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This paper discusses general quantitative bounds on the convergence rates of
Markov chains. It then discusses application of these results to simple slice sam-
pler algorithms. It is explained how, in some cases, very useful quantitative results
are available, for large classes of target distributions.

1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms – such as the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and

Geman, 1984; Gelfand and Smith, 1990) – are an extremely popular tool in statistics (see

for example the reviews by Smith and Roberts, 1993; Tierney, 1994; Gilks, Richardson,

and Spiegelhalter, 1996).

A fundamental problem in MCMC implementation is the question of convergence rate.

Specifically, how quickly does the algorithm converge to its target stationary distribution?

That is, how long must the algorithm be run before it is approximately distributed in

stationarity?

Here we will review recent results on computable bound techniques using Foster-

Lyaponov drift inequalities and minorisation conditions. These methods can be applied

to MCMC algorithms; here we present an example, the simple slice sampler, where useful

bounds can be achieved for a wide variety of different target densities.
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The simple slice sampler is a specialised type of MCMC auxiliary variable method

(Swendsen and Wang, 1987; Edwards and Sokal, 1988; Besag and Green, 1993; Higdon,

1998) that has been popularised by Neal (1997), Fishman (1996), and Damien, Wakefield,

and Walker (1999). This sampler involves just a single auxiliary variable. It is presented

in Section 4.

All of the results described in this paper are proved elsewhere. Most of them can be

found in Roberts and Rosenthal (1999a, 1999b), and Roberts and Tweedie (1998, 1999).

2. Convergence rates of Markov chains using drift and minorisation conditions.

Suppose that X = (X0, X1, . . .) is a Markov chain on a state space X with transition

probabilities given by P (·, ·). Assuming suitable irreducibility and aperiodicity, and the

existence of a stationary probability density π (often known only up to a normalisation

constant), what hope have we of assessing the rate of convergence of the Markov chain

with minimal information?

Suppose that there exists a small set C such that

Pn0(x, ·) ≥ εν(·) , x ∈ C , (1)

for some n0 ∈ N and probability measure ν. (This equation is usually applied with

n0 = 1.) Suppose also that the Markov chain can be shown to satisfy a Foster-Lyapunov

drift condition: there exists a function V : X → [1,∞) with

Ex[V (X1)] ≤ λV (x) + b1C(x) (2)

for some constants λ < 1 and 0 < b < ∞.

The existence of a small set and corresponding drift condition implies (see e.g. Meyn

and Tweedie, 1993) that the chain is geometrically ergodic:

‖Pn(x, ·)− π‖var ≤ M(x)ρn , (3)

for some constants ρ < 1 and M(x) < ∞. Here Pn(x, ·) is shorthand for P
(
Xn ∈ · |X0 =

x
)
; and

‖Pn(x, ·)− π(·)‖var ≡ sup
A⊆Rd

|P
(
Xn ∈ A |X0 = x

)
− π(A)|
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is the total variation distance to the stationary distribution π after n steps, when starting

from the point x.

This is a useful result. However, as stated it establishes only the existence of constants

ρ and M(x), without provided any quantitative information about them. Such quantitative

information is very important for practical applications.

An initial attempt to provide useful quantitative bounds using the equations (1) and

(2) was presented by Meyn and Tweedie (1994), using analytic techniques. Tighter bounds

were obtained by Rosenthal (1995), using coupling methodology. Roberts and Tweedie

(1999, 1998) later gave refined results, which were of the form

‖Pn(x, ·)− π‖var ≤ (A + Bn)ρn ,

where A and B are computable functions of λ, b, ε, n0, V (x), and d ≡ supy∈C V (y). It is

guaranteed that ρ < 1 provided that e.g. 2(1−λ)(d + 1) ≥ b. This result proves geometric

ergodicity for these chains. Furthermore, the bound provides quantitative values of the

corresponding quantities M(x) and ρ.

