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Abstract. A Markov chain with stationary probability distribution,
which is φ-irreducible and aperiodic, will converge to its stationary dis-
tribution from almost all starting points. The property of Harris re-
currence allows us to replace “almost all” by “all”, which is potentially
important when running Markov chain Monte Carlo algorithms. Full-
dimensional Metropolis-Hastings algorithms are known to be Harris re-
current. In this paper, we consider conditions under which Metropolis-
Within-Gibbs and transdimensional Markov chains are or are not Harris
recurrent. We present a simple but natural two-dimensional counter-
example showing how Harris recurrence can fail, and also a variety of
positive results which guarantee Harris recurrence. We also present some
open problems. We close with a discussion of the practical implications
to MCMC algorithms.

1. Introduction.

Harris recurrence is a concept introduced fifty years ago by Harris (1956). More

recently, connections between Harris recurrence and Markov chain Monty Carlo (MCMC)

algorithms were investigated by Tierney (1994) and Chan and Geyer (1994). In this paper,

we re-examine Harris recurrence of various MCMC algorithms, in a more general context.

Markov chains with stationary distributions are the basis of MCMC algorithms. For

the algorithm to be valid, it is crucial that the chain will converge to stationarity in
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distribution. If the state space is countable, and the Markov chain is aperiodic and also

(classically) irreducible (i.e., has positive probability of reaching any state from any other

state), then it is well known that convergence to stationarity is guaranteed from all starting

states (see e.g. Hoel et al., 1972; Billingsley, 1995; Rosenthal, 2000).

On the other hand, classical irreducibility is unachievable when the state space X

is uncountable. A weaker property is φ-irreducibility (i.e., having positive probability of

reaching every subset A with φ(A) > 0 from every state x ∈ X , for some non-zero measure

φ(·)). It is known that a φ-irreducible, aperiodic Markov chain, with stationary probability

distribution π(·), must still converge to π(·) from π-almost every starting point (see e.g.

Nummelin, 1984; Meyn and Tweedie, 1993; Rosenthal, 2001). However, if a chain is φ-

irreducible but not classically irreducible, then it is indeed possible to have a null set of

states from which convergence does not occur.

Tierney (1994) and Chan and Geyer (1994) note that this null set of points from which

convegence fails could cause practical problems for MCMC algorithms if the user happens

to choose an initial state in this null set. Thus, understanding the nature of this null set

is important for applications of MCMC, as well as theoretically. Chan and Geyer (1994)

refer to this null set as a “measure-theoretic pathology”. However, we shall see herein

that the null set can arise quite naturally, on both discrete and continuous state spaces,

including for a simple two-dimensional Metropolis-within-Gibbs algorithm with continuous

densities.

This paper is structured as follows. Section 2 presents some background about Markov

chains and Harris recurrence, and Theorem 6 proves a number of equivalences of Harris

recurrence. Section 3 discusses full-dimensional Metropolis-Hastings algorithms, and Sec-

tion 4 then discusses Metrpolis-within-Gibbs algorithms. Example 9 demonstrates that

a simple two-dimensional Metropolis-within-Gibbs algorithm, with continuous target and

proposal densities, although irreducible and aperiodic, can still fail to be Harris recurrent

or to converge to stationarity from all starting points. Sections 4 and 5 prove various

positive results which guarantee Harris recurrence for Metropolis-within-Gibbs algorithms

under various conditions, and Section 6 does the same for transdimensional Markov chains.

2



2. Markov Chains and Harris Recurrence.

Consider a Markov chain {Xn} with transition probabilities P (x, ·), on a state space

X with σ-algebra F . Let Pn(x, ·) be the n-step transition kernel, and for A ∈ F , let

τA = inf{n ≥ 1 : Xn ∈ A} be the first return time to A, with τA = ∞ if the chain never

returns to A.

Recall that a Markov chain is φ-irreducible if there exists a non-zero σ-finite mea-

sure ψ(·) on (X ,F) such that P[τA < ∞|X0 = x] > 0 for all x ∈ X and all A ∈ F

with ψ(A) > 0. The probability distribution π(·) on (X ,F) is stationary for the chain if∫
X π(dx)P (x,A) = π(A) for all A ∈ F .

The period of a φ-irreducible chain with stationary distribution π(·) is the largest D ∈

N (the set of all positive integers) for which there exist disjoint subsets X1,X2, . . . ,XD ∈ F

with π(Xi) > 0, such that P (x,Xi+1) = 1 for all x ∈ Xi (1 ≤ i ≤ D− 1), and P (x,X1) = 1

for all x ∈ XD. If D = 1, then the chain is aperiodic.

In terms of these definitions, we have the following classical result, as in e.g. Tierney

(1994, p. 1758) or Rosenthal (2001). (See also Nummelin, 1984 and Meyn and Tweedie,

1993.)

Proposition 1. Consider a φ-irreducible, aperiodic Markov chain with stationary proba-

bility distribution π(·). Let G be the set of x ∈ X such that limn→∞ ‖Pn(x, ·)−π(·)‖ = 0.

Then π(G) = 1.

We also note that aperiodicity is not essential in Proposition 1:

Proposition 2. Consider a φ-irreducible Markov chain with stationary probability dis-

tribution π(·), and period D ≥ 1. Let G be the set of x ∈ X such that

limn→∞ ‖(1/D)
∑D

r=1 P
nD+r(x, ·)− π(·)‖ = 0. Then π(G) = 1.

