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1 Introduction

This short paper considers comparisons of different data augmentation algorithms in terms

of their convergence and efficiency. It examines connections between the partial order �1

on Markov kernels, and inequalities of operator norms. It applies notions from Roberts and

Rosenthal (2006) related to variance bounding Markov chains, together with L2 theory, to

data augmentation algorithms (Tanner and Wong, 1987; Liu and Wu, 1999; Meng and van

Dyk, 1999; Hobert and Marchev, 2006). In particular, our main result, Theorem 10, is a

direct generalisation of one of the theorems in Hobert and Marchev (2006).

2 Background and Notation

Let π(·) be a probability measure on a measurable space (X ,F). For measurable f : X → R,

write π(f) =
∫
X f dπ. Let

L2(π) = {f : X → R s.t. f measurable and π(f 2) < ∞} ,

L2
0(π) = {f ∈ L2(π) s.t. π(f) = 0}, and L2

0,1(π) = {f ∈ L2
0(π) s.t. π(f 2) = 1}. For

f, g ∈ L2(π), write 〈f, g〉 =
∫
X f(x) g(x) π(dx), and ‖f‖ =

√
〈f, f〉.

Let P be a Markov chain operator on (X ,F). For a measure µ on (X ,F), write

µP for the measure on (X ,F) defined by (µP )(A) =
∫
X µ(dy) P (y, A) for A ∈ F . For

a measurable function f : X → R, write Pf for the measurable function defined by

(Pf)(x) =
∫
X f(y) P (x, dy) for x ∈ X . Write ‖P‖ for the norm of the operator P restricted

to L2
0(π), i.e. ‖P‖ = sup{‖Pf‖ s.t. f ∈ L2

0,1(π)}.
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The Markov chain operator P has stationary distribution π(·) if πP = π. P is reversible

(with respect to π(·)) if π(dx) P (x, dy) = π(dy) P (y, dx) as measures on X × X , or equiva-

lently if P is a self-adjoint operator on L2(π). If P is reversible with respect to π(·), then P

has stationary distribution π(·) (see e.g. Roberts and Rosenthal, 2004).

In terms of a Markov chain {Xn}∞n=0 following the transitions P in stationarity, so

L(Xn) = π(·) and P[Xn+1 ∈ A |Xn] = P (Xn, A) for all A ∈ F and all n ∈ N, we

have the interpretations (Pf)(x) = E[f(X1) |X0 = x], and 〈f, g〉 = E[f(X0) g(X0)], and

〈f, Pg〉 = E[f(X0) (Pg)(X0)] = E[f(X0) g(X1)].

For a reversible Markov chain operator P on L2(π), write σ(P ) for the spectrum of P

restricted to L2
0(π). Let mP = inf σ(P ), and MP = sup σ(P ). A reversible operator P is

positive iff mP ≥ 0, i.e. if 〈Pf, f〉 ≥ 0 for all f . The following properties follow from basic

operator theory (e.g. Rudin, 1991; Chan and Geyer, 1994).

Proposition 1. Let P be a reversible Markov chain operator. Then

(a) σ(P ) ⊆ [−1, 1], i.e. −1 ≤ mP ≤ MP ≤ 1;

(b) ‖P‖ = max(−mP , MP ), so in particular MP ≤ ‖P‖;
(d) mP = inf{〈Ph, h〉 s.t. h ∈ L2

0,1(π)};
(e) MP = sup{〈Ph, h〉 s.t. h ∈ L2

0,1(π)};
(f) ‖P‖ = sup{|〈Ph, h〉| s.t. h ∈ L2

0,1(π)}.

A Markov kernel P is geometrically ergodic if there is π-a.e. finite M : X → [0,∞] and

ρ < 1 such that |P n(x, A) − π(A)| ≤ M(x) ρn for all n ∈ N, x ∈ X , and A ∈ F . From

Roberts and Rosenthal (1997) and the above, we obtain:

Proposition 2. Let P be a reversible Markov chain operator. Then the following are

equivalent:

(a) P is geometrically ergodic;

(b) ‖P‖ < 1;

(c) mP > −1 and MP < 1;

(d) σ(P ) ⊆ [−r, r] for some r < 1.

