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1 Introduction

Suppose we want to know the value of Eπg :=
∫
X g(x) π(dx), where π is a probability distribution

with support X and g is a real-valued, π-integrable function on X . Further suppose that this

integral cannot be evaluated analytically nor by standard quadrature methods, and that classical

Monte Carlo methods are not an option as obtaining independent and identically distributed (iid)

draws from π is prohibitively difficult. In such a case, we might resort to Markov chain Monte Carlo

methods (MCMC) which we now explain. Suppose that Φ = {X0, X1, X2, . . . } is an aperiodic,

irreducible, positive Harris recurrent Markov chain with state space X and invariant distribution π

[for definitions see Meyn and Tweedie, 1993]. The Ergodic Theorem implies that, with probability

1,

ḡn :=
1
n

n−1∑
i=0

g(Xi) → Eπg as n →∞. (1)

The MCMC method entails constructing a Markov chain Φ satisfying the regularity conditions

described above and then simulating Φ for a finite number of steps, say n, and using ḡn as an

estimate of Eπg. The popularity of the MCMC method is due to the ease with which such a Φ

can be constructed and simulated [Robert and Casella, 1999].

An obvious and important question that has received far too little attention in the MCMC

literature is “How do we construct a legitimate asymptotic standard error for ḡn?” If the Xi’s

comprising (1) were iid and Eπg2 < ∞ then by the central limit theorem (CLT),

√
n (ḡn − Eπg) d−→ N

(
0, Eπg2 − (Eπg)2

)
,

and the obvious moment estimator of the variance of the asymptotic distribution is consistent.

Unfortunately, when the Xi’s comprising (1) are a Markov chain, Eπg2 < ∞ is no longer sufficient

for a CLT to hold. Indeed, the Markov chain must mix quickly in order to have CLTs. More

specifically, for n ∈ N := {1, 2, 3, . . .} let Pn(x, dy) be the n-step Markov transition kernel; that

is, for x ∈ X and a measurable set A, Pn(x,A) = Pr (Xn ∈ A|X0 = x). The assumptions we have

thus far made about Φ guarantee that

‖Pn(x, ·)− π(·)‖ ↓ 0 as n →∞, (2)

where the left-hand side is the total variation distance between Pn(x, ·) and π(·); that is, the

supremum over measurable A of |Pn(x,A)− π(A)|. We say that Φ is geometrically ergodic if this
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convergence occurs at a geometric rate; that is, if there exists a constant 0 < t < 1 and a function

M : X 7→ R+ such that for any x ∈ X ,

‖Pn(x, ·)− π(·)‖ ≤ M(x) tn (3)

for n ∈ N. Chan and Geyer [1994] have shown that geometric ergodicity along with a moment

condition on the function g guarantee a CLT. Here is their theorem.

Theorem 1. Suppose that Φ = {X0, X1, X2, . . . } is an aperiodic, irreducible, positive Harris

recurrent Markov chain with invariant distribution π. If Φ is geometrically ergodic and Eπ|g|2+ε <

∞ for some ε > 0, then
√

n (ḡn − Eπg) d−→ N(0, γ2
g ) (4)

where

γ2
g = Varπ(g(X0)) + 2

∞∑
i=1

Covπ(g(X0), g(Xi)).

A couple of remarks are in order:

Remark 1. Roberts and Rosenthal [1997] have shown that, if Φ is reversible, the same result holds

without the ε; that is, a finite second moment is sufficient. Moreover, Kipnis and Varadhan [1986]

provide an even less restrictive CLT for reversible chains.

Remark 2. It is well-known that geometric convergence is not necessary for CLTs (see e.g. Num-

melin [1984, Corollary 7.3]). On the other hand, the CLTs that involve weaker assumptions on the

convergence rate of Φ do not hold for all functions with a 2 + ε moment. For example, Corollary

7.3 of Nummelin [1984] holds for bounded functions and the CLT given in Chan [1993] holds for

a single function. This attitude is summed up concisely by Roberts and Rosenthal [1998a] who

state: “While not the weakest condition to imply central limit theorems, geometric ergodicity is

one of the easiest to check and leads to clean statements.”

