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Abstract

This paper gathers together different conditions which are all equivalent to geometric

ergodicity of time-homogeneous Markov chains on general state spaces. A total of 34 dif-

ferent conditions are presented (27 for general chains plus 7 for reversible chains), some

old and some new, in terms of such notions as convergence bounds, drift conditions, spec-

tral properties, etc., with different assumptions about the distance metric used, finiteness

of function moments, initial distribution, uniformity of bounds, and more. Proofs of the

connections between the different conditions are provided, somewhat self-contained but

using some results from the literature where appropriate.

1 Introduction

The increasing importance of Markov chain Monte Carlo (MCMC) algorithms (see e.g. [2]

and the many references therein) has focused attention on the rate of convergence of (time-

homogeneous) Markov chains to their stationary distribution. While it is most useful to have

explicit quantitative bounds on the distance to stationarity (see e.g. [27, 13] and the refer-

ences therein), qualitative convergence bounds are often more feasible to obtain. The most

commonly-used qualitative convergence property is geometric ergodicity, i.e. exponentially fast

convergence to stationarity, which has been widely studied (e.g. [29, 18, 23]), and indeed has

become a de facto method of assessing the value of MCMC algorithms.

In addition to fast convergence, geometric ergodicity also guarantees a Markov chain Central

Limit Theorem (CLT), i.e. the convergence of scaled sums of functional values to a fixed normal

distribution, for all functionals with finite 2 + δ moments [9, Theorem 18.5.3] (see also [8]), or

even just 2nd moments assuming reversibility [22]. Such CLTs are helpful for understanding

the errors which arise from Monte Carlo estimation (see e.g. [29, 25, 12]). However, geometric
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ergodicity and CLTs do not hold for all Markov chains nor all MCMC algorithms (see e.g. [21]

and [23, Theorem 22]).

For certain types of MCMC algorithms, geometric ergodicity is fairly well understood. For

example, it is known that an Independence Sampler is geometrically ergodic if and only if

its proposal density is bounded below by a constant multiple of the target density [16], and

that the popular Random-Walk Metropolis algorithm is geometrically ergodic essentially if and

only if its target distribution has exponentially light tails [17, 25]. However, for many other

complicated Markov chains and MCMC algorithms, geometric ergodicity is not clear.

One promising way of establishing geometric ergodicity is to show that some other prop-

erties of Markov chains imply it, or are even equivalent to it. This has been shown, by

[29, 18, 22, 26] and others, for properties such as drift conditions, spectral bounds, and more.

However, such relationships are scattered throughout the literature, are not always stated in

full generality, and are often presented as just one-way implications. In the current work,

we present a total of 34 different conditions which are equivalent to geometric ergodicity for

Markov chains on general state spaces (27 for general chains plus 7 just for reversible chains;

some previously known and some new). We then provide proofs of all of the equivalences

(somewhat self-contained, though using known results where needed); see Figure 1.

To illustrate the flavour of the various equivalences, consider the following:

• The usual definitions of geometric ergodicity state that the Markov chain’s distance to

stationarity after n iterations is bounded by a constant times ρn for some ρ < 1. But

what “distance” should be used: total variation, or V -norm, or L2(π)? And, how does the

“constant” depend on the starting state X0 = x? Must those constants have finite expected

value with respect to π? What about finite jth moments?

• If the initial state X0 is itself chosen from a non-degenerate initial distribution probability

measure µ, then will the convergence to stationarity still be geometric, at least if µ is, say,

in Lp(π)?

• Geometric ergodicity is well-known to be implied by drift conditions of the form PV (x) ≤
λV (x) + b 1S(x) for some function V : X → [1,∞] and λ < 1 and b < ∞ and small set

S. But are such drift conditions actually equivalent to geometric ergodicity? And, can the

drift function V be taken to have finite stationary mean? finite jth moment?

• Geometric ergodicity is also related to the Markov operator P having a spectral gap. But

as an operator on what space: L∞V ? for what function V ? having which finite moments?

And should the “gap” be identified by removing the eigenvalue 1 directly, or by subtracting

off Π, or by restricting to the zero-mean space L∞V,0?
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• Geometric ergodicity is implied by the Markov operator norm being less than 1. But for

which operator: P , or Pm for some m ∈ N? Regarded as an operator on L∞V or L∞V,0? For

what choice of V ? Having which finite moments?

• If the Markov chain is assumed to be reversible, so that the operator P is self-adjoint on

L2(π), then in which of the above conditions can the operator norm be taken to be L2(π)?

We shall see that the answer to these questions is, essentially, “all of the above”. That is,

we shall state many different conditions, which cover essentially all of the above possibilities,

and shall prove that they are all equivalent. In our desire to be thorough, we might have

gone a bit overboard listing so many different conditions, including some which are just minor

variations of each other. However, we believe that additional equivalent conditions can only

help: the equivalences with weaker assumptions are easier to establish, while the equivalences

with stronger assumptions are most useful for drawing conclusions or analysing further. We

know from bitter experience that it can be very frustrating to discover a statement about

geometric ergodicity which is almost, but not quite, exactly what we can verify, or exactly

what is needed to finish a particular proof. This has led us to adopt a “the more the merrier”

attitude regarding different but similar conditions. The reader can, of course, choose to ignore

all conditions which are not germaine to their work.

As mentioned, many of the equivalences presented herein were already known; see the Re-

mark after Theorem 1 below. Thus, this paper falls somewhere in between an expository/review

paper and a original research paper, but we hope it is helpful nonetheless.

Basic definitions necessary to understand the conditions, such as total variance distance,

L∞V norms, Lp(π) spaces, reversibility, etc., are presented in Section 2. Then, in Section 3, all of

the equivalent conditions are introduced (Theorem 1). Sections 4 through 8 are then devoted

to proving all of the equivalences; see Figure 1 for a visual guide showing which implications

are proved by which of our results. Our proofs are somewhat self-contained, but we do use

known results in the literature (especially [18]) where needed. Finally, we close in Section 9

with some future directions and open problems (Q 9.1 through Q 9.7).

2 Definitions and Background

Throughout this paper, Φ = {Xn}∞n=0 is a discrete-time, time-homogeneous Markov chain

on a general state space X equipped with a σ-algebra F . And, P is the corresponding Markov

kernel, so that P (x,A) = P[Xn ∈ A |Xn−1 = x] for all x ∈ X and A ∈ F and n ∈ N. The
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kernel P acts to the left on (possibly signed) measures, and to the right on functions, by:

(µP )(A) =

∫
P (x,A)µ(dx), (Pf)(x) =

∫
f(y)P (x, dy).

The higher-order transitions are then defined inductively by:

P n(x,A) =

∫
X
P (x, dy)P n−1(y, A), x ∈ X , A ∈ F , n ∈ N.

We shall assume throughout P has a stationary distribution, i.e. a probability distribution

π on (X ,F) which is preserved by P in the sense that πP = π. We define Π := 1X ⊗ π by

Π(x,A) := (1X ⊗ π)(x,A) = π(A), x ∈ X , A ∈ F ,

so that

(µΠ)(A) :=
(
µ(1X ⊗ π)

)
(A) = µ(X )π(A) .

If µ is a probability measure, then (µΠ)(A) = π(A), and µ(P n − Π) = µP n − π. Also, by

stationarity of π, we have (P − Π)n = P n − Π for each n ∈ N.