Proof. If D = 1, then this reduces to Proposition 1 above. If D > 1, then let

X1,X2, . . . ,XD be as in the definition of period. Then PD is φ-irreducible and ape-

riodic when restricted to each Xi, with stationary distribution πi(·), such that π(·) =

(1/D)
∑D

r=1 πi(·). It follows from Proposition 1 that for πD-a.e. x ∈ XD, and for any

1 ≤ r ≤ D, we have limn→∞ ‖PnD+r(x, ·)− πr(·)‖ = 0. Hence, for πi-a.e. x ∈ Xi, we have
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limn→∞ ‖PnD+r+D−i(x, ·) − πr(·)‖ = 0. The result follows by averaging over 1 ≤ r ≤ D

and using the triangle inequality.

The above conclusions still allow for a null set GC from which convergence fails. This

null set can indeed arise, even for simple examples, on both discrete and continuous state

spaces:

Example 3. (C. Geyer, personal communication; Roberts and Rosenthal, 2004) Let

X = {1, 2, . . .}. Let P (1, {1}) = 1, and for x ≥ 2, P (x, {1}) = 1/x2 and P (x, {x + 1}) =

1− (1/x2). This chain has stationary distribution π(·) = δ1(·), and it is φ-irreducible (with

respect to π) and aperiodic. On the other hand, if X0 = x ≥ 2, then P[Xn = x+ n for all

n] =
∏∞

j=x(1− (1/j2)) > 0, so that ‖Pn(x, ·)− π(·)‖ 6→ 0. Hence, convergence holds only

from the set G = {1}, but fails to hold from the set GC = {2, 3, 4, . . .}. Of course, this

example is not irreducible in the classical sense, since no state x ≥ 2 is reachable from the

state 1. However, it is still indecomposible (see e.g. Rosenthal, 1995b).

Example 4. (continuous state space version) Let X = [0, 1]. Define the transition kernel

P (x, ·) as follows. If x = 1/m for some positive integer m, then P (x, ·) = x2 Uniform[0, 1]+

(1−x2) δ1/(m+1)(·). For all other x, P (x, ·) = Uniform[0, 1]. Then the chain has stationary

distribution π(·) = Uniform[0, 1], and it is φ-irreducible (with respect to π) and aperiodic.

On the other hand, if X0 = 1/m for some m ≥ 2, then P[Xn = 1/(m + n) for all

n] =
∏∞

j=m(1 − (1/j2)) > 0, so that ‖Pn(x, ·) − π(·)‖ 6→ 0. Hence, convergence fails to

hold from the set GC = {1/2, 1/3, 1/4, . . .}.

To rectify the problems of the null set GC , we consider Harris recurrence, a con-

cept developed by Harris (1956) and introduced to statisticians in the important works of

Tierney (1994) and Chan and Geyer (1994) (see also Geyer, 1996).
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Definition 5. A φ-irreducible Markov chain with stationary distribution π(·) is Harris

recurrent if for all A ⊆ X with π(A) > 0, and all x ∈ X , we have P(τA <∞|X0 = x) = 1.

We prove the following equivalences.

Theorem 6. For a φ-irreducible Markov chain with stationary probability distribution

π(·), and period D ≥ 1, the following are equivalent:

(i) The chain is Harris recurrent.

(ii) For all A ⊆ X with π(A) > 0, and all x ∈ X , we have P(Xn ∈ A i.o. |X0 = x) = 1.

[Here i.o. means “infinitely often”, i.e. for infinitely many different times n.]

(iii) For all x ∈ X , limn→∞ ‖(1/D)
∑D

r=1 P
nD+r(x, ·)− π(·)‖ = 0.

(iv) For all x ∈ X , P[τG <∞|X0 = x] = 1, where G is as in Proposition 2.

(v) For all x ∈ X , and all A ∈ F with π(A) = 1, P[τA <∞|X0 = x] = 1.

(vi) For all x ∈ X , and all A ∈ F with π(A) = 0, P[Xn ∈ A for all n |X0 = x] = 0.

Proof. (ii) =⇒ (i); (i) =⇒ (v); (v) =⇒ (iv); and (v) ⇐⇒ (vi): Immediate.

(i) =⇒ (ii): Suppose to the contrary that (ii) does not hold. Then there is some

A ⊆ X with π(A) > 0, and x ∈ X and N ∈ N, such that P(Xn 6∈ A ∀n ≥ N |X0 = x) > 0.

Integrating over choices of y = XN , this implies there is some y ∈ X with P(τA = ∞|X0 =

y) > 0, contradicting (i).

(iv) =⇒ (iii): From Proposition 2, once the chain reaches G, it will then converge. The

convergence in (iii) then follows. More formally, conditional on the first hitting time τG

and the corresponding chain value XτG
, the chain will converge in total variation distance

as in (iii). The conclusion (iii) then follows by integrating over all choices of τG and XτG
,

and using the triangle inequality for total variation distance.

