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1. INTRODUCTION

Markov Chain Monte-Carlo (MCMC) algorithms are well-known schemes to draw sample from an
ergodic Markov chain with given stationary distribution 7 on a state space X. Theoretical work
on MCMC algorithms has so far mainly concentrated on the properties of simple algorithms,
such as the Gibbs sampler (see, e.g. Sahu and Roberts [21] and Hobert and Geyer [8]) or
the full-dimensional Metropolis algorithm (see, e.g., Mengersen and Tweedie [11], Roberts and
Tweedie [17], Jarner and Hansen [9], Fort and Moulines [5]). In many practical situations, and in
particular when the dimension of the state space is large, these elementary samplers are seldom
used as they stand, but are rather used as building blocks for more complex sampling strategies

(see e.g. Robert and Casella [14]).

A rather intuitive idea to deal with large dimensional state space X is (whenever possible) to
write the state space as a product of lower dimensional ones, X = &} x - - - X Xy, and to construct
a Markov transition kernel P on X having the stationary distribution 7 by combining kernels
P; acting on &;. The deterministic scan Gibbs sampler is an example of this strategy, where
we write P := QgQq4—1--- Q1, where Q) is the Markov kernel that replaces the k-th coordinate
by a draw from 7(dzi|{z;};-), leaving z; fixed for j # k. The random scan Gibbs sampler,
P:=d! Z?Zl Qi is sometimes used instead (see Smith and Roberts [22], Tierney [23]). When
the full conditional distributions 7 (dx;|{x;};»;) are difficult to sample, one can instead define
new operators P; (e.g. one-dimensional Metropolis algorithms) which are easily implemented,
such that P converges to @; (in an appropriate sense) as n goes to infinity. This method

is referred to as ”variable-at-a-time Metropolis-Hastings” or ” Metropolis-within-Gibbs” in the

terminology of Tierney [23] and Chan and Geyer [1].

Let C := (P1, P, - , P;) be any collection of Markov kernels on a state space X = X} X -+ X Xj.
The random scan hybrid sampler for C is the sampler Prg defined by

Prs:=d (P +--- + Py).

In this paper, we focus on the Random-Scan Metropolis (RSM) algorithm, where X = R?, and
where each operator P; arises from a symmetric random-walk Metropolis algorithm on the i-th

coordinate.
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This algorithm was studied by Roberts and Rosenthal [15, 16], and by Jarner and Hansen [9].
One of the assumptions in Roberts and Rosenthal [16] is expressed in terms of the maximal
curvature of all the geodesic curves on the contour manifold {y € R%, p(y) = p(z)} as |z| —
00. This condition is rather difficult to check even when d = 2; in addition, as suggested in
Jarner and Hansen [9], it is not clear that this curvature condition should really play a role,
since geometric ergodicity can be established fairly easily for densities for which the maximum
curvature goes to infinity as |z| — oo, at least in some directions. In this paper, we shall
instead show that geometric ergodicity holds under essentially no condition on the geometry of

the contour manifold.

Let the state space X be equal to R?, equipped with its Borel o-field B(R?). Let g (resp. p) be
the Lebesgue measure on R? (resp. R) and {ey,--- , eq} be the coordinate unit vectors. Denote

by | - | the Euclidean norm. We shall assume that

(A1) the target distribution 7 is absolutely continuous with respect to pg4, with positive and

continuous density p on R¢.

Let P; be a symmetric random-walk Metropolis (with target density p) on the i-th coordinate:
started from the d-vector © = (z1,...,2z4), the proposal in the e;-direction is given by z + ye;,
where y is sampled from a symmetric increment density g; with respect to the one-dimensional
Lebesgue measure y; this proposal is then accepted with probability 1 A {p(z + ye;)/p(z)}. We

shall assume for simplicity that

(A2) {gi}1<i<q is a family of symmetric densities with respect to p, such that there exist some

constants n; > 0, §; < oo (for i =1,...,d) such that |y| < & = qi(y) > n;.

Condition (A2) ensures that the resulting Markov chain is ¢-irreducible and strongly aperiodic,
and allows to identify small sets (see Section 2). For z € R? and i € {1,--- ,d}, let A(z,i) be

the acceptance region in the i-th direction:

A(z,i) .= {y € R p(z + ye;) > p(x)}.