We shall assume that our Markov chain is φ-irreducible, i.e. there exists a non-zero σ-finite

measure φ on (X ,F) such that for all x ∈ X and A ⊆ X with φ(A) > 0, there is n ∈ N with

P n(x,A) > 0. We shall also assume that it is aperiodic, i.e. there do not exist d ≥ 2 and disjoint

X1, . . . ,Xd ⊆ X of positive π measure, such that P (x,Xi+1) = 1 for all x ∈ Xi (i = 1, . . . , d−1)

and P (x,X1) = 1 for all x ∈ Xd. It is well-known (e.g. [18, 23]) that these conditions guarantee

that P n(x,A) → π(A) as n → ∞ (see also Q 9.1 and Q 9.3 below). Geometric ergodicity

then corresponds to the property, which may or may not hold, that this convergence occurs

exponentially quickly.

We shall also assume that the state space (X ,F) is countably generated, i.e. that there

exists A1, A2, . . . ∈ F such that F = σ(A1, A2, . . .), i.e. F is the smallest σ-algebra containing

all of the Ai. This technical property ensures the existence of small sets [4, 10, 20] and the

measurability of certain functions [22, Appendix] (see also Q 9.2 below).

A subset S ∈ F is called small if π(S) > 0 and there is m > 0 and a non-zero measure ν on

(X ,F) such that Pm(x,A) ≥ ν(A) for all x ∈ S and A ∈ F , i.e. if all of the m-step transition

probabilities from within S all have some “overlap”. This property is very useful for coupling

constructions and for ensuring convergence to stationarity (see e.g. [18, 23]).

The total variation distance between two probability measures µ1 and µ2 is defined by:

‖µ1 − µ2‖TV = sup
A∈F
|µ1(A)− µ2(A)| ≡ 1

2
sup
|f |≤1

∣∣∣ ∫ fdµ1 −
∫
fdµ2

∣∣∣
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(see e.g. [23, Proposition 3(b)]). Given a positive function V : X → R, we define [18, p. 390]

the V -norm |f |V = sup
x∈X

|f(x)|
V (x)

. We let L∞V be the vector space of all functions f : X → R such

that |f |V <∞, and let L∞V,0 = {f ∈ L∞V : π(f) = 0}. Then, we define the V -norm of a Markov

kernel P as

‖P‖L∞V = sup
f∈L∞V
|f |V =1

|Pf |V ; ‖P‖L∞V,0 = sup
f∈L∞V,0
|f |V =1

|Pf |V .

For a (possibly signed) measure µ, we define ‖µ‖Lp(π) for 1 ≤ p <∞ by

‖µ‖pLp(π) =


µ+(X ) + µ−(X ), if p = 1∫
X

∣∣∣dµ
dπ

∣∣∣pdπ, if µ� π

∞, otherwise.

(If p = 1 and µ � π, then the two definitions coincide.) We let Lp(π) be the collection of all

signed measures µ on (X ,F) with ‖µ‖Lp(π) < ∞, and define the Lp(π)-norm of a transition

kernel P acting on the set Lp(π) by:

‖P‖Lp(π) = sup
‖µ‖Lp(π)=1

‖µP (·)‖Lp(π).

(Note in particular that the Lp(π) are collections of signed measures, while L∞V and L∞V,0 are

collections of functions.)

The transition kernel P is reversible with respect to π if π(dx)P (x, dy) = π(dy)P (y, dx)

for all x, y ∈ X . This is equivalent to P being a self-adjoint operator on the Hilbert space

L2(π), with inner product given by

〈µ, ν〉 =

∫
X

dµ

dπ

dν

dπ
dπ.

In particular, 〈µ, π〉 =
∫
X
dµ
dπ

1 dπ = µ(X ). We also let π⊥ := {µ ∈ L2(π) : µ(X ) = 0} be the set

of signed measures in L2(π) which are “perpendicular” to π, i.e. for which 〈µ, π〉 ≡ µ(X ) = 0.

Our conditions (xxviii) through (xxxiv) are only proven to be equivalent for reversible chains

(though see Q 9.4 below).

Finally, given an operator P on a Banach space (i.e. a complete normed vector space) V ,

e.g. V = L∞V or L2(π), the spectrum of P , denoted by S(P ) or SV(P ), is the set of all complex

numbers λ such that λI −P is not invertible (see e.g. [28, p. 253]). And, the spectral radius of

P is the number r(P ) = rV(P ) = sup
λ∈SV (P )

|λ|.

5



3 Main Result: Statement of Equivalences

We now provide a list of 27 conditions which are always equivalent to geometric ergodicity of

Markov chains, and an additional 7 (for 34 total) which are also equivalent for reversible chains.

Some of the conditions are very similar to each other, but are included to allow for maximum

flexibility when establishing or using geometric ergodicity in both theoretical investigations

and applications. For ease of comprehension, similar conditions are grouped together under

common subheadings.

Theorem 1. Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain Φ =

{Xn} with stationary probability distribution π on a countably generated measurable state space

(X ,F). Then the following are equivalent (and all correspond to being “geometrically ergodic”):

Geometric Convergence in TV:

i) Φ is geometrically ergodic starting from π-a.e. x ∈ X with constant geometric rate. This

means there is fixed ρ < 1 such that for π-a.e. x ∈ X there is Cx <∞ with

‖P n(x, ·)− π(·)‖TV ≤ Cx ρ
n for all n ∈ N.

ii) There exists A ∈ F with π(A) > 0 such that Φ is geometrically ergodic starting from

each x ∈ A. This means for each x ∈ A, there are ρx < 1 and Cx <∞ with

‖P n(x, ·)− π(·)‖TV ≤ Cx ρ
n
x for all n ∈ N.

iii) There exists p ∈ (1,∞) such that Φ is geometrically ergodic starting from all probability

measures in Lp(π). This means there is some p ∈ (1,∞) such that for each probability

measure µ ∈ Lp(π) there are constants ρµ < 1 and Cµ <∞ with

‖µP n(·)− π(·)‖TV ≤ Cµ ρ
n
µ for all n ∈ N.

iv) For all p ∈ (1,∞), Φ is geometrically ergodic starting from all probability measures in

Lp(π) with geometric rate depending only on p. This means for each p ∈ (1,∞), there is

ρp < 1 such that for each probability measure µ ∈ Lp(π) there is Cp,µ <∞ with

‖µP n(·)− π(·)‖TV ≤ Cp,µ ρ
n
p for all n ∈ N.

v) There exists a small set S ∈ F such that Φ is geometrically ergodic uniformly over

starting states within S. This means there are constants ρS < 1 and CS <∞ with

sup
x∈S
‖P n(x, ·)− π(·)‖TV ≤ CS ρ

n
S for all n ∈ N.
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vi) There exists a small set S ∈ F such that Φ is geometrically ergodic starting from the

stationary distribution restricted to S. This means there are constants ρS < 1 and

CS <∞ with

‖πSP n(·)− π(·)‖TV ≤ CS ρ
n
S for all n ∈ N,

where πS is the probability measure defined by πS(A) = π(S ∩ A)
/
π(S) for A ∈ F .

Geometric Return Time:

vii) There exists a small set S ∈ F and constant κ > 1 such that

sup
x∈S

Ex[κ
τS ] < ∞

where τS is the first return time to S, and Ex is expected value conditional on X0 = x.