(iii) =⇒ (i): If φ(A) > 0 (where φ(·) is an irreducibility measure), then we must have

π(A) > 0 (see e.g. Lemma 3 of Rosenthal, 2001), so we have by (iii) that for all x ∈ X ,∑D
r=1 P

nD+r(x,A) → Dπ(A) > 0, and in particular
∑∞

n=1 P
n(x,A) = ∞. It then follows

from Theorem 9.0.1 of Meyn and Tweedie (1993), using their definition of recurrence on

p. 182, that we can find an absorbing subset H ⊆ X such that the chain restricted to H is

Harris recurrent, and π(H) = 1. Then (1/D)
∑D

r=1 P
nD+r(x,H) → 1, so Pn(x,H) → 1.
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Hence, the chain will eventually reach H with probability 1. Since the chain restricted to

H is Harris recurrent, it will then eventually reach any A with π(A) = 1, with probabil-

ity 1, thus establishing (i).

For completeness, we note another method of verifying Harris recurrence (though we

do not use it here). Given a Markov chain with stationary distribution π(·), a subset C ∈ F

is small if π(C) > 0, and there is an ε > 0 and a probability measure ν(·) on (X ,F), such

that P (x,A) ≥ ε ν(A) for all A ∈ F and x ∈ C. It follows easily that we must have ν � π.

Proposition 7. (Meyn and Tweedie, 1993) If a Markov chain with stationary distribution

π(·) has a small set C with the property that P[Xn ∈ C i.o. |X0 = x] = 1 for all x ∈ X ,

then the chain is Harris recurrent.

Proof. Using the splitting technique (e.g. Nummelin, 1984), we can regard the chain as

proceeding by, each time it is in C, moving according to ν(·) with probability ε. If the chain

returns to C infinitely often, then with probability 1, it will eventually move according to

ν(·). Since ν � π, this means it will eventually leave any set of null π-measure. Hence,

the result follows from Theorem 6(vi).

Various drift conditions can be used to establish that P[Xn ∈ C i.o. |X0 = x] = 1 for

all x ∈ X , and thus establish Harris recurrence. For example, it follows from Meyn and

Tweedie (1993, Theorem 13.0.1) that for φ-irreducible chains, it suffices that there exists a

measurable function V : X → (0,∞) such that E[V (X1) |X0 = x] ≤ V (x)−1+b1C(x) for

some b <∞. Alternatively, it follows from Meyn and Tweedie (1993, Theorem 8.4.3) (see

also Geyer, 1996) that for φ-irreducible chains, Harris recurrence follows if there exists a

measurable function V : X → (0,∞) such that V −1
(
(0, α]

)
is small for all α > 0, and such

that E[V (X1) |X0 = x] ≤ V (x) for all x ∈ X \ C.

Remark. We note that the null sets related to Harris recurrence are of an “extreme”

kind, in the sense that the chain may fail entirely to converge from the null set. Less radi-

cally, one could consider chains which converge from everywhere, but which have a slower

qualitative rate of convergence from some null set. For example, it should be possible to
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construct Markov chains which are Harris recurrent, and which are geometrically ergodic,

but converge at a sub-geometric rate from a certain null set of initial states. Or, chains

which are polynomially ergodic at a particular polynomial rate α, but fail to converge at

the polynomial rate α from some null set. Or, chains which are geometrically ergodic, but

fail to converge from one null set, converge polynomially from another null set, converge

sub-polynomially from a third null set, etc. In this context, Harris recurrence can be seen

as one in a series of properties ensuring that “things aren’t worse when starting from a

null set than when starting anywhere else”.

3. Full-dimensional Metropolis-Hastings Algorithms.

Let X be some state space, with σ-algebra F . Let π(·) be a probability distribution

on (X ,F) having unnormalised density function f : X → (0,∞) with respect to some

reference measure ν(·), so that
∫
X f(x) ν(dx) <∞ and

π(A) =

∫
A
f(x) ν(dx)∫

X f(x) ν(dx)
, A ∈ F .

Note that we assume f > 0 on X , or equivalently that X is defined to be the support of

f . To avoid trivialities, we assume that π(·) is not concentrated at a single state, i.e. that

π{x} < 1 for all x ∈ X .

Let q : X ×X → [0,∞) be any jointly measurable function, such that
∫
q(x, y) ν(dy) =

1 for all x ∈ X . Define the Markov kernel Q(x, ·) by Q(x,A) =
∫

A
q(x, y) ν(dy) for x ∈ X ,

and let

α(x, y) = min
[
1,

f(y) q(y, x)
f(x) q(x, y)

]
, x, y ∈ X

(with α(x, y) = 1 if f(x) q(x, y) = 0).

The full-dimensional Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970; Tierney, 1994) proceeds as follows. Given that the chain is in the state Xn at time

n, it generates a “proposal state” Yn+1 ∼ Q(Xn, ·). Then, with probability α(Xn, Yn+1) it

“accepts” this proposal and setsXn+1 = Yn+1; otherwise, with probability 1−α(Xn, Yn+1),

it “rejects” this proposal and sets Xn+1 = Xn. It is easy to check that π(·) is then

stationary for the Markov chain {Xn}.
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Clearly, any such Markov chain can be decomposed as

P (x,A) = (1− r(x))M(x,A) + r(x) δx(A) , x ∈ X , A ⊆ X ,

where δx(·) is a point-mass at x, r(x) =
∫
q(x, y)[1 − α(x, y)]ν(dy) is the probability of

rejecting when starting at Xn = x, and M(x, ·) is the kernel conditional on moving (i.e., on

Xn+1 6= Xn). In particular, the probability distribution M(x, ·) is absolutely continuous

with respect to ν(·), for all x ∈ X .