Similarly, let R(x,%) be the potential rejection region in the i-th direction:

R(z,i) :={y € R, p(z + ye;) < p(z)}. (1)
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That is, A(z, %) represents the set of increments which, if proposed as an increment in the i-th
direction, would always be accepted; R(z, ) represents those increments which could be rejected

with positive probability.

With these notations, the transition kernels P;, i € {1,--- ,d}, on (R, B(R?)) are more formally
defined as follows ; for z = (z1,...,74) E R, A= A x --- x Ay € B(RY),

Pi(z, A) = [ ] 62, (4%) /

oo+ ye)au(dy) + 6:(4) [ (1= alaa +ye) )awn(dy),
ki Ai=ai

where A; —z; := {y € R,z; +y € 4;} and a(z, 2) := 1 Ap(z)/p(z), (z,2) € R x R?, so that for
any Borel function V : R* - R, , z € R?,

PV () = /A L Ve e + /R e +yei>%qi<y)u<dy)

wve [ (-  awua. e)

p(z)
The RSM kernel Pgg is the hybrid sampler associated to the collection C = (Py, Py, - , Py), i.e.
Pgrs = é Zgzl F;. The kernel F, is reversible with respect to the target distribution 7, and thus

7 is stationary for P; (and thus also for Prg).

Note finally that

B('TaA) = H(Sz‘k(Ak)Ml(xZaAZam—z) (3)
ki
where z_; := (z1, -+ ,Ti—1,Tit1, "+ ,Zq) and M;(-,-;2_;) is the kernel of a random-walk Me-

tropolis algorithm admitting the full-conditional distribution 7 (dz;|z_;) as its unique invariant

distribution. The RSM is thus a special instance of Metropolis-within-Gibbs sampling.

2. GEOMETRIC ERGODICITY FOR SUB-EXPONENTIAL DENSITIES

In this section we present a sufficient condition for geometric ergodicity of the RSM algorithm

on R¢ for sub-exponential densities.

2.1. Background and assumptions. The proof of our result below uses the theory of drift and
minorisation conditions for general Markov chains. We briefly review the necessary definitions

here; see Meyn and Tweedie [12] for further background.
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A transition kernel P (or a Markov Chain {X,,}) on a state space X is said to be ¢-irreducible
if there is a non-zero measure ¢ on B(X), such that for all z € X, and for all measurable subsets
A C X with ¢(A) > 0, the chain has positive probability of hitting A when started at z, i.e.
Py(t4 < 00) > 0 where 74 := min{n > 1, X,, € A} is the first return-time to A. The kernel
P is said to be V-uniformly ergodic for some function V : X — [1,00] if P is ¢-irreducible,
with invariant probability measure 7 such that (V) < oo, and there exist constants r > 1 and

R < oo such that for w-almost all z € X,
1P*(z,-) —7()lv <Rr™"V(z), n=12,...,

where for any signed measure y, ||pllv := sup f<y [u(f)|. Furthermore, a chain is geometrically

ergodic if and only if it is V-uniformly ergodic for some such V.

Our proof consists in proving a Foster-Lyapunov drift condition outside a small set. Recall
that C' € B(R?) is a small set if there exist an integer m > 1, a constant 0 < p < 1 and a
probability measure v, on B(R?) such that

P™(z,A) > p vm(A) z € C,A e B[RY). (4)
i From Meyn and Tweedie [12, Theorems 15.0.1 and 16.0.1], we have

Theorem 1. Let P be a ¢-irreducible aperiodic transition kernel. Assume that there exist some
constants 0 < XA < 1, b < oo, some Borel function V : X — [1,00] with V(zy) < oo for some

zo € RY, and a small set C satisfying
PV(z) < AV(z) + blc(x), reX. (5)
Then P is V-uniformly ergodic.

Remark 1. Conversely, if P is V-uniformly ergodic, then there exist R < oo and r > 1 such
that for all n, supge(vcoey [1P™(7,) — 7()|lv/V(z) < Rr—™. If so, then there exists a function
Vo equivalent to V', which is a solution of the Foster-Lyapunov drift condition (5) (see Meyn and

Tweedie [12, Theorem 16.1.4]).