V -Function Drift Condition:

viii) There exists a π-a.e.-finite measurable function V : X → [1,∞], a small set S ∈ F , and

constants λ < 1 and b <∞ with

PV (x) ≤ λV (x) + b 1S(x) for all x ∈ X .

ix) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞], a small

set S ∈ F , and constants λ < 1 and b <∞ with π(V j) <∞ and

PV (x) ≤ λV (x) + b 1S(x) for all x ∈ X .

V -Uniform Convergence:

x) There exists a π-a.e.-finite measurable function V : X → [1,∞] such that Φ is V -

uniformly ergodic. This means there is ρ < 1 and C <∞ such that

sup
|f |≤V

∣∣P nf(x)− π(f)
∣∣ ≤ C V (x) ρn for all x ∈ X and n ∈ N.

xi) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, such that Φ is V -uniformly ergodic. This means there is ρ < 1 and C <∞
such that

sup
|f |≤V

∣∣P nf(x)− π(f)
∣∣ ≤ C V (x) ρn for all x ∈ X and n ∈ N.
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xii) There exists a π-a.e.-finite measurable function V : X → [1,∞], and constants ρ < 1

and C <∞, such that for each probability measure µ on X with µ(V ) <∞,

sup
|f |≤V

∣∣µP n(f)− π(f)
∣∣ ≤ C µ(V ) ρn for all n ∈ N.

xiii) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) < ∞, and constants ρ < 1 and C < ∞, such that for each probability measure µ

on X with µ(V ) <∞,

sup
|f |≤V

∣∣µP n(f)− π(f)
∣∣ ≤ C µ(V ) ρn for all n ∈ N.

Spectral Gap:

xiv) There exists j ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with π(V j) <

∞, such that P has a spectral gap as an operator on L∞V , meaning 1 is an eigenvalue of

P (which must have multiplicity 1 by Lemma 4.7), and there is ρ < 1 such that

SL∞V (P ) \ {1} ⊆ {z ∈ C : |z| ≤ ρ}.

xv) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) < ∞, such that P has a spectral gap as an operator on L∞V , meaning 1 is an

eigenvalue of P (which must have multiplicity 1 by Lemma 4.7), and there is ρ < 1 such

that

SL∞V (P ) \ {1} ⊆ {z ∈ C : |z| ≤ ρ}.

Spectral Radius:

xvi) There exists j ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with π(V j) <

∞, such that P − Π has spectral radius less than one as an operator on L∞V , i.e.

rL∞V (P − Π) < 1.

xvii) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, such that P −Π has spectral radius less than one as an operator on L∞V , i.e.

rL∞V (P − Π) < 1.
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xviii) There exists j ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with π(V j) <

∞, such that P has spectral radius less than one as an operator on L∞V,0, i.e.

rL∞V,0(P ) < 1.

xix) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, such that P has spectral radius less than one as an operator on L∞V,0, i.e.

rL∞V,0(P ) < 1.

L∞V Operator Norm:

xx) There exists j,m ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, such that

‖Pm − Π‖L∞V < 1.

xxi) For all j ∈ N, there exists m ∈ N and a π-a.e.-finite measurable function V : X → [1,∞]

such that π(V j) <∞ and

‖Pm − Π‖L∞V < 1.

xxii) There exists j,m ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, such that

‖Pm‖L∞V,0 < 1.

xxiii) For all j ∈ N, there exists m ∈ N and a π-a.e.-finite measurable function V : X → [1,∞]

with π(V j) <∞, such that

‖Pm‖L∞V,0 < 1.

xxiv) There exists j ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with π(V j) <

∞, and constants ρ < 1 and C <∞, such that

‖P n − Π‖L∞V ≤ C ρn for all n ∈ N.

xxv) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, and constants ρ < 1 and C <∞, such that

‖P n − Π‖L∞V ≤ C ρn for all n ∈ N.
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xxvi) There exists j ∈ N and a π-a.e.-finite measurable function V : X → [1,∞] with π(V j) <

∞, and constants ρ < 1 and C <∞, such that

‖P n‖L∞V,0 ≤ C ρn for all n ∈ N.

xxvii) For all j ∈ N, there exists a π-a.e.-finite measurable function V : X → [1,∞] with

π(V j) <∞, and constants ρ < 1 and C <∞, such that

‖P n‖L∞V,0 ≤ C ρn for all n ∈ N.

Conditions Assuming Reversibility:

Furthermore, if Φ is reversible, then the following are also equivalent to the above:

xxviii) Φ is L2(π)-geometrically ergodic starting from any probability measure µ in L2(π) with

uniform convergence rate. This means there is ρ < 1 such that for each probability

measure µ ∈ L2(π), there is a constant Cµ <∞ such that

‖µP n(·)− π(·)‖L2(π) ≤ Cµ ρ
n for all n ∈ N.

xxix) There exists ρ < 1 such that for each probability measure µ ∈ L2(π),

‖µP n(·)− π(·)‖L2(π) ≤ ‖µ− π‖L2(π) ρ
n for all n ∈ N.

xxx) P has a spectral gap as an operator on L2(π), meaning that 1 is an eigenvalue of P

(which must have multiplicity 1 by Lemma 4.7), and there is ρ < 1 with

SL2(π)(P ) \ {1} ⊆ {z ∈ C : |z| ≤ ρ}.

xxxi) P − Π has spectral radius less than one as an operator on L2(π), i.e.

rL2(π)(P − Π) < 1.

xxxii) P − Π has operator norm less than one as an operator on L2(π), i.e.

‖P − Π‖L2(π) < 1.

xxxiii) P has operator norm less than one as an operator on π⊥, i.e.

‖P‖π⊥ < 1.
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xxxiv) P |π⊥ has spectral radius less than one as an operator on π⊥, i.e.

rπ⊥(P ) < 1.

Remark. A number of the above equivalences are already known, as follows. The fact that (vi)

implies (i) was shown in [30] on countable state spaces, and then in [19, Theorem 1] on general

state spaces. The equivalence of (vi), (vii), and (viii), together with the fact that they imply

(i), was presented in [18, Theorem 15.0.1]. The equivalence of (viii), (x ), (xx ), and (xxvi) was

presented in [18, Theorem 16.0.1]. The equivalence of the group (i), (vi), (x ), (xi), (xxi), and

(xxiii) was presented in [22, Proposition 1], and the equivalence (assuming reversibility) of the

group (xxviii), (xxix ), and (xxxiii) was presented in [22, Theorem 2], together with the fact that

the first group implies the second. The reverse implication, that the second group implies the

first, was then shown in [26]. Discussions related to the spectral gap conditions (xiv) and (xv)

and (xxx ) appear in [14]. The equivalence of (xiv) and (viii) is shown in [15, Proposition 1.1],

and the equivalence of (xxxi) and (i) for reversible chains is shown in [15, Proposition 1.2].

Our Theorem 1 is an attempt to combine and bring together all of these various results, and

add others too. (Since initiating this work, we also learned of the recent review [1], which

presents certain equivalences for reversible chains in terms of mixing conditions and maximal

correlations, which complement some of our conditions (xxviii) through (xxxiv). In addition,

the recent volume [5] expands upon much of the material in [18].)

