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Abstract
This paper gathers together different conditions which are all equivalent to geometric
ergodicity of time-homogeneous Markov chains on general state spaces. A total of 34
different conditions are presented (27 for general chains plus 7 for reversible chains),
some old and some new, in terms of such notions as convergence bounds, drift con-
ditions, spectral properties, etc., with various assumptions about the distance metric
used, finiteness of function moments, initial distribution, uniformity of bounds, and
more. Proofs of connections among the various conditions are provided, somewhat
self-contained but using some results from the literature where appropriate.

Keywords Markov chain · Geometric ergodicity · Convergence rate · Drift
condition · Spectral gap

Mathematics Subject Classification 60J05 · 60J22

1 Introduction

The increasing importance ofMarkov chainMonteCarlo (MCMC) algorithms (see e.g.
[2] and the many references therein) has focused attention on the rate of convergence
of (time-homogeneous) Markov chains to their stationary distribution. While it is
most useful to have explicit quantitative bounds on the distance to stationarity (see
e.g. [13, 27] and the references therein), qualitative convergence bounds are often
more feasible to obtain. The most commonly used qualitative convergence property
is geometric ergodicity, i.e. exponentially fast convergence to stationarity, which has
been widely studied (e.g. [18, 23, 29]), and indeed has become a de facto method of
assessing the value of MCMC algorithms.

In addition to fast convergence, geometric ergodicity also guarantees a Markov
chain Central Limit Theorem (CLT), i.e. the convergence of scaled sums of functional
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values to a fixed normal distribution, for all functionals with finite 2+ δ moments [9,
Theorem 18.5.3] (see also [8]), or even just 2nd moments assuming reversibility [22].
Such CLTs are helpful for understanding the errors which arise from Monte Carlo
estimation (see e.g. [12, 25, 29]). However, geometric ergodicity and CLTs do not
hold for all Markov chains nor all MCMC algorithms (see e.g. [21] and [23, Theorem
22]).

For certain types of MCMC algorithms, geometric ergodicity is fairly well under-
stood. For example, it is known that an Independence Sampler is geometrically ergodic
if and only if its proposal density is bounded below by a constant multiple of the target
density [16], and that the popular RandomWalkMetropolis algorithm is geometrically
ergodic essentially if and only if its target distribution has exponentially light tails [17,
25]. However, for many other complicated Markov chains and MCMC algorithms,
geometric ergodicity is not clear.

One promising way of establishing geometric ergodicity is to show that some other
properties ofMarkov chains imply it, or are even equivalent to it. This has been shown,
by [18, 22, 26, 29] and others, for properties such as drift conditions, spectral bounds,
and more. However, such relationships are scattered throughout the literature, are not
always stated in full generality, and are often presented as just one-way implications.
In the current work, we present a total of 34 different conditions which are equivalent
to geometric ergodicity for Markov chains on general state spaces (27 for general
chains plus 7 just for reversible chains; some previously known and some new). We
then provide proofs of all of the equivalences (somewhat self-contained, though using
known results where needed); see Fig. 1.

To illustrate the flavour of the various equivalences, consider the following:

• The usual definitions of geometric ergodicity state that theMarkov chain’s distance
to stationarity after n iterations is bounded by a constant times ρn for some ρ < 1.
But what “distance” should be used: total variation, or V -norm, or L2(π)? And,
how does the “constant” depend on the starting state X0 = x?Must those constants
have finite expected value with respect to π? What about finite j th moments?

• If the initial state X0 is itself chosen from a non-degenerate initial distribution
probability measureμ, then will the convergence to stationarity still be geometric,
at least if μ is, say, in L p(π)?

• Geometric ergodicity is well known to be implied by drift conditions of the form
PV (x) ≤ λ V (x) + b 1S(x) for some function V : X → [1,∞] and λ < 1
and b < ∞ and small set S. But are such drift conditions actually equivalent
to geometric ergodicity? And, can the drift function V be taken to have finite
stationary mean? finite j th moment?

• Geometric ergodicity is also related to the Markov operator P having a spectral
gap. But as an operator on what space: L∞

V ? for what function V ? having which
finite moments? And should the “gap” be identified by removing the eigenvalue 1
directly, or by subtracting off �, or by restricting to the zero-mean space L∞

V ,0?• Geometric ergodicity is implied by the Markov operator norm being less than 1.
But for which operator: P , or Pm for some m ∈ N? Regarded as an operator on
L∞

V or L∞
V ,0? For what choice of V ? Having which finite moments?
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• If the Markov chain is assumed to be reversible, so that the operator P is self-
adjoint on L2(π), then in which of the above conditions can the operator norm be
taken to be L2(π)?

We shall see that the answer to these questions is, essentially, “all of the above”. That
is, we shall state many different conditions, which cover essentially all of the above
possibilities, and shall prove that they are all equivalent. In our desire to be thorough,
we might have gone a bit overboard listing so many different conditions, including
somewhich are justminor variations of each other. However, we believe that additional
equivalent conditions can only help: the equivalences with weaker assumptions are
easier to establish, while the equivalences with stronger assumptions are most useful
for drawing conclusions or analysing further. We know from bitter experience that
it can be very frustrating to discover a statement about geometric ergodicity which
is almost, but not quite, exactly what we can verify, or exactly what is needed to
finish a particular proof. This has led us to adopt a “the more the merrier” attitude
regarding different but similar conditions. The reader can, of course, choose to ignore
all conditions which are not germaine to their work.

As mentioned, many of the equivalences presented herein were already known;
see the Remark after Theorem 1 below. Thus, this paper falls somewhere in between
an expository/review paper and a original research paper, but we hope it is helpful
nonetheless.

Basic definitions necessary to understand the conditions, such as total variance
distance, L∞

V norms, L p(π) spaces, reversibility, etc., are presented in Sect. 2. Then,
in Sect. 3, all of the equivalent conditions are introduced (Theorem 1). Sections4, 5,
6, 7 and 8 are then devoted to proving all of the equivalences; see Fig. 1 for a visual
guide showing which implications are proved by which of our results. Our proofs are
somewhat self-contained, but we do use known results in the literature (especially
[18]) where needed. Finally, we close in Sect. 9 with some future directions and open
problems (Q9.1 through Q9.7).

2 Definitions and Background

Throughout this paper, � = {Xn}∞n=0 is a discrete-time, time-homogeneous Markov
chain on a general state space X equipped with a σ -algebra F . And, P is the corre-
sponding Markov kernel, so that P(x, A) = P[Xn ∈ A | Xn−1 = x] for all x ∈ X and
A ∈ F and n ∈ N. The kernel P acts to the left on (possibly signed) measures, and to
the right on functions, by:

(μP)(A) =
∫

P(x, A) μ(dx), (P f )(x) =
∫

f (y) P(x, dy).

The higher-order transitions are then defined inductively by:

Pn(x, A) =
∫
X

P(x, dy) Pn−1(y, A), x ∈ X , A ∈ F , n ∈ N.
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We shall assume throughout P has a stationary distribution, i.e. a probability dis-
tribution π on (X ,F) which is preserved by P in the sense that π P = π . We define
� := 1X ⊗ π by

�(x, A) = (1X ⊗ π)(x, A) = π(A), x ∈ X , A ∈ F ,

so that

(μ�)(A) = (
μ(1X ⊗ π)

)
(A) = μ(X ) π(A).

If μ is a probability measure, then (μ�)(A) = π(A), and μ(Pn − �) = μPn − π .
Also, by stationarity of π , we have (P − �)n = Pn − � for each n ∈ N.

