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Abstract. We review notions of small sets, φ-irreducibility, etc., and
present a simple proof of asymptotic convergence of general state space
Markov chains to their stationary distributions.

1. Introduction.

It is a standard fact (see e.g. [3], Theorem 8.6) that a countable (or finite) state space

Markov chain, which is both irreducible and aperiodic, and which possesses a stationary

distribution, will converge to this distribution as the number of iterations goes to infinity.

For Markov chains on general (uncountable) state spaces, the situation is somewhat

more complicated. However, a very similar result still holds. This result (stated as Theorem

1 below) was proved and refined over the years by Doeblin [5], Orey [14], Jain and Jameson

[8], Athreya and Ney [4], Nummelin [12], and others. Discussions of this result appear in

Nummelin [13], Meyn and Tweedie [10], Tierney [20], Smith and Roberts [19], Asmussen

[1], Athreya et al. [2], and elsewhere. Some of these discussions were motivated partially

by Markov chain Monte Carlo algorithms, which have recently received a great deal of

attention (see e.g. [6], [19], [20], [7], [16]), and for which convergence issues are extremely

important.
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Despite the numerous references to the general state space convergence result, it is

perhaps still true that there is no simple, brief proof available which explains the con-

vergence in intuitive probabilistic terms. This note attempts to answer that need. We

provide a simple and intuitive proof of the general state space result. Our proof is entirely

self-contained with one exception: we quote without proof the great result of Jain and

Jameson [8] about the existence of small sets. We also discuss some related issues such as

quantitative convergence bounds (cf. [11], [17], [18]). This paper is purely expository; no

new results are presented.

2. Definitions and theorem statement.

We review some standard Markov chain terminology; for further details see e.g. [10].

Let X be a general measurable set. We consider a Markov chain on X , governed by

transition probabilities P (x, dy). This means that for each x ∈ X and measurable subset

A ⊆ X , the quantity P (x,A) represents the probability of jumping from x to somewhere

in the set A. Formally, we assume that for each fixed x ∈ X , the function P (x, ·) is a

probability measure on X ; also, for each fixed measurable set A ⊆ X , the function P (·, A)

is a measurable function.

In terms of P (x, dy), higher-order transition probabilities can be defined, by P 1(x, dy) =

P (x, dy), and

Pn+1(x,A) =
∫
X

Pn(x, dy)P (y, A) n = 1, 2, 3, . . . .

Given transition probabilities P (x, dy), there exist random variables X0, X1, . . . such

that P(Xn+1 ∈ A |Xn = x) = P (x,A) for n = 0, 1, 2, . . .. We sometimes write Px(· · ·) as

short-hand for P(· · · |X0 = x). We define the random variable τA = inf{n ≥ 1; Xn ∈ A}

(which could equal infinity) to be the first return time to A.

The Markov chain is φ-irreducible if there exists a non-zero measure φ on X , such

that for any measurable A ⊆ X with φ(A) > 0, we have Px(τA < ∞) > 0 for all x ∈ X ;

i.e., such that any set of positive φ measure has positive probability of being hit from any

starting point x. (This is the general state space analog of irreducibility.)
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Like for countable chains, a Markov chain is aperiodic if there does not exist a partition

X = X1

•⋃
X2

•⋃
. . .

•⋃
Xd for some d ≥ 2, such that P (x,Xi+1) = 1 for all x ∈ Xi (1 ≤ i ≤

d− 1) and P (x,X1) = 1 for all x ∈ Xd.

A probability distribution π on X is a stationary distribution for a Markov chain with

transition probabilities P (x, dy) if

π(A) =
∫
X

π(dy) P (y, A) , for all measurable A ⊆ X .

Finally, we recall that given two probability distributions µ and ν, their total variation

distance is given by

‖µ− ν‖ = sup
A⊆X

|µ(A)− ν(A)| ,

where the supremum is taken over all measurable subsets A.

In terms of this standard terminology, we can state the result we wish to prove:

Theorem 1. Let P (x, dy) be the transition probabilities for a φ-irreducible, aperiodic

Markov chain on a general state space X , having stationary distribution π. Then for π-a.e.

x ∈ X , we have

lim
n→∞

‖Pn(x, ·)− π(·)‖ = 0 .

In words, from π-almost-every starting point x, the total variation distance of the Markov

chain to the stationary distribution goes to 0 as the number of steps goes to infinity.

The remainder of this paper sets out to prove Theorem 1.