Making practical use of Chan and Geyer’s result requires (i) showing that Eπ|g|2+ε < ∞,

(ii) establishing that Φ converges at a geometric rate, and (iii) finding an easily computed yet

consistent estimate of γ2
g . Since one must establish a moment condition for g even in the iid case,

(i) is not unduly restrictive.

Regarding (ii), during the last ten or so years, many standard Markov chains used in MCMC

have been shown to be geometrically ergodic. See, for example, Meyn and Tweedie [1994],

Mengersen and Tweedie [1996], Roberts and Tweedie [1996], Hobert and Geyer [1998], Roberts and
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Rosenthal [1998b], Roberts and Rosenthal [1999], and Jarner and Hansen [2000]. However, there

are still many chains used in MCMC to which these results do not apply. The most straightforward

method of establishing that a Markov chain is geometrically ergodic is through the development of

drift and minorization conditions [Meyn and Tweedie, 1993, Chapter 15]. (See Jones and Hobert

[2001] for an introduction to these ideas.) In our opinion, (ii) is becoming less and less of a problem

all the time.

On the other hand, (iii) is often a problem. Specifically, finding a consistent estimate of γ2

that is also easy to compute is often a challenge. There have been many estimators of γ2 suggested

in the Operations Research and Time Series literature. Two of the most commonly used methods

are batch means [Bratley, Fox, and Schrage, 1987] and window estimators [Geyer, 1992]. It is well

known that the method of batch means will not produce a consistent estimate of γ2 as long as the

batch sizes are fixed. However, batch means is extremely easy to implement and hence popular.

Generally speaking, it is possible to impose enough regularity conditions to ensure consistency

of window estimators [Geyer, 1992, Priestly, 1981]. However, the optimal choice of lag window is

often unclear and, in general, window estimators can be computationally intensive. Many standard

simulation texts claim that the methods of batch means and spectral analysis tend to be more

effective when the chain is stationary [Bratley et al., 1987, Ripley, 1987]. Thus, they suggest that

one must be careful about the burn-in period in order to obtain a good estimate of γ2 when using

these methods.

Fortunately, there is a method of analyzing the simulation output that alleviates all of these

concerns. By identifying (random) times at which Φ probabilistically restarts itself, we can rep-

resent ḡn as the ratio of two empirical averages each involving iid terms. This allows us to write

the CLT for ḡn in a slightly different way such that there is an obvious consistent estimator of the

variance of the asymptotic normal distribution. This method is known as regenerative simulation

(RS). Also, we note that RS does not require that the Markov chain be stationary and, in fact, the

initial value is drawn from a prescribed distribution. Thus, it is unsurprising that RS, when avail-

able, is considered the preferred method for variance estimation [Bratley et al., 1987]. Moreover,

in our experience RS has been nearly trivial to implement for many standard MCMC samplers.

In the next section, we discuss RS and the moment assumptions that are necessary to make

legitimate use of RS in the MCMC context. Our main result, Theorem 2, is a checkable sufficient

condition which guarantees that the appropriate moments are finite. In section 3 we provide a
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proof of this theorem, and in section 4 we apply these results to the slice sampler.

2 Minorization, Regeneration, and the Central Limit Theorem

In order to use RS in MCMC, we need a minorization condition on Φ; that is, we need a function

s : X 7→ R+ for which Eπ s > 0 and a probability measure Q such that for all x ∈ X and all

measurable sets A

P (x,A) ≥ s(x) Q(A). (5)

Nummelin [1984] calls s a small function and Q a small measure. When X is finite it is trivial to

establish (5) by fixing a point x∗ ∈ X and taking s(x) = I(x = x∗) and Q(·) = P (x∗, ·). However,

when X is general, our assumptions about Φ do not guarantee the existence of an s and a Q

satisfying (5). On the other hand, our assumptions are enough to guarantee that there exists a

k ≥ 1 such that a minorization condition holds for the k-step transition kernel, P k. This could be

difficult to exploit in practice. Fortunately, Mykland, Tierney, and Yu [1995] and Rosenthal [1995]

have given recipes for establishing (5) for many of the Gibbs samplers and Metropolis–Hastings

algorithms that arise in MCMC. Jones and Hobert [2001] use simple examples to demonstrate

techniques for constructing s and Q.