We shall assume that our Markov chain is φ-irreducible, i.e. there exists a nonzero
σ -finite measure φ on (X ,F) such that for all x ∈ X and A ⊆ X with φ(A) > 0,
there is n ∈ N with Pn(x, A) > 0. We shall also assume that it is aperiodic, i.e. there
do not exist d ≥ 2 and disjoint X1, . . . ,Xd ⊆ X of positive π measure, such that
P(x,Xi+1) = 1 for all x ∈ Xi (i = 1, . . . , d −1) and P(x,X1) = 1 for all x ∈ Xd . It
is well known (e.g. [18, 23]) that these conditions guarantee that Pn(x, A) → π(A)

as n → ∞ (see also Q9.1 and Q9.3 below). Geometric ergodicity then corresponds to
the property, which may or may not hold, that this convergence occurs exponentially
quickly.

We shall also assume that the state space (X ,F) is countably generated, i.e. that
there exists A1, A2, . . . ∈ F such that F = σ(A1, A2, . . .), i.e. F is the smallest
σ -algebra containing all of the Ai . This technical property ensures the existence of
small sets [4, 10, 20] and the measurability of certain functions [22, Appendix] (see
also Q9.2 below).

A subset S ∈ F is called small if π(S) > 0 and there is m > 0 and a nonzero
measure ν on (X ,F) such that Pm(x, A) ≥ ν(A) for all x ∈ S and A ∈ F , i.e. if
all of the m-step transition probabilities from within S all have some “overlap”. This
property is very useful for coupling constructions and for ensuring convergence to
stationarity (see e.g. [18, 23]).

The total variation distance between two probability measuresμ1 andμ2 is defined
by:

‖μ1 − μ2‖TV = sup
A∈F

|μ1(A) − μ2(A)| ≡ 1

2
sup

| f |≤1

∣∣∣
∫

f dμ1 −
∫

f dμ2

∣∣∣

(see e.g. [23, Proposition 3(b)]). Given a positive function V : X → R, we define [18,
p. 390] the V -norm | f |V = sup

x∈X
| f (x)|
V (x)

. We let L∞
V be the vector space of all functions

f : X → R such that | f |V < ∞, and let L∞
V ,0 = { f ∈ L∞

V : π( f ) = 0}. Then, we
define the V -norm of a Markov kernel P as

‖P‖L∞
V

= sup
f ∈L∞

V| f |V =1

|P f |V ; ‖P‖L∞
V ,0

= sup
f ∈L∞

V ,0| f |V =1

|P f |V .

123



Journal of Theoretical Probability

For a (possibly signed) measure μ, we define ‖μ‖L p(π) for 1 ≤ p < ∞ by

‖μ‖p
L p(π) =

⎧⎪⎪⎨
⎪⎪⎩

μ+(X ) + μ−(X ), if p = 1∫
X

∣∣∣dμ
dπ

∣∣∣p
dπ, if μ � π

∞, otherwise.

(If p = 1 and μ � π , then the two definitions coincide.) We let L p(π) be the
collection of all signed measures μ on (X ,F) with ‖μ‖L p(π) < ∞, and define the
L p(π)-norm of a transition kernel P acting on the set L p(π) by:

‖P‖L p(π) = sup
‖μ‖L p (π)=1

‖μP(·)‖L p(π) .

(Note in particular that the L p(π) are collections of signed measures, while L∞
V and

L∞
V ,0 are collections of functions.)
The transition kernel P is reversible with respect to π if π(dx) P(x, dy) =

π(dy) P(y, dx) for all x, y ∈ X . This is equivalent to P being a self-adjoint operator
on the Hilbert space L2(π), with inner product given by

〈μ, ν〉 =
∫
X

dμ

dπ

dν

dπ
dπ.

In particular, 〈μ,π〉 = ∫
X

dμ
dπ 1 dπ = μ(X ). We also let π⊥ := {μ ∈ L2(π) :

μ(X ) = 0} be the set of signed measures in L2(π) which are “perpendicular” to π ,
i.e. for which 〈μ,π〉 ≡ μ(X ) = 0. Our conditions (xxviii) through (xxxiv) are only
proven to be equivalent for reversible chains (though see Q9.4 below).

Finally, given an operator P on a Banach space (i.e. a complete normed vector
space) V , e.g. V = L∞

V or L2(π), the spectrum of P , denoted by S(P) or SV (P),
is the set of all complex numbers λ such that λI − P is not invertible (see e.g. [28,
p. 253]). And, the spectral radius of P is the number r(P) = rV (P) = supλ∈SV (P) |λ|.

3 Main Result: Statement of Equivalences

We now provide a list of 27 conditions which are always equivalent to geometric
ergodicity of Markov chains, and an additional 7 (for 34 total) which are also equiva-
lent for reversible chains. Some of the conditions are very similar to each other, but are
included to allow formaximumflexibilitywhen establishing or using geometric ergod-
icity in both theoretical investigations and applications. For ease of comprehension,
similar conditions are grouped together under common subheadings.

Theorem 1 Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain
� = {Xn} with stationary probability distribution π on a countably generated mea-
surable state space (X ,F). Then, the following are equivalent (and all correspond to
being “geometrically ergodic”):
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Geometric Convergence in TV:

i) � is geometrically ergodic starting from π -a.e. x ∈ X with constant geometric
rate. This means there is fixed ρ < 1 such that for π -a.e. x ∈ X there is
Cx < ∞ with∥∥Pn(x, ·) − π(·)∥∥TV ≤ Cx ρn for all n ∈ N.

ii) There exists A ∈ F with π(A) > 0 such that � is geometrically ergodic
starting from each x ∈ A. This means for each x ∈ A, there are ρx < 1 and
Cx < ∞ with∥∥Pn(x, ·) − π(·)∥∥TV ≤ Cx ρn

x for all n ∈ N.

iii) There exists p ∈ (1,∞) such that � is geometrically ergodic starting from
all probability measures in L p(π). This means there is some p ∈ (1,∞) such
that for each probability measure μ ∈ L p(π) there are constants ρμ < 1 and
Cμ < ∞ with∥∥μPn(·) − π(·)∥∥TV ≤ Cμ ρn

μ for all n ∈ N.

iv) For all p ∈ (1,∞), � is geometrically ergodic starting from all probability
measures in L p(π) with geometric rate depending only on p. This means for
each p ∈ (1,∞), there is ρp < 1 such that for each probability measure
μ ∈ L p(π) there is C p,μ < ∞ with∥∥μPn(·) − π(·)∥∥TV ≤ C p,μ ρn

p for all n ∈ N.

v) There exists a small set S ∈ F such that � is geometrically ergodic uniformly
over starting states within S. This means there are constants ρS < 1 and
CS < ∞ with

sup
x∈S

∥∥Pn(x, ·) − π(·)∥∥TV ≤ CS ρn
S for all n ∈ N.

vi) There exists a small set S ∈ F such that � is geometrically ergodic starting
from the stationary distribution restricted to S. This means there are constants
ρS < 1 and CS < ∞ with∥∥πS Pn(·) − π(·)∥∥TV ≤ CS ρn

S for all n ∈ N,

where πS is the probability measure defined by πS(A) = π(S ∩ A)
/

π(S)

for A ∈ F .

Geometric Return Time

(vii) There exists a small set S ∈ F and constant κ > 1 such that

sup
x∈S

Ex [κτS ] < ∞
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where τS is the first return time to S, and Ex is expected value conditional on
X0 = x.