Remark 2. Explicit expressions of the rate r and of the constant R as a function of the terms in
(4) and (5) can be found in Meyn and Tweedie [13], Mengersen and Tweedie [11], Rosenthal [20],
Roberts and Tweedie [18], Fort and Moulines [6], Douc et al. [3] and Fort [4].
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Under (A2), it is easily shown that Pg(z,.) has a nontrivial continuous component w.r.t. the
Lebesgue measure and that this continuous component is bounded from below on a ball around
z. From this, the positivity and the continuity of p, it is straightforward to prove the following

result (Roberts and Rosenthal [16, Lemmad4]).

Proposition 2. Assume (A1) and (A2). Then Prs is Lebesgue-irreducible, aperiodic, with

invariant probability measure m(dx) := p(z)pq(dz). In addition, any bounded set is small.

To establish the Foster-Lyapunov condition, we need to find a function V' (which will depend on
the dimension d) such that lim,_,., PrsV(z)/V(z) < 1. Consider the drift function Vs(z) :=
p(z)~*, for some 0 < s < 1. We have (Roberts and Rosenthal [16, Proposition 3])

Proposition 3. Let P; be given by (2), and set Vi(x) := p(x)~* for some 0 < s < 1. For all
z € R?,
PVs(z) < r(s)Vs(z) where r(s) :=1+s(1—s)/57. (6)

Hence, for all n > 0, there exists s with 0 < s <0, such that 1 <r(s) <1+n.

Proof. We provide a proof for completeness. We have
PVy(z) / ( p(z) )s
Vs(x) A(zy) \P(T + ye;) i(w)uldy)

ple+ye) | (pa+ye)\ ")
*A@QG‘ S () >%@”@)

:/i@w%aﬂwmw)

where
Twmi o). d PE/PEFye)) y € Az, 1), ,
(y;7,4,5) = | sl (p($+yei)>1—s € R(o. 1) (7)
#(@) P(@) 4 -
The proof is concluded by noting that sup,ep (1 —u + ul %) < r(s). O

Observe that lims_,o7(s) = 1, which shows that for any n > 0, by choosing s small enough, one
may find a function V; = p~* such that for all 5 € {1,--- ,d}, z € R?, P,V (z) < (1+ n)V(z).
To prove the geometric ergodicity of the RSM algorithm, we of course need to prove something

stronger.

The key assumption may be formulated as follows.
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(A3) There is 0 < 6 < A < 400 such that £ := infi<;<q féA gi(y)u(dy) > 0, and for any
sequence x := {z/} with lim;|z/| = + oo, one may extract a subsequence x := {i’},
such that, for some i € {1,...,d}, and all y € [§, A]

7 71 + sign(3 .
i p(&i — sign(Z!) y e;) J p(a7)

= 0. (8)

This condition is somewhat involved. However, we will discuss in section 2.3 a simple criterion

to check (A3).

2.2. Main result. The key result of Section 2 is the following.

Theorem 4. Assume (A1), (A2), and (A3). Let 0 < s < 1 such that

£
d— 26 )

where 7(s) and & are given by (6) and (A3) respectively, and set Vs(x) := p(x)~*. Then there

r(s) <14+

exist constants 0 < A < 1, b < oo and a small set C € B(R?) such that
PrsVs(z) < AVy(z) + blc(z), zeR.
In particular, Prs is V-uniformly ergodic.
Proof. The proof is by contradiction. Assume that there exists a R?-valued sequence x := {7}

such that lim; |27| = + oo and lim sup, PrsVs(27)/Vs(2?) > 1. Then, there exists a subsequence

% = {27} such that lim; PrsV;(87)/V;(4?) > 1. We shall show that there exist a further

subsequence % := {#’} and an integer i € {1,--- ,d} such that
. PVy(3%)
lim ——"= < —(2r(s) - 1)&. 1
AT r(s) = (2r(s) —=1)¢ (10)
The contradiction will follow from
i d i ~ i
. PRSv;(CEJ) 1 PkV;(JI]) 1 1 . Pk‘/;(.’l}])
lim ——~— =lim - — =< = —(2 -1 =1 —_—
im A —im 2 57 ) < 2 (r(6) = (2r(0) = D)6) + glim 3 TE
k=1 ki
1 d—1
< ()~ 2r(s) ~ DO + T Fr(s) < 1

since, by Proposition 3, P, Vs(z)/Vs(z) < r(s) for all z € R?. Under (A3), one may extract from
the sequence X a subsequence X in such a way that, for some 7 € {1,--- ,d}, (8) is verified and
that, for all 7 > 0, sign(ig ) =€ € {—1,+1}; without loss of generality set ¢; = 1. We have

