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Abstract. We consider the extent to which Markov chain convergence
properties are affected by the presence of computer floating-point round-
off error. Both geometric ergodicity and polynomial ergodicity are con-
sidered. This paper extends previous work of Roberts, Rosenthal, and
Schwartz (1998); connections between that work and the present paper
are discussed.

1. Introduction.

Geometric ergodicity is an important concept in convergence of Markov chains to their

stationary distributions. For example, this property is used to justify the applicability of

the central limit theorem to ergodic averages along the path of the chain. When run on an

actual computer, Markov chains are subject to floating-point roundoff errors. This paper

considers the extent to which geometric (and other) ergodicity is affected by small roundoff

errors.

A Markov chain on a state space X , with transition probabilities P (x, ·) and stationary

distribution π(·), is said to be geometrically ergodic if there is ρ < 1 and M : X → [0,∞)

such that

‖Pn(x, ·)− π(·)‖ ≤ M(x) ρn ,

where

‖Pn(x, ·)− π(·)‖ ≡ sup
A⊆X

|Pn(x,A)− π(A)|
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is the total variation distance between the law of the Markov chain after n steps (when

started at the point x ∈ X ), and the stationary distribution π(·).
This is known (cf. Roberts and Rosenthal, 1997) to be equivalent to the existence of

λ < 1, b < ∞, and a small set C ⊆ X such that

PV (x) ≤ λV (x) + b1C(x) , x ∈ X , (1)

where PV (x) =
∫

V (y)P (x, dy). (Recall that a set is small for a Markov chain if there

exists a positive integer n0, a positive constant ε, and a probability measure ν on X , such

that Pn0(x, ·) ≥ εν(A) for all x ∈ C and A ⊆ X .)

Roberts, Rosenthal, and Schwartz (1998) considered issues related to running such a

Markov chain on a computer, and in particular the effect of various roundoff errors during

the simulation. They introduced a summary roundoff function h : X → X , with h(x)

“close” to x for all x. This leads to a modified Markov chain P̃ given by

P̃ (x, A) = P (x, h−1(A)) . (2)

In this framework, the assumption of small computer errors can be taken as

‖h(x)− x‖ ≤ δ , x ∈ X , (3)

where ‖x‖ is the norm of x ∈ X . (We assume throughout that X is a normed vector space

over R, e.g. X ⊆ Rd.) It is shown by Roberts et al. (1998) that, if P is geometrically

ergodic with drift function V such that log V is uniformly continuous, and δ is sufficiently

small, then P̃ will also be geometrically ergodic. That is, geometric ergodicity is preserved

under small perturbations in that case.

A common case not included in the above arises when instead we have merely

‖h(x)− x‖ ≤ δ‖x‖ , x ∈ X , (4)

as may occur with floating-point computations (cf. Section 2 below). That is, the roundoff

errors may have magnitude proportional to the magnitude of x, rather than being uniformly

bounded. In this note, we shall show that this case is amenable to a technique similar to

that of Roberts et al. (1998).

As motivation, in Section 2, we introduce the IEEE standard floating point represen-

tation for real numbers used in modern computers. Section 3 considers the robustness of
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geometric ergodicity to perturbations of Markov chain dynamics which are similar to those

caused by computer roundoff errors. Section 4 then investigates connections between these

robustness properties and those given in Roberts et al. (1998). Some simple examples are

described in Section 5, and in Section 6 the methodology is extended to consider robustness

of perturbations to polynomial ergodicity.

We note that the results we present are only the beginning of a rigorous analysis of

how computer engineering realities affect the dynamics of mathematically specified Markov

chains. We hope to pursue such questions more comprehensively in the future.

Remark. Even if a modified Markov chain P̃ is proven to converge as quickly as the

original chain, there is still the question of what the new target distribution is. Roberts et

al. (1998) investigate this issue in total variation distance and in the weak topology. The

methods in our paper could also be extended to consider this issue, but we do not pursue

that here.