3. Small sets, coupling, and splittings.

Given a Markov chain with transition kernel P (x, dy) on a state space X , a subset

C ⊆ X is said to be small if there is a probability measure Q(·) on X , a positive integer

k0, and ε > 0, such that

P k0(x, ·) ≥ ε Q(·) , for all x ∈ C , (1)

i.e. such that P k0(x, A) ≥ ε Q(A) for all x ∈ C and all measurable subsets A ⊆ X .
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One use of small sets is to construct couplings (see e.g. Pitman [15]; Lindvall [9]).

Specifically, suppose we wish to jointly construct two copies {Xn}∞n=0 and {Yn}∞n=0 of the

Markov chain, i.e. two sequences of random variables such that for n = 0, 1, 2, . . .,

L(Xn+1 |Xn) = P (Xn, ·) ; L(Yn+1 |Yn) = P (Yn, ·) . (2)

Given a small set C as above, and starting values (X0, Y0), one way to proceed is

the following “splitting construction” (see e.g. [4], [13], [10]), defined iteratively for n =

0, 1, 2, . . .:

Given (Xn, Yn),

1. If (Xn, Yn) 6∈ C × C, then we independently choose Xn+1 ∼ P (Xn, ·) and

Yn+1 ∼ P (Yn, ·). We then replace n with n + 1 and iterate.

2. If (Xn, Yn) ∈ C × C, then

(a) with probability ε, we choose Xn+k0 = Yn+k0 ∼ Q(·);

(b) with probability 1−ε, we independently choose Xn+k0 ∼ 1
1−ε (P

k0(Xn, ·)−

ε Q(·)) and Yn+k0 ∼ 1
1−ε (P

k0(Yn, ·)− ε Q(·)).

Under either 2(a) or 2(b), we then go back and “fill in” the missing val-

ues {(Xk, Yk)}n<k<n+k0 , conditionally independently. That is, we choose

{Xk}n<k<n+k0 , conditional on the chosen values of Xn and Xn+k0 , but condi-

tionally independently of the values {Yk}. We similarly choose {Yk}n<k<n+k0 ,

conditional on the chosen values of Yn and Yn+k0 , but conditionally indepen-

dently of the values {Xk}. Under 2(b), we then replace n with n + k0 and

iterate.

We continue this iterative procedure until the first time we perform option 2(a). As

soon as we perform option 2(a), we let T∗ = n + k0, and then complete the construction

by choosing Xk+1 = Yk+1 ∼ P (Xk, ·) for k = T∗, T∗+1, T∗+2, . . .. Here T∗ is the coupling

time, and we shall make reference to it later in the paper.

This completes the description of the splitting construction. We note that, by (1), the

quantity 1
1−ε (P

k0(X`k0 , ·) − ε Q(·)) of option 2(b) above is indeed a probability measure.

Also, rules 2(a) and 2(b) have been chosen so that L(Xn+k0 |Xn) = P k0(Xn, ·) (and
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similarly for Yn+k0). [Indeed, this follows since

ε Q(·) + (1− ε)
[

1
1− ε

(P k0(Xn, ·)− ε Q(·))
]

= P k0(Xn, ·) ,

and similarly for Yn.] It then follows that (2) always holds, i.e. that the two chains each

marginally follow the original transition probabilities.

We note further that, by construction, we have Xn = Yn whenever n ≥ T∗. The

reason this is helpful is the coupling inequality (see e.g. Pitman [15]; Lindvall [9]), which

states that

‖L(Xn)− L(Yn)‖ ≤ P(Xn 6= Yn) .

Indeed, we have that

|P(Xn ∈ A)−P(Yn ∈ A)|

=
∣∣P(Xn ∈ A, Xn = Yn) + P(Xn ∈ A, Xn 6= Yn)

−P(Yn ∈ A, Xn = Yn)−P(Yn ∈ A, Xn 6= Yn)
∣∣

= |P(Xn ∈ A, Xn 6= Yn)−P(Yn ∈ A, Xn 6= Yn)|

≤ P(Xn 6= Yn) .

[We have used that P(Xn ∈ A, Xn = Yn) = P(Yn ∈ A, Xn = Yn), and also that

the difference between two non-negative quantities each ≤ P(Xn 6= Yn) must itself be

≤ P(Xn 6= Yn).]

The coupling inequality suggests that to bound convergence in total variation distance,

it suffice to construct two copies of the chain which have a good chance of becoming equal.

Furthermore, the above splitting construction suggests that small sets are a good way of

constructing such copies. Thus, combining small sets with the coupling inequality shall be

the key to proving Theorem 1.

To facilitate the proof, we require a remarkable result about small sets, due to Jain

and Jameson [8] (see also Orey [14]). We shall not prove it here; for modern proofs see

e.g. Nummelin [13], p. 16, or Meyn and Tweedie [10], Theorem 5.2.2. The key idea (cf.