This minorization condition can be used to divide the Markov chain into iid blocks. Specifically,

note that (5) allows us to write P (x, dy) as a mixture of two distributions,

P (x, dy) = s(x) Q(dy) + [1− s(x)]R(x, dy), (6)

where R(x, dy) := [1− s(x)]−1 [P (x, dy)− s(x) Q(dy)] is called the residual distribution (define

R(x, dy) as 0 if s(x) = 1). This mixture can be used to generate Xi+1 sequentially as follows.

Given Xi = x, generate δi ∼ Bernoulli(s(x)). If δi = 1, then draw Xi+1 ∼ Q(·), else draw

Xi+1 ∼ R(x, ·). This is actually a recipe for simulating the so-called split chain [Athreya and Ney,

1978, Nummelin, 1984, 1978]

Φ′ = {(X0, δ0), (X1, δ1), (X2, δ2), . . . } ,

which has state space X × {0, 1} and Markov transition kernel

P ′ ((x, δ), dy × ρ) =

 Q(dy)s(y)ρ (1− s(y))1−ρ , if δ = 1,

R(x, dy)s(y)ρ (1− s(y))1−ρ , if δ = 0,
(7)
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where δ, ρ ∈ {0, 1} [Nummelin, 1984, Section 4.4]. Note that the split chain, Φ′, retains the key

properties (aperiodicity, irreducibility, and positive Harris recurrence) of the original chain, Φ

[Nummelin, 1984, Section 4.4].

The times at which δi = 1 are regeneration times when Φ′ probabilistically restarts itself.

Consider the starting value for Φ′, call it (X0, δ0). The split chain is defined in such a way that,

given Xi, the distribution of δi is Bernoulli(s(Xi)). Thus, whenever we discuss starting Φ′, we only

specify a distribution for X0 and we use EQ and Eπ to denote expectation for both the split chain

Φ′ and the marginal chain Φ started with X0 ∼ Q(·) and X0 ∼ π(·), respectively.

Remark 3. Sampling directly from the residual distribution can be problematic. Fortunately, there

is a simple and clever way of avoiding R altogether. If we write the transition as Xi → δi → Xi+1,

we need to generate from (δi, Xi+1)|Xi. Above, we suggested doing this by first drawing from δi|Xi

and then drawing from Xi+1|δi, Xi, which, if δi = 0, entails simulation from R(Xi, dy). Mykland

et al. [1995] note that simulating from the residual density can be avoided by first drawing from

Xi+1|Xi (in the usual way) and then drawing from δi|Xi, Xi+1. Nummelin [1984, p.62] notes that

Pr(δi = 1|Xi, Xi+1) =
s(Xi) q(Xi+1)
k(Xi+1|Xi)

, (8)

where q(·) and k(·|x) are densities corresponding to Q(·) and P (x, ·).

Assume Φ′ is started with X0 ∼ Q(·). Let 0 = τ0 < τ1 < τ2 < · · · be the (random) regeneration

times; i.e., τt+1 = min{i > τt : δi−1 = 1}. Also assume that Φ is run for a fixed number, R, of

tours; that is, the simulation is stopped the Rth time that a δi = 1. Thus, the total length of the

simulation, τR, is random. Let Nt be the length of the tth tour; that is, Nt = τt − τt−1 and define

St =
τt−1∑

j=τt−1

g(Xj)

for t = 1, . . . , R. The (Nt, St) pairs are iid since each is based on a different tour. Let N̄ be the

average tour length; that is, N̄ = R−1
∑R

t=1 Nt and, analogously, let S̄ = R−1
∑R

t=1 St. Note that

τR →∞ w.p. 1 as R →∞. This combined with the Ergodic Theorem yields

ḡR =
∑R

t=1 St∑R
t=1 Nt

=
S̄

N̄
=

1
τR

τR−1∑
j=0

g(Xj) → Eπg (9)

with probability 1 as R →∞.

Now since EQ(N1) = 1/(Eπs) < ∞, it follows from the Strong Law of Large Numbers that

N̄ → EQ(N1) w.p. 1 as R →∞. Hence, it now follows from (9) that S̄ → EQ(N1) Eπg w.p. 1. as
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R → ∞. Thus, it must be true that EQ|S1| < ∞. Appealing to the Strong Law again, we know

that ḡR converges almost surely to EQ(S1)/EQ(N1). Therefore, EQ(S1) = EQ(N1)Eπg and hence

the random variables St −Nt Eπg, t = 1, . . . , R, are iid with mean zero. Then if EQN2
1 and EQS2

1

are both finite, we can appeal to the CLT as follows

√
R (ḡR − Eπg) =

1
N̄

R− 1
2

R∑
t=1

(St −Nt Eπg) d−→ 1
EQ(N1)

N
(
0, EQ

[
(S1 −N1 Eπg)2

])
.