Regarding Harris recurrence, we have the following result, which was originally proved

by Tierney (1994) using the theory of harmonic functions.

Theorem 8. (Tierney, 1994) Every φ-irreducible full dimensional Metropolis-Hastings

algorithm is Harris recurrent.

Proof. Since the chain is φ-irreducible, and π{x} < 1, we must have r(x) < 1 for all

x ∈ X . Suppose π(A) = 1. Then π(AC) = 0, so since we are assuming that f > 0 through-

out X , also ν(AC) = 0. Hence, by absolute continuity, M(x,AC) = 0, i.e. M(x,A) = 1.

It follows that, if the chain is at x, then it will eventually move according to M(x, ·), at

which point it will necessarily move into A. The result then follows from Theorem 6(v).

4. Metropolis-Within-Gibbs Algorithms.

We now define Metropolis-within-Gibbs Markov chains (Metropolis et al., 1953).

For simplicity, let X be an open subset of Rd, with Borel σ-algebra F , and (un-

normalised) target density f : X → (0,∞) with
∫
X f(x)λ(dx) < ∞ (where λ(·) is d-

dimensional Lebesgue measure). For 1 ≤ i ≤ d, let qi : X × R → [0,∞) be jointly

measurable, with
∫∞
−∞ qi(x, z) dz = 1 for all x ∈ X (where dz is one-dimensional Lebesgue

measure).

Let Qi(x, ·) be the Markov kernel on Rd which replaces the ith coordinate by a draw

from the density qi(x, ·), while leaving the other coordinates unchanged. That is,

Qi(x, Si,a,b) =
∫ b

a

qi(x, z) dz ,
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where

Si,a,b = {y ∈ X : yj = xj for j 6= i, and a ≤ yi ≤ b} .

To avoid technicalities and special cases, assume that Qi(x,X ) > 0 for all x ∈ X and

1 ≤ i ≤ d, and also that each qi is symmetrically positive in the sense that

qi
(
(x1, . . . , xi−1, y, xi+1, . . . , xd), z

)
> 0 ⇐⇒ qi

(
(x1, . . . , xi−1, z, xi+1, . . . , xd), y

)
> 0 .

For x, y ∈ Rd and 1 ≤ i ≤ d, let

αi(x, y) = min
[
1,

f(y) qi(y, x)
f(x) qi(x, y)

]
(with αi(x, y) = 1 if f(x) qi(x, y) = 0). Let Pi be the kernel which proceeds as fol-

lows. Given Xn, it generates a proposal Yn+1 ∼ Qi(Xn, ·). Then, with probability

αi(Xn, Yn+1) it accepts this proposal and sets Xn+1 = Yn+1; otherwise, with probabil-

ity 1− αi(Xn, Yn+1), it rejects the proposal and sets Xn+1 = Xn.

In terms of these definitions, the Metropolis-within-Gibbs Markov chain proceeds as

follows. Random variables I1, I2, . . . taking values in {1, 2, . . . , d} are chosen according to

some scheme. (The two most common schemes are random-scan, where {In} are i.i.d.

uniform on {1, 2, . . . , d}, and deterministic-scan, where I1 = 1, I2 = 2, . . . , Id = d, Id+1 =

1, . . ..) Then for n = 0, 1, 2, . . ., given Xn, the chain generates Xn+1 ∼ PIn+1(Xn, ·). It is

straightforward to verify that this chain has stationary distribution π(·) given by

π(A) =

∫
A
f(x)λ(dx)∫

X f(x)λ(dx)
, A ∈ F .

The above description defines Metropolis-Within-Gibbs chains as we shall study them.

We can now ask, under what conditions are such chains Harris recurrent? One might think

that a result similar to Theorem 8 holds for Metropolis-Within-Gibbs algorithms, at least

when the target and proposal densities are continuous. However, to our initial surprise,

this is false:
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Example 9. We present a Metropolis-Within-Gibbs algorithm on an open subset X ⊆ R2,

with stationary distribution π(·), with continuous target and proposal densities, which is

φ-irreducible and aperiodic, but which fails to converge in distribution to π(·) from an

uncountable number of different starting points (having total π-measure zero, of course).

Let X = {(x1, x2) ∈ R2 : x1 > 1}, and define the function f : X → (0,∞) by

f(x1, x2) = (e/2) exp(x1 − |x2|e2x1) (so that
∫
X f = 1). Let Q1(x, ·) and Q2(x, ·) be

symmetric unit normal proposals, so that qi(x, z) = (2π)−1/2 exp
(
−(z−xi)2/2

)
(i = 1, 2).

Then clearly f , q1, and q2 are positive continuous functions; it follows that the chain is

φ-irreducible where ψ is Lebesgue measure.

Consider the random-scan (say) Metropolis-within-Gibbs Markov chain corresponding

to these choices. We shall prove that this chain is not Harris recurrent. Indeed, let

S = {(x1, 0) : x1 > 1} be the part of the line {x2 = 0} which lies in X . We claim that if

the chain starts at any initial state in S, then there is positive probability that it will drift

off to x1 →∞ without ever updating x2, i.e. without ever leaving S. Then since π(S) = 0,

it follows that if X0 ∈ S, then the chain will fail to converge to π(·).

