
Infinite hierarchies and prior distributions

by

Gareth O. Roberts* and Jeffrey S. Rosenthal**

(December, 2000.)

Abstract. This paper introduces a way of constructing non-informative priors for

Bayesian analysis, by taking a limit of priors arising from hierarchical constructions as

the number of levels in the hierarchy converges to infinity. Results are proved showing

that for location families, and other related cases, limits are often not dependent on the

exact form of the increment distribution used.

KEYWORDS: hierarchial priors, non-informative priors.

1. Introduction.

Suppose that we had independent data from an Exp(θ−1
0 ) distribution. In a Bayesian

framework, we suppose that apriori θ0 ∼ Exp(θ−1
1 ), and that with uncertainty on the

hyper-parameter θ1, we might give it also a prior, Exp(θ−1
2 ) say. In fact at each level of the

hierarchy we can hedge our bets by imposing a further level of prior uncertainty. Suppose

we impose N levels of the hierarchy by fixing the hyper-parameter θN and sequentially

setting

θi ∼ Exp(θ−1
i+1)
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i = N−1, N−2, . . . , 1, 0. In terms of the data, the only thing that matters is the marginal

prior of θ0, obtained (if it were possible) by integrating out the hierarchical parameters.

In such a situation, it is natural to consider the prior distribution of θ0 as N →∞. In

this case and many others, no proper distributional limit exists, but the limit can some-

times still be described in terms of an improper prior distribution. This paper constructs

such improper prior distributions, as limits of marginal priors produced from hierarchical

structures of certain types. Of particular interest is the fact (Proposition 2 and the results

of Section 4) that in some cases at least, the improper prior distribution produced by

this limiting operation is invariant of the distributions imposed in the construction of the

hierarchy, thus supporting the use of such prior distributions as canonical non-informative

priors.

Let λ be an unknown parameter to be investigated as a result of a statistical experi-

ment. In a Bayesian approach to inference about λ, a prior G(·) is imposed on λ to reflect

a priori beliefs about the parameter. However where there is little or no prior information

available about λ, the choice of G can be problematic. A common practical solution is to

use a multi-level prior structure, the simplest of which sets λ ∼ G1(·|λ1) with λ1 ∼ G2(·).

This has the effect of flattening the tails of the marginal prior distribution of λ, and thus

of creating a less informative prior. Even more non-informative priors can be obtained by

using higher order multi-level models.

In this paper, we shall look at infinite homogeneous hierarchies. We shall mostly

consider the following hierarchical setup. Suppose λi ∼ G(λi+1, ·) for i = 0, 1, 2, . . . , N .

We shall investigate the effect of letting N →∞, on the distribution of λ0(= λ), and the

use of the corresponding marginal distribution as a prior distribution. Our approach is

very different to that of general hierarchical modelling, since we do not attempt to model

the prior structure by the hierarchy constructed. Instead, we are interested in the effect

that hierarchical structure has on the marginal distribution of λ. Our approach could be

considered as a way of dealing with priors where the hierarchical prior structure is not

known, or latent, or simply as a device for producing natural non-informative priors for a

particular distribution.

The limiting distributions obtained from letting N →∞ will often be improper; how-
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ever, we can still study them in the sense of computing their limiting ratio of probabilities,

and considering L1 convergence in a suitable sense in the presence of observed data. In

this context, the notion of non-informativity will be expressed by homogeneity of the hi-

erarchical model, that is the distribution G has to remain invariant to the changes in the

level of the hierarchy. Crucial to our argument will be that, at least in some cases, the

form of the limiting prior distribution can be considered to be independent to the specific

form of G.

Hierarchical structures with a large number (N say) of hierarchical levels describe

a marginal prior for λ which is very heavy tailed, and moreover dependence between λ

and λN is very small. In fact it is frequently observed in practice that posterior distri-

butions of parameters of interest are often rather robust to the specification of high level

hyperparameters. Some related issues were considered by DeGroot and Goel (1981), and

Gustafson (1996). In particular, they proved that the influence λN on the distribution

of λ0 will always be a non-increasing function of N . However, they do not provide any

specific information about the distribution of λ0 in this context.

The construction of non-informative priors for use in Bayesian modelling is an impor-

tant and difficult one (see for example the discussions in Bernardo and Smith, 1994). The

approach adopted in this paper seems very different to existing techniques (for example

reference analysis), though as we shall see, leads to the same natural prior choice as (for

example) Jeffreys prior in a number of cases.

Multi-level priors are also use to construct priors appropriate for structured situations

such as exchangeable parameters. Though such structured priors are not the primary focus

of this paper, in Example 9, we shall give an example illustrating how our approach adapts

naturally to the construction of priors in that context also.

The computation of such distributions involve interesting classical probability, includ-

ing large deviations, stable laws, and Markov chain theory. Furthermore, such distributions

are independent of the experiment to be performed, and may also provide a possible prior

distribution for a given model. In addition, the procedure can be carried out totally in-

dependently for all parameters in the model, thus avoiding any problems of consistency

between different hierarchical structures.
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We shall study the question of the limiting behaviour of the marginal prior, for different

choices of the parametric family of distributions G(λ, ·). Formal definitions and motivation

are given in Section 2. We then show (Section 3) using martingale theory that for a

certain general class of distributions, the resulting distribution on λ0 is flat, corresponding

to Lebesgue measure on R. For a scale family of distributions (Section 4), the resulting

distribution has density proportional to 1/x.