V -Function Drift Condition

(viii) There exists a π -a.e.-finite measurable function V : X → [1,∞], a small
set S ∈ F , and constants λ < 1 and b < ∞ with

PV (x) ≤ λ V (x) + b 1S(x) for all x ∈ X .

(ix) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞], a small set S ∈ F , and constants λ < 1 and b < ∞ with π(V j ) < ∞
and

PV (x) ≤ λ V (x) + b 1S(x) for all x ∈ X .

V -Uniform Convergence

x) There exists a π -a.e.-finite measurable function V : X → [1,∞] such that
� is V -uniformly ergodic. This means there is ρ < 1 and C < ∞ such that

sup
| f |≤V

∣∣Pn f (x) − π( f )
∣∣ ≤ C V (x) ρn for all x ∈ X and n ∈ N.

xi) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that � is V -uniformly ergodic. This means
there is ρ < 1 and C < ∞ such that

sup
| f |≤V

∣∣Pn f (x) − π( f )
∣∣ ≤ C V (x) ρn for all x ∈ X and n ∈ N.

xii) There exists a π -a.e.-finite measurable function V : X → [1,∞], and con-
stants ρ < 1 and C < ∞, such that for each probability measure μ on X
with μ(V ) < ∞,

sup
| f |≤V

∣∣μPn( f ) − π( f )
∣∣ ≤ C μ(V ) ρn for all n ∈ N.

xiii) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, and constants ρ < 1 and C < ∞, such that for
each probability measure μ on X with μ(V ) < ∞,

sup
| f |≤V

∣∣μPn( f ) − π( f )
∣∣ ≤ C μ(V ) ρn for all n ∈ N.

Spectral Gap

xiv) There exists j ∈ N and a π -a.e.-finite measurable function V : X → [1,∞]
with π(V j ) < ∞, such that P has a spectral gap as an operator on
L∞

V , meaning 1 is an eigenvalue of P (which must have multiplicity 1 by
Lemma 4.7), and there is ρ < 1 such that

SL∞
V

(P) \ {1} ⊆ {z ∈ C : |z| ≤ ρ}.
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xv) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that P has a spectral gap as an operator
on L∞

V , meaning 1 is an eigenvalue of P (which must have multiplicity 1 by
Lemma 4.7), and there is ρ < 1 such that

SL∞
V

(P) \ {1} ⊆ {z ∈ C : |z| ≤ ρ}.

Spectral Radius

xvi) There exists j ∈ N and a π -a.e.-finite measurable function V : X → [1,∞]
with π(V j ) < ∞, such that P − � has spectral radius less than one as an
operator on L∞

V , i.e.

rL∞
V

(P − �) < 1.

xvii) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that P − � has spectral radius less than one
as an operator on L∞

V , i.e.

rL∞
V

(P − �) < 1.

xviii) There exists j ∈ N and a π -a.e.-finite measurable function V : X → [1,∞]
with π(V j ) < ∞, such that P has spectral radius less than one as an operator
on L∞

V ,0, i.e.

rL∞
V ,0

(P) < 1.

xix) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that P has spectral radius less than one as
an operator on L∞

V ,0, i.e.

rL∞
V ,0

(P) < 1.

L∞
V Operator Norm

xx) There exists j, m ∈ N and a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that

∥∥Pm − �
∥∥

L∞
V

< 1.

xxi) For all j ∈ N, there exists m ∈ N and a π -a.e.-finite measurable function
V : X → [1,∞] such that π(V j ) < ∞ and

∥∥Pm − �
∥∥

L∞
V

< 1.
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xxii) There exists j, m ∈ N and a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, such that

∥∥Pm
∥∥

L∞
V ,0

< 1.

xxiii) For all j ∈ N, there exists m ∈ N and a π -a.e.-finite measurable function
V : X → [1,∞] with π(V j ) < ∞, such that

∥∥Pm
∥∥

L∞
V ,0

< 1.

xxiv) There exists j ∈ N and a π -a.e.-finite measurable function V : X → [1,∞]
with π(V j ) < ∞, and constants ρ < 1 and C < ∞, such that

∥∥Pn − �
∥∥

L∞
V

≤ C ρn for all n ∈ N.

xxv) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, and constants ρ < 1 and C < ∞, such that

∥∥Pn − �
∥∥

L∞
V

≤ C ρn for all n ∈ N.

xxvi) There exists j ∈ N and a π -a.e.-finite measurable function V : X → [1,∞]
with π(V j ) < ∞, and constants ρ < 1 and C < ∞, such that

∥∥Pn
∥∥

L∞
V ,0

≤ C ρn for all n ∈ N.

xxvii) For all j ∈ N, there exists a π -a.e.-finite measurable function V : X →
[1,∞] with π(V j ) < ∞, and constants ρ < 1 and C < ∞, such that

∥∥Pn
∥∥

L∞
V ,0

≤ C ρn for all n ∈ N.

Conditions Assuming Reversibility

Furthermore, if � is reversible, then the following are also equivalent to the above:

xxviii) � is L2(π)-geometrically ergodic starting from any probability measure μ

in L2(π) with uniform convergence rate. This means there is ρ < 1 such
that for each probability measure μ ∈ L2(π), there is a constant Cμ < ∞
such that

∥∥μPn(·) − π(·)∥∥L2(π)
≤ Cμ ρn for all n ∈ N.

xxix) There exists ρ < 1 such that for each probability measure μ ∈ L2(π),

∥∥μPn(·) − π(·)∥∥L2(π)
≤ ‖μ − π‖L2(π) ρn for all n ∈ N.
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xxx) P has a spectral gap as an operator on L2(π), meaning that 1 is an eigen-
value of P (which must have multiplicity 1 by Lemma 4.7), and there is
ρ < 1 with

SL2(π)(P)\{1} ⊆ {z ∈ C : |z| ≤ ρ}.

xxxi) P − � has spectral radius less than one as an operator on L2(π), i.e.

rL2(π)(P − �) < 1.

xxxii) P − � has operator norm less than one as an operator on L2(π), i.e.

‖P − �‖L2(π) < 1.

xxxiii) P has operator norm less than one as an operator on π⊥, i.e.

‖P‖π⊥ < 1.

xxxiv) P|π⊥ has spectral radius less than one as an operator on π⊥, i.e.

rπ⊥(P) < 1.

Remark A number of the above equivalences are already known, as follows. The
fact that (vi) implies (i) was shown in [30] on countable state spaces and then in
[19, Theorem 1] on general state spaces. The equivalence of (vi), (vii), and (viii),
together with the fact that they imply (i), was presented in [18, Theorem 15.0.1].
The equivalence of (viii), (x), (xx), and (xxvi) was presented in [18, Theorem 16.0.1].
The equivalence of the group (i), (vi), (x), (xi), (xxi), and (xxiii) was presented in
[22, Proposition 1], and the equivalence (assuming reversibility) of the group (xxviii),
(xxix), and (xxxiii) was presented in [22, Theorem 2], together with the fact that the first
group implies the second. The reverse implication, that the second group implies the
first, was then shown in [26]. Discussions related to the spectral gap conditions (xiv)
and (xv) and (xxx) appear in [14]. The equivalence of (xiv) and (viii) is shown in [15,
Proposition 1.1], and the equivalence of (xxxi) and (i) for reversible chains is shown in
[15, Proposition 1.2]. Our Theorem 1 is an attempt to combine and bring together all
of these various results, and add others too. (Since initiating this work, we also learned
of the recent review [1], which presents certain equivalences for reversible chains in
terms of mixing conditions and maximal correlations, which complement some of our
conditions (xxviii) through (xxxiv). In addition, the recent volume [5] expands upon
much of the material in [18].)