2. Floating point representations in computers.

IEEE standard 754 (IEEE, 1985) is a specification commonly adhered to for the rep-

resentation of floating point numbers in computers, using a fixed number B of bits (e.g.

B = 32 with single precision numbers or B = 64 with double precision numbers). Mathe-

matically, numbers x are encoded using B = M + N + 1 bits to a finite precision, in the

following way (called normalized floating point representation):

x := σ · (1 + k/2N ) · 2e,

where σ = ±1 is the sign (1 bit), k ∈ {0, . . . , 2N − 1} is the fractional part (N bits), and

e ∈ {−2M−1 + 2, . . . , 2M−1 − 1} is the exponent (M bits). Single precision numbers use

M = 8 and N = 23, giving an effective range (excluding the sign) of 2−126 ≈ 10−44.85

to (2 − 2−23) · 2127 ≈ 1038.53, while double precision is represented by M = 11, N = 52,

with an effective range (excluding sign) of 2−1022 ≈ 10−323.3 to (2− 2−52) · 21023 ≈ 10308.3.

Numbers larger than this are represented by the special symbol +Infinity, which is often

encoded as σ = 0, k = 0, e = 2M−1. Moreover, the number zero is nonunique; more

precisely there exist two distinct values +0 and −0 which are only equal when compared

directly.

Clearly, not all real numbers x can be represented with a fixed number B of bits in

this way. Indeed, given a real number x, setting e = blog2 |x|c and σ = sign(x), the closest
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the computer can come to approximating x is as

h(x) = σb1
2

+ |x|2N−1−ec2−(N−1−e) .

It follows that

|h(x)− x| ≤ 2−(N−1−e) ≤ 2−(N−1)|x| .

We see from the above that the error |h(x)− x| is proportional to |x|, thus violating

(3). (Strictly speaking, (3) holds for a sufficiently large δ since |x| is bounded by the finite

range of the computer. However, in the present paper, we ignore issues related to finite

range, and concentrate solely on issues related to finite precision, i.e. to roundoff errors.

It is in that sense that (3) is violated.) However, the assumption (4) does hold here with

δ = 2−(N−1).

With regard to Markov chain algorithms and their implementations on computer sys-

tems, we shall therefore assume that the final error for each update behaves as (4). Of

course, this is meant as a convenient summary of the cumulative effect of various compli-

cated roundoff errors introduced at each stage of the update calculation. (For example,

a side effect of using floating point representations is that the corresponding arithmetic

becomes inexact and non-commutative, e.g. perhaps (x · y)/y 6= x or x + y 6= y + x.)

3. Geometric ergodicity under perturbations satisfying (4)

Suppose a Markov chain P is geometrically ergodic, thus satisfying (1) for some func-

tion V and small set C. Suppose further that P̃ is obtained via (2), for some roundoff

function h satisfying (4) for some δ > 0. Assume also that V satisfies

V (y + u)− V (y) ≤ δKV (y), ‖u‖ ≤ δ‖y‖, y ∈ X , (5)

for some K < ∞. (Of course, we could subsume the product of δ and K into a single

constant, but our notation better emphasizes the dependence upon δ.)

Note that the condition (5) is implied, if X is finite-dimensional and V (x) is continu-

ously differentiable, by

‖∇ log V (y)‖ ≤ K ′ / ‖y‖ , (6)

where K ′ = δ−1 log(1 + Kδ) ≈ K.

Proposition 1. If (1) and (5) hold, and if P̃ is derived from P via (2), where h satisfies

(4), then

P̃ V (x) ≤ (1 + δK)(λV (x) + b1C(x)) .
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Proof. We have that

P̃ V (x) = PV (x) + (P̃ − P )V (x)

= PV (x) +
∫

(V (h(y))− V (y))P (x, dy)

≤ λV (x) + b1C(x) +
∫

δ K V (y) P (x, dy)

≤ λV (x) + b1C(x) + δK(λV (x) + b1C(x)) ,

which gives the result.