We also show (Section 5) that for a more general class of distributions, for the location

family problem, the resulting distribution is related to the derivative of a large deviations

rate function. For a different class of distributions, we show (Section 6) using the theory of

stable laws that the resulting limit is again flat, regardless of the drift of the distribution.

For another class of distributions, we show (Section 7) using ergodic Markov chain theory

that the resulting distribution is related to the stationary distribution of a resulting Markov

chain.

We also phrase (Section 8) our results in terms of the weak convergence of measures.

This allows us to interpret our results in terms of standard Bayesian operations such as

posterior expectations of functionals. This is followed (Section 9) by a discussion of how the

prior distributions resulting from these infinite hierarchies are related to standard choices

of prior distributions, for example Jeffreys non-informative prior (Jeffreys, 1946). Some

concluding comments are offered in Section 10.

Throughout, our approach will be mathematically fairly general, though not to the

extent of allowing mathematical complexity to obscure the statistical relevance. In particu-

lar, we will often assume the existence of densities with respect to Lebesgue measure where

clearly more general results are possible. In addition, the work in this paper raises many

interesting questions about what happens in more complicated and structured hierarchical

situations.
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2. Definitions and motivation.

We consider an infinite hierarchical model as follows. We let G(λ, ·) be some fixed

probability distribution family on R, taking a parameter λ ∈ R. We shall write the

probability of a set A, under the distribution G(λ, ·), as G(λ, A). To avoid problems of

periodicity, etc., we shall sometimes assume (without claiming any total generality in our

approach) that G(λ, ·) has a density with respect to Lebesgue measure on R, i.e.

G(λ, dx) = g(λ, x) dx , x ∈ R . (1)

We define our model as follows. For N ∈ N, we set λN
N = a0, where a0 is a fixed

constant, and then iteratively let

[λN
i |λN

i+1, λ
N
i+2, . . . , λ

N
N ] ∼ G(λN

i+1, ·) , i = N − 1, N − 2, . . . , 1, 0 . (2)

We are interested in the limiting (possibly improper) distribution of λN
0 , as N → ∞.

Specifically, given G(λ, ·) and a0, we are interested in the limit

R(A,B) = lim
N→∞

P(λN
0 ∈ A)

P(λN
0 ∈ B)

, A, B ⊆ R . (3)

We shall also consider a density version of (3), by writing

r(x, y) ≡ lim
δ↘0

R((x− δ, x + δ), (y − δ, y + δ))

= lim
δ↘0

lim
N→∞

P(x− δ < λN
0 < x + δ)

P(y − δ < λN
0 < y + δ)

, x, y ∈ R , (4)

whenever the limits exist. Thus r(x, y) represents (essentially) the density ratio for the

limiting prior distribution. Of course, there is some redundancy in the double index in

both (3) and (4), since for example r(x, y) = r(x, z) r(z, y) assuming all these limits exist

and are finite.

We note that, if G(λ, ·) defines a null-recurrent transition probability kernel, then it is

well known that G has a unique sub-invariant measure, which is necessarily also invariant

(see e.g. Meyn and Tweedie, 1993, Proposition 10.4.2). It follows easily that if R(A,B)

exists, then it is necessarily equal to π(A)/π(B). (We note, however, that the limit R(A,B)
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may still not exist in this case; see e.g. the counter-example in Chung, 1974. However, the

limiting ratio of the average of the λN
i must still exist and equal π(A)/π(B), see e.g. Meyn

and Tweedie, 1993, Theorem 17.3.2.) This observation allows us to identify the possible

limiting prior distribution without having to consider any detailed limiting arguments.

Under some circumstances, we can compute r(x, y) directly as the limit of ratios of

densities of the λN
0 . For example, letting L(·) denote the law of a random variable, suppose

that L(λN
0 ) has a density fN (·) with respect to some sigma-finite measure ν. Then we have

the following.

Proposition 1. Let sN (x, y) = fN (x)/fN (y), and suppose that s(x, y) = limN→∞ sN (x, y)

exists for each x and y. Suppose further that

lim
δ↘0

lim
N→∞

sup
x∈R

|x−y|<δ

sN (x, y) = 1 , y ∈ R . (5)

(which follows, for example, if the convergence of sN (x, y) to s(x, y) is uniform over x and

y in compact sets, and furthermore each fN is continuous). Then r(x, y) exists for all x

and y, and in fact r(x, y) = s(x, y).

Proof. We have that

P(x− δ < λN
0 < x + δ)

P(y − δ < λN
0 < y + δ)

=
fN (x)
fN (y)

∫ x+δ

x−δ
sN (u, x)ν(du)∫ y+δ

y−δ
sN (v, y)ν(dv)

.

Now, by (5), as N →∞ and then δ ↘ 0, each of the above integrals is asymptotic to 2δ.

Hence, the ratio of integrals goes to 1. The result follows.

3. The martingale location family case.

Recall that G = {G(λ, ·)} is a location family of probability measures on a vector

space (e.g. R) if the measures satisfy the relation

G(λ, A) = G0(A− λ) , A ⊆ R

for some probability measure G0. (That is, G(λ, A) = G0({x − λ; x ∈ A}).) Where G0

has a density g0 with respect to Lebesgue measure, G gives rise to a family of densities
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g = {g(λ; ·)} such that g(λ;x) = g0(x − λ). We shall say that G(λ, ·) is a martingale

location family if G0 satisfies
∫

t G0(dt) = 0.