Thus,
√

R (ḡR − Eπg) d−→ N
(
0, σ2

g

)
(10)

where

σ2
g =

EQ

[
(S1 −N1Eπg)2

]
[EQ(N1)]

2 .

The advantage of (10) over (4) is that there is an obvious and easily computed consistent estimate

of σ2
g . Indeed, consider the estimator

σ̂2
g =

∑R
t=1(St − ḡRNt)2

RN̄2
. (11)

A straightforward calculation shows that the difference between σ̂2
g and

1
N̄2

1
R

R∑
t=1

(St −NtEπg)2 (12)

converges almost surely to 0 as R →∞. Thus, since (12) is consistent, so is σ̂2
g .

All that we need to implement RS is the minorization condition (5) and the ability to simulate

from Q. Given the work of Mykland et al. [1995], it is relatively easy to do both of these things with

many MCMC samplers. Thus it is often painless to implement RS in MCMC while the benefits

are substantial. In particular, since we will draw X0 ∼ Q(·), burn-in is not an issue and we have

a consistent estimate of σ2
g that is simple to compute. Some applications of RS are discussed

in Geyer and Thompson [1995], Gilks, Roberts, and Sahu [1998], Jones and Hobert [2001], and

Robert [1995]

Recall that the derivation of the CLT (10) requires the assumption that EQN2
1 and EQS2

1

are both finite. In practice, this needs to be verified before one can make legitimate use of

the regenerative method. Given Chan and Geyer’s [1994] result, one might hope that geometric

ergodicity of Φ along with Eπ|g|2+ε < ∞ would imply that EQN2
1 and EQS2

1 are finite. Our main

result shows that this is indeed the case.
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Theorem 2. Let Φ = {X0, X1, X2, . . . } be an aperiodic, irreducible, positive Harris recurrent

Markov chain with invariant distribution π. Assume that (5) holds. If Φ is geometrically ergodic

and Eπ|g|2+ε < ∞ for some ε > 0, then EQN2
1 and EQS2

1 are both finite.

This theorem shows that, in conjunction with the minorization condition (5), the conditions

of Chan and Geyer’s [1994] CLT are sufficient to assure asymptotic normality of ḡR and the

consistency of the variance estimator σ̂2
g given in (11). Note also that the conclusions of theorem 2

are precisely the moment conditions required by the CLT given in Theorem 17.2.2 of Meyn and

Tweedie [1993], thus providing an alternative proof of Chan and Geyer’s [1994] CLT, though again

with the additional assumption of the minorization condition (5). Since a minorization condition

is generally required to verify geometric ergodicity, this additional requirement is not as stringent

as it may first appear. Since it is also the key element that make RS and the variance estimator σ̂2
g

possible, the practical payoff is great when an appropriate minorization condition can be developed

for a given problem.

Remark 4. Of course, the two CLTs (4) and (10) are equivalent. Note first that

√
R (ḡR − Eπg) =

1√
τR/R

√
τR (ḡτR − Eπg) .

Thus, if τR were a deterministic sequence tending to ∞ as r → ∞, it would follow from (4) that

this sequence converges weakly to N
(
0, γ2

g Eπs
)

and hence that σ2
g = γ2

gEπs. In fact, the proof of

Meyn and Tweedie’s (1993) Theorem 17.2.2 shows that this remains true despite the fact that τR

is actually a random sequence converging to ∞ w.p. 1.

3 Proof of the Main Result

Lemma 1. Let Φ = {X0, X1, X2, . . . } be an aperiodic, irreducible, positive Harris recurrent

Markov chain with invariant distribution π. Assume that (5) holds. Then for any function

h : X∞ → R we have

Eπ|h(X0, X1, . . . )| ≥ cEQ|h(X0, X1, . . . )|

where c = Eπ s.