Most of the remainder of this paper is devoted to proving Theorem 1. The proof is divided

up into different sections below, in terms of which types of conditions are being considered:

Section 4 provides some preliminary lemmas, Section 5 relates to various “Geometric” condi-

tions, Section 6 relates to various conditions involving V functions and L∞V bounds, Section 7

relates to various spectral conditions, and Section 8 relates to various conditions for reversible

chains. To help the reader (and ourselves) keep track, Figure 1 provides a diagram showing

which of our results prove implications between which of the equivalent conditions. Our proofs

are somewhat self-contained, but we use known results from the literature (especially [18])

where appropriate. Section 9 then presents some future directions and open problems.

4 Preliminary Lemmas

We begin with some preliminary lemmas, which are used freely in the sequel, and can be

referred to as needed.
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Geometric V -function Spectral L∞V -norm Reversible

Figure 1: Diagram illustrating which of this paper’s results (yellow edge labels) provide proofs

of implications between which of the different equivalent conditions (nodes). (All arrows touch-

ing a green rectangle assume that the chain is reversible.)
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Lemma 4.1. Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain with

stationary distribution π on a countably generated state space X . Then for any measurable

subset A ⊆ X such that π(A) > 0, there exists a small set S, such that S ⊆ A.

Proof. This result goes back to [4, 10, 20], and uses that F is countably generated; see e.g.

Theorems 5.2.1 and 5.2.2 in [18].

Lemma 4.2. Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain with

stationary distribution π on a countably generated state space X . Then, the function Dn : X →
[0,∞) defined by Dn(x) = ‖P n(x, ·)− π(·)‖TV is measurable.

Proof. This follows from [22, Appendix], which proves that for any bounded signed measure

ν(·, A) on a countably generated space such that the function x 7→ ν(x,A) is measurable for

each fixed A ∈ F , the function x 7→ sup
A∈F

ν(x,A) is also measurable.

Lemma 4.3. For probability measures µ1 and µ2, ‖µ1 − µ2‖TV = 1
2
‖µ1 − µ2‖L1(π).

Proof. Recall that ‖µ1 − µ2‖TV = sup
A∈F
|µ1(A) − µ2(A)|. Let ν = µ1 + µ2 so that µi � ν,

and let fi = dµi
dν

. Then µ1(A) − µ2(A) =
∫
A

[f1(x) − f2(x)] ν(dx). This is maximised when

A = A+ := {x : f1(x) > f2(x)}, and its negative takes the same maximum when A = AC+.

Hence,

‖µ1 − µ2‖TV = µ1(A+)− µ2(A+) =

∫
A+

[f1(x)− f2(x)] ν(dx).

But then

‖µ1 − µ2‖L1(π) = (µ1 − µ2)
+(X ) + (µ1 − µ2)

−(X )

=

∫
A+

[f1(x)− f2(x)] ν(dx) +

∫
AC+

[f2(x)− f1(x)] ν(dx)

= 2

∫
A+

[f1(x)− f2(x)] ν(dx)

= 2 ‖µ1 − µ2‖TV.

Lemma 4.4. For any signed measure µ� π, we have ‖µ‖L1(π) ≤ ‖µ‖L2(π) (though one or both

of those quantities might be infinite).

Proof. Recall the definition 〈µ, ν〉 =
∫
X
dµ
dπ

dν
dπ
dπ. Hence, if |µ| is the measure with d|µ|

dπ
=
∣∣dµ
dπ

∣∣,
then 〈|µ|, π〉 =

∫
X

∣∣dµ
dπ

∣∣ (1) dπ = µ+(X ) + µ−(X ) = ‖µ‖L1(π). Also

‖ |µ| ‖L2(π) =

√∫
X

∣∣dµ
dπ

∣∣2 dπ =

√∫
X

(dµ
dπ

)2
dπ = ‖µ‖L2(π),

13



and

‖π‖L2(π) =

√∫
X

(dπ
dπ

)2
dπ =

√∫
X

(
1
)2
dπ = 1.

So, by the Cauchy-Schwarz inequality,

‖µ‖L1(π) = 〈|µ|, π〉 ≤ ‖ |µ| ‖L2(π) ‖π‖L2(π) = ‖µ‖L2(π) (1) = ‖µ‖L2(π).

Lemma 4.5. For all 1 ≤ p < s <∞, we have Ls(π) ⊆ Lp(π).

Proof. Let 1 ≤ p < s <∞, and let µ ∈ Ls(π) so ‖µ‖Ls(π) <∞. Then,

‖µ‖pLp(π) =

∫
X

∣∣∣∣dµdπ
∣∣∣∣p dπ ≤ ∫

X

(
1 +

∣∣∣∣dµdπ
∣∣∣∣s) dπ = 1 + ‖µ‖sLs(π) < ∞,

so µ ∈ Lp(π).

We next present some lemmas which mention spectra of operators.

Lemma 4.6. Suppose an operator P on a Banach space V can be decomposed as a direct

sum P = P1 ⊕ P2, where V = V1 × V2 and each Pi is an operator on Vi, meaning that

P (h1, h2) = (P1h1, P2h2) for all h1 ∈ V1 and h2 ∈ V2. Then SV(P ) = SV1(P1) ∪ SV2(P2), i.e.

the spectrum of P is the union of the spectra of the sub-operators P1 and P2.

Proof. Since P = P1 ⊕ P2, therefore P has the block decomposition

P =

(
P1 0

0 P2

)

with respect to V = V1 × V2. If λ 6∈ SV1(P1) ∪ SV2(P2), then there are inverse operators Ai

on Vi such that (λIi − Pi)Ai = Ai(λIi − Pi) = Ii for i = 1, 2, whence (λI − P )(A1, A2) =

(A1, A2)(λI − P ) = I1 ⊕ I2 = I, so λ 6∈ SV(P ). Conversely, if λ 6∈ SV(P ), then λI − P has

some inverse operator, so in block form we have(
λI1 − P1 0

0 λI2 − P2

)(
A B

C D

)
=

(
A B

C D

)(
λI1 − P1 0

0 λI2 − P2

)
= I =

(
I1 0

0 I2

)
.

It follows that (λI1 − P1)A = A(λI1 − P1) = I1 and (λI2 − P2)D = D(λI2 − P2) = I2, so that

λ 6∈ SV1(P1) ∪ SV2(P2).

Lemma 4.7. Let P be the transition kernel of a φ-irreducible Markov chain with stationary

distribution π(·), and let V : X → [1,∞] be a π-a.e.-finite measurable function. Then, the

following hold:

14



1) |f |V ≤ 1 if and only if |f(x)| ≤ V (x) for all x ∈ X .

2) If there is j ∈ N with π(V j) <∞, then π(V ) <∞.

3) If P is a bounded operator on L∞V , then SL∞V (P ) \ {1} ⊆ SL∞V,0(P ).

4) The number 1 is an eigenvalue of P with multiplicity 1, regarding P as an operator on

Lp(π) for any 1 ≤ p < ∞. Furthermore, if π(V j) < ∞ for some j ∈ N, then this also

holds regarding P as an operator on L∞V or L∞V,0.

5) If there are λ < 1 and b <∞ and a small set S ∈ F with PV (x) ≤ λV (x) + b 1S(x) for

all x ∈ X , then π(V ) <∞.

Proof. 1) If |f |V ≤ 1, then for each x ∈ X ,

|f(x)|
V (x)

≤ |f |V ≤ 1,

from which we conclude that |f | ≤ V . Conversely, if |f | ≤ V , then for each x ∈ X ,
|f(x)|
V (x)

≤ 1, and thus |f |V = sup
x∈X

|f(x)|
V (x)

≤ 1.