[10], Theorem 5.2.1) is to extract the part of P k0(x, ·) which is absolutely continuous with

respect to the measure φ, and then to find a C with φ(C) > 0 such that this density part

is at least δ > 0 throughout C.

5



Theorem 2. (Jain and Jameson [8]) Every φ-irreducible Markov chain contains a small

set C ⊆ X with φ(C) > 0.

In fact more is true: every set B ⊆ X with φ(B) > 0 in turn contains a small set

C ⊆ B with φ(C) > 0. Furthermore, we may assume Q(C) > 0 (where Q is the minorising

measure from the definition of small set). We do not use these facts here.

4. Return lemmas.

Before proceeding to the proof of Theorem 1, we present some lemmas related to φ-

irreducibility. The first is not strictly necessary for our proof, but it does provide greater

intuition about the nature of the irreducibility measure φ.

Lemma 3. If a Markov chain is φ-irreducible, and has a stationary distribution π, then

φ � π, i.e. π(A) > 0 whenever φ(A) > 0.

Proof. Let φ(A) > 0. Then Px(τA < ∞) > 0 for all x ∈ X . Hence, X =
⋃

n,m∈N

{x ∈

X ; Pn(x, A) ≥ 1
m}. By countable additivity, we can find n, m ∈ N and a subset B ⊆ X

with π(B) > 0, such that Pn(x, A) ≥ 1/m for all x ∈ B. But then

π(A) =
∫
X

Pn(x,A) π(dx) ≥
∫

B

Pn(x,A) π(dx) ≥
∫

B

(1/m) π(dx) = π(B) / m > 0 .

Lemma 4. Consider a Markov chain on a state space X , having stationary distribution

π. Suppose that for some A ⊆ X , we have Px(τA < ∞) > 0 for all x ∈ X . Then for

π-almost-every x ∈ X , Px(τA < ∞) = 1.

Proof. Suppose to the contrary that this is not true. Then by countable additivity we

can find m ∈ N and a subset B ⊆ X with π(B) > 0, such that Px(τA < ∞) ≤ 1− 1
m for

all x ∈ B. On the other hand, since Px(τA < ∞) > 0 for all x ∈ X , we can find n0 ∈ N

and δ0 > 0 and B′ ⊆ B with π(B′) > 0 and with Pn0(x,A) ≥ δ0 for all x ∈ B′.

Now, setting ηB′ = #{k ≥ 1; Xn0k ∈ B′}, we have that P(τA = ∞, ηB′ = r) ≤

(1− δ0)r. In particular, P(τA = ∞, ηB′ = ∞) = 0. Hence, for x ∈ B′, we have

Px(τA = ∞, ηB′ < ∞) = 1−Px(τA = ∞, ηB′ = ∞)−Px(τA < ∞)
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≥ 1− 0−
(

1− 1
m

)
=

1
m

.

Hence, there is ` ∈ N, δ > 0, and B′′ ⊆ B′ with π(B′′) > 0, such that

Px (τA = ∞, sup{k ≥ 1; Xn0k ∈ B′} < `) ≥ δ , x ∈ B′′ .

So, letting n = n0`, we thus see that for any x ∈ B′′, we have Px(τA = ∞, and Xkn 6∈ B′

for all k ≥ 1) ≥ δ.

This subset B′′ shall be the key to the proof. Indeed, we compute that for any j ∈ N,

π(AC) =
∫
X

π(dy)P jn(y, AC)

=
∫
X

π(dy)Py(Xjn ∈ AC)

≥
∫
X

π(dy)Py

(
j−1⋃
i=0

[Xin ∈ B′′, X(i+1)n 6∈ B′, X(i+2)n 6∈ B′, . . . , X(j−1)n 6∈ B′, Xjn ∈ AC ]

)

=
j−1∑
i=0

∫
X

π(dy)Py

(
Xin ∈ B′′, X(i+1)n 6∈ B′, X(i+2)n 6∈ B′, . . . , X(j−1)n 6∈ B′, Xjn ∈ AC

)
.

=
j−1∑
i=0

∫
X

π(dy)Py

(
X0 ∈ B′′, Xn 6∈ B′, X2n 6∈ B′, . . . , X(j−i−1)n 6∈ B′, X(j−i)n ∈ AC

)
.

(We have used that the above union is disjoint, since B′′ ∪ (B′)C = ∅.)