This ensures geometric ergodicity provided that (1 + δK)λ < 1, or equivalently

δ < K−1(λ−1 − 1). (7)

We thus obtain

Theorem 2. Suppose a Markov chain P is geometrically ergodic, satisfying (1) for some

V and C. Assume that V satisfies (5) for some K < ∞. Suppose further that P̃ is

obtained via (2), for some perturbation function h satisfying (4) and (7). Then P̃ is also

geometrically ergodic.

This theorem thus proves that geometric ergodicity is preserved, under sufficiently

small floating-point-type perturbations, provided that the drift function V satisfies the

smoothness condition (5) (or (6)).

4. Connection between perturbations of type (3) and (4).

It is shown by Roberts et al. (1998) that, assuming cumulative roundoff error is gov-

erned by (3), geometric ergodicity is preserved for sufficiently small δ provided only that

log V is uniformly continuous.

By contrast, we have shown in Theorem 2 above that, if the cumulative roundoff error

is instead governed by (4), then geometric ergodicity is preserved if the gradient of log V

decays sufficiently fast, i.e. (5) or (6) holds.

The stronger condition required when (4) holds instead of (3) is not surprising, since

the absolute magnitude of errors is unbounded in this case, thus giving arbitrarily large

perturbations of the Markov chain.

Our aim in this section is to connect Theorem 2 above with results of Roberts et al.

(1998). We shall need the following lemma, whose proof is straightforward.
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Lemma 3. Let {Xt} be a geometrically ergodic Markov chain with state space X , which

satisfies (1) for some drift function V and small set C. Let ϕ : X → X ′ be a bi-measurable

bijection, and define a Markov chain {Xϕ
t } on X ′ by Xϕ

t = ϕ(Xt), with corresponding

transition kernel Pϕ. Then ϕ(C) is a small set for {Xϕ
t }, and furthermore

PϕV ϕ(x′) ≤ λV ϕ(x′) + b1ϕ(C)(x′) , x′ ∈ X ′ , (8)

where

V ϕ(x′) = V (ϕ−1(x′)) . (9)

Hence, {Xϕ
t } is also geometrically ergodic with the same constants. Indeed, for all posi-

tive integers n, ‖(Pϕ)n(ϕ(x), ·) − πϕ‖ = ‖Pn(x, ·) − π‖, where πϕ(dx′) = π(ϕ−1(dx′)) is

stationary for {Xϕ
t }.

For a concrete example of Lemma 3, recall that a Metropolis-Hastings algorithm with

target density π(x) and proposal kernel q(x, y) is a Markov chain Xt which can be con-

structed by the recurrence

Xt+1 =

{
Yt , π(Yt)q(Yt, Xt)/π(Xt)q(Xt, Yt) > ξt,

Xt , otherwise ,
(10)

where Yt ∼ q(Xt, ·), and where the ξt are independently chosen as i.i.d. Uniform[0, 1]. The

chain’s transition kernel is given by

P (x, dy) = q(x, y)
(
1 ∧ π(y)q(y, x)

π(x)q(x, y)

)
dy + r(x)δx(dy),

where r(x) is chosen to make P (x, ·) into a probability measure. Let Xt be a Metropolis-

Hastings chain with state space X , target density π(x) and proposal density q(x, y), and let

ϕ(x) : X → X ′ be a bijection. Then it is easily verified that Xϕ
t := ϕ(Xt) is a Metropolis-

Hastings chain with state space X ′, target probability measure πϕ(dx′) = π(ϕ−1(dx′)),

and proposal density

qϕ(x′, y′) = q(ϕ−1(x′), ϕ−1(y′)) · |Jϕ(ϕ−1(y′))|

i.e. if Y ∼ q(x, ·), then

Y ϕ := ϕ(Y ) ∼ qϕ(ϕ(x′), ·).

Here, Jϕ denotes the Jacobian of the transformation ϕ.

6



Using Lemma 3, it is now possible to connect the stability results for perturbations of

types (3) and (4) respectively.

Theorem 4. Suppose that X̃ is a perturbation of X with approximation function h.