Most of the remainder of this paper is devoted to proving Theorem 1. The proof
is divided up into different sections below, in terms of which types of conditions
are considered: Sect. 4 provides some preliminary lemmas, Sect. 5 relates to various
“Geometric” conditions, Sect. 6 relates to various conditions involving V functions
and L∞

V bounds, Sect. 7 relates to various spectral conditions, and Sect. 8 relates to
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Fig. 1 Diagram illustrating which of this paper’s results (yellow edge labels) provide proofs of implications
betweenwhich of the different equivalent conditions (nodes). (All arrows touching a green rectangle assume
that the chain is reversible.)

various conditions for reversible chains. To help the reader (and ourselves) keep track,
Fig. 1 provides a diagram showing which of our results prove implications between
which of the equivalent conditions. Our proofs are somewhat self-contained, but we
use known results from the literature (especially [18]) where appropriate. Section9
then presents some future directions and open problems.

4 Preliminary Lemmas

We begin with some preliminary lemmas, which are used freely in the sequel, and can
be referred to as needed.
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Lemma 4.1 Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain
with stationary distribution π on a countably generated state space X . Then for any
measurable subset A ⊆ X such that π(A) > 0, there exists a small set S, such that
S ⊆ A.

Proof This result goes back to [4, 10, 20], and uses that F is countably generated; see
e.g. Theorems 5.2.1 and 5.2.2 in [18]. ��
Lemma 4.2 Let P be the transition kernel of a φ-irreducible, aperiodic Markov chain
with stationary distribution π on a countably generated state space X . Then, the
function Dn : X → [0,∞) defined by Dn(x) = ‖Pn(x, ·) − π(·)‖TV is measurable.

Proof This follows from [22, Appendix], which proves that for any bounded signed
measure ν(·, A) on a countably generated space such that the function x �→ ν(x, A)

is measurable for each fixed A ∈ F , the function x �→ supA∈F ν(x, A) is also
measurable. ��
Lemma 4.3 For probability measuresμ1 andμ2,‖μ1 − μ2‖TV = 1

2 ‖μ1 − μ2‖L1(π).

Proof Recall that ‖μ1 − μ2‖TV = supA∈F |μ1(A) − μ2(A)|. Let ν = μ1 + μ2 so
that μi � ν, and let fi = dμi

dν . Then μ1(A) − μ2(A) = ∫
A[ f1(x) − f2(x)] ν(dx).

This is maximized when A = A+ := {x : f1(x) > f2(x)}, and its negative takes the
same maximum when A = AC+. Hence,

‖μ1 − μ2‖TV = μ1(A+) − μ2(A+) =
∫

A+
[ f1(x) − f2(x)] ν(dx).

But then

‖μ1 − μ2‖L1(π) = (μ1 − μ2)
+(X ) + (μ1 − μ2)

−(X )

=
∫

A+
[ f1(x) − f2(x)] ν(dx) +

∫
AC+

[ f2(x) − f1(x)] ν(dx)

= 2
∫

A+
[ f1(x) − f2(x)] ν(dx)

= 2 ‖μ1 − μ2‖TV .

��
Lemma 4.4 For any signed measure μ � π , we have ‖μ‖L1(π) ≤ ‖μ‖L2(π) (though
one or both of those quantities might be infinite).

Proof Recall the definition 〈μ, ν〉 = ∫
X

dμ
dπ

dν
dπ dπ . Hence, if |μ| is the measure with

d|μ|
dπ = ∣∣ dμ

dπ

∣∣, then 〈|μ|, π〉 = ∫
X

∣∣ dμ
dπ

∣∣ (1) dπ = μ+(X ) + μ−(X ) = ‖μ‖L1(π). Also

‖ |μ| ‖L2(π) =
√∫

X

∣∣∣∣dμdπ
∣∣∣∣
2

dπ =
√∫

X

(
dμ

dπ

)2

dπ = ‖μ‖L2(π) ,
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and

‖π‖L2(π) =
√∫

X

(
dπ

dπ

)2

dπ =
√∫

X
(
1
)2 dπ = 1.

So, by the Cauchy–Schwarz inequality,

‖μ‖L1(π) = 〈|μ|, π〉 ≤ ‖ |μ| ‖L2(π) ‖π‖L2(π) = ‖μ‖L2(π) (1) = ‖μ‖L2(π) .

��
Lemma 4.5 For all 1 ≤ p < s < ∞, we have Ls(π) ⊆ L p(π).

Proof Let 1 ≤ p < s < ∞, and let μ ∈ Ls(π) so ‖μ‖Ls (π) < ∞. Then,

‖μ‖p
L p(π) =

∫
X

∣∣∣∣dμdπ
∣∣∣∣

p

dπ ≤
∫
X

(
1 +

∣∣∣∣dμdπ
∣∣∣∣
s)

dπ = 1 + ‖μ‖s
Ls (π) < ∞,

so μ ∈ L p(π). ��
We next present some lemmas which mention spectra of operators.

Lemma 4.6 Suppose an operator P on a Banach space V can be decomposed as
a direct sum P = P1 ⊕ P2, where V = V1 × V2 and each Pi is an operator on
Vi , meaning that P(h1, h2) = (P1h1, P2h2) for all h1 ∈ V1 and h2 ∈ V2. Then
SV (P) = SV1(P1) ∪ SV2(P2), i.e. the spectrum of P is the union of the spectra of the
sub-operators P1 and P2.

Proof Since P = P1 ⊕ P2, therefore P has the block decomposition

P =
(

P1 0
0 P2

)

with respect to V = V1 × V2. If λ /∈ SV1(P1) ∪ SV2(P2), then there are inverse
operators Ai on Vi such that (λIi − Pi )Ai = Ai (λIi − Pi ) = Ii for i = 1, 2, whence
(λI − P)(A1, A2) = (A1, A2)(λI − P) = I1 ⊕ I2 = I , so λ /∈ SV (P). Conversely,
if λ /∈ SV (P), then λI − P has some inverse operator, so in block form we have

(
λI1 − P1 0

0 λI2 − P2

) (
A B
C D

)
=

(
A B
C D

)(
λI1 − P1 0

0 λI2 − P2

)

= I =
(

I1 0
0 I2

)
.

It follows that (λI1−P1)A = A(λI1−P1) = I1 and (λI2−P2)D = D(λI2−P2) = I2,
so that λ /∈ SV1(P1) ∪ SV2(P2). ��
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Lemma 4.7 Let P be the transition kernel of a φ-irreducible Markov chain with sta-
tionary distribution π(·), and let V : X → [1,∞] be a π -a.e.-finite measurable
function. Then, the following hold:

1) | f |V ≤ 1 if and only if | f (x)| ≤ V (x) for all x ∈ X .
2) If there is j ∈ N with π(V j ) < ∞, then π(V ) < ∞.
3) If P is a bounded operator on L∞

V , then SL∞
V

(P) \ {1} ⊆ SL∞
V ,0

(P).
4) The number 1 is an eigenvalue of P with multiplicity 1, regarding P as an operator

on L p(π) for any 1 ≤ p < ∞. Furthermore, if π(V j ) < ∞ for some j ∈ N, then
this also holds regarding P as an operator on L∞

V or L∞
V ,0.

5) If there are λ < 1 and b < ∞ and a small set S ∈ F with PV (x) ≤ λ V (x) +
b 1S(x) for all x ∈ X , then π(V ) < ∞.