Remark. On a finite state space, mP = −1 if and only if −1 is an eigenvalue, which

occurs if and only if P is periodic (with even period). However, on an infinite state space,

P could have spectrum converging to −1, and thus have mP = −1, even if P is not periodic

and does not have an eigenvalue equal to −1.
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Given a Markov operator P and a measurable function f : X → R, the corresponding

asymptotic variance is given by Var(f, P ) = limn→∞ n−1Var(
∑n

i=1 f(Xi)), where again {Xn}
follows the Markov chain in stationarity. A Markov operator P satisfies a central limit

theorem (CLT) for f if n−1/2 ∑n
i=1[f(Xi) − π(f)] converges weakly to N(0, σ2

f ) for some

σ2
f < ∞. Kipnis and Varadhan (1986) (see also Chan and Geyer, 1994) prove that if P is

reversible, and Var(f, P ) < ∞, then P satisfies a CLT for f , and furthermore σ2
f = Var(f, P ).

Roberts and Rosenthal (2006) define a Markov operator P to be variance bounding if

sup{Var(f, P ) s.t. f ∈ L2
0,1(π)} < ∞, and prove the following:

Proposition 3. Let P be a reversible Markov chain operator. Then the following are

equivalent:

(a) Var(f, P ) < ∞ for all f ∈ L2(π);

(b) P is variance bounding;

(c) MP < 1.

In particular, comparing Propositions 2(c) and 3(c) shows that if P is geometrically ergodic

then it is variance bounding.

3 Partial orderings

Let P and Q be Markov operators on (X ,F), each having stationary distribution π(·). Write

P �1 Q if for all f ∈ L2(π) (or, equivalently, for all f ∈ L2
0(π)), we have 〈f, Pf〉 ≤ 〈f, Qf〉.

Peskun (1973), Tierney (1998), and Mira and Geyer (1999, Theorem 4.2), see also Mira

(2001), prove that if P and Q are reversible, then P �1 Q if and only if Var(P, f) ≤ Var(Q, f)

for all f ∈ L2(π). In particular, it follows that if P �1 Q and Q is variance bounding, then P

is variance bounding. However, the corresponding property for geometric ergodicity does not

hold. That is, if P �1 Q and Q is geometrically ergodic, it does not necessarily follow that

P is also geometrically ergodic (Roberts and Rosenthal, 2006). This illustrates the potential

conflict between small variance and rapid convergence (Mira, 2001; Rosenthal, 2003).

Concerning operator norms, we have the following.

Proposition 4. If R and S are reversible, and R �1 S, then ‖R‖ ≤ max(−mR, ‖S‖).

Proof. We have ‖R‖ = max(−mR, MR) ≤ max(−mR, MS) ≤ max(−mR, ‖S‖).

Corollary 5. If R and S are reversible, and R is positive, and R �1 S, then ‖R‖ ≤ ‖S‖.
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Proof. Since R is positive, mR ≥ 0, so max(−mR, ‖S‖) = ‖S‖.

It then follows from Proposition 2 that:

Corollary 6. If R and S are reversible, and R is positive, and R �1 S, and S is

geometrically ergodic, then R is geometrically ergodic.

4 Data Augmentation Algorithms

Consider now the case where the state space is a product space, (X ,F) × (Y ,G). Let

µ(·) and ν(·) be some σ-finite reference measures on X and Y respectively (e.g. Lebesgue

measure of appropriate dimension), and let π(·) be a probability measure on X × Y having

(unnormalised) density w with respect to µ× ν:

π(A×B) =

∫
y∈B

∫
x∈A w(x, y) µ(dx) ν(dy)∫

y∈Y
∫
x∈X w(x, y) µ(dx) ν(dy)

.

Also, let πx and πy denote the marginal measures on (X ,F) and (Y ,G), respectively; e.g.,

πx(A) = π(A× Y).

The data augmentation algorithm (Tanner and Wong, 1984) may be defined as follows.

