ and let {un} be a real sequence such that n Pr[X >
un] → τ as n → ∞; such a sequence always exists since the distribution of
X is continuous. For positive integer k, denote Mk = max(X1, . . . , Xk).

By the discussion following Theorem 4.1, there exists a positive, finite
constant R̃ such that

|Pr(A ∩B)− Pr(A) Pr(B)| ≤ R̃ρl

for all positive integer l and all events A and B for which there exists an
integer j such that A ∈ σ(Xi : i ≤ j) and B ∈ σ(Xi : i ≥ j + l). This means
we can apply Theorem 2.1 in O’Brien (1987), yielding

lim
n→∞

|Pr[Mn ≤ un]− exp{−n Pr[X0 > un] Pr[Mrn ≤ un | X0 > un]}| = 0

for every positive integer sequence {rn} such that log n = o(rn) and rn =
o(n) as n →∞. So we only have to show that

lim
n→∞

Pr[Mrn ≤ un | X0 > un] = 1/2. (5.2)

For positive integer k, obviously

|Pr[Mrn ≤ un | X0 > un]− Pr[Mk ≤ un | X0 > un]|
≤ Pr[max(Xk+1, . . . , Xrn) > un | X0 > un].

Hence, by Lemma 4.2, a sufficient condition for (5.2) is that

lim
n→∞

Pr[Mk ≤ un | X0 > un] = 1/2 (5.3)

for every positive integer k.
Without loss of generality, we assume the chain is constructed as in

equation (2.6).
Fix an arbitrary 0 < ε < 1. Let 0 < z− < z+ < ∞ be such that

Pr[z− ≤ |Z1| ≤ z+] ≥ 1− ε. From (5.1) with λ = −∞, there exists uε such
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that (log π)′(u) ≤ log(ε)/z− for all u ≥ uε. For x ≥ uε and for z ≥ z− we
have

π(x + z)
π(x)

= exp
(∫ x+z

x
(log π)′(u)du

)
≤ exp{(z/z−) log(ε)} ≤ ε.

Hence for u ≥ uε,

Pr[X0 > u + z−] =
∫ ∞

u+z−

π(x)dx =
∫ ∞

u
π(x + z−)dx

≤
∫ ∞

u
επ(x)dx = ε Pr[X0 > u].

Next, let n be large enough such that un ≥ uε + kz+.
It is an elementary exercise to verify that for arbitrary events A, B and

C for which Pr(B) > 0 and Pr(C) > 0,

|Pr(A | B)− Pr(A | B ∩ C)| ≤ Pr(Cc | B) (5.4)

where Cc denotes the complement of C. Consider the event

D = {z− ≤ |Zi| ≤ z+ and Ui > ε for all i = 1, . . . , k}.

By (5.4) applied to C = D ∩ {X0 ≤ un + z−},

|Pr[Mk ≤ un | X0 > un]− Pr[Mk ≤ un | {un < X0 ≤ un + z−} ∩D]|
≤ Pr[{X0 > un + z−} ∪Dc | X0 > un]
≤ Pr[X0 > un + z− | X0 > un] + Pr(Dc)
≤ (2k + 1)ε.

Conditionally on {un < X0 ≤ un + z−} ∩D, we know that Xi −Xi−1 ≥
−|Zi| ≥ −z+ for all i = 1, . . . , k and thus Xi ≥ un − kz+ ≥ uε for all
i = 0, . . . , k. Conditionally still on the same event, there are at each time
i = 0, . . . , k two possibilities: z− ≤ Zi ≤ z+ or −z+ ≤ Zi ≤ −z−, each
occurring with probability one half.

In the first case, z− ≤ Zi ≤ z+, we have α(Xi−1, Xi−1 + Zi) = π(Xi−1 +
Zi)/π(Xi−1) ≤ ε < Ui. Hence, in this case, the proposed increment is
rejected, so that Xi = Xi−1.

In the second case, −z+ ≤ Zi ≤ zi, we have α(Xi−1, Xi−1 + Zi) =
1 ≥ Ui. Hence, in this case, the proposed increment is accepted, so that
Xi = Xi−1 + Zi ≤ Xi−1 − z−.

On the one hand, if at time i = 1 the first possibility, z− ≤ Zi ≤ z+,
occurs, then X1 = X0 > un and thus Mk > un. On the other hand,
if at time i = 1 the second possibility, −z+ ≤ Zi ≤ −z−, occurs, then
X1 = X0 + Z1 ≤ X0 − z− ≤ un and also Xj ≤ X1 ≤ un for j = 2, . . . , k,
whence Mk ≤ un.
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From these considerations we conclude that

lim
n→∞

Pr[Mk ≤ un | {un < X0 ≤ un + z−} ∩D] =
1
2
.

Since ε was arbitrary, we arrive at (5.3), as was to be shown.