But the inner integral is at least as large as the probability that, being in the stationary

distribution, we begin in B′′, and then have τA = ∞ and furthermore never return to

B′ ⊇ B′′ in any integer multiple of n steps. We thus have

π(AC) ≥
j−1∑
i=0

[π(B′′) δ] = j π(B′′) δ .

This leads to the desired contraction: if we choose j large enough, we can make this

quantity larger than 1, which is impossible.

Hence, our original assumption must be false, and we conclude that for π-almost-every

x ∈ X , we have Px(τA < ∞) = 1, as claimed.
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Corollary 5. Assume the hypotheses of Lemma 4. Then for π-almost-every x ∈ X ,

we have Px(Xn ∈ A i.o.) = 1. That is, with probability 1, the chain will hit the set A

infinitely often.

Proof. Define rA = sup{n ≥ 1; Xn ∈ A} (which could be infinite). Then for fixed

n ∈ N,

π{x ∈ X ; Px(rA = n) > 0} =
∫ ∫

π(dx)Pn(x, dy)Py(τA = ∞)

=
∫

π(dy)Py(τA = ∞) = 0

since by Lemma 4 we have Py(τA < ∞) = 1 for π-a.e. y ∈ X . But then by countable

additivity, π{x ∈ X ; Px(rA < ∞) > 0} = 0. This gives the result.

We also need a lemma related to aperiodicity.

Lemma 6. Let C ⊆ X be a small set with P k0(x, ·) ≥ ε Q(·) for all x ∈ C. Let

S = {n ≥ 1;
∫

Q(dx) Pn(x,C) > 0}. Then there is n∗ ∈ N with S ⊇ {n∗, n∗+1, n∗+2, . . .}.

Proof. Let T = S + k0 ≡ {s + k0; s ∈ S}. Then T represents the times at which it is

possible for the chain, if started in initial distribution Q(·), to again be in the distribution

Q(·) (having chosen option 2(a) in the splitting construction). Thus, T is additive, in the

sense that if n, m ∈ T then n + m ∈ T .

Furthermore, we claim that gcd(T ) = 1. Indeed, if gcd(T ) = d > 1, then for 1 ≤ i ≤ d,

let Xi = {x ∈ X ; ∃` ∈ N,
∫

Q(dx) P `d+i(x,C) > 0}. Then X = X1

•⋃
. . .

•⋃
Xd forms a

partition with respect to which the Markov chain is periodic (of period d). This contradicts

the assumption that the chain is aperiodic.

Hence, gcd(T ) = 1, and T is additive. It is then a standard and easy fact (cf. [3],

p. 541) that there is n′ ∈ N such that T ⊇ {n′, n′+1, n′+2, . . .}. Hence, setting n∗ = n′−k0,

we are done.
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5. Proof of Theorem 1.

We now proceed to the proof of Theorem 1. We suppose that P (x, dy) are the transi-

tion probabilities for a φ-irreducible, aperiodic Markov chain on a general state space X ,

having stationary distribution π.

From Theorem 2, there is a small set C ⊆ X with φ(C) > 0, such that P k0(x, ·) ≥

ε Q(·) for all x ∈ C. (By Lemma 3, we also have π(C) > 0.)

We now choose (X0, Y0) = (x, y), for any fixed x, y ∈ X . We then jointly define

{Xn}∞n=0 and {Yn}∞n=0 according to the “splitting construction” of Section 3 above.

Since φ(C) > 0, we have Px(τC < ∞) > 0 and Py(τC < ∞) > 0. Hence, there are

nx, ny ∈ N such that Pnx(x,C) > 0 and Pny (y, C) > 0. Let n∗ be as in Lemma 6. Then,

recalling that P k0(x, ·) ≥ ε Q(·) for all x ∈ C, we see that Pnx+k0+n(x,C) > 0 whenever

n ≥ n∗, and similarly Pny+k0+n(y, C) > 0 whenever n ≥ n∗.

Now, let ` ≥ max(nx, ny) + k0 + n∗. For the joint chain {(Xn, Yn)}, we claim that

P(x,y)(τC×C ≤ `) > 0. Indeed, until such time as the joint chain enters C × C, the joint

chain behaves as two independent chains. Thus, P(x,y)(τC×C ≤ `) ≥ P `(x,C) P `(y, C) >

0 . Hence, in particular, P(x,y)(τC×C < ∞) > 0 for all (x, y) ∈ X × X .

Now, let G ⊆ X ×X be the set of (x, y) for which P(x,y)

(
(Xn, Yn) ∈ C ×C i.o.

)
= 1.