BRSO _ [z + T(y;,i, )i (y)n(dy),
Vi(z) 5<lyl<A {ly|<6}u{ly[>A}
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where 7 is given by (7). Since Z(y;x,i,s) < r(s), the second term on the right hand side of the
previous equation is bounded by r(s)(1—2 [, 5A qi(y)u(dy)). Consider now the first term and set
J(9,A) :=[-A, =6 U[d, A]. We first prove that

limR(%,4) N J(5,A) = [, Al (11)
J

which implies that lim; A(37,4) N J(5,A) = [-A, —6]. To this end, we show that

[6,A] C liminf R(z7,i) N J(§,A) C limsupR(z7,i) N J(,A) C [4,A].
J J

For y € [0, A], lim; p(Z/ + ye;)/p(#?) = 0; hence, y € liminf; R(%%,4) N J(5,A). Assume now
that y € limsup; R(27,7) N J(6, A). Then, liminf; p(Z’)/p(#’ + ye;) > 1, and since y € J (6, A)
the latter relation implies that y € [§, A], showing (11). By definition of the kernel P;, we have

PV, (i) / / p(E + ye;)1—
AT qi(y)u(dy) < — 2 gi(y)p(dy
Vs(7) R(# ,i)NJ (5,A) Waldy) A NI (8,A) [ p(%7) ] iWn(dy)

+/72(ij HNI(5,A) {[M] - [M] }‘Ii(y)ll(dy)ﬂ"(s) (1 - 2/6A qi(y)u(dy)> :

p(&) p(#)
Note that for y € A(z,1), p(z + ye;)/p(z) > 1 and for y € R(z,1), p(z + ye;)/p(z) < 1. Then

by (11), (A3) and the dominated convergence Theorem, we have

. BVi@) _ [ A
hjmm S/J gi(y)u(dy) +r(s) (1 - 2/5 qi(y)u(dy))

A
< r(s) - (2r(s) — 1) /J Giw)u(dy) < r(s) — @r(s) — 1)¢

which concludes the proof of (10) and thus of the first part of the Theorem.

Finally, we recall that assumptions (A1) and (A2) imply that any compact set is small. Fur-
thermore, the above argument shows that assumption (A3) guarantees that outside a sufficiently
large compact set C, we have PrsV;/V; < 1. Furthermore, sups Vi < 0o, and by Proposition 3,

supc PrsVs < oo. The V-uniform ergodicity now follows from Theorem 1. O

Remark 3. In fact, it may be deduced from the proof of Theorem 4 that

. PrsVs(z) _d—2¢ £
limsu < r(s =,
|x|—>+£ Vs(z) = d )+ 3

Remark 4. If instead the target density p is positive and continuous and bounded on an
unbounded open subset X C R¢, then assumption (A3) can be modified to still imply that the
kernel Prg is V-uniformly ergodic. (a) One has to replace “for any sequence x := {2’} such

that lim; |27| = +00” by “for any X-valued sequence x := {27} such that 7 — X", where OX
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is the boundary of X. (b) One has to set, by convention, that for all y > 0, the ratio is zero for

all j such that 3/ — sign(i{) ye ¢ X.

Remark 5. In assumption (A3), instead of (8), one could equivalently assume that there exists

a function I : R4 — {1,...,d} such that

7 p(F +sign(§cj -) Y erzi)
lim ———— pEﬂ; ) =0, and lim {(jx]) @) _ 0. (12)
i p(ad — &gn(le)) Y er(zr)) J p(z7)
In fact, since j — I(%7) takes at most d different values, one may choose i € {1,...,d} such

that {4; I(#/) = i} is infinite, and extract a further subsequence % := {27} from X such that

I(#7) =i for all j > 0. This subsequence satisfies (8).