Proof. For any measurable set A it follows from (5) that

π(A) =
∫
X

π(dx) P (x,A) ≥ Q(A)
∫
X

π(dx) s(x) (13)
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and hence π(·) ≥ cQ(·). Next note that

Eπ|h(X0, X1, . . . )| = Eπ [E (|h(X0, X1, . . . )| | X0)]

The inner expectation is a function of X0 not depending on the starting distribution. Thus, we

can use (13) and the Markov property to obtain

Eπ|h(X0, X1, . . . )| ≥ cEQ [E (|h(X0, X1, . . . )| | X0)] = cEQ|h(X0, X1, . . . )|

In order to use Lemma 1 in conjunction with Φ′, we need to establish that a minorization

condition of the form (5) holds for Φ′. Fortunately, this is straightforward. From (7) we have

P ′ ((x, δ), dy × ρ) ≥ Q(dy) s(y)ρ (1− s(y))1−ρ I(δ = 1)

= I(δ = 1)Q′(dy × ρ),

where the probability measure Q′ is defined in an obvious way. Thus, the split chain also satisfies

a minorization condition [See also Meyn and Tweedie, 1993, Proposition 5.5.6].

Lemma 2. Assume that Φ = {X0, X1, X2, . . . } is an aperiodic, irreducible, positive Harris recur-

rent Markov chain with invariant distribution π. Assume further that (5) holds. If Φ is geometri-

cally ergodic, then there exists a β > 1 such that EπβN1 < ∞.

Proof. First N1 = τ1 = min {i > 0 : (Xi−1, δi−1) ∈ X × {1}}; that is, N1 is just the hitting time

on the set X × {1}. Now note that Φ and Φ′ are what Roberts and Rosenthal [2001] call co-de-

initializing Markov chains. Consequently, the two chains converge to stationarity at exactly the

same rate. In particular, since Φ is geometrically ergodic, so is Φ′. Let π′ denote the invariant

distribution of Φ′. Note that a random variable (X, δ) with distribution π′ can be represented

as follows. First, X ∼ π(·), and conditional on X, δ|X ∼ Bernoulli(s(X)). Now since Φ′ is

geometrically ergodic and π′(X × {1}) > 0, Theorem 2.5 of Nummelin and Tuominen [1982]

implies that there exists a β > 1 such that

EπβN1 < ∞.
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Proof of Theorem 2. From lemmas 1 and 2, it follows that EQβN1 ≤ EπβN1 < ∞ for some β > 1.

This of course implies that EQNp
1 < ∞ for any p > 0 and in particular that EQN2

1 < ∞.

Next note that

S2
1 =

τ1−1∑
j=0

g(Xj)

2

≤

τ1−1∑
j=0

|g(Xj)|

2

=

 ∞∑
j=0

I(0 ≤ j ≤ τ1 − 1)|g(Xj)|

2

=
∞∑
i=0

∞∑
j=0

I(0 ≤ i ≤ τ1 − 1) I(0 ≤ j ≤ τ1 − 1) |g(Xi)| |g(Xj)|.

Thus,

EπS2
1 =

∞∑
i=0

∞∑
j=0

Eπ [I(0 ≤ i ≤ τ1 − 1) I(0 ≤ j ≤ τ1 − 1) |g(Xi)| |g(Xj)|] ,

and by the Cauchy-Schwartz inequality,

EπS2
1 ≤

∞∑
i=0

∞∑
j=0

√
Eπ

[
(I(0 ≤ i ≤ τ1 − 1) |g(Xi)|)2

]
Eπ

[
(I(0 ≤ j ≤ τ1 − 1) |g(Xj)|)2

]

=

( ∞∑
i=0

√
Eπ

[
(I(0 ≤ i ≤ τ1 − 1) |g(Xi)|)2

])2

=

( ∞∑
i=0

√
Eπ [I(0 ≤ i ≤ τ1 − 1) |g(Xi)|2]

)2

.