Let P1 be the Markov operator on X × Y which leaves y fixed while updating x from the

conditional density given by w, i.e.:

P1((x, y), A× {y}) =

∫
x∈A w(x, y) µ(dx)∫
x∈X w(x, y) µ(dx)

, A ∈ F . (1)

Similarly, define P2 by:

P2((x, y), {x} ×B) =

∫
y∈B w(x, y) ν(dy)∫
y∈Y w(x, y) ν(dy)

, B ∈ G . (2)

Then the traditional data augmentation algorithm corresponds to the operator P = P2 P1,

i.e. the Markov chain which updates first y (with P1) and then x (with P2). (This is the

systematic scan version; the random scan version is P = 1
2
(P1 + P2) though we do not

consider that here.)

A data-augmentation algorithm Markov operator P on (X ,F) × (Y ,G) then induces a

corresponding restricted Markov operator P̂ on (X ,F), by P̂ (x, A) = P ((x, y), A × Y),

equivalent to performing P as usual but keeping track of only the x coordinate. It is well-

known and easy to show that P̂ is reversible with respect to πx. (In the language of Roberts

and Rosenthal, 2001, the individual chain {Yn} and the pair chain {(Xn, Yn)} are co-de-

initialising.)

Amit (1991) and Liu, Wong and Kong (1994, Lemma 3.2) prove the following:
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Proposition 7. Let {(Xn, Yn)} follow a systematic scan data augmentation algorithm P ,

and let f ∈ L2
0(πx). Then 〈f, P̂ f〉 = Varπ[Eπ(f(X) |Y )] ≥ 0.

Proposition 7 immediately implies:

Corollary 8. A Markov chain operator P̂ corresponding to a systematic scan data

augmentation algorithm is positive.

Hobert and Marchev (2006), following Liu and Wu (1999) and Meng and van Dyk (1999),

generalise the data augmentation algorithm as follows. Let R be any Markov chain operator

on (Y ,G) having πy as a stationary distribution. Extend this trivially to (X ,F)× (Y ,G) by

R = I ×R, i.e.

R((x, y), {x} ×B) = R(y, B) .

Then define PR = P1 R P2; intuitively, PR corresponds to first updating y with P2, then

updating y with R, and then updating x with P1. Let P̂R be the corresponding restricted

operator on X as above. It is clear that πx is a stationary distribution for P̂R.

Say that PR is a DA algorithm if there is some other density function w∗ on X ×Y , that

also yields πx as the x-marginal, such that if P ∗
1 and P ∗

2 are defined by (1) and (2) but with

w∗ in place of w, then PR = P ∗
2 P ∗

1 , i.e. PR is a traditional data augmentation algorithm

based on the joint density w∗. In terms of this, Hobert and Marchev (2006, Theorem 3)

prove:

Proposition 9. Let R and S be two Markov operators on (Y ,G) that are both reversible

with respect to πy, and let PR, P̂R, PS and P̂S be as defined above. Then

(a) P̂R and P̂S are reversible with respect to πx;

(b) if R �1 S then P̂R �1 P̂S;

(c) if R �1 S, and if PR and PS are both DA algorithms, then ‖P̂R‖ ≤ ‖P̂S‖.

In particular, Proposition 9(c) requires unnatural assumptions about PR and PS being

DA algorithms, which are hard to verify and might well fail. Using the theory of the previous

section, we are able to improve upon their result, as follows:

Theorem 10. In Proposition 9, part (c) may be replaced by any of the following:

(c′) if R �1 S, then ‖P̂R‖ ≤ max (−m
P̂R

, ‖P̂S‖).
(c′′) if R �1 S, and if P̂R is a positive operator, then ‖P̂R‖ ≤ ‖P̂S‖.
(c′′′) if R �1 S, and if PR is a DA algorithm, then ‖P̂R‖ ≤ ‖P̂S‖.
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Proof. (c′) follows from combining Proposition 9(b) with Corollary 4. (c′′) follows imme-

diately from (c′) as in Corollary 5. (c′′′) follows by combining (c′′) with Corollary 8.