Remark 6. If p is continuously differentiable, the condition (A3) can be rewritten as follows:

e Let 0 < A < +oo. For any sequence x := {z7} such that lim; |27| = + oo, there exists a
subsequence X := {#’} and i € {1,--- ,d} such that, for all 0 <y < A,
lim  sup sign(Z)) V;logp(i + te;) = —oo, (13)
I73H00 {4t <y}

where V; := 0/0x;.

2.3. A criterion to check (A3). We introduce a class of functions that, in words, may be

seen as the set of functions which is monotonic at infinity. Denote by ® the set of functions

¢ : Ry — Ry such that
lim ¢(t,) = +oo ifand only if ¢, — +o0.
n—oo
® is non-empty and contains all non-decreasing functions ¢ such that lim,_, o ¢(z) = 400 (e.g.
the identity function ¢(z) = z). Consider the following assumption:
(A4) There is 0 < § < A < 400 such that infi<;<q f(sA ¢i(y)p(dy) > 0, and there exist

functions ¢, € ® for k = 1,...,d, such that for all s € {1,--- ,d} and all y € [§, A],

lim sup p() =0

[2:1500 {o_i:; (12 <gi(loi) i} P& — sign(@i) y ei)

and  lim sup ple tsignle) yei) _

2100 {2105 (|25) < il 23 )i} p(z)

Proposition 5. Assume (A4). Then (A3) holds.
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Proof. Define
I:RY = {1,---,d}, (z1,...,2q) — minargmaxye ... g3 {1k (|zk ) }-

Let x := {27} be a sequence such that lim;_, |7/| = +-00. One may extract a subsequence {7/}
and findi € {1,---,d} such that I(#/) = i for all 5, and the function j sign(i{) is constant. By
construction ¢;(|#!|) > ¢k(|Z71]), k € {1,--- ,d}. In addition, since |z7| — +oo, lim; |#]| = +oo
for some k € {1,--- ,d}. Thus lim; ¢y(|Z1]) = +oo which implies that lim; ¢;(|Z!|) = +oco and

lim; |7/ = +o0. (A3) easily follows. O

If p is differentiable, it is convenient to consider the criterion (A5):

(A5) The density p is continuously differentiable, and there is 0 < A < oo and functions
¢ € @, k € {1,...,d}, such that for all : € {1,---,d}, all 0 < y < A, and all
eec{-1,1},

lim sup sup € V;logp(z + te;) = —oo. (14)
PO a_iij () <ei(mil)i#i} {5 |H<y}

It is easily checked by standard analytical arguments that (A5) implies (A4).

2.4. Examples. We first consider a toy example and prove that if the target density is sub-
exponential then Prg is V-uniformly ergodic. We then consider the three examples proposed
by Jarner and Hansen [9] (Examples 2.4.2, 2.4.3 and 2.4.4) and a more realistic example pro-
posed by Zeger [24] (Example 2.4.5) and deduce from Theorem 4 the V-uniform ergodicity of
the random scan kernel Prg for each model. We finally consider an example, for which Pgrg
is not V-uniformly ergodic and (A3) does not hold. This counter-example demonstrates that
while (A3) is certainly not a necessary condition for geometric ergodicity, it is far from being
redundant.

For the target density p considered in the Examples 2.4.1 to 2.4.5, the condition (A1) trivially
holds. In addition, the proposal distributions ¢; can always be chosen in order to satisfy Assump-
tion (A2). Assumption (A5) is established in all these examples with A = 400 and ¢ (t) = ¢
forall k € {1,...,d} and t € R;.

2.4.1. Ezample 1. On R, define the density

p(z) o exp(—|:c|l), [>1, z=(x1, " ,Tq)-
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Note that V;logp(z) = = |z|'~? z; and for all y > 0,

(zi +y)
(dz? +y2 + Zyxi)1/2,
|lzi + y/
(dz? + y2 + 2ya:i)1/2.