Now set q = 1 + ε/2 and p = 1 + 2/ε. By Hölder’s inequality,

Eπ

[
I(0 ≤ i ≤ τ1 − 1) |g(Xi)|2

]
≤ [EπI(0 ≤ i ≤ τ1 − 1)]

1
p
[
Eπ|g(Xi)|2q

] 1
q ,

and since
[
Eπ|g(Xi)|2q

] 1
q =

[
Eπ|g(X0)|2+ε

] 1
q = c′ < ∞, it follows that

EπS2
1 ≤ c′

( ∞∑
i=0

[EπI(0 ≤ i ≤ τ1 − 1)]
1
2p

)2

= c′

( ∞∑
i=0

[Prπ(τ1 ≥ i + 1)]
1
2p

)2

.

We know from Lemma 2 that there exists a β > 1 such that EπβN1 < ∞, and an simple calculation

shows that for any i = 0, 1, 2, . . . ,

EπβN1 ≥ β(i+1) Prπ(τ1 ≥ i + 1).

Thus,
∞∑
i=0

[Prπ′(τ1 ≥ i + 1)]
1
2p ≤

(
EπβN1

) 1
2p

∞∑
i=0

β
−(i+1)

2p < ∞.

Therefore, EπS2
1 is finite and an application of Lemma 1 again yields the result.
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4 Regeneration and the Slice Sampler

4.1 Background

Let π : Rd → [0,∞) be a d-dimensional probability density function. Suppose that π can be

factored as π(x) = q(x) l(x) where q is nonnegative and l is strictly positive. Consider a univariate

auxiliary variable ω such that the joint density of x and ω is given by

π(x, ω) = q(x) I[0 < ω < l(x)].

Note that
∫

π(x, ω) dω = π(x). The simple slice sampler [Neal, 2000] is just the Gibbs sampler ap-

plied to the joint density π(x, ω). So our Markov chain takes the form Φ = {(ω0, x0), (ω1, x1), . . . }

and the Markov transition density is simply

k(x, ω|x′, ω′) = π(ω|x′) π(x|ω),

where ω|x ∼ uniform(0, l(x)) and π(x|ω) ∝ q(x)I[l(x) > ω]. The Markov chain Φ is aperiodic,

π-irreducible, and Harris recurrent [Mira and Tierney, 2001, Roberts and Rosenthal, 1999].

In order to use regenerative simulation in conjunction with Φ, we must show that Φ is geomet-

rically ergodic and we must establish a minorization condition of the form (5). As we pointed out

in Section 1, a great deal of work has been done over the last few years establishing conditions

under which some popular MCMC algorithms are geometrically ergodic. The following result is

due to Roberts and Rosenthal [1999].

Theorem 3. Let Φ be the simple slice sampler described above. Define Q(ω) =
∫

q(x) I[l(x) >

ω] dx and

G(ω) = ω
1
α

+1 ∂

∂ω
Q(ω).

If π is bounded and there exists an α > 1 such that G(ω) is non-increasing on an open set containing

0, then Φ is geometrically ergodic.

We now use a technique described by Mykland et al. [1995] to construct a minorization condition
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for Φ. Fix a “distinguished point” x̃ ∈ Rd. Now

k(x, ω|x′, ω′) = π(x|ω)
I[0 < ω < l(x′)]

l(x′)

≥ π(x|ω)
I[0 < ω < l(x′)]

l(x′)
I[0 < ω < l(x̃)] I[l(x′) ≥ l(x̃)]

= π(x|ω)
I[0 < ω < l(x̃)]

l(x̃)

[
l(x̃)
l(x′)

I[l(x′) ≥ l(x̃)]
]

= q(ω, x)s(x′)

where q(ω, x) = π(ω|x̃) π(x|ω) is simply a special case of the MTD of Φ. In this particular case, it

is easy to sample from the residual density, which is given by

r(x, ω|x′, ω′) =
{

I[l(x̃) < ω < l(x′)]
l(x′)− l(x̃)

I
[
l(x′) ≥ l(x̃)

]
+ π(ω|x′) I

[
l(x′) < l(x̃)

]}
π(x|ω).

Here’s an overview of simulating the split chain. Suppose the current value is (ωi, xi). If

l(xi) < l(x̃), then δi = 0 w.p. 1 and we draw (ωi+1, xi+1) as usual from π(ω|xi) π(x|ω). Now

suppose that l(xi) > l(x̃). First, draw δi ∼ Bernoulli (l(x̃)/l(xi)). If δi = 1, draw (ωi+1, xi+1) from

π(ω|x̃) π(x|ω). If, on the other hand, δi = 0, draw ωi+1 uniformly from the interval (l(x̃), l(xi))

and then, conditional on ωi+1, draw xi+1 ∼ π(x|ωi+1).