By (2), this implies that the sequence λN
N , λN

N−1, λ
N
N−2, . . . is in fact an additive mar-

tingale. In this case, if {λN
i } are defined by (2), then λN

i = λN
i−1 + Ui, where Ui are i.i.d.

random variables with E(Ui) = 0. We have

Proposition 2. Suppose that G(λ, ·) is additive martingale, with G(λ, dx) = g0(x−λ)dx

where g0 is bounded, and with G(λ, ·) having finite positive variance v. Then for any

a0 ∈ R, the limiting density of λN
0 is flat. That is, R(A,B) = leb(A)/leb(B) for whenever

leb(B) > 0 (where leb is Lebesgue measure), and furthermore r(x, y) exists and equals 1

for all x, y ∈ R.

Proof. Since g0 is a bounded density, it is in L2, hence so is its characteristic function.

Let Ui = λN
i − λN

i−1 as above. Then, by the density central limit theorem (see Feller,

1971, p. 516), the density of 1√
Nv

(U1 + . . . + UN ) converges pointwise (and uniformly) to

the standard normal density φ(x) = 1√
2π

e−x2/2, hence so does the density of 1√
Nv

λN
0 =

1√
Nv

(a0 + U1 + . . . + UN ). By the change-of-variable theorem (see e.g. Kelly, 1994, p. 326;

Billingsley, 1995, p. 217), √
NvfN (x)

φ(x/
√

Nv)
→ 1

pointwise and uniformly as N → ∞, where fN is the density of L(λN
0 ). But as N → ∞,

clearly φ(x/
√

Nv)
/

φ(y/
√

Nv) → 1 for any fixed x and y. It follows that for any two

bounded sets A and B with leb(B) > 0, we have

P(λN
0 ∈ A)

P(λN
0 ∈ B)

→ leb(A)
leb(B)

,

as N → ∞. Hence, R(A,B) = leb(A)
/

leb(B). The result r(x, y) = 1 now follows from

the definition (4).
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Example 3. CENTERED NORMAL: Here G(λ, ·) = N(λ, v) for fixed v > 0. This is

clearly additive martingale, so by Proposition 2 we have L(λN
0 ) asymptotically flat, i.e.

r(x, y) = 1 for all x and y.

Example 4. CENTERED UNIFORM: Here G(λ, ·) = Unif [λ−A, λ + A], where A > 0

is fixed. This is again additive martingale, so that Proposition 2 applies and we again

conclude that L(λN
0 ) is asymptotically flat.

Remark. As will be discussed in Section 9 below, the asymptotically flat priors for the

martingale location family case coincide with the corresponding Jeffreys prior (Jeffreys,

1946).

We note that similar reasoning applies in the multi-dimensional case, and we conclude

the following.

Proposition 5. Suppose that G(λ, ·) is additive martingale in Rd, with G(λ, dx) =

g0(x−λ)dx where g0 is bounded and has finite positive variance v. Then for any a0 ∈ Rd,

the limiting density of λN
0 is again flat.

4. Transformations and the martingale scale family case.

Here we extend the results of Section 3 to a related scale family of distributions. To

begin with, assume that G is a general transition kernel. Let f : R → R be a smooth

monotone function, and suppose that Gf (λ, A) ≡ G(f−1(λ), f−1(A)). That is, Gf is the

transition kernel obtained by applying the function f :

PGf
(λN

i ∈ A |λN
i+1 = x) = PG(f−1(λN

i ) ∈ A |λN
i+1 = f−1(x)) . (6)

Then we have the following.

Proposition 6. Let G be a general transition kernel, and let Gf be as defined above.

Then the limiting density of L(λN
0 ) is proportional to π(f−1(y))/|f ′(f−1(y))|, where π(·)

is the limiting density obtained by iterating the transition described by G.
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Proof. 1/|f ′(f−1(y))| just represents the Jacobian of the transformation defined by f .

The result follows by applying the transformation to the sequence of limiting probabilities

and again using the change-of-variable formula.

In particular, say that G represents a log-martingale scale family if all the λN
i are

positive, and if Gf represents a martingale location family as defined above when f(x) =

log x. Applying Proposition 6 with this f function, we obtain the following.

Corollary 7. Suppose that G(λ, ·) is a log-martingale scale family. Then for any a0 > 0,

density of λN
0 is proportional to 1/x. That is, r(x, y) = y/x for all x, y ∈ R.

Proof. This follows from Proposition 6, since the Jacobian of the logarithm function is

1/x.

Remark. As will be discussed in Section 9 below, the 1/x priors for the log-martingale

scale family case coincide with the corresponding Jeffreys prior (Jeffreys, 1946).

Example 8. EXPONENTIAL: Let G(λ, ·) = Exp(λ) be the exponential family (with

density λe−λx for x > 0). Let E1, E2, . . . be i.i.d. ∼ Exp(1). Then we may write λN
i =

Ei+1/λN
i+1. Iterating this, we have that λN

i = (Ei+1/Ei+2)λN
i+2. But (Ei+1/Ei+2) is a

non-negative random variable with E (log(Ei+1/Ei+2)) = 0. Hence, if we take N even and

consider {λN
2i} in place of {λN

i }, we see from Corollary 7 that the asymptotic density of

λN
0 will be proportional to 1/x. It is straightforward to verify (by considering λN

N−1 in

place of a0 and integrating with respect to L(λN
N−1)) that this conclusion remains true if

we allow N to take on both odd and even values.