Vz; > y,Vo_; € [~z 2] TV <y, Vilogp(z + te;) < —I

Vi; < —y,Va_; € [z;, —z;]47 V[t <y, Vilogp(z +te;) > 1

Since I > 1, (Ab) easily follows by setting A = 400 and by choosing ¢y as the identity function
on Ry, kK € {1,---,d}. Hence, the RSM sampler is V-uniformly ergodic for any function
V(z) o« p(z)~* where s(1 —s)'/5~' < (2d — 2)~".

2.4.2. Ezample 2. In this example, we consider the sum of two Gaussian densities on R?. Define

for some a? > 1
p(z) < 0.5exp (—(z} + a®z3)) + 0.5exp (—(a’z] + 73)), x = (z1,z9).

As shown in Jarner and Hansen [9], the contour curves have some sharp bends that do not
disappear in the limit (even though the contour curves of the two components of the mixture
are smooth ellipses). In particular the curvature on the diagonals (z1,z2) = (¢,t), t € R, tends
to infinity as t — co. For such target density, the main result of Roberts and Rosenthal [16]
does not apply (because the curvature does not tend to zero). We now show that nevertheless

the RSM is V-uniformly ergodic.

We compute that

e_(m%+a‘2m§) —+ a2€_(a‘2$%+mg)

Vilogp(z) = —21

e_(z%+a‘2$%) + 6_(0237%'1'37%) ’

a26*($%+02$§) —+ 67(a2$%+$%)

Vologp(z) = —2z5

e—(z%—}—azz%) + e—(lﬂm%-}—ﬂ?%) ’

from which it easily follows that for all z € R?,

<V log p(z) < 1< V2 log p(x) <

—2xq - —2x9

(A5) easily follows by setting A = +oo and by choosing ¢ as the identity function on R, ,

S

k €{1,---,d}. Hence, the RSM sampler is V-uniformly ergodic for any function V(z) o p(z)~
where s(1 —s)'/571 < 1/2.



ON THE GEOMETRIC ERGODICITY OF HYBRID SAMPLERS 11

2.4.3. Ezample 3. Consider the sub-exponential density p on R? given by
p(z) o< exp (= (2] + za3 + 23)) T = (21, T2)-

A contour plot of the surface is given in Figure 1. This example has also been given in Jarner and
Hansen [9]. These authors show that the full-dimensional random walk Metropolis algorithm
is not geometrically ergodic for this target density. We will nevertheless show that the RSM
algorithm is geometrically ergodic. This shows, perhaps surprisingly, that: the RSM algorithm
can be geometrically ergodic even in situations where the full-dimensional Metropolis algorithm

is not geometrically ergodic.

Here (A5) easily follows by setting A = 400 and by choosing ¢ as the identity function on
Ry, k€ {1,---,d}, and noting that

< V1 logp(z)
- —2x1

< Vs log p(z)
- —2x9

1 =1+a3 and 1 =1+ 2%

—S8

Hence, the RSM sampler is V-uniformly ergodic for any function V(z) « p(z)~* where s is

chosen to satisfy s(1 —s)%/5"1 < 1/2.

2.4.4. Ezample 4. Consider the sub-exponential density p on R?
p(z) oc (1 + 2% + 23 + 2}23) exp (— (27 + 23)) , T = (71, T2),

introduced in Jarner and Hansen [9]. Once again, neither the curvature condition nor condition
(5) in Roberts and Rosenthal [16] hold (the curvature tends to infinity along the z-axis). Nev-
ertheless, it is once again extremely simple to show that Prg is V-uniformly ergodic. To that

purpose, observe that

2|z1|  8lxy|” 271 + 8x7x3 2|z1|  8lxy|”
-2z — — < Vilogp(z) = -2z + < -2 ,
! x% x? < Vilogp(z) ' + x% + m% + a:tfa:% - Tt :1;% + xff
and

2 2 2 228 2 2
opy = 222 A8 gy < gy ptEne o o 2o

T5 T5 1+ 22 + 23+ 2822 — z3 z2

(A5) follows by setting A = +oo and by choosing ¢, as the identity function on Ry, k& €