The resulting quantitative bounds are very tight for certain Markov chains, but they

are less tight (i.e., much too large) for other, more complicated chains.

Remarks.

1. In these results, the notion of small sets can be weakened to that of pseudo-small sets.

A set C is pseudo-small if we can find n0 ∈ N and a constant δ > 0 (the coupling

constant) such that for all x, y ∈ C, there is nxy ≤ n0 with∫
X

[Pnxy (x, dz) ∧ Pnxy (y, dz)] ≥ δ .

(For further details see Roberts and Rosenthal, 1997; Roberts and Tweedie, 1998.)

Clearly all small sets are pseudo-small, however it is not clear whether the converse

holds. It is clear, however, that small sets satisfying (1) can often be pseudo-small for

the same n0 but with a coupling constant δ which is substantially larger than ε. This

has implications for the tightness of the computable bounds.

2. Bounds on convergence of ergodic averages, of the form∥∥ 1
n

n∑
i=1

Pn(x, ·)− π
∥∥
var ≤ A/n ,
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can be obtained using only a bound on the shift coupling time

T ∗ = inf
{

t; {Xs, 0 ≤ s ≤ t} ∩ {X ′
s, 0 ≤ s ≤ t} 6= ∅

}
.

This approach is typically much easier to apply than are the full coupling techniques.

For further details see Roberts and Rosenthal (1996), and Roberts and Tweedie (1998).

3. Bounds for stochastically monotone chains.

To proceed, recall that a Markov chain is stochastic monotone (with respect to an

ordering � on the state space X ) if, for all fixed z ∈ X , we have:

P (X1 � z|X0 = x) ≥ P (X1 � z|X0 = x′) whenever x � x′ .

In the presence of stochastic monotonicity, considerably improved convergence rate

bounds are possible. Indeed, suppose that P is stochastically monotone on a totally

ordered space X , with the following drift condition holding:

PV (x) ≤ λV (x) + b1x0(x)

where x0 = min{x ; x ∈ X}, with λ < 1 and V (·) ≥ 1. Now the coupling construction is

much easier, and it can be shown (Lund and Tweedie, 1996) that

ρ ≤ λ .

That is, the convergence rate is bounded directly by the drift parameter λ. Of course, this

result makes heavy use of the fact that the drift is down to the atom {x0}.

Similarly, suppose

PV (x) ≤ λV (x) + b1x≤c(x)

and (−∞, c] is small with parameter ε as in (1). Reasonable bounds are available in this

case as well. Indeed, we have (Roberts and Tweedie, 1998) that

‖Pn(x, ·)− π‖var ≤ (A + Bn)ρn
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where A, B, and ρ are computable functions of b, V , ε, n0, and c. In particular we have

(taking n0 = 1) that

log ρ = max

(
− log λ log(1− ε)

log(λd+b−ε
λ )− log(1− ε)

, log λ

)
.

Thus, once again, stochastic monotonicity allows for substantial improvement in the

resulting quantitative convergence rate results. This fact shall assist us in our analysis of

the simple slice sampler.

4. The simple slice sampler.

Let π : Rd → R≥0 be a non-negative integrable function. Our target distribution will

be assumed to have density proportional to π. The simple slice sampler begins by choosing

a factorisation of π, of the form

π(x) = f0(x) f1(x) . (4)

By renormalising π as necessary, we can (and do) assume without loss of generality that

sup
x∈Rd

f1(x) = 1 . (5)

The f0-simple slice sampler proceeds as follows. Given Xn, we sample a random

variable Yn+1, uniformly over the interval (0, f1(Xn)). We then sample Xn+1 from the

truncated probability distribution having density proportional to f0(·)1L(Yn+1)(·), where

L(y) =
{
x ∈ Rd ; f1(x) ≥ y

}
.