Remark. Our approach produces priors which are independent of the chosen parame-

terisation, in the following sense. Suppose instead of putting a prior on λ, we attempted

to put a prior on f(λ). If we then used the induced kernel Gf as above, then the resulting

prior on f(λ) would coincide with the prior distribution of f(λ) using the original prior

on λ. For example, if λ is a scale parameter, and f(x) = log x, then log λ is a location
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parameter, and Gf is a location kernel. Moreover, the prior on log λ is the same as the

distribution of log λ using the original prior on λ.

Example 9. AN EXCHANGEABLE MODEL: The examples we have considered so far

are based on simple linear hierarchical structures. Many of the ideas we have introduced

can be translated to a more general setting. Here we just consider a simple example for a

non-informative prior for exchangeable random variables. Although the theoretical results

do not apply strictly to this context, this example serves to illustrate how the ideas here

can be extended to more complicated hierarchical structures.

By de Finetti’s theorem, exchangeable random variables λ1, . . . λk can be written as

conditionally independent and identically distributed random variables, conditional on θ

say. Then suppose we assume that

λi ∼ N(λ0, s0) , i = 1, 2, . . . , k ,

where λ0 has the non-informative centered martingale location family flat prior, and s0

has the martingale scale family prior. We can therefore write

p(λ0, s0) ∝ 1
s0

, λ0 ∈ R, s0 ∈ R+ ,

and

p(λ0, s0, λ1, . . . , λk) ∝ 1
s0

k∏
i=1

1√
2πs0

e−(λi−λ0)
2/2s0

=
1
s0

(2πs0)−k/2 exp

(
−(2s0)−1

k∑
i=1

(λi − λ0)2
)

=
1
s0

(2πs0)−k/2 exp
(
−(2s0)−1

[
D + k(λ̄− λ0)2

])
for λi ∈ R and s0 ∈ R+, where D =

∑k
i=1(λi − λ̄)2 and λ̄ = 1

k

∑k
i=1 λi.

Integrating out λ0, and neglecting multiplicative constants, we obtain that

p(s0, λ1, . . . , λk) ∝ (s0)−(k/2)−1e−D/2s0(s0/k) ∝ (s0)−k/2e−D/2s0 .
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Finally, we obtain the marginal non-informative prior for λi, 1 ≤ i ≤ k by integrating with

respect to s0:

p(λ1, . . . , λk) ∝
∫ ∞

0

(s0)−k/2e−D/2s0 ds0 =
∫ ∞

0

(D/2u)−k/2e−u (D du/2u2)

= (D/2)−(k/2)+1

∫ ∞

0

u(k/2)−1e−udu = (D/2)−(k/2)+1Γ(k/2)

∝ 1(∑k
i=1(λi − λ̄)2

) (k−2)
2

.

Clearly this technique can be used to construct non-informative priors in other situa-

tions where some structure can be assumed, for instance for pairwise interaction priors.

5. The non-centered location family case.

If the structure of {λN
i } is not martingale, but still has the additivity property

G(λ, dx) = G0(dx − λ), then the situation is more complicated than that described in

Proposition 2. The following example illustrates the phenomena involved.

Example 10. UNCENTERED NORMAL: Here G(λ, ·) = N(λ + m, v) for fixed

m ∈ R and v > 0. Then setting fN
0 to be the density for λn, we have that fN

0 (x) =
1√

2πnv
e−(x−nm)2/2nv, whence fN

0 (x)/fN
0 (y) = e(y2−x2+2nm(x−y))/2nv. Therefore, by Propo-

sition 1, we have r(x, y) = limn→∞ fN
0 (x)/fN

0 (y) = em(x−y)/v.

It turns out that this example is a special case of a rather more general result which

is can be analysed by using a slight modification of the classic large deviations result,

Cramér’s theorem (see e.g. Deuschel and Stroock, 1989; Dembo and Zeitouni, 1993; Varad-

han, 1984).

We proceed initially with a heuristic argument. Suppose that {Xi}i=1,2,... is a sequence

of i.i.d. random variables. It will be necessary to assume the existence of certain moments;

in particular, we assume a finite mean m.

Let Yi = Xi −m (so that E(Yi) = 0). Let I(x) be the large deviations rate function

for the Yi, that is

P[Ȳ (n) < −y] ∼ exp{−I(−y)n} ,
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where Ȳ (n) =
∑n

i=1 Yi/n. Then we might expect

P[
n∑

i=1

Yi < −mn+x] = P[Ȳ < −m+(x/n)] ∼ exp{−nI(−m+x/n)} ∼ exp{−xI ′(−m)} .

Of course, this relies on the sub-exponential terms in the approximations above not

interfering at all, but it turns out that this argument can be made rigorous rather generally

as we shall see. Note that in the uncentered normal case, I(q) = q2/2v, so that I ′(−m) =

−m/v; hence the result holds in that case.

We now proceed to make this argument more precise. Let Yi = Xi −m, let µ be the

distribution of Yi, and let µn be the distribution of 1
n (Y1 + . . . + Yn). For definiteness,

take µ(dy) = e−φ(y)dy for some function φ. Finally define L(λ) = log E(eλYi), and let

L∗(y) = supλ (λy − L(λ)).