Now, suppose we know (xi, ωi) and (xi+1, ωi+1) and consider trying to infer the value of δi. If

l(xi) < l(x̃), then we know δi = 0. Now suppose that l(xi) > l(x̃). If ωi+1 < l(x̃) then δi must

have been 1. Conversely, if ωi+1 ∈ (l(x̃), l(xi)), then δi must have been 0. Thus, it’s easy to see

(without using (8)) that

Pr [δi = 1|(xi, ωi), (xi+1, ωi+1)] = I[0 < ωi+1 < l(x̃) < l(xi)].

A specific example is examined in the following subsection.

4.2 An Example

The following example was introduced in Damien, Wakefield, and Walker [1999]. Fix τ ∈ R and

consider the univariate density

π(x; τ) ∝ exp
{
−ex − 1

2
(x− τ)2

}
.

Suppose we want to know Eπ g where g(x) = x; that is, we want to calculate∫
R

xπ(x; τ) dx =

∫
R x exp

{
−ex − 1

2(x− τ)2
}

dx∫
R exp

{
−ex − 1

2(x− τ)2
}

dx
.
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While these integrals have no closed form solution, π(x; τ) is univariate and hence it is quite

straightforward to approximate µ using numerical integration or rejection sampling. We will use

this simple example to illustrate the application of regeneration in the slice sampler. The result

will be checked against an essentially exact answer based on rejection sampling.

Consider an application of the simple slice sampler with q(x) = exp
{
−1

2(x− τ)2
}

and l(x) =

exp {−ex}. Note that

{x : l(x) > ω} = {x : x < log log(1/ω)} .

Therefore, in this case, π(x|ω) is just a truncated normal density; specifically, π(x|ω) ∝ φ(x −

τ) I [x < log log(1/ω)] where φ(·) is the standard normal density. We now show that this simple

slice sampler satisfies the conditions of Theorem 3 and is thus geometrically ergodic.

First, π is clearly bounded. Now,

G(ω) =
ω

1
α

log(ω)
q (log log(1/ω)) .

Thus,

∂

∂ω
G(ω) =

ω
1
α
−1

log(ω)

{
q (log log(1/ω))

α
+

1
log(ω)

[
q′ (log log(1/ω))− q (log log(1/ω))

]}
,

where q′ denotes the derivative of q. A straightforward calculation shows that q′ (log log(1/ω))−

q (log log(1/ω)) is negative as long as ω < exp
{
−eτ−1

}
< 1. Hence, for any α > 1, G(ω) is non-

increasing for ω < exp
{
−eτ−1

}
. Hence, by Theorem 3, this simple slice sampler is geometrically

ergodic.

Note that the moment generating function associated with π(x; τ) exists so Eπ|X|2+ε < ∞

for any positive ε. We set τ = 0, x̃ = −1/2 and ran the simple slice sampler for 1 million

regenerations. This took about two minutes on a fast workstation. The resulting estimate of Eπ g

was ḡR = S̄/N̄ = −1.5383/2.2671 = −0.6785 and σ̂2
g = 2.0795. Thus, the asymptotic standard

error is about .0014.

As a check, we used a rejection sampler with a N(−1/2, 1) candidate to get an iid sample of

size 10 million from π(x; 0). Based on this sample, an asymptotic 95% confidence interval for Eπ g

is −0.6782± 0.0005.

Acknowledgment. The authors are grateful to Charlie Geyer for some useful conversations.

13



References

K. B. Athreya and P. Ney. A new approach to the limit theory of recurrent Markov chains.

Transactions of the American Mathematical Society, 245:493–501, 1978.

Paul Bratley, Bennet L. Fox, and Linus E. Schrage. A Guide to Simulation. Springer–Verlag, New

York, 1987.

K. S. Chan. On the central limit theorem for an ergodic Markov chain. Stochastic Processes and

their Applications, 47:113–117, 1993.

Kung Sik Chan and Charles J. Geyer. Comment on “Markov chains for exploring posterior distri-

butions”. The Annals of Statistics, 22:1747–1758, 1994.