Then ϕ(X̃) is a perturbation of Xϕ with approximation function hϕ ≡ ϕhϕ−1. In the

special case that X = R, X ′ = R+, and ϕ(x) = exp(x), then h satisfies (3) if and only

if hexp satisfies (4). In that case, if P exp is geometrically ergodic, then it is robust to

perturbations of the kind satisfying (4) provided it has a drift function V exp satisfying

that log V exp(exp(·)) is uniformly continuous.

Proof. The first statement is straightforward, and the equivalence of (3) for h and (4) for

hexp (with two distinct values δ) is a straightforward computation.

For the final statement, we note that by Proposition 6 of Roberts, Rosenthal and

Schwartz (1998), the geometric ergodicity of P is robust to perturbations by h satisfying

(3) so long as its drift function V satisfies log V is uniformly continuous. However, by (9),

this is equivalent to log V exp(exp(·)) being uniformly continuous.

5. Examples.

In this section, we give three examples to illustrate our results.

Example 1. For a first example, suppose that X = R and V (x) = C1|x|n + C2, with

C1, C2 ≥ 0. In that case, for δ′ ≤ δ,

V (y + δ′y)− V (y) = C1 (|y + δ′y|n − |y|n) ≤ C1(1 + δ′)n|y|n ≤ (1 + δ)nV (y) .

Hence, (5) holds with K = (1+ δ)n/δ. We thus conclude that, for a Markov chain which is

geometrically ergodic with drift function of the form C1|x|n+C2, sufficiently small roundoff

errors of the form (4) still preserve geometric ergodicity.

Example 2. On the other hand, if the error summary function is of the type (4) but not

(3), then many rounded-off Markov chains as in (2) can fail to be geometrically ergodic. For

example, consider the Gaussian Random Walk Metropolis algorithm (that is an algorithm

satisfying (10) with a random walk proposal Yt = Xt + σWt with Gaussian increment

Wt ∼ N (0, 1)) with Gaussian target distribution (zero mean, unit variance) and Gaussian

proposal increment with fixed standard deviation σ ≤ 1.
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This chain (assuming no roundoff errors) is geometrically ergodic with drift function

V (x) = exp(|x|) (see e.g. Mengersen and Tweedie, 1996). Furthermore, it follows from

Roberts et al. (1998) that, if this chain is perturbed by a roundoff function h satisfying

(3), geometric ergodicity is preserved.

However, this Markov chain is not robust to perturbations of type (4), as we now

show. Indeed, consider a double precision roundoff function

h(x) = sign(x) · 2blog2 |x|c · (1 + 2−52b252(|x|2−blog2 |x|c − 1)c) (11)

(This function is an idealisation of the IEEE discretisation described in Section 2, without

any truncation.) The function h maps the real line into a discrete set of points with spacings

getting progressively larger the further away from zero. Indeed for {zi, i ∈ N} ∈ Image(h)

with |zi| → ∞, we have limi→∞ infy∈(h−1(zi))C |y − zi| = ∞. Since the proposal Markov

chain is a random walk, this implies that limi→∞P(zi, {zi}C) = 0. Therefore the algorithm

is not geometrically ergodic (see Roberts and Tweedie 1996).

This somewhat artificial example shows the need to carefully design the Markov chain

dynamics, taking loss of precision into account.

Example 3. We begin with the same setup as in Example 2, taking the target density

π(x) ∝ exp(−x2/2) and normal proposal increment, this time with σ = 1. The (complete)

Markov chain update Xt+1 = Ft(Xt) may be written explicitly in the form

Ft(x) =

{
x + Zt , exp(x2/2− (x + Zt)2/2) > ξt,

x , otherwise ,

where Zt ∼ N(0, 1) and ξt ∼ Uniform[0, 1]. We have seen above that this Markov chain

is not robust to perturbations of type (4). We therefore resort to a transformation as in

Section 4.