Let λ(y) = argsupλ (λy − L(λ)), so that L(λ(y)) = L∗(y). Note that λ(·) is a continu-

ous function on the interval (inf supp Yi, sup suppYi) = (inf suppXi−m, sup suppXi−m);

we shall assume that inf suppXi < 0 < sup suppXi so that

λ(q) < ∞ and L∗(q) < ∞ for q in a neighbourhood of −m . (7)

Classical inequalities (see e.g. Deuschel and Stroock, 1989, pp. 5–6) then say that for

q ∈ R,

µn[q,∞) ≤ e−nL∗(q)µn(∞, q] ≤ e−nL∗(q) (8)

and for any δ > 0,

µn(q − δ, q + δ) ≥ e−n(L∗(q)−λ(q)δ)µ̃q
n(q − δ, q + δ) . (9)

Here µ̃q
n is the distribution of 1

n (Z1 + . . . + Zn) where {Zi} are i.i.d. ∼ µ̃q, where

µ̃q(dy) = eλ(q)y−L(λ(q))µ(dy) .

Hence (cf. Deuschel and Stroock, 1989, p. 6),∫
xµ̃q(dx) =

d

dt
L(t)

∣∣∣
t=λ(q)

= q
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(since d
dt (tq − L(t))

∣∣∣
t=λ(q)

= 0). It then follows by the weak law of large numbers that

µ̃q
n(q − δ, q + δ) → 1 , n →∞ .

From this and equations (8) and (9), the classical Cramèr’s Theorem follows easily:

− inf
q∈S◦

L∗(q) ≤ lim inf
n→∞

1
n

log µn(S) ≤ lim sup
n→∞

1
n

log µn(S) ≤ − inf
q∈S

L∗(q)

In particular, the large deviation rate function for the Yi is given by I(q) = L∗(q).

For our purposes, these bounds aren’t sufficiently sharp. Instead, we compute directly.

We wish to compute

P
(
X1 + . . . + Xn ∈ (x− δ, x + δ)

) /
P
(
X1 + . . . + Xn ∈ (y − δ, y + δ)

)
for fixed x, y ∈ R, as n →∞ and δ ↘ 0.

Lemma 11. Let {Xi} be i.i.d. with density e−φ(·) and finite mean m, and with

inf suppXi < 0 < sup suppXi. Let Yi, L(y), and λ(y) be as above, and assume that

L(y) is finite in a neighbourhood of 0. Then for any x ∈ R, we have as δ ↘ 0 that

lim
n→∞

P
(
X1 + . . . + Xn ∈ (x− δ, x + δ)

)
2δ

/ √
2πnv−m

= emL(−m))−λ(−m)(x+O(δ)) ,

where vq is the variance of µ̃q.

Proof. We compute that:

P
(
X1 + . . . + Xn ∈ (x− δ, x + δ)

)
= P (Y1 + . . . + Yn ∈ (x− δ − nm, x + δ − nm))

= P (|Y1 + . . . + Yn − (x− nm)| ≤ δ)

=
∫
|z1+...+zn−(x−nm)|≤δ

exp
[
−

n∑
i=1

φ(zi)
]
dz1 . . . dzn

=
∫
|z1+...+zn−(x−nm)|≤δ

exp
[
−

n∑
i=1

(φ(zi) + λ(−m)zi)
]
× exp

[
− λ(−m)

n∑
i=1

zi

]
dz1 . . . dzn
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= e−λ(−m)(x−nm+O(δ)) ×
∫
|z1+...+zn−(x−nm)|≤δ

exp
[
−

n∑
i=1

φλ(−m)(zi)
]
dz1 . . . dzn .

Here we have factored out a term which is almost surely within O(δ) of e−λ(−m)(x−nm).

To finish the argument, we apply the central limit theorem to the remaining integral. This

integral is with respect to the distribution µ̃−m. Now, the moment generating function

of µ̃−m satisfies that log
∫

esxµ̃−m(dx) = const + L(s + λ(−m)). function exists in a

neighbourhood of 0. By (7), L(s + λ(−m)) < ∞ for s in a neighbourhood of 0. Hence,

µ̃−m has moment generating function which is finite in a neighbourhood of 0, and therefore

has finite variance: v−m < ∞. We conclude that as n →∞,

P
(
X1 + . . .+Xn ∈ (x−δ, x+δ)

)
=
(
1+o(1)

)2δ

n

√
n

2πv−m
×emL(−m)×e−λ(−m)(x+O(δ)) .

This gives the result.

Using this lemma, we are able to give a result with generalises Example 10 to virtually

arbitrary i.i.d. sequences with large deviation rate functions and finite moment generating

functions.

Theorem 12. Let {Xi} be i.i.d. with density e−φ(·), finite mean m, and with inf suppXi <

0 < sup suppXi. Let Yi = Xi −m, and assume that Yi has moment generating function

which exists at least in some neighbourhood of 0. Let I(·) = L∗(·) be the large deviations

rate function for the Yi. Then for x, y ∈ R,

lim
δ↘0

lim
n→∞

P
(
X1 + . . . + Xn ∈ (x− δ, x + δ)

) /
P
(
X1 + . . . + Xn ∈ (y − δ, y + δ)

)
= exp{−I ′(−m)(x− y)} ,

assuming the derivative exists.

Proof. From the definition of L∗(y), we have that L∗(y) = λ(y) y − L(λ(y)), so

that L∗′(−m) = λ(−m) + (−m)λ′(−m) − L′(λ(−m))λ′(−m) = λ(−m) + (−m)λ′(−m) −

−mλ′(−m) = λ(−m). Hence, L∗′(−m) = λ(−m). Thus, the conclusion of Lemma 11 can

be written as

P
(
X1 + . . . + Xn ∈ (x− δ, x + δ)

)
∝ (1 + O(δ)) exp

[
− xL∗′(−m) + O(1/n)

]
14



The result follows since L∗(·) = I(·).