The key to this slice sampler is that the joint chain (Xn, Yn) has stationary density

proportional to f0(x)1f1(x)≥y. Hence, the marginal stationary distribution of Xn is exactly

proportional to π, the target distribution. In this way, the slice sampler can be used to

generate an approximate sample from the target distribution. It is thus an example of an

MCMC sampling algorithm. (For an interactive simulation of the slice sampler over the

internet, see Rosenthal, 1998.)

It is known that the slice sampler has good qualitative convergence properties. For

example, the following facts are known.
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Proposition 1. The simple slice sampler satisfies the following:

(a) (Roberts and Rosenthal, 1999b, Proposition 1) The convergence properties of a simple

slice sampler depend only on the quantities

Q(y) ≡ Qf0,f1(y) =
∫
Rd

f0(z)1{f1(z)≥y}dz . (6)

(where dz is Lebesgue measure on Rd). More precisely, the sequence {f1(Xn)} is

itself a Markov chain, whose transition probabilities depend only on Q, and which

is “sufficient” for {Xn} (in the sense of Roberts and Rosenthal, 1998), so that the

convergence properties of {Xn} are governed by those of {f1(Xn)}.

(b) (Roberts and Rosenthal, 1999a, Proposition 2) The simple slice sampler is stochas-

tically monotone with respect to the ordering � defined by x1 � x2 if and only if

f1(x1) ≤ f1(x2).

(c) (Mira and Tierney, 1997, Theorem 6) If f1 is bounded and f1 ∈ L1, then the corre-

sponding uniform slice sampler is uniformly ergodic, i.e. there is M < ∞ and ρ < 1

with

‖µk − π‖ ≤ Mρk , (7)

uniformly over choice of the initial distribution µ0.

(d) (Roberts and Rosenthal, 1999a, Theorem 7) More generally, if π is bounded, and has

tails at least as light as x−α for some α > 1 (formally, if Q′(y)y1+ 1
α is non-increasing

for sufficiently small y), then the corresponding slice sampler is geometrically ergodic.

Remarks.

1. Another use of the stochastic monotonicity property (b) above is in the construction

of perfect samplers based upon slice samplers. See Mira, Møller, and Roberts (1999).

2. Mira and Tierney (1997, Theorem 2) have also proved that the simple slice sampler

performs uniformly better than the corresponding independence sampler.

3. Simulation studies have shown (Roberts and Rosenthal, 1999b, Section 6) that slice

samplers appear to perform very well in specific examples.

4. Whilst the convergence problems of the simple slice sampler are extremely promising,

the major problem for the algorithm is the fact that its implementation is restricted by
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the need to simulate from f0 restricted to L(y). This is often problematic, sometimes

needing problem specific rejection algorithm techniques to perform the simulation.

Results (c) and (d) of Proposition 1 are very nice general convergence properties,

and require only very mild conditions on the target distribution π. However, they do

not provide any quantitative information about the convergence rate. We consider this

question presently.

5. Quantitative convergence rate bounds for the slice sampler.

We shall require the following condition on Q, for some 0 < Y ≤ 1:

yQ′(y) is non-increasing for y ≤ Y . (8)

In terms of this condition, we can state a general result (Roberts and Rosenthal,

1999b, Theorem 7) about slice sampler convergence. [This result uses general quantitative

bound results developed in Roberts and Tweedie (1999, 1998), building on the work of

Rosenthal (1995) and Lund and Tweedie (1996).] Recall that we are assuming (5), i.e.

that supx∈Rd f1(x) = 1.

Proposition 2. Consider the simple slice sampler for the target density π(x), with any

factorisation π(x) = f0(x) f1(x). If (8) holds for some 0 < Y ≤ 1, then for all x ∈ Rd, and

for all n ≥ ξ, we have

‖Pn(x0, ·)− π(·)‖var ≤ K(n + η − ξ)ρn .