2) This follows since we always have V (x) ≤ V j(x) + 1. [In fact, since V ≥ 1, the “+1” is

not actually necessary.]

3) Any f ∈ L∞V can be written as f = f0 + c where f0 ∈ L∞V,0 and c = π(f). Then

Pf = Pf0 + c. It follows that P has the direct sum representation P = P0 ⊕ IR, where

IR is the identity operator on R. Hence, by Lemma 4.6, SL∞V (P ) = SL∞V,0(P ) ∪ SR(IR) =

SL∞V,0(P ) ∪ {1}. So, SL∞V (P ) \ {1} ⊆ SL∞V,0(P ), as claimed.

4) Since P is φ-irreducible with stationary probability measure π, it follows that P is “pos-

itive” as defined on [18, p. 235]. Hence, P is recurrent by [18, Proposition 10.1.1]. Then,

[18, Theorem 10.0.1] shows that π is unique, i.e. P has a unique invariant probability

measure. This implies by [5, Proposition 22.1.2] that 1 is an eigenvalue of P with mul-

tiplicity 1 on any Lp(π) space. Furthermore, if π(V j) <∞, then |f | ≤ CV implies that

π(|f |j) ≤ Cjπ(V j) <∞, so in that case L∞V and L∞V,0 are subspaces of Lj(π), and hence

the result holds on L∞V and L∞V,0 too.

5) The implication “(iii)⇒ (i)” of [18, Theorem 14.0.1] with the choice f(x) = (1−λ)V (x)

shows that π(f) < ∞, i.e. (1 − λ)π(V ) < ∞, hence π(V ) < ∞. [In fact, once we know

that π(V ) < ∞, then since PV ≤ λV + b, it follows that π(PV ) ≤ π(λV + b), i.e.

π(V ) ≤ λπ(V ) + b, and hence π(V ) ≤ b
/

(1− λ).]
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Lemma 4.8. Let P be the transition kernel of a reversible Markov chain with stationary

distribution π, such that P is a bounded operator on L2(π). Then, the following holds:

1) The operator P − Π is self-adjoint.

2) For each µ ∈ L2(π), the signed measure µ− µ(X )π is orthogonal to π.

3) For each µ ∈ L2(π), ‖µ− µ(X )π‖2L2(π) = ‖µ‖2L2(π) − µ(X )2.

4) SL2(π)(P ) \ {1} ⊆ Sπ⊥(P ).

Proof. 1) For µ, ν ∈ L2(π), we have 〈µ(P − Π), ν〉 = 〈µP, ν〉 − 〈µΠ, ν〉. Now, since P

is reversible, it is self-adjoint on L2(π), so 〈µP, ν〉 = 〈νP, µ〉. Also, we compute that

〈µΠ, ν〉 = 〈µ(X )π, ν〉 = µ(X ) ν(X ) = 〈νΠ, µ〉. Hence, 〈µ(P − Π), ν〉 = 〈ν(P − Π), µ〉, so

P − Π is self-adjoint.

2) Let µ ∈ L2(π), then,

〈µ− µ(X )π, π〉 = 〈µ, π〉 − µ(X )〈π, π〉 = 〈µ, π〉 − 〈µ, π〉‖π‖L2(π) = 〈µ, π〉 − 〈µ, π〉 = 0.

3) Let µ ∈ L2(π). Then,

‖µ− µ(X )π‖2L2(π) =

∫
X

∣∣∣∣dµdπ (y)− µ(X ) (1)

∣∣∣∣2 π(dy)

=

∫
X

[(
dµ

dπ
(y)

)2

− 2µ(X )
dµ

dπ
(y) + µ(X )2

]
π(dy)

= ‖µ‖2L2(π) − 2µ(X )2 + µ(X )2

= ‖µ‖2L2(π) − µ(X )2.

4) Any signed measure µ ∈ L2(π) can be decomposed as µ = µ0 + c π, where c = 〈µ, π〉 =

µ(X ), and 〈µ0, π〉 = µ0(X ) = 0, so µ0 ∈ π⊥. Then µP = µ0P + c π. It follows that P has

the direct sum representation P = P |π⊥ ⊕ IR with respect to L2(π) = π⊥×R. Hence, by

Lemma 4.6, SL2(π)(P ) = Sπ⊥(P ) ∪ {1}, so SL2(π)(P ) \ {1} ⊆ Sπ⊥(P ), as claimed.

Lemma 4.9. Let P be a transition kernel from a reversible Markov chain with stationary

distribution π. Then,

‖P − Π‖L2(π) = ‖P‖π⊥ .
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Proof. Any µ ∈ L2(π) can be written as µ = µ0 + c π, where c = µ(X ) and µ0 ∈ π⊥ so

µ0(X ) = 0. Then µ0Π = µ0(X ) π = 0, so

µ(P − Π) = (µ0 + c π)(P − Π) = µ0P + c π − 0− c π = µ0P.

Also ‖µ‖L2(π) = ‖µ0‖L2(π) + c2 ≥ ‖µ0‖L2(π). Hence,

‖P − Π‖L2(π) = sup
0<‖µ‖L2(π)<∞

||µ(P − Π)||L2(π)

‖µ‖L2(π)

= sup
0<‖µ‖L2(π)<∞

||µ0P ||L2(π)

‖µ0‖L2(π) + c2
.

This supremum is achieved when c = 0, i.e. when µ = µ0 ∈ π⊥, so that

‖P − Π‖L2(π) = sup
0<‖µ0‖L2(π)

<∞

µ0∈π⊥

||µ0P ||L2(π)

‖µ0‖L2(π)

= ‖P‖π⊥ .

5 Proofs for Geometric Conditions

We now begin proving the actual equivalences of the various conditions in Theorem 1,

as per the plan illustrated in Figure 1. We begin with some results related to some of the

“geometric” conditions.

Proposition 5.1. (iv) ⇒ (iii).

Proof. Immediate upon e.g. choosing p = 2 and setting Cµ = C2,µ and ρµ = ρ2 for each

probability measure µ ∈ L2(π).

Proposition 5.2. (iii) ⇒ (vi).

Proof. By Lemma 4.1, there exists a small set S ⊂ X . Since by assumption P is geometrically

ergodic starting from all probability measures in Lp(π) it suffices to show that πS ∈ Lp(π).

Now for any measurable A ⊂ X we have,

πS(A) =
π(S ∩ A)

π(S)
=

1

π(S)

∫
A

1Sdπ

which implies dπS
dπ

= 1S/π(S). Thus∫
X

∣∣∣∣dπSdπ
∣∣∣∣p dπ =

∫
X

1

π(S)p
1Sdπ =

1

π(S)p−1
<∞
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Proposition 5.3. (vi) ⇒ (i).

Proof. This is the result of [19, Theorem 1], which generalizes the countable state space result

of [30].

Proposition 5.4. (i) ⇒ (ii).

Proof. Immediate upon choosing A = X , and ρx = ρ for all x ∈ X .

Proposition 5.5. (ii) ⇒ (v).

Proof. Let A ∈ F with π(A) > 0 and ‖P n(x, ·)− π(·)‖TV ≤ Cx ρ
n
x for all x ∈ A and n ∈ N.