To establish the claim, consider first a Markov chain {Wn} equivalent to just the

first coordinate of Xn, under just the kernel P1 (i.e., which proposes moves only in the

x1 direction), restricted to the state space S. Now, on S, the density f is proportional

to ex1 . It follows that for any δ > 0 and x1 > 1, α1

(
(x1, 0), (x1 − δ, 0)

)
≤ e−δ, while

α1

(
(x1, 0), (x1 + δ, 0)

)
= 1. That is, proposals to increase x1 will all be accepted, while a

positive fraction of the proposals to decrease x1 will be rejected. It follows that on S, the

kernel P1 has positive drift. Hence, there is c > 0 such that for all x1 > 1,

P[Wn ≥ cn for all sufficiently large n |W0 = x1] > 0 .

On the other hand, the density f(x1, x2) as a function of x2 alone (i.e., with x1

regarded as a constant) is proportional to exp(−|x2|e2x1). It follows that the probability

of accepting a proposal in the x2 direction is equal to E[exp(−|Z|e2x1)] where Z ∼ N(0, 1),

which is less than ∫ ∞

−∞
exp(−|z|e2x1) dz = 2 e−2x1 .
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Now, since
∑

n 2e−2cn < ∞, it follows from the Borel-Cantelli Lemma (e.g. Rosenthal,

2000, Theorem 3.4.2) that there is positive probability that all proposed moves in the x2

direction will all be rejected. That is, for any x1 > 1,

P[Xn ∈ S for all n |X0 = (x1, 0)] > 0 ,

thus proving the claim. (We shall see in Corollary 18 below that the “problem” with this

example is that the one-dimensional integral of f over the line {x2 = 0} is infinite.)

Remark. In the above example, it is also possible, if desired, to modify f to decrease

to 0 near the boundary {x1 = 1}, to make f be continuous throughout R2 (not just on

X ), without affecting the result.

To proceed, decompose Pi as Pi(x, ·) = [1−r(x)]Mi(x, ·)+r(x) δx(·), so that Mi(x, S)

is the kernel corresponding to moving (i.e., both proposing and accepting) in the ith direc-

tion.

Lemma 10. Let (i1, i2, . . . , in) be any sequence of coordinate directions. Assume that

each of the d coordinate directions appears at least once in the sequence (i1, i2, . . . , in).

Then Mi1Mi2 . . .Min is an absolutely continuous kernel, i.e. if A ∈ F with λ(A) = 0, then

(Mi1Mi2 . . .Min
)(x,A) = 0 for all x ∈ X .

Proof. We shall compute a density for (Mi1Mi2 . . .Min)(x, ·); the result then follows

since every distribution having a density is absolutely continuous. Let

J = {m : 1 ≤ m ≤ n, ij 6= im for m < j ≤ n} ,

i.e. J is the set of “last times we move in direction i” for each coordinate i. (Thus, |J | = d.)

For 1 ≤ m ≤ n, let Sm ⊆ R be any Borel subset, so that S = S1 × . . .× Sd is an arbitrary

measurable rectangle in Rd. Then define subsets Rm ⊆ R for 1 ≤ m ≤ n, by saying that

Rm = Sim
if m ∈ J , otherwise Rm = R.

We then compute that

(Mi1Mi2 . . .Min)(x, S) =
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∫
R1

∫
R2

. . .

∫
Rn

qi1(x1, x2)α(x1, x2)qi2(x2, x3)α(x2, x3) . . .

. . . qin−1(xn−1, xn)α(xn−1, xn) dx1dx2 . . . dxn .

It follows that the density of (Mi1Mi2 . . .Min)(x, ·) is given by the above formula, but with

the integration over all of the variables {xj ; j ∈ J} all omitted. Hence, (Mi1Mi2 . . .Min
)(x, ·)

has a density, and is thus absolutely continuous.

From the Law of Total Probability, we therefore obtain:

Corollary 11. If A has Lebesgue measure 0, then P[Xn ∈ A |X0 = x0] ≤ P[Dn], where

Dn is the event that by time n the chain has not yet moved in each coordinate direction.

This allows us to prove:

Theorem 12. Consider a φ-irreducible Metropolis-within-Gibbs Markov chain. Suppose

that from any initial state x, with probability 1 the chain will eventually move at least

once in each coordinate direction. Then the chain is Harris recurrent.

Proof. The hypothesis implies that for all x ∈ X , limn→∞P[Dn |X0 = x] = 0. Now, let

π(A) = 0. Then, since f > 0 on X , we must also have λ(A) = 0. Hence, by Corollary 11,

we must have

P[Xn ∈ A ∀n |X0 = x] ≤ lim
n→∞

P[Xn ∈ A |X0 = x] ≤ lim
n→∞

P[Dn |X0 = x] = 0 .

The result then follows from Theorem 6(vi).