Comparing Theorem 10 with Proposition 2, we conclude:

Corollary 11. If R �1 S, and m
P̂R

> −1, and P̂S is geometrically ergodic, then P̂R is

geometrically ergodic.

Now, if S is the identity operator I on Y , then PS corresponds to the traditional data

augmentation algorithm; that is, PS = P . Of course, R �1 I for all R. Hence, Theorem 10

immediately implies:

Corollary 12. Let R be a Markov operator on (Y ,G) that is reversible with respect to

πy, and let PR, P̂R and P̂ be as defined above. Then

(a) P̂R �1 P̂ ;

(b) ‖P̂R‖ ≤ max (−m
P̂R

, ‖P̂‖);
(c) if P̂R is a positive operator, then ‖P̂R‖ ≤ ‖P̂‖;
(d) (Hobert and Marchev, 2006) if PR is a DA algorithm, then ‖P̂R‖ ≤ ‖P̂‖.

Remark. Corollary 12(d) essentially says that ‖P1 R P2‖ ≤ ‖P1 P2‖. One might think this

is “obvious”, since ‖R‖ ≤ 1, and since ‖AB‖ = ‖BA‖ for reversible A and B. However, it

does not necessarily follow that ‖P1 R P2‖ ≤ ‖R‖ ‖P1 P2‖ in general. For example, let

R =
(

0 1
1 0

)
, P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

Then P1P2 = 0, but P1RP2 =
(

0 1
0 0

)
which has norm 1.

Hobert and Marchev leave as an open problem whether their additional assumption (that

PR and PS are DA algorithms) is required to conclude that ‖P̂R‖ ≤ ‖P̂S‖. Theorem 10(c′′′)

shows that at most half of their assumption, i.e. that just PR is a DA algorithm, is required.

But this still leaves the question of whether the result holds without any such assumption

at all. In fact, it does not:

Example 13. Let X = Y = {0, 1} and suppose that P(X = 0, Y = 0) = 1/4, P(X =

0, Y = 1) = 3/8, P(X = 1, Y = 0) = 1/4 and P(X = 1, Y = 1) = 1/8. Note that the

marginal distribution of Y is uniform; i.e, P(Y = 0) = P(Y = 1) = 1/2. The marginal
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distribution of X is as follows: P(X = 0) = 5/8 and P(X = 1) = 3/8. Now define

R =
(

0 1
1 0

)
and S =

(
1/2 1/2
1/2 1/2

)
and consider these to be Markov transition matrices on Y . It’s easy to see that R and S

are both reversible with respect to the marginal distribution of Y . Moreover, S − R has

eigenvalues 0 and 1 so R �1 S. Note that a draw from S is equivalent to a draw from the

marginal distribution of Y . It follows immediately that

P̂S =
(

5/8 3/8
5/8 3/8

)
.

It’s easy to show that

P̂R =
(

3/5 2/5
2/3 1/3

)
.

Thus, P̂R and P̂S are both irreducible and aperiodic. Furthermore, P̂R has eigenvalues 1 and

−1/15, so ‖P̂R‖ = 1/15 > ‖P̂S‖ = 0.

Alternatively, if we instead take P(X = 0, Y = 0) = P(X = 1, Y = 1) = 1/2, then P̂R is

the same as R, so ‖P̂R‖ = 1 even though R �1 S and ‖P̂S‖ = 0. This gives an even more

“extreme” counter-example, but at the expense of making P̂R periodic.

5 Questions for Further Research

We close with a few brief questions for possible further research.

Is it possible to quantify the improvement of P̂R over P̂S? For example, suppose S−R−cI

is positive for some c > 0. What quantitative results does this imply about how much MR

is less than MS, or Var(f, R) is less than Var(f, S), or ‖R‖ is less than ‖S‖?
Which of the results in this paper carry over to the non-reversible case? Or even to the

case where P = Q1Q2 with each Qi reversible? Various results about mixing of non-reversible

operators are discussed in e.g. Mira and Geyer (1999), Fill (1991), and Dyer et al. (2006),

but it is not clear how to apply them in the current context.
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