For each n ∈ N, let Dn : A → [0,∞) by Dn(x) = ‖P n(x, ·)− π(·)‖TV. Then each Dn is

measurable by Lemma 4.2, hence so are the functions r, s,M : A→ [0,∞] defined by

r(x) = lim sup
n→∞

[Dn(x)1/n], s(x) = [r(x) + 1]/2, M(x) = sup
n

[Dn(x)/s(x)n].

In particular, for each n ∈ N, we have M(x) ≥ Dn(x)/s(x)n, hence Dn(x) ≤M(x) s(x)n.

Next, note that (ii) says that for each x ∈ A, Dn(x) ≤ Cx ρ
n
x, so r(x) ≤ lim supn→∞[Cx ρ

n
x]1/n =

ρx < 1. Hence r(x) < s(x) < 1. In particular, lim supn→∞ [Dn(x)1/n] < s(x). Hence, there is

N(x) ∈ N such that for all n > N(x) we have Dn(x)1/n < s(x), i.e. Dn(x)/s(x)n < 1. Then

M(x) ≤ max
[
D1(x)/s(x)1, D2(x)/s(x)2, . . . , DN(x)(x)/s(x)N(x), 1

]
< ∞ .

Now, since s and M are measurable, so are the nested subsets

Bk := {x ∈ A : s(x) ≤ 1− 1

k
, M(x) ≤ k}, k ∈ N.

Since s(x) < 1 and M(x) < ∞ for each x ∈ A, we must have
⋃
k Bk = A. Continuity of

measures then implies that limk→∞ π(Bk) = π(A) > 0, so there is K ∈ N with π(BK) > 0. By

Lemma 4.1, there exists a small set S ⊆ BK . Then for x ∈ S, we have x ∈ BK , so s(x) ≤ 1− 1
K

and M(x) ≤ K. It follows that for x ∈ S and n ∈ N,

‖P n(x, ·)− π(·)‖TV = Dn(x) ≤ M(x) s(x)n ≤ K
(

1− 1

K

)n
.

This establishes (v) with CS = K and ρS = 1− 1
K

.

Proposition 5.6. (v) ⇒ (vi).
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Proof. This follows since

‖πSP n(·)− π(·)‖TV = sup
D
|πSP n(D)− π(D)|

= sup
D
| 1

π(S)

∫
S

[P n(x,D)− π(D)]π(dx)|

≤ sup
D

sup
x∈S
|P n(x,D)− π(D)|

= sup
x∈S
‖P n(x, ·)− π(·)‖TV

≤ CS ρ
n
S.

Proposition 5.7. (vi) ⇒ (vii).

Proof. This is the content of the “(i) ⇒ (ii)” implication of [18, Theorem 15.0.1].

6 Proofs for V -function and L∞V Conditions

Proposition 6.1. (xxv) ⇒ (xxiv).

Proof. Immediate (just choose j = 1).

Proposition 6.2. (xi) ⇒ (xxv).

Proof. Let f ∈ L∞V such that |f |V = 1. Then, |f | ≤ V , and, if (xi) holds, then for each x ∈ X
and each n ∈ N,

|P nf(x)− Π(f)(x)| = |P nf(x)− π(f)| ≤ sup
|f |≤V

|P n(x, f)− π(f)| ≤ CV (x)ρn,

which implies

|(P n − Π)f |V = sup
x∈X

|P nf(x)− Π(f)(x)|
V (x)

= sup
x∈X

|P nf(x)− π(f)|
V (x)

≤ Cρn,

and therefore,

‖P n − Π‖L∞V = sup
f∈L∞V
|f |V =1

|(P n − Π)f |V ≤ Cρn.

Proposition 6.3. (xxiv) ⇔ (xxvi), and (xxv) ⇔ (xxvii).
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Proof. (⇒) Let n ∈ N. Given that L∞V,0 ⊆ L∞V , ‖P n‖L∞V,0 ≤ ‖P
n − Π‖L∞V ≤ C ρn.

(⇐) If f ∈ L∞V such that |f |V = 1, we have

|(P n − Π)f |V = |(P n − 1X ⊗ P nπ)f |V
= |P nf − (P nπ)f |V
= |P n(f − π(f))|V
≤ |P n(f − π(f))|V

(f − π(f) ∈ L∞V,0) ≤ ‖P n‖L∞V,0 |f − π(f))|V

≤ ‖P n‖L∞V,0 (|f |V + |π(f)|V )

≤ C ρn (1 + π(V ))

≤ C ′ ρn,

where C ′ = C(1 + π(V )) <∞.

Proposition 6.4. (xxii) ⇔ (xx), and (xxiii) ⇔ (xxi).

Proof. If ‖Pm − Π‖L∞V < 1, then for f ∈ L∞V,0,

‖Pm‖L∞V,0 = sup
f∈L∞V,0
|f |V =1

|Pmf |V = sup
f∈L∞V,0
|f |V =1

|(Pm − Π)f |V ≤ sup
f∈L∞V
|f |V =1

|(Pm − Π)f |V = ‖Pm − Π‖L∞V < 1,

so that also ‖Pm‖L∞V,0 < 1.

Conversely, if s = ‖Pm‖L∞V,0 < 1, then for f with |f |V ≤ 1 and k ∈ N,

|(Pmk − Π)f |V = |Pmk(f − π(f))|V
≤
∥∥Pmk

∥∥
L∞V,0
|f − π(f)|V

=
∥∥(Pm)k

∥∥
L∞V,0
|f − π(f)|V

≤ sk|f − π(f)|V
≤ sk(|f |V + |π(f)|V )

≤ sk(1 + π(V )).

From Lemma 4.7, we must have π(V ) <∞. Hence, there exists n ∈ N such that sn(1+π(V )) <

1. Thus, taking m∗ = mn, we have that, for each |f |V ≤ 1,

|(Pm∗ − Π)f |V < 1

and therefore,
∥∥Pm∗ − Π

∥∥
L∞V

< 1.
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Proposition 6.5. (viii) ⇒ (ix).

Proof. First of all, we must have π(V ) <∞ by Lemma 4.7. Then, given j ∈ N, let V̂ = V 1/j,

so π(V̂ j) = π(V ) <∞. It follows from Jensen’s inequality and concavity that

P V̂ ≤ (PV )1/j ≤ (λV + b1S)1/j ≤ λ̂ V̂ + b̂ 1S,

with λ̂ = λ1/j < 1 and b̂ = b1/j <∞, thus showing (viii).

Proposition 6.6. (xx) ⇔ (xxiv), and (xxi) ⇔ (xxv).

Proof. Suppose first that s = ‖Pm − Π‖L∞V < 1 for some m ∈ N. Let α = ‖P − Π‖L∞V , and let

n ∈ N. If n ≤ m, we have that

‖P n − Π‖L∞V = ‖(P − Π)n‖L∞V ≤ αn ≤ αns−1(s1/m)n.

If n > m, then n = mt+ `, for some t ∈ N and 0 ≤ ` < m, and hence

‖P n − Π‖L∞V =
∥∥(P − Π)mt+`

∥∥
L∞V
≤ αl

∥∥(P − Π)mt
∥∥
L∞V

= αl
∥∥(Pm − Π)t

∥∥
L∞V
≤ αlst ≤ αls−1(s1/m)n.

So, taking C = max
1≤r≤m

αrs−1 and ρ = s1/m, we conclude that for each n ∈ N,

‖P n − Π‖L∞V ≤ Cρn.