S

{1,--- ,d}. Hence, the RSM sampler is V-uniformly ergodic for any function V(z) o p(z)~
where s(1 —s)'/571 < 1/2.
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2.4.5. Ezample 5. Consider the following density, studied by Zeger [24] and Chan and Ledolter [2].
Zeger [24] proposed to fit the monthly number of cases of poliomyelitis with a generalised linear
model with random effect: it is assumed that the observations y := (y1,--- ,yq) are generated
from a Poisson distribution with mean Ay, := exp(ug+X}), where p := (ug, -, pq) € R? is deter-
ministic and X, is a stationary Gaussian AR(1) latent process Xj = aXg_1+e€x, ex ~ N(0,A71),
la] < 1. Chan and Ledolter [2] considered the estimation of (u,a, A1) by maximum likelihood
using the Monte-Carlo EM algorithm. To assess the convergence of this algorithm, it is re-
quired to show the V-uniform ergodicity of the RSM when p is the density of the latent process
X = (Xy,---,X4) given the observations y (see Fort and Moulines [7]). Thus, p is given for
fixed y by

d d

p(z) o exp (Z{yk(uk + o) — exp(uk +2k)} = A2 (wk — azp-1)? = A(1 - a2)$?/2)-
k=1 k=2
Note that
Vilogp(z) = y1 — exp(u1 + 1) — Az1 + Aaza,
Vi logp(z) = yx — exp(ux + %) — A1+ a®)z + Aa(Tpr1 — T4-1), ke{2,...,d—1},

Vilogp(z) = yq — exp(pqg + xa) — Azqg + Aazq_1.
It easily holds that for |z2| < |z1], t € R,
y1—At—exp(p1+t+z1)—Az1—Aal|z1]| < Vilogp(z+ter) < y1—At—exp(pi+t+z1)—Az1+A|al|z1[;
for |zg—1] < |z4|, t € R,
Ya—At—exp(pgti+zq) —Aza—Alal[za| < Vilogp(ztieq) < ya—At—exp(pgt+i+zq)—Azat+Alal[zal;
and for all i € {2,...,d — 1}, given |z;—1| < |zi| and |z;41| < |zi|, t € R,

yi — M1+ a®)t — exp(p; +t + ;) — M1 + a®)z; — 2)|al|z;| < V;logp(z + te;)
< i — M1+ a®)t —exp(p; +t 4 2;) — A1 + a®)z; + 2)\|a||z;]-

As |a| < 1, (A5) follows easily by setting A = +o00 and by choosing ¢ as the identity function
on Ry, k € {1,---,d}. Hence, the RSM sampler is V-uniformly ergodic for any function
V(z) o« p(x)~* where s(1 — s)/5~1 < (2d — 2)~L.
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2.4.6. Ezample 6. Consider now the RSM with target density p on R? given by
p(@) o< exp (—(af + (21 — 23)*/4 + 23)) , z = (z1,72),

which is the density p studied in Example 2.4.3 in the new orthonormal basis (€1, é2), €1 =
\/5/2(61 +e9) and &y := \/5/2(62 —e1). A contour plot of the surface is given in Figure 2. For
this target density, (A3) is not verified (consider for example the sequence z/ = (4, j)). We shall
show that the RSM algorithm is not geometrically ergodic. To prove this, we use a criterion
outlined in Roberts and Tweedie [17, Theorem 6.1.]. Let P be a ¢-irreducible transition kernel,
with invariant measure 7 not concentrated at a single point. Let h(z) := P(z, {z}), and assume

that z — h(z) is a measurable function. If
esssup yc yh(z) := sup{ho; w(h(z) > ho) >0} =1,
then P is not geometrically ergodic.

To proceed, let A > 2, and for all j > VA, let X; = [\/52 — X, 4] x [v/52 — A, j]- Note that

7(&;) > 0. We shall prove that
lim inf h(z) =1, 15
im inf (z) (15)
which shows that the RSM is not geometrically ergodic for this target density. Towards that

goal, we write

Pas(a, () > 5 [ (1= a(e,o -+ ye) aw)ua(dy) + 5 [ (1= aloy + yea)) @y)naldy)
1 2
>1-3 3 [ et +edatuad),

and show that lim;sup,cy, [ oz, z + ye;)gi(y)pa(dy) = 0, i = {1,2}. We consider only the
case i = 1; the case i = 2 is similar. Observe that for all z = (z1,22) € Ry x R such that