To apply Theorem 4, consider the Markov chain Xϕ
t = ϕ(Xt), where ϕ(x) = exp(x),

and V ϕ(x) = V (ϕ−1(x)) = exp(| log x|) = max{x, x−1}. Since V (x) = exp(x), Theorem

4 now applies and geometric ergodicity is assured. We can simulate this chain by the

recurrence X̃t+1 = Fϕ(X̃t), where Fϕ = ϕ ◦ F ◦ ϕ−1 is given by

Fϕ(x′) =

{
x′eZt , − Z2

t − 2Zt log(x′) > 2 log ξt,

x′ , otherwise .
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To recover the target distribution π, we invert the transformation. That is, log X̃t converges

in distribution to the desired stationary distribution π.

Summarising examples 2 and 3, we have a Markov chain algorithm which fails to

be robust to perturbations of type (4). However, by implementing the algorithm on an

exponential scale instead of the usual scale, we preserve geometric ergodicity under roundoff

errors which satisfy (4).

In these examples we are modeling the effect of implementing a Markov chain update

on an actual computer by a perturbation of the ideal update. The effect of such a pertur-

bation depends critically on the scale in which the Markov chain is implemented, and this

can be used to advantage in particular cases.

6. Issues related to polynomial convergence.

In this section, we generalise the results of Roberts et al. (1998) and the previous

sections, to the case of polynomial rates of convergence. Recall that a Markov chain with

transition kernel P converges at the polynomial rate α if

‖Pn(x, ·)− π(·)‖ ≤ C(x)n−(α/1−α) , n ∈ N ,

for some 0 < α < 1. This is implied (Roberts and Jarner, 2000) by the existence of a

function V ≥ 1, a small set C, and constant a > 0 such that

PV ≤ V − aV α + b1C (12)

For the generalisation we have in mind, assume that the perturbation function h satisfies

‖h(x)− x‖ ≤ c‖x‖β , (13)

for some non-negative constants c and β. This is clearly a generalisation of both (3) and

(4) (taking β = 0 and β = 1 respectively). We claim that polynomial convergence is

preserved under the following condition:

V (y + u)− V (y) ≤ δK(V (y))γ , ‖u‖ ≤ δ‖y‖ε , y ∈ X , (14)

for some constants γ ≤ min(1, α), ε ≥ β, and δ ≥ c.

Proposition 5. Consider a Markov chain transition kernel P . Suppose that P is poly-

nomial ergodic with polynomial rate α, and satisfies (12) for some small set C and some
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drift function V which satisfies (14) for some constants γ ≤ min(1, α) and ε > 0. Define P̃

by (2), and assume that (13) holds for some β ≤ ε and c ≤ δ. Then

P̃ V ≤ V − aV α + b′ 1C + cKV α, (15)

for some b′ < ∞. In particular, if c < a/K, then the chain defined by P̃ is also polynomially

ergodic, with the same polynomial rate α.

Proof. We compute that

P̃ V (x) = PV (x) + (P̃ − P )V (x)

= PV (x) +
∫

P (x, dy)(V (h(y))− V (y))

≤ PV (x) + δK(P (V γ))(x)

≤ PV (x) + δK(PV )γ(x)

≤ V (x)− aV α(x) + b1C(x) + cK (V (x)− aV α(x) + b1C(x))γ

≤ V (x)− aV α(x) + b1C(x) + cK (V (x) + b1C(x))γ

≤ V (x)− aV α(x) + b1C(x) + cK (V γ(x) + bγ 1C(x))

≤ V (x)− aV α(x) + b′ 1C(x) + cKV α(x) ,

as claimed. Here the first inequality combines (13) and (14), the second inequality is

Jensen’s inequality, and b′ = b + bγ . For the final inequality, we have used that γ ≤ α and

V ≥ 1 so that V γ ≤ V α. For the second-last inequality, we have used the general fact that

(A + B)γ ≤ Aγ + Bγ when A,B, γ ≥ 0 and γ ≤ 1; to see that set f(x) = (A + x)γ − xγ

and note that f ′(x) ≤ 0 for x > 0 so that f(B) ≤ f(0).
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