Paul Damien, Jon Wakefield, and Stephen Walker. Gibbs sampling for Bayesian non-conjugate

and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society,

Series B, 61:331–344, 1999.

Charles J. Geyer. Practical Markov chain Monte Carlo (with discussion). Statistical Science, 7:

473–511, 1992.

Charles J. Geyer and Elizabeth A. Thompson. Annealing Markov chain Monte Carlo with ap-

plications to ancestral inference. Journal of the American Statistical Association, 90:909–920,

1995.

Walter R. Gilks, Gareth O. Roberts, and Sujit K. Sahu. Adaptive Markov chain Monte Carlo

through regeneration. Journal of the American Statistical Association, 93:1045–1054, 1998.

James P. Hobert and Charles J. Geyer. Geometric ergodicity of Gibbs and block Gibbs samplers

for a hierarchical random effects model. Journal of Multivariate Analysis, 67:414–430, 1998.

S. F. Jarner and E. Hansen. Geometric ergodicity of Metropolis algorithms. Stochastic Processes

and Their Applications, 85:341–361, 2000.

Galin L. Jones and James P. Hobert. Honest exploration of intractable probability distributions

via Markov chain Monte Carlo. Statistical Science (to appear), 2001.

C. Kipnis and S. R. S. Varadhan. Central limit theorem for additive functionals of reversible Markov

processes and applications to simple exclusions. Communications in Mathematical Physics, 104:

1–19, 1986.

14



K.L. Mengersen and R. L. Tweedie. Rates of convergence of the Hastings and Metropolis algo-

rithms. The Annals of Statistics, 24:101–121, 1996.

S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, London,

1993.

Sean P. Meyn and R. L. Tweedie. Computable bounds for geometric convergence rates of Markov

chains. The Annals of Applied Probability, 4:981–1011, 1994.

Antoinetta Mira and Luke Tierney. On the use of auxiliary variables in Markov chain Monte Carlo

sampling. Scandinavian Journal of Statistics (to appear), 2001.

Per Mykland, Luke Tierney, and Bin Yu. Regeneration in Markov chain samplers. Journal of the

American Statistical Association, 90:233–241, 1995.

Radford M. Neal. Slice sampling. Technical report, University of Toronto, 2000.

E. Nummelin. General Irreducible Markov Chains and Non-negative Operators. Cambridge Uni-

versity Press, London, 1984.

Esa Nummelin. A splitting technique for Harris recurrent Markov chains. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 43:309–318, 1978.

Esa Nummelin and Pekka Tuominen. Geometric ergodicity of Harris recurrent Markov chains with

applications to renewal theory. Stochastic Processes and their Applications, 12:187–202, 1982.

M. B. Priestly. Spectral Analysis and Time Series. Academic, London, 1981.

Brian D. Ripley. Stochastic Simulation. John Wiley and Sons, New York, 1987.

Christian P. Robert. Convergence control methods for Markov chain Monte Carlo algorithms.

Statistical Science, 10:231–253, 1995.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, New York,

1999.

G. O. Roberts and R. L. Tweedie. Geometric convergence and central limit theorems for multidi-

mensional Hastings and Metropolis algorithms. Biometrika, 83:95–110, 1996.

Gareth O. Roberts and Jeffrey S. Rosenthal. Geometric ergodicity and hybrid Markov chains.

Electronic Communications in Probability, 2:13–25, 1997.

15



Gareth O. Roberts and Jeffrey S. Rosenthal. Markov chain Monte Carlo: Some practical implica-

tions of theoretical results (with discussion). Canadian Journal of Statistics, 26:5–31, 1998a.

Gareth O. Roberts and Jeffrey S. Rosenthal. On convergence rates of Gibbs samplers for uniform

distributions. The Annals of Applied Probability, 8:1291–1302, 1998b.

Gareth O. Roberts and Jeffrey S. Rosenthal. Convergence of slice sampler Markov chains. Journal

of the Royal Statistical Society, Series B, 61:643–660, 1999.

Gareth O. Roberts and Jeffrey S. Rosenthal. Markov chains and de-initializing processes. Scandi-

navian Journal of Statistics, 28:489–504, 2001.

Jeffrey S. Rosenthal. Minorization conditions and convergence rates for Markov chain Monte Carlo.

Journal of the American Statistical Association, 90:558–566, 1995.

16