The classical Gibbs sampler (see e.g. Gelfand and Smith, 1990) is a special case of

Metropolis-within-Gibbs in which the proposal densities are chosen so that α(x, y) ≡ 1,

i.e. so that all proposed moves are accepted. Now, with either the deterministic-scan

or systematic-scan Gibbs sampler variants, it is certainly true that with probability 1,

moves are eventually proposed in all directions. So, since α(x, y) ≡ 1, then it follows that

with probability 1 the chain will eventually move in all directions as well. Hence, from

Theorem 12, we immediately obtain:
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Corollary 13. (Tierney, 1994) Every φ-irreducible deterministic- or random-scan Gibbs

sampler is Harris recurrent.

5. Sub-Chains of Metropolis-Within-Gibbs Algorithms.

We now consider the extent to which Harris recurrence of the full chain can be “in-

herited” from Harris recurrence of various sub-chains. For a subset I = {i1, . . . , ir} ⊆

{1, . . . , n}, let P [I] be the Markov kernel corresponding to the original Metropolis-within-

Gibbs chain, except conditional on never moving in any coordinate directions other than

the coordinate directions i1, . . . , ir. Call the collection of kernels P [I] where |I| = d−1 the

“(d− 1)-dimensional sub-chains”. These sub-chains can fail to be φ-irreducible:

Example 14. Suppose that

X = {(x1, x2) ∈ R2 : 16 < x2
1 + x2

2 < 25}

(an annulus or “donut-shaped” state space), and that the proposal kernels Qi(x, ·) simply

replace xi by a draw from the Uniform[xi−1, xi+1] distribution. Then the full Metropolis-

within-Gibbs chain is φ-irreducible, but the one-dimensional sub-chain along the line {x2 =

0} breaks up into two distinct non-communicating intervals, (−5,−4) and (4, 5), and is

therefore not φ-irreducible.

Harris recurrence is often defined just for φ-irreducible chains (e.g. Meyn and Tweedie,

1993). We generalise as follows. Call a chain piecewise Harris if the state space X can be

partitioned into a disjoint union X =
⋃

α∈S Xα, where each Xα is closed, and the chain

restricted to each Xα is Harris recurrent. Of course, if the partition consists of just a

single Xα, then the full chain is Harris recurrent. The following proposition says that the

piecewise Harris property often suffices.

Proposition 15. If a Markov chain is piecewise Harris and is also φ-irreducible, then it

is Harris recurrent.
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Proof. Let Xβ be any non-empty element of the partition from the definition of piecewise

Harris, and let X∗ = X \ Xβ . If φ(X∗) > 0, then by φ-irreducibility, for each x ∈ X there

exists n = n(x) with Pn(x,X∗) > 0. Since Xβ is closed, this implies that Xβ is empty, con-

tradicting our assmption. Hence, φ(X∗) = 0. Since φ is non-zero, we must have φ(Xβ) > 0.

It then follows similarly that X∗ is empty, i.e. that Xβ = X . Thus, the partition contains

just a single element, so the chain is Harris recurrent.

In terms of the piecewise Harris property, we have:

Theorem 16. Consider a random-scan Metropolis-Within-Gibbs chain, as above. Sup-

pose all the (d−1)-dimensional sub-chains, in every (d−1)-dimensional coordinate hyper-

plane, are all piecewise Harris. Then the full chain is piecewise Harris. (In particular, by

Proposition 15, if the full chain is φ-irreducible, then the full chain is Harris recurrent.)

Proof. Consider any fixed initial state x0 = (x0,1, . . . , x0,d). By Theorem 12, it suffices

to show that with probability 1, when starting X0 = x0, the chain will eventually move in

each coordinate direction.

Suppose to the contrary that this is false, and there is positive probability that the

chain never moves in some direction, say (for notational simplicity) in direction d. Let

H = {y ∈ X : yj = x0,j for j 6= d} be the hyperplane corresponding to never moving in

the dth direction.

Let In be the direction of the proposed move at time n of the full chain, and let An = 1

if this move is accepted, otherwise An = 0. Let

Cm,r = {w ∈ H; P[Im = d, Am = 1 |X0 = w] ≥ 1/r} .

That is, Cm,r is the set of states in H which have probability ≥ 1/r of changing the dth

coordinate, m steps later, when moving according to the sub-chain.

By assumption, Qd(x,X ) > 0 and f(x) > 0 for all x ∈ X . This implies that the chain

has positive probability, starting from any x ∈ H, to eventually move in the dth direction,

i.e. to leave H. Hence,
∞⋃

m,r=1

Cm,r = H . (1)
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(In fact, it suffices to consider just m = 1, but we do not use that fact here.)

Consider now the sub-chain P [1,2,...,d−1], restricted to the hyperplane H. Since this

sub-chain is piecewise Harris, we must have x0 ∈ H0 for some closed subset H0 ⊆ H

such that the sub-chain restricted to H0 is Harris recurrent with respect to some non-zero

measure ψj(·). From (1), there must be some m, r ∈ N with ψj(Cm,r) > 0. It then follows

from Theorem 6(ii) that with probability 1, Cm,r is hit infinitely often by the sub-chain.

In other words, conditional on the full chain never moving in the dth direction, it will enter

Cm,r infinitely often.

However, each time the full chain visits Cm,r, it has probability ≥ 1/r of moving

in the dth direction, m steps later. It follows that with probability 1, the full chain will

eventually jump in the dth direction, and hence leave H. This contradicts our assumption

that the chain has positive probability of never leaving H.