We claim that

(π × π)(G) = 1 . (3)

Indeed, by applying Lemma 4 to the joint chain, we see that the joint chain will return to

C ×C with probability 1 from (π× π)-a.e. (x, y) 6∈ C ×C. Once the chain reaches C ×C,

then conditional on not coupling, the chain’s update distribution is absolutely continuous

with respect to P × P and hence (again by Lemma 4) will return again to C × C with

probability 1. Conditional on coupling, the two chains will then proceed as one (starting

from the distribution Q(·) which must be absolutely continuous with respect to π(·)), and

hence will return to C ×C by Lemma 4 applied to a single chain. Hence, in any case, the

chain will repeatedly return to C × C with probability 1. This proves (3).

Now, each time that (Xn, Yn) ∈ C × C (excluding those times that are within k0 of

a previous visit to C × C), by part 2(a) of the splitting construction, we see that there is
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independent probability ε > 0 that the two chains will couple k0 iterations later (i.e., that

we will then have T∗ = n+k0, where T∗ is the coupling time from the splitting construction

of Section 3). But if (x, y) ∈ G then with probability 1 there will be infinitely many such

opportunities. We conclude that

lim
n→∞

P(x,y)(T∗ > n) = 0 , (x, y) ∈ G . (4)

Furthermore, the splitting construction ensures that Xn = Yn for all n ≥ T∗. Hence,

the coupling inequality tells us that

‖Pn(x, ·)− Pn(y, ·)‖ ≤ P(x,y)(Xn 6= Yn) ≤ P(x,y)(T∗ > n) .

Now, for x ∈ X let Gx = {y ∈ X ; (x, y) ∈ G}, and let G = {x ∈ X ; π(Gx) = 1} . Then

for x ∈ G, we have by (4) and the generalised triangle inequality that

lim
n→∞

‖Pn(x, ·)− π‖ = lim
n→∞

∥∥∥∥∫ π(dy)Pn(x, ·)−
∫

π(dy)Pn(y, ·)
∥∥∥∥

≤ lim
n→∞

∫
π(dy)‖Pn(x, ·)− Pn(y, ·)‖

≤ lim
n→∞

∫
π(dy)P(x,y)(T∗ > n) = 0 . (5)

(Here we have used the bounded convergence theorem plus the fact that, for x ∈ G, we

have limn→∞P(x,y)(T∗ > n) = 0 for π-a.e. y ∈ X .)

Finally, we claim that π(G) = 1. Indeed, if we had π(G) < 1, then we would have

(π × π)(GC) =
∫
X

π(dx)π(GC
x ) =

∫
G

C
π(dx)[1− π(Gx)] > 0 ,

contradicting (3). Hence, π(G) = 1. The theorem now follows from (5).
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6. Extensions and remarks.

It is possible to extend this result in various ways for particular cases, by being more

careful about the return times to C ×C (i.e., the law of τC×C) and/or about the constant

ε from the small set definition (1).

For example, if one proves that τC×C has finite exponential moments, then one can

prove that the convergence of Theorem 1 is exponentially quick (cf. [10], Theorem 15.0.1).

Similarly, if one provides quantitative bounds on the tail of τC×C , and on the ε of the

small set, then one can obtain quantitative bounds on the distance to stationarity after a

finite number n of iterations (cf. [11], [17], [18]).

Furthermore, note that the qualifier “for π-a.e. x ∈ X” in the statement of Theorem

1 is indeed necessary and cannot be replaced by “for all x ∈ X”. For instance, here is a

counter-example due to C. Geyer. Let X = {0, 1, 2, . . .}, with P (0, 0) = 1, and for n ≥ 1,

P (n, n + 1) = 1− P (n, 0) = 1− 1
n2 . Then the stationary distribution π is a point-mass at

0, and the chain is indeed π-irreducible and aperiodic. However, if we begin at any point

in the set {2, 3, 4, . . .} (which has π-measure 0), then there is positive probability that we

will continue moving from n to n + 1, and never settle down at the point 0.

Of course, if P (x, ·) � π(·) for all x ∈ X , then we can indeed replace “for π-a.e.

x ∈ X” by “for all x ∈ X”. More generally, we can make this replacement if the chain is

Harris recurrent; see e.g. [20] for discussion of this.

Finally, we note that small sets may also be thought of as providing “regeneration

events”, whereby with probability ε a chain “regenerates” by jumping into the fixed dis-

tribution Q(·). This reduces convergence of the chain to convergence of the “time since

last regeneration” process. This approach eliminates the need to consider a second chain

{Yn}, thus simplifying some arguments. However, it does require some renewal theory to

study the time since the last regeneration. See e.g. Asmussen [1] for a good discussion of

this approach.
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