Conversely, if ‖P n − Π‖L∞V ≤ Cρn for all n ∈ N, then we can simply choose a large

enough m ∈ N that Cρm < 1, to obtain that ‖Pm − Π‖L∞V ≤ Cρm < 1.

Proposition 6.7. (xxiv) ⇒ (x).

Proof. Since ‖P n − Π‖L∞V ≤ Cρn, we have for each n ∈ N and |f |V ≤ 1 that

|(P n − Π)f |V ≤ ‖P n − Π‖L∞V |f |V ≤ Cρn|f |V ≤ Cρn.

Hence, for each n ∈ N, |f |V ≤ 1 and x ∈ X ,

|P nf(x)− π(f)|
V (x)

=
|P nf(x)− Π(f)(x)|

V (x)
≤ Cρn.

By Lemma 4.7, |f |V ≤ 1 ⇔ |f | ≤ V , so for each n ∈ N and x ∈ X ,

sup
|f |≤V

|P nf(x)− π(f)| = sup
|f |V ≤1

|P nf(x)− π(f)| ≤ CV (x)ρn.
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Proposition 6.8. (x) ⇒ (xii), and (xi) ⇒ (xiii).

Proof. This follows from the triangle inequality. If µ(V ) <∞ and |f | ≤ V , then

|µP nf − π(f)| =
∣∣∣∣∫
X
P nf(y)µ(dy)− π(f)

∣∣∣∣ =

∣∣∣∣∫
X
P nf(y)µ(dy)−

∫
X
π(f)µ(dy)

∣∣∣∣
≤
∫
X
|P nf(y)− π(f)|µ(dy)

≤
∫
X

sup
|f |≤V

|P nf(y)− π(f)|µ(dy)

≤
∫
X
C V (y) ρn µ(dy)

= C µ(V ) ρn.

Hence, sup
|f |≤V

|µP nf − π(f)| ≤ C µ(V ) ρn for all n ∈ N.

Proposition 6.9. (ix) ⇒ (xi).

Proof. This is the content of [19, Theorem 1], following [30]; proofs also appear in [18, Theo-

rem 15.0.1(iii)] and [23, Theorem 9]. And since the same function V is used in both conditions,

its moments are preserved.

Proposition 6.10. (xii) ⇒ (i).

Proof. Let µ be a point-mass at x, so that µ(A) = 1 if x ∈ A otherwise µ(A) = 0. Then

µ(V ) = V (x), so from (i),

‖P n(x, ·)− π(·)‖TV = ‖µP n(·)− π(·)‖TV = sup
|f |≤1

∣∣µP n(f)− π(f)
∣∣

≤ sup
|f |≤V

∣∣µP n(f)− π(f)
∣∣ ≤ C µ(V ) ρn = C V (x) ρn .

Hence, (i) holds with Cx = C V (x).

Proposition 6.11. (vii) ⇒ (viii).

Proof. The existence of a drift function V satisfying the condition (viii) follows from [18,

Theorem 15.2.4].

Proposition 6.12. (xiii) ⇒ (iv).
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Proof. Let p ∈ (1,∞), and let µ ∈ Lp(π) be a probability measure. Let j ∈ N be large enough

that 1 + 1
j
< p, so that µ ∈ L1+ 1

j (π) by Lemma 4.5. Then choose V in (xiii) such that

π(V j+1) <∞. Then, using the notation

‖f‖r :=

(∫
X
|f |r dπ

)1/r

for functions f : X → R, since 1
j+1

+ 1
1+ 1

j

= 1, we have by Hölder’s inequality that

µ(V ) =

∫
X
V (x)µ(dx) =

∫
X
V (x)

(
dµ

dπ
(x)

)
π(dx)

≤ ‖V ‖j+1

∥∥∥dµ
dπ

∥∥∥
1+ 1

j

= π(V j+1)1/(j+1) ‖µ‖
L
1+1

j (π)
< ∞.

Then,

‖µP n(·)− π(·)‖TV =
1

2
sup
|f |≤1
|µP n(f)− π(f)|

≤ 1

2
sup
|f |≤V

|µP n(f)− π(f)|

≤ 1

2
C µ(V ) ρn,

so (iv) holds with Cp,µ =
1

2
C µ(V ) <∞.

7 Proofs for Spectral Conditions

Proposition 7.1. (xiv) ⇔ (xviii), and (xv) ⇔ (xix).

Proof. (⇒) Since 1 is an eigenvalue with multiplicity 1 by Lemma 4.7, with corresponding

eigenvectors the non-zero constant functions which are not in L∞V,0, we must have SL∞V,0(P ) ⊆
SL∞V (P ) \ {1}. So, if (xiv) holds, then SL∞V,0(P ) ⊆ SL∞V (P ) \ {1} ⊆ {z ∈ C : |z| ≤ ρ} for some

ρ < 1. This implies that rL∞V,0(P ) ≤ ρ < 1.

(⇐) If ρ := rL∞V,0(P ) < 1, then since SL∞V (P ) \ {1} ⊆ SL∞V,0(P ) by Lemma 4.7, we have

SL∞V (P ) \ {1} ⊆ SL∞V,0(P ) ⊆ {z ∈ C : |z| ≤ ρ}.

Proposition 7.2. (xviii) ⇔ (xxii), and (xix) ⇔ (xxiii).
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Proof. (⇒) By the spectral radius formula ([28], Theorem 10.13), ρ = r(P |L∞V,0) = inf
n≥1
‖P n‖1/nL∞V,0

.

Hence, for any ρ0 < 1 with ρ < ρ0, there exists m ∈ N such that ‖Pm‖L∞V,0 < ρm0 < 1.

(⇐) If ‖Pm‖L∞V,0 < 1 for some m ∈ N,

r(P |L∞V,0) = inf
n≥1
‖P n‖1/nL∞V,0

≤ ‖Pm‖1/mL∞V,0
< 1,

and thus, (xxii) holds.

Proposition 7.3. (xvi) ⇔ (xx), and (xvii) ⇔ (xxi).

Proof. (⇒) Given that ρ0 = r(P − Π) = inf
n≥1
||P n − Π||1/nL∞V

, for ρ0 < ρ < 1, there exists m ∈ N

such that ||Pm − Π||L∞V < ρm < 1. Therefore, for some m ∈ N,

||Pm − Π||L∞V < 1.

(⇐) If ||Pm − Π||L∞V < 1 for some m ∈ N, given that r(P − Π) = inf
n≥1
‖P n − Π‖1/nL∞V

, we have

r(P − Π) = inf
n≥1
‖P n − Π‖1/nL∞V

≤ ‖Pm − Π‖1/mL∞V
< 1.

8 Proofs for Reversible Conditions

Proposition 8.1. (xxxii) ⇒ (xxix).

Proof. Let ρ = ‖P − Π‖L2(π) < 1. Then for each signed measure µ ∈ L2(π),

‖µ(P − Π)(·)‖L2(π) ≤ ρ‖µ‖L2(π).

Let µ ∈ L2(π) be a probability measure and let n ∈ N. By Lemma 4.8, µ− µ(X )π = µ− π is

orthogonal to π, so (µ− π)Π = 0, and hence

µP n − π = (µ− π)P n = (µ− π)(P n − Π) = (µ− π)(P − Π)n.