Here

K =
e y∗(1− y∗)−ξ/η

η
(where e = 2.71828 . . .) ,

ξ =
log
(
f1(x)−β + b

1−λ − 1
)

log(λ−1)
, η =

log
(

λs+b−y∗
λ(1−y∗)

)
log(λ−1)

,

s = y−β , and ρ = (1− y∗)η−1
. Furthermore,

λ ≡ 1
(1− β)(1 + αβ)

+
αβ(y∗/Y )β

1 + αβ
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and

b =
Y −β(1 + αβ(1− β))

(1− β)(1 + αβ)
− λ .

The quantities α, β, and y∗ may be chosen freely, provided that α > 1, that 0 < β <

min
(

α−1
α , 1

α

)
, and that y∗ ∈ (0, Y ).

Indeed, this result follows from choosing the small set C = {x ∈ Rd ; f1(x) ≥ y∗}.

This allows us to take n0 = 1 and ε = y∗ in (1). The values of λ and b in (2) are bounded by

a stochastic comparison argument, taken from Roberts and Rosenthal (1999a, Proposition

6).

This result has many parameters in it, making it difficult to understand. To simplify

it, it is suggested (Roberts and Rosenthal, 1999b) to choose y∗ = Y/10, β = 0.1, and

α = 10. Using these choices, we obtain (Roberts and Rosenthal, 1999b, Corollary 4) the

following result.

Proposition 3. If (8) holds for some value of Y with 0 < Y ≤ 1 (i.e., if yQ′(y) is

non-increasing for y ≤ Y ), then for all x such that f1(x)/ supw∈Rd f1(w) ≥ 0.01 and for

all n ≥ n∗(Y ) with n∗(Y ) as in Table 1 below, we have that

‖Pn(x0, ·)− π(·)‖var ≤ 0.01 .

Y n∗(Y )

1.0 525

0.5 1,400

0.1 10,850

0.01 160,000

0.001 2,075,000

Table 1. Convergence times n∗(Y ) as a function of Y .

Now, in general it is not clear when (8) will hold. However, it is proved in Roberts

and Rosenthal (1999a) that, in one dimension (i.e. if d = 1), if π is log-concave, then the
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uniform slice sampler will satisfy (8) with Y = 1. Hence, from Proposition 3, in such cases

the uniform slice sampler will provably converge in just n∗(1) = 525 iterations.

This result was extended in Roberts and Rosenthal (1999b), where the polar factorisa-

tion was proposed, given by f0(x) = |x|−(d−1) and f1(x) = |x|d−1π(x). It was proven there

that, with this factorisation, if π were log-concave, then condition (8) would be satisfied,

with

Y = A(f1) ≡
[

inf
|θ|=1

sup
r>0

f1(rθ)
] / [

sup
|θ|=1

sup
r>0

f1(rθ)

]
;

here (r, θ) reproesents a polar-coordinate representation of a vector in Rd. The quantity

A(f1) is thus a measure of the spherical asymmetry of the function f1.

From this observation, it followed that:

Proposition 4. Suppose that π is a d-dimensional density which is log-concave (at least

along rays emanating from the origin). Set f0(x) = |x|−(d−1) and f1(x) = |x|d−1π(x), and

let Y = A(f1) be the asymmetry parameter of f1 as above. Then for any initial value x

such that f1(x)/ supw∈Rd f1(w) ≥ 0.01, and for all n ≥ n∗(Y ) (with n∗(Y ) as in Table 1),

the polar slice sampler satisfies that

‖Pn(x0, ·)− π(·)‖var ≤ 0.01 .

i.e. it will be within 1% of its target distribution after at most n∗(Y ) iterations.

6. Conclusion.

We see from this review that substantial progress has been made in recent years on

the subject of computable quantitative bounds for convergence rates of general Markov

chains.

Furthermore, simple slice samplers (including the uniform slice sampler and the polar

slice sampler) are particularly amenable to theoretical analysis. A number of interesting

theorems are now available which give rather sharp information about their convergence

rates, and they appear to be promising algorithms for future applications.
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