Proof 1) If | f |V ≤ 1, then for each x ∈ X ,

| f (x)|
V (x)

≤ | f |V ≤ 1,

from which we conclude that | f | ≤ V . Conversely, if | f | ≤ V , then for each

x ∈ X ,
| f (x)|
V (x)

≤ 1, and thus | f |V = supx∈X
| f (x)|
V (x)

≤ 1.

2) This follows since we always have V (x) ≤ V j (x) + 1. [In fact, since V ≥ 1, the
“+1” is not actually necessary.]

3) Any f ∈ L∞
V can be written as f = f0 + c where f0 ∈ L∞

V ,0 and c = π( f ).
Then P f = P f0 + c. It follows that P has the direct sum representation P =
P0 ⊕ IR, where IR is the identity operator on R. Hence, by Lemma 4.6, SL∞

V
(P) =

SL∞
V ,0

(P) ∪SR(IR) = SL∞
V ,0

(P) ∪ {1}. So, SL∞
V

(P) \ {1} ⊆ SL∞
V ,0

(P), as claimed.
4) Since P is φ-irreducible with stationary probability measure π , it follows that

P is “positive” as defined on [18, p. 235]. Hence, P is recurrent by [18, Propo-
sition 10.1.1]. Then, [18, Theorem 10.0.1] shows that π is unique, i.e. P has
a unique invariant probability measure. This implies by [5, Proposition 22.1.2]
that 1 is an eigenvalue of P with multiplicity 1 on any L p(π) space. Furthermore,
if π(V j ) < ∞, then | f | ≤ CV implies that π(| f | j ) ≤ C jπ(V j ) < ∞, so in that
case L∞

V and L∞
V ,0 are subspaces of L j (π), and hence the result holds on L∞

V and
L∞

V ,0 too.
5) The implication “(i i i) ⇒ (i)” of [18, Theorem 14.0.1] with the choice f (x) =

(1 − λ) V (x) shows that π( f ) < ∞, i.e. (1 − λ) π(V ) < ∞, hence π(V ) < ∞.
[In fact, once we know that π(V ) < ∞, then since PV ≤ λ V + b, it follows that
π(PV ) ≤ π(λV + b), i.e. π(V ) ≤ λ π(V ) + b, and hence π(V ) ≤ b

/
(1 − λ).]

��
Lemma 4.8 Let P be the transition kernel of a reversible Markov chain with stationary
distribution π , such that P is a bounded operator on L2(π). Then, the following holds:

1) The operator P − � is self-adjoint.
2) For each μ ∈ L2(π), the signed measure μ − μ(X )π is orthogonal to π .
3) For each μ ∈ L2(π), ‖μ − μ(X )π‖2

L2(π)
= ‖μ‖2

L2(π)
− μ(X )2.

4) SL2(π)(P) \ {1} ⊆ Sπ⊥(P).
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Proof 1) For μ, ν ∈ L2(π), we have 〈μ(P − �), ν〉 = 〈μP, ν〉 − 〈μ�, ν〉. Now,
since P is reversible, it is self-adjoint on L2(π), so 〈μP, ν〉 = 〈ν P, μ〉. Also, we
compute that 〈μ�, ν〉 = 〈μ(X )π, ν〉 = μ(X ) ν(X ) = 〈ν�,μ〉. Hence, 〈μ(P −
�), ν〉 = 〈ν(P − �),μ〉, so P − � is self-adjoint.

2) Let μ ∈ L2(π), then,

〈μ − μ(X )π, π〉 = 〈μ,π〉 − μ(X )〈π, π〉 = 〈μ,π〉 − 〈μ,π〉 ‖π‖L2(π)

= 〈μ,π〉 − 〈μ,π〉 = 0.

3) Let μ ∈ L2(π). Then,

‖μ − μ(X )π‖2L2(π)
=

∫
X

∣∣∣∣dμdπ (y) − μ(X ) (1)

∣∣∣∣
2

π(dy)

=
∫
X

[(
dμ

dπ
(y)

)2

− 2μ(X )
dμ

dπ
(y) + μ(X )2

]
π(dy)

= ‖μ‖2L2(π)
− 2μ(X )2 + μ(X )2

= ‖μ‖2L2(π)
− μ(X )2.

4) Any signed measure μ ∈ L2(π) can be decomposed as μ = μ0 + c π , where c =
〈μ,π〉 = μ(X ), and 〈μ0, π〉 = μ0(X ) = 0, soμ0 ∈ π⊥. ThenμP = μ0P +c π .
It follows that P has the direct sum representation P = P|π⊥ ⊕ IR with respect
to L2(π) = π⊥ × R. Hence, by Lemma 4.6, SL2(π)(P) = Sπ⊥(P) ∪ {1}, so
SL2(π)(P) \ {1} ⊆ Sπ⊥(P), as claimed. ��

Lemma 4.9 Let P be a transition kernel from a reversible Markov chain with stationary
distribution π . Then,

‖P − �‖L2(π) = ‖P‖π⊥ .

Proof Anyμ ∈ L2(π) can be written asμ = μ0+c π , where c = μ(X ) andμ0 ∈ π⊥
so μ0(X ) = 0. Then μ0� = μ0(X ) π = 0, so

μ(P − �) = (μ0 + c π)(P − �) = μ0P + c π − 0 − c π = μ0P.

Also ‖μ‖L2(π) = ‖μ0‖L2(π) + c2 ≥ ‖μ0‖L2(π). Hence,

‖P − �‖L2(π) = sup
0<‖μ‖L2(π)

<∞
||μ(P − �)||L2(π)

‖μ‖L2(π)

= sup
0<‖μ‖L2(π)

<∞
||μ0P||L2(π)

‖μ0‖L2(π) + c2
.

This supremum is achieved when c = 0, i.e. when μ = μ0 ∈ π⊥, so that
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‖P − �‖L2(π) = sup
0<‖μ0‖L2(π)

<∞
μ0∈π⊥

||μ0P||L2(π)

‖μ0‖L2(π)

= ‖P‖π⊥ .

��

5 Proofs for Geometric Conditions

We now begin proving the actual equivalences of the various conditions in Theorem 1,
as per the plan illustrated in Fig. 1. We begin with some results related to some of the
“geometric” conditions.

Proposition 5.1 (iv) ⇒ (i i i).

Proof Immediate upon e.g. choosing p = 2 and setting Cμ = C2,μ and ρμ = ρ2 for
each probability measure μ ∈ L2(π). ��
Proposition 5.2 (i i i) ⇒ (vi).

Proof By Lemma 4.1, there exists a small set S ⊂ X . Since by assumption P is
geometrically ergodic starting from all probability measures in L p(π) it suffices to
show that πS ∈ L p(π). Now for any measurable A ⊂ X we have,

πS(A) = π(S ∩ A)

π(S)
= 1

π(S)

∫
A
1Sdπ

which implies dπS
dπ = 1S/π(S). Thus

∫
X

∣∣∣∣dπS

dπ

∣∣∣∣
p

dπ =
∫
X

1

π(S)p
1Sdπ = 1

π(S)p−1 < ∞

��
Proposition 5.3 (vi) ⇒ (i).

Proof This is the result of [19, Theorem 1], which generalizes the countable state
space result of [30]. ��
Proposition 5.4 (i) ⇒ (i i).

Proof Immediate upon choosing A = X , and ρx = ρ for all x ∈ X . ��
Proposition 5.5 (i i) ⇒ (v).