Next we consider the case 0 < η < ∞ in (5.1). The following lemma
shows that for large threshold u, conditionally on X0 > u, the asymptotic
distribution of the chain is that of a random walk starting at u plus an
exponential random variable with mean 1/η and with independent, identi-
cally distributed increments, the distribution of which is determined by η
and the proposal density q. In fact, such kind of random walk behaviour is
rather typical for Markov chains; indeed, Lemma 5.2 could also be derived
from general results in e.g. Smith (1992), Perfekt (1994), and Yun (1998).
However, the present short proof is instructive as well.

Lemma 5.2. Let {Xn} be the stationary Markov chain in (2.6) with sta-
tionary density π and proposal density q. If (5.1) holds with 0 < η < ∞,
then for positive integer k

L(X0 − u, X1 −X0, . . . , Xk −Xk−1 | X0 > u) → L(E,A1, . . . , Ak)

as u → ∞, where E is an exponential random variable with mean 1/η, in-
dependent of the independent, identically distributed random variables Ai =
Zi1{Ui ≤ exp(−ηZi)}.

Proof. For z ≥ 0 we have π(u+ z)/π(u) → exp(−ηz) and thus also Pr[X0−
u > z | X0 > u] → exp(−ηz) as u →∞, that is,

L(X0 − u | X0 > u) → L(E), u →∞.

Fix 0 < ε < 1 and a positive integer k. Let uε be such that

1− ε ≤ −(log π)′(u)
η

≤ 1 + ε, u ≥ uε.

For x ≥ uε and z ≥ uε − x,

exp{−ηz(1 + ε)} ≤ π(x + z)
π(x)

≤ exp{−ηz(1− ε)},

For real z, define α(z) = min{exp(−ηz), 1}. The inequalities in the above
display imply that for x ≥ uε and z ≥ uε − x,

|α(x, x + z)− α(z)| ≤ ε.

Further, let z > 0 be such that Pr[Zi ≤ −z] ≤ ε. Define the event

C = {Zi > −z and |Ui − α(Zi)| > ε for i = 1, . . . , k}
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The event C is independent of X0; moreover, Pr(Cc) ≤ 3kε. Let u ≥
uε + kz. On the event C ∩ {X0 > u}, we have Xi − Xi−1 > −z and thus
Xi > u− iz ≥ uε for all i = 1, . . . , k. Hence on the event C ∩ {X0 > u} we
have |α(Xi−1, Xi−1 + Zi)− α(Zi)| ≤ ε and thus

Xi −Xi−1 = Zi1{Ui ≤ α(Xi−1, Xi−1 + Zi)}
= Zi1{Ui ≤ α(Zi)} = Ai

for i = 1, . . . , k. Since ε was arbitrary, we arrive at the stated result.

Theorem 5.3. Let {Xn} be the stationary Markov chain arising from
the random walk Metropolis algorithm with stationary density π. Assume
that the chain is geometrically ergodic with drift function V , that this V
is non-decreasing on a neighbourhood of infinity, and that (4.1) holds. If
0 < η < ∞ in equation (5.1), then the extremal index of the chain exists
and is equal to

θ = Pr
[
max
i≥1

(A1 + · · ·+ Ai) ≤ −E

]
(5.5)

with E and A1, A2, . . . as in Lemma 5.2. In particular, 0 < θ < 1/2.

Proof. Copying the line of reasoning in the proof of Theorem 5.1 up to
equation (5.3), we see that it is sufficient to show that

lim
k→∞

lim
u→∞

Pr[Mk ≤ u | X0 > u] = θ. (5.6)

But since

Xi − u = (X0 − u) +
i∑

j=1

(Xj −Xj−1),

equation (5.6) is an immediate consequence of Lemma 5.2.

Example 5.4. Consider the random walk Metropolis algorithm with
π(x) = e−x for 0 < x < ∞, and with q(z) = 1/2 for −1 < z < 1. Equa-
tion (5.1) is clearly satisfied with η = 1. Let 0 < β < 1 and put V (x) = eβx.
For x > 1, we have

PV (x) = E[V (X1) | X0 = x]

=
1
2

∫ 0

−1
eβ(x+z)dz +

1
2

∫ 1

0

(
e−zeβ(x+z) + (1− e−z)eβx

)
dz

=
1
2
eβx

(
1 +

∫ 1

0

(
e−βz + e−(1−β)z − e−z

)
dz

)
.

Since a + b − ab < 1 for 0 < a < 1 and 0 < b < 1, we find that there
exists a constant 0 < λ < 1 such that PV (x) = λV (x) for x ≥ 1; that is,
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the chain satisfies the drift condition (2.4) with C = [0, 1] as the small set.
Since L(X − u | X > u) = L(X) for u > 0, we also have

E
[

V (X)
V (u)

∣∣∣∣ X > u

]
= E

[
V (X + u)

V (u)

]
= E[eβX ] =

1
1− β

.

From Theorem 5.3 we conclude that the chain is geometrically ergodic and
that its extremal index exists and is equal to the expression in (5.5); here
E is a standard exponential random variable and {Ai} is a sequence of
independent and identically distributed random variables, independent of
E, with Ai = Zi1(Ui ≤ e−Zi), where Zi is uniform on (−1, 1), Ui is uniform
on (0, 1), and Zi and Ui are independent.
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