Unfortunately, Theorem 16 still requires that we verify Harris recurrence of various

sub-chains, which may be difficult. However, if the sub-chains of all dimensions all have

stationary distributions, then no Harris recurrence needs to be checked:

Corollary 17. Consider a random-scan Metropolis-Within-Gibbs chain as above. Suppose

all the r-dimensional sub-chains in every r-dimensional coordinate hyperplane each have

stationary probability distribution, for all 1 ≤ r ≤ d. Then the full chain is piecewise

Harris (as are all the sub-chains).

Proof. Let Tr be the statement that all the sub-chains of dimension ≤ r are all piecewise

Harris. Then T1 holds by Theorem 8. Furthermore, from Theorem 16, for any r < d, if Tr

holds, then Tr+1 must hold. Hence, the result follows by induction.

We then have the following.

Corollary 18. Consider a random-scan Metropolis-within-Gibbs Markov chain. Suppose

the target density f has the property that its r-dimensional integral has finite Lebesgue

integral, over every r-dimensional coordinate hyperplane of X , for all 1 ≤ r ≤ d. Then the

full chain is piecewise Harris (as are all the sub-chains).
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Proof. In this case, f is an (unnormalised) density for a stationary probability distribu-

tion of each sub-chain on each hyperplane. (Note that the Lebesgue integral of f over the

hyperplane must be positive, since we are assuming that X is open and that f > 0 on X .)

Hence, the result follows from Corollary 17.

In the counter-example of Example 9, the one-dimensional x1-chain fails to have a

stationary distribution along the line {x2 = 0}, since the integral of f along the line

{x2 = 0} is infinite.

A similar result to Corollary 18 appears as Theorem 1 of Chan and Geyer, 1994, under

the assumption that each sub-chain is φ-irreducible (which, as we have seen in Example 14,

can easily fail to hold):

Corollary 19. (Chan and Geyer, 1994) Consider a random-scan Metropolis-within-Gibbs

Markov chain. Suppose the target density f has the property that its r-dimensional integral

has finite Lebesgue integral, over every r-dimensional coordinate hyperplane of X , for all

1 ≤ r ≤ d. If the full chain and all the sub-chains are all φ-irreducible, then the full chain

is Harris recurrent.

6. Transdimensional MCMC Algorithms.

In certain statistical setups (e.g. autoregressive models), the number of parameters

is not fixed in advance. This means that the state space of possible parameter values is

a (disjoint) union of spaces of different dimensions. Exploring such state spaces through

MCMC algorithms requires the introduction of transdimensional MCMC. Transdimen-

sional MCMC algorithms first appear in Norman and Filinov (1969) and Preston (1977);

their introduction into modern statistical practice (under the name “reversible jump”) is

due to the influential paper of Green (1995) (see also Tierney, 1998).

Suppose that for each m ∈M ⊆ N, where |M| > 1 and usually |M| = ∞, we have a

space Xm of dimension dm, i.e. Xm is an open subset of Rdm . We combine these different

spaces into a single state space X by setting X =
⋃∞

m=1({m}×Xm). Furthermore, suppose

that on each Xm we have an unnormalised target density function fm : Xm → (0,∞), with
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∫
Xm

fm < ∞. We then combine that into a single probability distribution π(·) on X , by

choosing some p : M→ (0, 1) with
∑

m∈M p(m) = 1, and then setting

π(m,A) = p(m)

∫
A
fm(x)λm(dx)∫

X fm(x)λm(dx)
(2)

and using linearity; in (2), λm(·) is Lebesgue measure on Rdm .

Transdimensional chains can proceed in a variety of ways (Green, 1995; Brooks et

al., 2003). We first consider a general class which we call full-dimensional transdimen-

sional MCMC. Fix some 0 < a < 1, and some irreducible kernel R(m, ·) on M such that

R(m,m′) > 0 if and only if R(m′,m) > 0. Then, at each iteration, with probability a the

chain proposes a “between-model move” of the form of replacing (m,x) by (m′, x′), where

m′ ∼ R(m, ·), and where x′ ∈ Xm′ is generated by some complicated dimension-matching

scheme (Green, 1995); this proposal is then accepted or rejected according to the usual

Metropolis-Hastings scheme, except that now the formula for α[(m,x), (m′, x′)] is more

complicated and involves a Jacobian of the transformation used to generate x′. Otherwise,

with probability 1− a, the chain leaves m fixed but proposes a “within-model move”, i.e.

to replace x by x′ ∈ Xm, using a full-dimensional Metropolis-Hastings proposal on Xm.

What about Harris recurrence? We have the following:

Theorem 20. Consider a full-dimensional transdimensional MCMC algorithm as above.

Let D be the event that no within-model move is ever accepted. Suppose P[D |X0 =

(m,x)] = 0 for all (m,x) ∈ X . Then the algorithm is Harris recurrent.

Proof. The proof is very similar to that of Theorem 8. Since P[D |X0 = (m,x)] = 0, the

chain must eventually accept a within-model move. But since the within-model proposal

distributions are full-dimensional, the probability of remaining in any set of π-measure 0

after such a move is equal to 0. The result thus follows from Theorem 6(vi).