We can state this result in terms of our λN
0 variables as follows.

Corollary 13. Suppose that the {λN
i } are defined with G(λ, ·) = G0(· − λ), where G0(·)

has positive density and finite mean m, and has inf suppG0 < 0 < sup suppG0. Let

I(·) = L∗(·) be the large deviation rate function for Yi, where Yi = Xi − m with {Xi}

i.i.d. ∼ G0. Assume Yi has moment generating function which exists at least in some

neighbourhood of 0. Then if I ′(−m) exists, then r(x, y) exists for all x, y ∈ R, with

r(x, y) = exp{(y − x)I ′(−m)} .

Example 14. GAMMA: if g(x) =Gamma(a, b;x) ∝ xa−1e−bx for x > 0 (where a, b > 0),

then the corresponding Ui are all non-negative, so we might expect λi to go to infinity lin-

early. Indeed, we compute that in this case, L(λn) ∝ xna−1e−bxdx, so that fn
0 (x)/fn

0 (y) =

(x/y)na−1e−bx. As n → ∞, this ratio converges to ∞ whenever x > y. In fact, here

R(A,B) = ∞ whenever esssup (A) > esssup (B).

Example 15. SHIFTED GAMMA: if g(x) ∝ (x + c)a−1e−b(x+c) for x > −c (where

a, b, c > 0), i.e. a gamma distribution shifted c units to the left, then the corresponding

Ui are no longer non-negative, so the result is more interesting. Indeed, in this case, for

x, y > 0, we have by Proposition 1 that

r(x, y) = lim
n→∞

(x + cn)na−1e−b(x+cn)

(y + cn)na−1e−b(y+cn)

= lim
n→∞

(
1 +

x− y

y + cn

)na−1

e−b(x−y)

= e(x−y)((a/c)−b) .

Now, if c = a/b (the mean of the gamma distribution), then we get a flat limit, corre-

sponding to Proposition 2 again. On the other hand, as c ↘ 0 the ratio goes to infinity,

corresponding to the previous example.
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Finally in this section, we say that G(λ, ·) is a non-centered scale family if G(log λ, log ·)

is a non-centered location family as above, i.e. if (6) is satisfied with f(x) = log x where

Gf is a non-centered location family. We then have

Corollary 16. Suppose that G(λ, ·) is a non-centered scale family. Then r(x, y) =

(y/x)1+I′(m) for all x, y ∈ R, where m and I(·) are the mean and large-deviations rate

function, respectively, corresponding to the non-centered location family G(log λ, log ·).

Proof. This follows immediately from Proposition 6 and Theorem 12.

6. Results using the theory of stable laws.

The previous section relies heavily on the fact that certain variances are finite. If these

variances are not finite, then the resulting limits may involve non-Gaussian stable laws.

We begin with an example.

Example 17. CAUCHY: Suppose that G(λ, dx) = 1
π(1+(x−a)2)dx is a Cauchy distribution

with drift a. Then the distribution of 1
n (λn − λ0) is again this same Cauchy distribution.

From this fact, is it straightforward to conclude that we will have r(x, y) = 1 for all x and

y, i.e. that the the limiting distribution will again be flat.

The above example is part of a more general phenomenon, as we now show. Call

a density log-Lipshitz if its logarithm is a Lipshitz function, i.e. if there is ` < ∞ with

| log f(x) − log f(y)| ≤ `|x − y| for all x and y. (Note that the Gaussian density is not

log-Lipshitz, but the Cauchy density is.) Then we have

Proposition 18. Let G(λ, ·) be additive, where the increment distribution is a stable

law with log-Lipshitz stable density (with respect to Lebesgue measure). Then r(x, y) = 1

for all x and y, i.e. the distribution of λN
0 is asymptotically flat.

Proof. Let α be the parameter of the stable law, say να, having density fα, and let ` be the

log-Lipshitz constant. Let Ui = λi−λi−1 be the ith increment, so that λN −λ0 =
∑N

i=1 Ui.

Then as N →∞, we have for some b ∈ R that∑N
i=1 Ui −Nb

N1/α
⇒ να .

16



Hence, as N →∞, we have

P (λN ∈ (x− δ, x + δ))

= P
(∑N

i=1 Ui −Nb

N1/α
∈ (N−1/α(x− δ + λ0 −Nm), N−1/α(x + δ + λ0 −Nm)

)
→ να

(
N−1/α(x− δ + λ0 −Nm), N−1/α(x + δ + λ0 −Nm)

)
.

Hence, using the log-Lipshitz property, this probability is

≤ 2N−1/αδ fα

(
N−1/α(x + λ0 −Nm)

)
e`2δN−1/α

,

and is also

≥ 2N−1/αδ fα

(
N−1/α(x + λ0 −Nm)

)
e−`2δN−1/α

,

where ` is the log-Lipshitz constant. Now, these two expressions are independent of x, and

have ratio approaching 1 as δ ↘ 0. The result follows.

Remark. Of course, if the increment distribution is instead in the domain of attraction

of a stable law with log-Lipshitz density, then the distribution of λN
0 will still be asymp-

totically flat, provided that it converges to the corresponding stable law in such a way that

its probability ratios also converge.

Proposition 18 leads to the question of which stable laws have log-Lipshitz densities.

We make the following conjecture.

Conjecture. All non-Gaussian stable laws have log-Lipshitz densities.