Proof Let A ∈ F withπ(A) > 0 and ‖Pn(x, ·) − π(·)‖TV ≤ Cx ρn
x for all x ∈ A and

n ∈ N. For each n ∈ N, let Dn : A → [0,∞) by Dn(x) = ‖Pn(x, ·) − π(·)‖TV. Then
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each Dn ismeasurable byLemma4.2, hence so are the functions r , s, M : A → [0,∞]
defined by

r(x) = lim sup
n→∞

[Dn(x)1/n], s(x) = [r(x) + 1]/2, M(x) = sup
n

[Dn(x)/s(x)n].

In particular, for each n ∈ N, we have M(x) ≥ Dn(x)/s(x)n , hence Dn(x) ≤
M(x) s(x)n .

Next, note that (i i) says that for each x ∈ A, Dn(x) ≤ Cx ρn
x , so r(x) ≤

lim supn→∞[Cx ρn
x ]1/n = ρx < 1. Hence r(x) < s(x) < 1. In particular,

lim supn→∞ [Dn(x)1/n] < s(x). Hence, there is N (x) ∈ N such that for all n > N (x)

we have Dn(x)1/n < s(x), i.e. Dn(x)/s(x)n < 1. Then,

M(x) ≤ max[D1(x)/s(x)1, D2(x)/s(x)2, . . . , DN (x)(x)/s(x)N (x), 1] < ∞.

Now, since s and M are measurable, so are the nested subsets

Bk :=
{

x ∈ A : s(x) ≤ 1 − 1

k
, M(x) ≤ k

}
, k ∈ N.

Since s(x) < 1 and M(x) < ∞ for each x ∈ A, wemust have
⋃

k Bk = A. Continuity
of measures then implies that limk→∞ π(Bk) = π(A) > 0, so there is K ∈ N with
π(BK ) > 0. By Lemma 4.1, there exists a small set S ⊆ BK . Then for x ∈ S, we
have x ∈ BK , so s(x) ≤ 1 − 1

K and M(x) ≤ K . It follows that for x ∈ S and n ∈ N,

∥∥Pn(x, ·) − π(·)∥∥TV = Dn(x) ≤ M(x) s(x)n ≤ K
(
1 − 1

K

)n
.

This establishes (v) with CS = K and ρS = 1 − 1
K . ��

Proposition 5.6 (v) ⇒ (vi).

Proof This follows since

∥∥πS Pn(·) − π(·)∥∥TV = sup
D

|πS Pn(D) − π(D)|

= sup
D

| 1

π(S)

∫
S
[Pn(x, D) − π(D)]π(dx)|

≤ sup
D

sup
x∈S

|Pn(x, D) − π(D)|
= sup

x∈S

∥∥Pn(x, ·) − π(·)∥∥TV
≤ CS ρn

S .

��
Proposition 5.7 (vi) ⇒ (vi i).

Proof This is the content of the “(i) ⇒ (i i)” implication of [18, Theorem 15.0.1]. ��
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6 Proofs for V -Function and L∞
V Conditions

Proposition 6.1 (xxv) ⇒ (xxiv).

Proof Immediate (just choose j = 1). ��
Proposition 6.2 (xi) ⇒ (xxv).

Proof Let f ∈ L∞
V such that | f |V = 1. Then, | f | ≤ V , and, if (xi) holds, then for

each x ∈ X and each n ∈ N,

|Pn f (x) − �( f )(x)| = |Pn f (x) − π( f )| ≤ sup
| f |≤V

|Pn(x, f ) − π( f )| ≤ CV (x)ρn,

which implies

|(Pn − �) f |V = sup
x∈X

|Pn f (x) − �( f )(x)|
V (x)

= sup
x∈X

|Pn f (x) − π( f )|
V (x)

≤ Cρn,

and therefore,

∥∥Pn − �
∥∥

L∞
V

= sup
f ∈L∞

V| f |V =1

|(Pn − �) f |V ≤ Cρn .

��
Proposition 6.3 (xxiv) ⇔ (xxvi), and (xxv) ⇔ (xxvi i).

Proof (⇒) Let n ∈ N. Given that L∞
V ,0 ⊆ L∞

V , ‖Pn‖L∞
V ,0

≤ ‖Pn − �‖L∞
V

≤ C ρn .
(⇐) If f ∈ L∞

V such that | f |V = 1, we have

|(Pn − �) f |V = |(Pn − 1X ⊗ Pnπ) f |V
= |Pn f − (Pnπ) f |V
= |Pn( f − π( f ))|V
≤ |Pn( f − π( f ))|V

( f − π( f ) ∈ L∞
V ,0) ≤ ∥∥Pn

∥∥
L∞

V ,0
| f − π( f ))|V

≤ ∥∥Pn
∥∥

L∞
V ,0

(| f |V + |π( f )|V )

≤ C ρn (1 + π(V ))

≤ C ′ ρn,

where C ′ = C(1 + π(V )) < ∞. ��
Proposition 6.4 (xxii) ⇔ (xx), and (xxii i) ⇔ (xxi).
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Proof If ‖Pm − �‖L∞
V

< 1, then for f ∈ L∞
V ,0,

∥∥Pm
∥∥

L∞
V ,0

= sup
f ∈L∞

V ,0| f |V =1

|Pm f |V = sup
f ∈L∞

V ,0| f |V =1

|(Pm − �) f |V

≤ sup
f ∈L∞

V| f |V =1

|(Pm − �) f |V = ∥∥Pm − �
∥∥

L∞
V

< 1,

so that also ‖Pm‖L∞
V ,0

< 1.
Conversely, if s = ‖Pm‖L∞

V ,0
< 1, then for f with | f |V ≤ 1 and k ∈ N,

|(Pmk − �) f |V = |Pmk( f − π( f ))|V
≤

∥∥∥Pmk
∥∥∥

L∞
V ,0

| f − π( f )|V

=
∥∥∥(Pm)k

∥∥∥
L∞

V ,0

| f − π( f )|V
≤ sk | f − π( f )|V
≤ sk(| f |V + |π( f )|V )

≤ sk(1 + π(V )).

From Lemma 4.7, we must have π(V ) < ∞. Hence, there exists n ∈ N such that
sn(1 + π(V )) < 1. Thus, taking m∗ = mn, we have that, for each | f |V ≤ 1,

|(Pm∗ − �) f |V < 1

and therefore,
∥∥∥Pm∗ − �

∥∥∥
L∞

V

< 1. ��

Proposition 6.5 (vi i i) ⇒ (i x).

Proof First of all, we must have π(V ) < ∞ by Lemma 4.7. Then, given j ∈ N, let
V̂ = V 1/ j , soπ(V̂ j ) = π(V ) < ∞. It follows from Jensen’s inequality and concavity
that

P V̂ ≤ (PV )1/ j ≤ (λV + b1S)1/ j ≤ λ̂ V̂ + b̂ 1S,

with λ̂ = λ1/ j < 1 and b̂ = b1/ j < ∞, thus showing (viii). ��
Proposition 6.6 (xx) ⇔ (xxiv), and (xxi) ⇔ (xxv).

Proof Suppose first that s = ‖Pm − �‖L∞
V

< 1 for some m ∈ N. Let α =
‖P − �‖L∞

V
, and let n ∈ N. If n ≤ m, we have that

∥∥Pn − �
∥∥

L∞
V

= ∥∥(P − �)n
∥∥

L∞
V

≤ αn ≤ αns−1(s1/m)n .
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If n > m, then n = mt + �, for some t ∈ N and 0 ≤ � < m, and hence
∥∥Pn − �

∥∥
L∞

V
=

∥∥∥(P − �)mt+�
∥∥∥

L∞
V

≤ αl
∥∥(P − �)mt

∥∥
L∞

V

= αl
∥∥(Pm − �)t

∥∥
L∞

V
≤ αl st ≤ αl s−1(s1/m)n .