Remark. Theorem 20 remains true regardless of the details of how the between-model

moves are implemented, provided only that they preserve the stationarity of π(·).
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Remark. Even without verifying the hypothesis of Theorem 20, it is true that once a full-

dimensional transdimensional MCMC algorithm makes at least one within-model move,

then since the within-model moves are full-dimensional, with probability 1 the chain will

move to the set G of Proposition 2 and hence will then converge. The issue in Theorem 20

is whether or not such a within-model move will eventually occur with probability 1.

Now, Theorem 20 allows for the possibility that, from a null set, the model numbersmn

might have positive probability of converging to +∞ without ever accepting a within-model

move, and this seems quite plausible. On the other hand, if the {mn} process is recurrent,

the situation is less clear, due to the complicated details of the (m,x) → (m′, x′) mapping

corresponding to the between-model moves. Conditional on never accepting a within-

model move, even if the chain returns to X1 (say) infinitely often, it might potentially be

at “worse and worse” points within X1 each time it returned, and thus have smaller and

smaller probability of accepting within-model moves. So, even a chain in which {mn} is

recurrent could conceivably fail to be Harris recurrent. We state this as an open problem:

Open Problem #1. Does there exist a φ-irreducible full-dimensional transdimensional

MCMC algorithm, as above, for which P[mn = 1 i.o. |X0 = (m,x)] = 1 for all m ∈ M

and x ∈ Xm, which fails to be Harris recurrent?

More generally, transdimensional MCMC might not be full-dimensional. That is, the

within-model moves might themselves be of the form of Metropolis-within-Gibbs. To model

this, we proceed as in Brooks et al. (2003). We replace Xm by X̃m ≡ Xm×[0, 1]×[0, 1]×. . .,

with stationary distribution π̃m = πm × Uniform[0, 1] × Uniform[0, 1] × . . .. We then

let hij : X̃i → X̃j be deterministic functions defined whenever R(i, j) > 0, such that

hji = (hij)−1. The between-model moves are specified by saying that when the algorithm

proposes changing m to m′, it simultaneously proposes changing x to hmm′(x).

A special case is when each hij function is simply the identity function, which is

plausible if Xm = [0, 1]dm for each m ∈ M. More generally, we consider coordinate-

preserving transdimensional MCMC in which each hij can be decomposed as

hij = h
(1)
ij × h

(2)
ij × . . . (3)
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where each h
(`)
ij : R → R and its inverse are differentiable functions acting solely on the

`th coordinate. That is, the between-model moves modify each coordinate separately. The

algorithm then proceeds, given a current state Xn = (m,x), as follows. First, it replaces

the coordinates dm +1, dm +2, . . . by fresh i.i.d. draws from the Uniform[0, 1] distribution.

(Of course, in practice we only need to generate such Uniform[0, 1] draws when they are

required. But from a theoretical perspective, it is simplest to pretend they are updated

at each iteration.) Then, with probability a it proposes a between-model move as above,

otherwise with probability 1−a it chooses one of the coordinates 1, 2, . . . , dm uniformly at

random, and does a Metropolis-within-Gibbs proposal for that coordinate only.

Theorem 21. Consider a φ-irreducible transdimensional MCMC chain, which is coordinate-

preserving as in (3). Suppose that for each (m,x) ∈ X , when the chain starts at X0 =

(m,x), then with probability 1 it eventually accepts at least one move in each of the

coordinate directions 1, 2, . . . , dm. Then the chain is Harris recurrent.

Proof. The proof is analogous to that of Theorem 12. The only difference is that we

do not require a move to be accepted in the coordinate directions dm + 1, dm + 2, . . ., nor

in the direction corresponding to the model index m. To justify this, note that since M

is countable, with p(m) > 0 for all m ∈ M, every distribution on M is absolutely con-

tinuous. Also, when starting from X0 = (m,x), coordinates dm + 1, dm + 2, . . . are drawn

from an absolutely continuous (Uniform) distribution automatically. So, in the context

of Theorem 12, this is equivalent to having already moved in the coordinate directions

dm + 1, dm + 2, . . . and in the direction of M. Then, just as in Theorem 12, the chain will

eventually leave any set of zero stationary measure. The result thus follows from Theo-

rem 6(vi).

This leads to the question of Harris recurrence for transdimensional chains which

are coordinate-mixing, i.e. not coordinate-preserving. Unfortunately, this situation is more

complicated due to lack of control over composition of the hij functions. For manageability,

call a transdimensional chain dimension-controlling if hij is the identity on coordinate

directions ` > max(di, dj), i.e. if hij doesn’t mix in any more dimensions than are necessary
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for dimension-matching. Now, it seems that coordinate-mixing in the hij should only help

the chain to avoid null sets. However, the difficulty is that the between-model moves could

e.g. “swap” the values of two coordinates, so that updating each coordinate position once

could correspond to updating one value twice, and the other value not at all. Thus, the

situation is unclear, and we state this as an open problem:

Open Problem #2. Consider a φ-irreducible, coordinate-mixing, dimension-controlling

transdimensional MCMC chain, as above. Suppose that for each (m,x) ∈ X , when the

chain starts at X0 = (m,x), then with probability 1 it eventually accepts at least one move

in each of the coordinate directions 1, 2, . . . , dm. Does this imply that the chain is Harris

recurrent?

A positive answer to this question would show that general transdimensional chains, like

other Metropolis-within-Gibbs chains, are Harris recurrent provided they eventually move

at least once in each coordinate direction with probability 1.
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