Therefore,

‖µP n(·)− π(·)‖L2(π) = ‖(µ− π)(P − Π)n(·)‖L2(π)

≤ ‖µ− π‖L2(π) ‖P
n − Π‖L2(π)

≤ ‖µ− π‖L2(π) ρ
n.
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Proposition 8.2. (xxix) ⇒ (xxviii).

Proof. If (xxix ) holds, for each probability measure µ ∈ L2(π) and n ∈ N,

‖µP n(·)− π(·)‖L2(π) ≤ ‖µ− π‖L2(π)ρ
n = Cµρ

n,

with Cµ = ‖µ− π‖L2(π).

Proposition 8.3. (xxviii) ⇒ (iii).

Proof. If (xxviii) holds, then by Lemmas 4.3 and 4.4, for each n ∈ N and µ ∈ L2(π) we have

‖µP n(·)− π(·)‖TV =
1

2
‖µP n(·)− π(·)‖L1(π) ≤

1

2
‖µP n(·)− π(·)‖L2(π) ≤

1

2
Cµ ρ

n.

This shows (iii) with p = 2 and ρµ = ρ.

Proposition 8.4. (iv) ⇒ (xxxiii).

Proof. Take p = 2 in (iv). Then it follows from the “(iii)⇒ (ii)” implication of [22, Theorem 2]

(which is proven by contradiction, using reversibility and the spectral measure of P acting on

L2(π)) that there is ρ < 1 such that

‖µP‖L2(π) ≤ ρ ‖µ‖L2(π)

for all probability measures µ ∈ L2(π) with µ(X ) = 0. Hence, ‖P‖π⊥ ≤ ρ < 1.

Proposition 8.5. (xxxiii) ⇔ (xxxiv).

Proof. This follows immediately from the fact (e.g. [3, Proposition VIII.1.11(e)]) that, by

reversibility, rπ⊥(P ) = ||P ||π⊥ .

Proposition 8.6. (xxxiii) ⇒ (xxxii).

Proof. From Lemma 4.9 it follows that

‖P − Π‖L2(π) = ‖P‖π⊥ .

Hence, if ‖P‖π⊥ < 1, then ‖P − Π‖L2(π) < 1.

Proposition 8.7. (xxxi) ⇔ (xxxii).

Proof. Since P is reversible, P − Π is self-adjoint by Lemma 4.8. Therefore, rL2(π)(P − Π) =

||P − Π||L2(π) (e.g. [3, Proposition VIII.1.11(e)]). Hence, ||P − Π||L2(π) < 1 if and only if

rL2(π)(P − Π) < 1.
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Proposition 8.8. (xxx) ⇔ (xxxiv).

Proof. (⇒) If (xxx ) holds, there is ρ < 1 such that

SL2(π)(P ) ⊆ {1} ∪ {λ ∈ C : |λ| ≤ ρ}.

Since 1 is an eigenvalue of multiplicity 1 by Lemma 4.7, with corresponding eigenvectors the

non-zero constant multiples of π which are not in π⊥, we must have Sπ⊥(P ) ⊆ SL2(π)(P ) \ {1}.
Hence, Sπ⊥(P ) ⊆ {λ ∈ C : |λ| ≤ ρ}. Therefore, r(P |π⊥) ≤ ρ < 1.

(⇐) If rπ⊥(P ) < 1, there is ρ < 1 with Sπ⊥(P ) ⊆ {λ ∈ C : |λ| ≤ ρ}. So, by Lemma 4.8,

SL2(π)(P ) \ {1} ⊆ Sπ⊥(P ) ⊆ {λ ∈ C : |λ| ≤ ρ}.

9 Future Directions and Open Problems

Our Theorem 1 above provides a fairly complete picture of equivalences of geometric er-

godicity. However, it does lead to some additional questions which remain, including:

Q 9.1. We have assumed throughout that the chain is φ-irreducible and aperiodic. Those prop-

erties are certainly required for, and implied by, geometric ergodicity. But do they need

to be assumed explicitly? Many of our equivalent conditions imply them, so that they do

not actually need to be mentioned. But some of our conditions do not, e.g. the drift con-

ditions (viii) and (ix ). So, which of our equivalences continue to hold without assuming

φ-irreducibility and aperiodicity?

Q 9.2. We also assumed that our state space (X ,F) is countably generated, which holds for e.g.

the Borel subsets of R and of Rd, but not for e.g. the Lebesgue-measurable subsets. It is

a very standard assumption (e.g. [18, p. 66]), used to ensure the existence of small sets

[4, 10, 20] and the measurability of certain functions (e.g. [22, Appendix]). But which of

our equivalences would continue to hold without it?

Q 9.3. The property of aperiodicity is not necessary for other important properties such as

Central Limit Theorems which involve averages of functional values like 1
M

∑M
i=1 h(Xi).

The weaker notion of variance bounding essentially corresponds to geometric ergodicity

without aperiodicity, and still implies CLTs. Many equivalences to variance bounding

have been proven for reversible chains; see [24]. But can equivalences similar to our

Theorem 1 be derived for the variance bounding property without assuming reversibility?
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Q 9.4. Our later conditions (xxviii) through (xxxiv) were only shown to be equivalent for re-

versible chains. But are there explicit counter-examples to show that they are not equiv-

alent in the absence of reversibility? Or are some of them are still equivalent to geometric

ergodicity, even without assuming reversibility? (For a start on this, [15, Theorem 1.3]

proves that without reversibility the implication (xxxi) ⇒ (i) still holds, but [15, The-

orem 1.4] makes use of [7] to show that the converse might fail.)

Q 9.5. Our equivalences are for the fairly strong property of geometric ergodicity. But are there

similar equivalences for the even stronger property of uniform ergodicity, i.e. the property

that ‖P n(x, ·)− π(·)‖TV ≤ C ρn from π-a.e. x ∈ X where C does not depend on x? (For

a start on this, see [18, Theorem 16.0.2].)

Q 9.6. In the other direction, are there similar equivalences for the weaker property of polynomial

ergodicity, i.e. the property that ‖P n(x, ·)− π(·)‖TV ≤ Cx n
−α for some α > 0? (For

some discussion and results related to this property, see e.g. [6, 11].)

Q 9.7. And, are there similar equivalences for the even weaker property of simple ergodicity, i.e.

the property that just ‖P n(x, ·)− π(·)‖TV → 0 as n → ∞ from π-a.e. x ∈ X , without

specifying any rate? (For a start on this, see e.g. [18, Theorem 13.0.1].)

We leave these questions as open problems for future work.
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Note added in proof. It follows from Proposition 16 on page 3607 of Annals of Applied

Probability 25(6) (2015) that we can also include the additional equivalent condition:

vii′) There exists a small set S ∈ F and constant κ > 1 such that if V (x) = Ex(κ
τS) for

all x ∈ X , then PV (x) ≤ λV (x) + b 1S(x) for all x ∈ X , where λ = κ−1 < 1 and

b = supx∈S V (x) <∞.

References

[1] R. C. Bradley. An exposition of some basic features of strictly stationary, reversible

Markov chains. Journal of Time Series Analysis, 42(5–6):499–533, 2021.

27



[2] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors. Handbook of Markov chain

Monte Carlo. Chapman & Hall, 2011.

[3] J. B. Conway. A course in functional analysis, 2nd ed. Springer Science Business Media,

New York, 1990.
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