So, taking C = max1≤r≤m αr s−1 and ρ = s1/m , we conclude that for each n ∈ N,
∥∥Pn − �

∥∥
L∞

V
≤ Cρn .

Conversely, if ‖Pn − �‖L∞
V

≤ Cρn for all n ∈ N, then we can simply choose a
large enough m ∈ N that Cρm < 1, to obtain that ‖Pm − �‖L∞

V
≤ Cρm < 1. ��

Proposition 6.7 (xxiv) ⇒ (x).

Proof Since ‖Pn − �‖L∞
V

≤ Cρn , we have for each n ∈ N and | f |V ≤ 1 that

|(Pn − �) f |V ≤ ∥∥Pn − �
∥∥

L∞
V

| f |V ≤ Cρn| f |V ≤ Cρn .

Hence, for each n ∈ N, | f |V ≤ 1 and x ∈ X ,

|Pn f (x) − π( f )|
V (x)

= |Pn f (x) − �( f )(x)|
V (x)

≤ Cρn .

By Lemma 4.7, | f |V ≤ 1 ⇔ | f | ≤ V , so for each n ∈ N and x ∈ X ,

sup
| f |≤V

|Pn f (x) − π( f )| = sup
| f |V ≤1

|Pn f (x) − π( f )| ≤ CV (x)ρn .

��
Proposition 6.8 (x) ⇒ (xii), and (xi) ⇒ (xii i).

Proof This follows from the triangle inequality. If μ(V ) < ∞ and | f | ≤ V , then

|μPn f − π( f )| =
∣∣∣∣
∫
X

Pn f (y)μ(dy) − π( f )

∣∣∣∣
=

∣∣∣∣
∫
X

Pn f (y)μ(dy) −
∫
X

π( f )μ(dy)

∣∣∣∣
≤

∫
X

∣∣Pn f (y) − π( f )
∣∣μ(dy)

≤
∫
X

sup
| f |≤V

∣∣Pn f (y) − π( f )
∣∣μ(dy)

≤
∫
X

C V (y) ρn μ(dy)

= C μ(V ) ρn .

Hence, sup| f |≤V |μPn f − π( f )| ≤ C μ(V ) ρn for all n ∈ N. ��
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Proposition 6.9 (i x) ⇒ (xi).

Proof This is the content of [19, Theorem 1], following [30]; proofs also appear in
[18, Theorem 15.0.1(iii)] and [23, Theorem 9]. And since the same function V is used
in both conditions, its moments are preserved. ��
Proposition 6.10 (xii) ⇒ (i).

Proof Let μ be a point-mass at x , so that μ(A) = 1 if x ∈ A otherwise μ(A) = 0.
Then μ(V ) = V (x), so from (i),∥∥Pn(x, ·) − π(·)∥∥TV = ∥∥μPn(·) − π(·)∥∥TV = sup

| f |≤1

∣∣μPn( f ) − π( f )
∣∣

≤ sup
| f |≤V

∣∣μPn( f ) − π( f )
∣∣ ≤ C μ(V ) ρn = C V (x) ρn .

Hence, (i) holds with Cx = C V (x). ��
Proposition 6.11 (vi i) ⇒ (vi i i).

Proof The existence of a drift function V satisfying the condition (vi i i) follows from
[18, Theorem 15.2.4]. ��
Proposition 6.12 (xii i) ⇒ (iv).

Proof Let p ∈ (1,∞), and let μ ∈ L p(π) be a probability measure. Let j ∈ N be

large enough that 1+ 1
j < p, so that μ ∈ L1+ 1

j (π) by Lemma 4.5. Then choose V in

(xii i) such that π(V j+1) < ∞. Then, using the notation

‖ f ‖r =
(∫

X
| f |r dπ

)1/r

for functions f : X → R, since 1
j+1 + 1

1+ 1
j

= 1, we have by Hölder’s inequality that

μ(V ) =
∫
X

V (x) μ(dx) =
∫
X

V (x)

(
dμ

dπ
(x)

)
π(dx)

≤ ‖V ‖ j+1

∥∥∥dμ
dπ

∥∥∥
1+ 1

j

= π(V j+1)1/( j+1) ‖μ‖
L
1+ 1

j (π)
< ∞.

Then,

∥∥μPn(·) − π(·)∥∥TV = 1

2
sup

| f |≤1
|μPn( f ) − π( f )|

≤ 1

2
sup

| f |≤V
|μPn( f ) − π( f )|

≤ 1

2
C μ(V ) ρn,

so (iv) holds with C p,μ = 1

2
C μ(V ) < ∞. ��
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7 Proofs for Spectral Conditions

Proposition 7.1 (xiv) ⇔ (xvi i i), and (xv) ⇔ (xx).

Proof (⇒) Since 1 is an eigenvalue with multiplicity 1 by Lemma 4.7, with corre-
sponding eigenvectors the non-zero constant functions which are not in L∞

V ,0, we must
have SL∞

V ,0
(P) ⊆ SL∞

V
(P) \ {1}. So, if (xiv) holds, then SL∞

V ,0
(P) ⊆ SL∞

V
(P) \ {1} ⊆

{z ∈ C : |z| ≤ ρ} for some ρ < 1. This implies that rL∞
V ,0

(P) ≤ ρ < 1.
(⇐) If ρ := rL∞

V ,0
(P) < 1, then since SL∞

V
(P) \ {1} ⊆ SL∞

V ,0
(P) by Lemma 4.7,

we have

SL∞
V

(P) \ {1} ⊆ SL∞
V ,0

(P) ⊆ {z ∈ C : |z| ≤ ρ}.

��
Proposition 7.2 (xvi i i) ⇔ (xxii), and (xi x) ⇔ (xxii i).

Proof (⇒) By the spectral radius formula ( [28], Theorem 10.13), ρ = r(P|L∞
V ,0

) =
infn≥1 ‖Pn‖1/n

L∞
V ,0

. Hence, for any ρ0 < 1 with ρ < ρ0, there exists m ∈ N such that

‖Pm‖L∞
V ,0

< ρm
0 < 1.

(⇐) If ‖Pm‖L∞
V ,0

< 1 for some m ∈ N,

r(P|L∞
V ,0

) = inf
n≥1

∥∥Pn
∥∥1/n

L∞
V ,0

≤ ∥∥Pm
∥∥1/m

L∞
V ,0

< 1,

and thus, (xxii) holds. ��
Proposition 7.3 (xvi) ⇔ (xxi), and (xvi i) ⇔ (xxii).

Proof (⇒) Given that ρ0 = r(P −�) = infn≥1 ||Pn −�||1/n
L∞

V
, for ρ0 < ρ < 1, there

exists m ∈ N such that ||Pm − �||L∞
V

< ρm < 1. Therefore, for some m ∈ N,

||Pm − �||L∞
V

< 1.

(⇐) If ||Pm − �||L∞
V

< 1 for some m ∈ N, given that r(P − �) =
infn≥1 ‖Pn − �‖1/n

L∞
V
, we have

r(P − �) = inf
n≥1

∥∥Pn − �
∥∥1/n

L∞
V

≤ ∥∥Pm − �
∥∥1/m

L∞
V

< 1.

��
8 Proofs for Reversible Conditions

Proposition 8.1 (xxxii) ⇒ (xxi x).