Of course, it is well known that all stable laws have densities of some sort (with respect

to Lebesgue measure). The question here is whether or not these densities are necessarily

log-Lipshitz. We believe that the conjecture is true, however we are unable to prove it or

to locate an appropriate result in the literature on large deviations. For background on

stable laws, see e.g. Feller (1971), Zolotarev (1986), and Bingham et al. (1987).
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7. Results using ergodic Markov chain theory.

Clearly, we may think of λN , λN−1, . . . as a Markov chain, with transition probabilities

governed by G(λ, ·). Recall (cf. Meyn and Tweedie, 1993, p. 312) that the Markov chain

is ergodic with stationary distribution π(·) if∫
π(λ)G(λ, dy)dλ = π(dy) , y ∈ R

and

lim
N→∞

‖L(λN
0 )− π(·)‖ → 0 .

In this case, we obtain

Proposition 19. Suppose G(λ, ·) gives an ergodic Markov chain with stationary distri-

bution π(·). Then, for any a0 ∈ R, the limiting distribution of λ0 is proportional to π(·).

That is, R(A,B) = π(A)/π(B) whenever π(B) > 0.

Proof. By ergodicity, we have as N → ∞ that P(λN
0 ∈ A) → π(A) and P(λN

0 ∈ B) →

π(B). The result follows.

This situation does not often arise in statistical inference models. However, there are

various examples of this phenomenon.

Example 20. RECIPROCAL POISSON: Here log(λi+1) ∼ Pois(1/λi). Here it is easily

verified that G(λ, 1) ≥ e−1 for all λ. This is sufficient for positive recurrence (see for

example Meyn and Tweedie, 1993). Hence, Proposition 19 applies, and we conclude that

the limiting distribution of λN
0 is proportional to the stationary distribution of this Markov

chain.

18



8. Weak convergence results.

It is worth considering how the value of r(x, y) relates to convergence of expectations

of functionals z(x) according to the posterior distribution. Let L(x) denote the likelihood

for given parameter value x (which also depends on the data, although we suppress this

in the notation). Then we have the following.

Proposition 21. Let λn
i ∼ G(λn

i+1, ·) as usual, with P(λn
0 ∈ dx) = fn

0 (x) dx. Suppose

that (5) holds, and further that for some c ∈ R (e.g. c = 0), and some L1 function Y ,

we have L(x)fn
0 (x)/fn

0 (c) ≤ Y (x) for all x ∈ R, for all sufficiently large n. (For example,

perhaps L ∈ L1 and

fn
0 (x) ≤ Kfn

0 (c) (10)

for all x; we can then take Y (x) = KL(x).) Let z(x) be any bounded functional. Write

E (z(λn)) for the expectation with respect to the posterior distribution, i.e.

E (z(λn)) ≡
∫

z(x)L(x)fn
0 (x)dx∫

L(x)fn
0 (x)dx

.

Then as n →∞, we have

E (z(λn)) →
∫

z(x)L(x)r(x, c)dx∫
L(x)r(x, c)dx

.

That is, the posterior expectation converges to the value suggested by the form r(x, y) of

the limiting prior density ratios.

Proof. We have that∫
z(x)L(x)fn

0 (x)dx∫
L(x)fn

0 (x)dx
=
∫

z(x)L(x)(fn
0 (x)/fn

0 (c))dx∫
L(x)(fn

0 (x)/fn
0 (c))dx

.

The result now follows from letting n →∞, applying the dominated convergence theorem

to the numerator and denominator separately, and using Proposition 1.

This proposition leads to the question of when the dominating condition will hold.

We have the following.
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Proposition 22. Suppose that G(λ, dx) = g(x − λ)dx, where g is continuous at 0 and

is maximised at 0. Then (10) holds with c = 0. Hence, the conclusions of Proposition 21

hold whenever L ∈ L1.

Proof. Denote by g(n) the n-fold convolution of the density g. Since g is symmetric,

so is g(n) for each n. Furthermore, the convolution g(2n) = g(n) ∗ g(n) will automatically

satisfy (g(n) ∗ g(n))(x) ≤ (g(n) ∗ g(n))(0) for all x ∈ R. Indeed, by Cauchy-Schwarz we have

(g(n) ∗ g(n))(x) =
∫

g(n)(t)g(n)(x− t)dt ≤

√(∫
(g(n)(t))2dt

)(∫
g(n)(x− t)2dt

)

=
∫

g(n)(t)2dt = g(2n)(0) = (g(n) ∗ g(n))(0) .

It follows that g(n)(x) ≤ g(n)(0) for all even n. Hence, equation (10) holds for even n, with

K = 1.

To handle odd values of n, write

g(2n+1)(x)
g(2n+1)(0)

=
g(2n+1)(x)
g(2n)(0)

g(2n)(0)
g(2n+1)(0)

.

We shall bound each of these two factors separately.

For the first factor, we note that since g(2n)(z)/g(2n)(0) ≤ 1 for all z, we have

g(2n+1)(x)
g(2n)(0)

=
∫

z

g(2n))(z)
g(2n))(0)

g(x− z)dz

≤
∫

g(x− z)dz ≤ 1 .