Proof Let ρ = ‖P − �‖L2(π) < 1. Then, for each signed measure μ ∈ L2(π),

‖μ(P − �)(·)‖L2(π) ≤ ρ ‖μ‖L2(π) .
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Letμ ∈ L2(π) be a probability measure and let n ∈ N. By Lemma 4.8,μ−μ(X )π =
μ − π is orthogonal to π , so (μ − π)� = 0, and hence

μPn − π = (μ − π)Pn = (μ − π)(Pn − �) = (μ − π)(P − �)n .

Therefore,

∥∥μPn(·) − π(·)∥∥L2(π)
= ∥∥(μ − π)(P − �)n(·)∥∥L2(π)

≤ ‖μ − π‖L2(π)

∥∥Pn − �
∥∥

L2(π)

≤ ‖μ − π‖L2(π) ρn .

��
Proposition 8.2 (xxi x) ⇒ (xxvi i i).

Proof If (xxi x) holds, for each probability measure μ ∈ L2(π) and n ∈ N,

∥∥μPn(·) − π(·)∥∥L2(π)
≤ ‖μ − π‖L2(π) ρn = Cμρn,

with Cμ = ‖μ − π‖L2(π). ��
Proposition 8.3 (xxvi i i) ⇒ (i i i).

Proof If (xxvi i i) holds, then by Lemmas 4.3 and 4.4, for each n ∈ N and μ ∈ L2(π)

we have

∥∥μPn(·) − π(·)∥∥TV = 1

2

∥∥μPn(·) − π(·)∥∥L1(π)
≤ 1

2

∥∥μPn(·) − π(·)∥∥L2(π)

≤ 1

2
Cμ ρn .

This shows (i i i) with p = 2 and ρμ = ρ. ��
Proposition 8.4 (iv) ⇒ (xxxii i).

Proof Take p = 2 in (iv). Then it follows from the “(i i i) ⇒ (i i)” implication of
[22, Theorem 2] (which is proven by contradiction, using reversibility and the spectral
measure of P acting on L2(π)) that there is ρ < 1 such that

‖μP‖L2(π) ≤ ρ ‖μ‖L2(π)

for all probability measures μ ∈ L2(π) with μ(X ) = 0. Hence, ‖P‖π⊥ ≤ ρ < 1. ��
Proposition 8.5 (xxxii i) ⇔ (xxxiv).

Proof This follows immediately from the fact (e.g. [3, Proposition VIII.1.11(e)]) that,
by reversibility, rπ⊥(P) = ||P||π⊥ . ��
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Proposition 8.6 (xxxii i) ⇒ (xxxii).

Proof From Lemma 4.9 it follows that

‖P − �‖L2(π) = ‖P‖π⊥ .

Hence, if ‖P‖π⊥ < 1, then ‖P − �‖L2(π) < 1. ��
Proposition 8.7 (xxxi) ⇔ (xxxii).

Proof Since P is reversible, P−� is self-adjoint byLemma4.8. Therefore, rL2(π)(P−
�) = ||P − �||L2(π) (e.g. [3, Proposition VIII.1.11(e)]). Hence, ||P − �||L2(π) < 1
if and only if rL2(π)(P − �) < 1. ��
Proposition 8.8 (xxx) ⇔ (xxxiv).

Proof (⇒) If (xxx) holds, there is ρ < 1 such that

SL2(π)(P) ⊆ {1} ∪ {λ ∈ C : |λ| ≤ ρ}.

Since 1 is an eigenvalue of multiplicity 1 by Lemma 4.7, with corresponding eigen-
vectors the non-zero constant multiples of π which are not in π⊥, we must have
Sπ⊥(P) ⊆ SL2(π)(P) \ {1}. Hence, Sπ⊥(P) ⊆ {λ ∈ C : |λ| ≤ ρ}. Therefore,
r(P|π⊥) ≤ ρ < 1.

(⇐) If rπ⊥(P) < 1, there is ρ < 1 with Sπ⊥(P) ⊆ {λ ∈ C : |λ| ≤ ρ}. So, by
Lemma 4.8,

SL2(π)(P) \ {1} ⊆ Sπ⊥(P) ⊆ {λ ∈ C : |λ| ≤ ρ}.

��

9 Future Directions and Open Problems

Our Theorem 1 above provides a fairly complete picture of equivalences of geometric
ergodicity.However, it does lead to someadditional questionswhich remain, including:

Q 9.1 We have assumed throughout that the chain is φ-irreducible and aperiodic.
Those properties are certainly required for, and implied by, geometric ergod-
icity. But do they need to be assumed explicitly? Many of our equivalent
conditions imply them, so that they do not actually need to be mentioned.
But some of our conditions do not, e.g. the drift conditions (vi i i) and
(i x). So, which of our equivalences continue to hold without assuming
φ-irreducibility and aperiodicity?

Q 9.2 We also assumed that our state space (X ,F) is countably generated, which
holds for e.g. the Borel subsets ofR and ofR

d , but not for e.g. the Lebesgue-
measurable subsets. It is a very standard assumption (e.g. [18, p. 66]), used
to ensure the existence of small sets [4, 10, 20] and the measurability of
certain functions (e.g. [22,Appendix]). Butwhich of our equivalenceswould
continue to hold without it?

123



Journal of Theoretical Probability

Q 9.3 The property of aperiodicity is not necessary for other important proper-
ties such as Central Limit Theorems which involve averages of functional
values like 1

M

∑M
i=1 h(Xi ). The weaker notion of variance bounding essen-

tially corresponds to geometric ergodicity without aperiodicity, and still
implies CLTs. Many equivalences to variance bounding have been proven
for reversible chains; see [24]. But can equivalences similar to our The-
orem 1 be derived for the variance bounding property without assuming
reversibility?

Q 9.4 Our later conditions (xxvi i i) through (xxxiv)were only shown to be equiv-
alent for reversible chains. But are there explicit counter-examples to show
that they are not equivalent in the absence of reversibility? Or are some
of them are still equivalent to geometric ergodicity, even without assum-
ing reversibility? (For a start on this, [15, Theorem 1.3] proves that without
reversibility the implication (xxxi) ⇒ (i) still holds, but [15, Theorem 1.4]
makes use of [7] to show that the converse might fail.)

Q 9.5 Our equivalences are for the fairly strong property of geometric ergodicity.
But are there similar equivalences for the even stronger property of uniform
ergodicity, i.e. the property that ‖Pn(x, ·) − π(·)‖TV ≤ C ρn from π -
a.e. x ∈ X where C does not depend on x? (For a start on this, see [18,
Theorem 16.0.2].)

Q 9.6 In the other direction, are there similar equivalences for the weaker prop-
erty of polynomial ergodicity, i.e. the property that ‖Pn(x, ·) − π(·)‖TV ≤
Cx n−α for some α > 0? (For some discussion and results related to this
property, see e.g. [6, 11].)

Q 9.7 And, are there similar equivalences for the even weaker property of simple
ergodicity, i.e. the property that just ‖Pn(x, ·) − π(·)‖TV → 0 as n → ∞
from π -a.e. x ∈ X , without specifying any rate? (For a start on this, see e.g.
[18, Theorem 13.0.1].)

We leave these questions as open problems for future work.

Note added in proof

It follows from Proposition 16 on page 3607 of Annals of Applied Probability, 25(6)
(2015) that we can also include the additional equivalent condition:

vii’) There exists a small set S ∈ F and constant κ > 1 such that if V (x) = Ex (κ
τS )

for all x ∈ X , then PV (x) ≤ λ V (x) + b �S(x) for all x ∈ X , where λ =
κ−1 < 1 and b = supx∈S V (x) < ∞.
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