For the second factor, note that by continuity, there exists a positive constant ε such

that
g(z)
g(0)

≥ ε

for |z| ≤ ε. Furthermore, by Proposition 2, the measure defined by the density g(2n)(·)/g(2n)(0)

has r(x, y) = 1 for all x and y. Hence, by Proposition 21 applied to even n only,

limn→∞
∫

g(−z) g(2n)(z)
g(2n)(0)

dz =
∫

g(−z)dz. We obtain that

lim inf
n→∞

g(2n+1)(0)
g(2n)(0)

= lim inf
n→∞

∫
g(−z)

g(2n)(z)
g(2n)(0)

dz =
∫

g(−z)dz ≥
∫ ε

−ε

g(−z)dz ≥ 2ε2g(0) .
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Taking reciprocals, we have that

lim sup
n→∞

g(2n+1)(0)
g(2n)(0)

≤
(
2ε2g(0)

)−1
.

Combining these bounds, we see that (10) holds for all sufficiently large n, with

K = max
(
1,
(
2ε2g(0)

)−1
)
. (Note that it is easily checked that we must have 2ε2g(0) ≤ 1,

so that in fact K =
(
2ε2g(0)

)−1.)

9. Prior distributions and non-informativity.

This paper has largely concentrated on the simple case of prior choice for location

parameters (and related families). The results in these cases are already fairly involved.

However, the general idea of infinite hierarchies is considerably more flexible. It is inter-

esting to ask to what extent general statements can be made about this approach, without

assuming any structural properties of the parameter in question. The partition of Markov

chain kernels into transient and recurrent provides some insight.

Again taking the location family case as a tractable example, it seems eminently

reasonable to assume the martingale form of G leading to the limiting flat prior. Any other

choice would indicate a prior bias towards either +∞ or −∞, reflecting the transience of

the Markov chain to one of those limits. Further, extending to the case of general choice

of G, one might argue that the notion of recurrence is consistent with non-informativity of

the hierarchical construction, whereas transience expresses some kind of qualitative bias

for the prior. Given this, a sensible restriction on G would be to assume recurrence.

Under the assumptions of aperiodicity and Harris recurrence, dependence between λN
0

and λN
N necessarily diminishes to 0 as N → ∞ as described by Orey’s Theorem (see e.g.

Meyn and Tweedie, 1993, Theorem 18.1.2). This is useful since it shows that recurrence

concurs with another reasonable criterion for non-informativity, further supporting its use

as a criterion for the construction of non-informativity.

We note that in certain cases (e.g. the centered location family case, and the exponen-

tial location family case, but not the non-centered location family case) our construction

gives the standard Jeffreys prior, given by
√

E(I), where I = − ∂2

(∂θ)2 log(likelihood). It is
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unclear to what extent this agreement holds in general, and it is unlikely that our approach

will turn out to be closely connected to either Jeffreys priors, reference analysis or other

approaches for the choice of non-informative priors.

We have not considered the case where the latent hierarchical structure has different

levels living on different spaces. This is clearly of some interest in mimicking the properties

of real hierarchical models which might for instance have a variance and a mean determining

the distribution of a mean, perhaps leading to the ith leave of the hierarchy containing 2i

parameters. It turns out that much of this can be covered by the existing theory described

in this paper. For instance, consider the case where λi ∼ N(λi+1, σ
2
i+1), where σ2

i+1 has its

own infinite hierarchical structure. Then the conditional prior for λ0 conditional on all the

σ hierarchies is uniform by the centered martingale family case. Therefore the marginal

prior for λ0 is therefore also uniform on R.

10. Concluding comments.

This paper discusses what happens when we consider an infinite hierarchical model,

with λi ∼ G(λi+1, ·) for each i, where G(λ, ·) is some parametric family of probability

distributions. Some limited extensions to different hierarchical structures are also briefly

discussed.

We have seen that the limiting distribution in such cases may be flat, or proportional to

1/x, or other possibilities, depending on the properties of G(λ, ·), but that in certain cases

(for instance the location and scale family cases) the family of possible limits is limited.

These results may provide some justification for the choice of certain prior distributions in

Bayesian modeling.

There are two potential contributions of the ideas in this paper. The first describes a

method of constructing non-informative priors in a non-informative setting in a way quite

different from those currently available in the literature.

Secondly, in practice, identification of the limiting prior distribution could provide

considerable computational advantages in avoiding the need for complicated hierarchical

structures for prior distributions, for example in MCMC algorithms.

On the other hand, many important questions are also raised by our approach. We
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have made an extensive analysis of the location family case, where it is easier to produce

explicit expressions for the results of our construction. A particularly appealing result

of this analysis is that results obtained in a number of cases are essentially independent

of the chosen hierarchical linking distribution (G). Indeed if we include the recurrence

restriction discussed in Section 9, limiting flat priors are obtained in essentially all cases.

This property of independence from the exact form of G will extend to other classes of

problems, and the work in this paper suggests the need for a detailed study of these kind

of invariance properties.

One area not covered by our paper in any detail is the construction of dependent

priors (for example as used in variance component models) and their properties in infinite

hierarchical structures. Example 9 illustrates at least how our approach can be easily

extended to such situations. This example also illustrates the ease with which our approach

can be combined with partial knowledge of hierarchical structure.

In this paper we have seen how our method of producing prior distributions is in

agreement with Jeffreys prior in at leat two natural situations. However it will not always

be the case that the two classes of priors coincide. Jeffreys priors have the property of

second order agreement of highest posterior density regions with frequentist confidence

intervals. Our hierarchical methodology will certainly fail to possess this property when

the priors disagree. On the other hand, a number of advantages of our hierarchical approach

have been described in the text. The real test of how effective our methodogy is, will come

in more complicated examples. It will be particularly interesting to see how the approach

introduced here behaves in more complex stochastic models.
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