273 — 2 — 4 > 0, the acceptance regions A(z, i) satisfy

[—2351,—131 —\/22% — 2% — 4] U [—wl + /223 — 23 — 4,0] , if 22 > 23 -2,
[—ml — /222 — 2% — 4, —2w1] U [O, —z1 + /225 — 2% — 4] otherwise

(see Figure 3). For sufficiently large j, and z € X

Az, 1) =

25, —VP =2 - V7 =20+ D] U [V =20+ - j,0], if af>af-2,

A(z,1) C
[_ P24+ XN—4—j,—2 j2_,\]U[0,\/j2+,\—4—\/j2—)\] otherwise
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Hence lim; sup,¢ fA(z 3 q1(y)pe(dy) = 0 (see Figure 4). Note that, for y # 0,
logp(z +ye1) —logp(z) = —y (221 +y) (1 +27/2 — 23/2 + 4 /4 + yz1/2) .

Then, for large enough j, z € &, and y > 0,
T+ ye - ;
log% < -y (2\/32 - A+ y) (1 — A2+ /4+y\/j2 — )\/2)
whereas, for y < 0,
T+ ye . X
log% < —y(2j +y) (1 FN2 4924+ yVi2 — /\/2) .
In both cases, for all y # 0, lim;_, o SUp,c ., p(z+ye1)/p(z) = 0. Hence, by applying Lebesgue’s
dominated convergence theorem, lim; sup,¢ x, fR( 1) p(%i’)el)ql(y) p2(dy) = 0. It follows that
lim sup / a(z, 7 + ye1)q (y)ua(dy) =0,
J .’EEXJ'

and the RSM algorithm cannot be geometrically ergodic.

3. GEOMETRIC ERGODICITY FOR DENSITIES WHICH ARE LOG-CONCAVE IN THE TAILS

Condition (A3) does not cover target densities which are log-concave in the tails. When d = 1,
a target density is said to be log-concave in the tails, if there exist & > 0 and some z1 > 0 such

that for all x > =1 and h > 0,

log p(z) — logp(z + h) > ah (16)
and similarly for all z < —z1,

logp(z) —logp(z — h) > ah. (17)

It has been shown in Mengersen and Tweedie, Theorem 3.2 [11], that if (a) the target density
p satisfies (A1) and is log-concave in the tails, and (b) the proposal density satisfies (A2) and
has a bounded exponential moment (a condition which can be avoided by adapting the proof),
then the full dimensional random walk Metropolis algorithm is V-uniformly ergodic, and the

drift function V may be chosen as V() = e*?/, for any s < a.

The main purpose of this section is to adapt these results to the RSM algorithm. Such
extensions are also considered in Roberts and Rosenthal [16], under the additional conditions
that the target density has smooth contours in an explicit sense. We show that these conditions

are in fact not needed. The first step in the construction is to extend the notion of log-concavity
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to distributions over R¢. Following the approach of the previous section, this is most conveniently

expressed in terms of limits of sub-sequences.

3.1. Main result. We shall replace (A3) with the following.

(A3') There is a > 0 and 1/a < § < A < oo such that for any sequence x := {z’/} with

lim; [z/| = + oo, one may extract a subsequence X := {Z’}, such that for some i €
{1,--- ,d}, we have, for all y € [§,A],
7J 7J i 7 )
lim —— p(@) . <exp(—ay) and lim p@ + s1gr~1($z) y e) <exp(—ay). (18)
i p(&1 —sign(z]) y e;) j p(@)

It is easily seen that this notion of log-concavity in the tails generalises (16) and (17).

Theorem 6. Assume (A1), (A2), and (A3’). Assume in addition that

A d
inf ; dy) > —.
ie{llr,l...,d}/(; y gi(y)p(dy) > ale=1)
Then there exist 0 < s < 1, some constants 0 < A\ < 1, b < 0o and a small set C € B(R?) such

that

(19)

PrsVi(z) < AVi(z) + bllg(z), ze€d,

where Vy(x) := p~*(x). In particular, Prs is V-uniformly ergodic.

Proof. The proof is along the same lines as the proof of Theorem 4. Assume that there exists

a sequence x := {7} such that lim;|z/| = 400 and limsup; PrsVy(z7)/V,(27) > 1. We shall

show that there exists a further subsequence % := {#’} such that lim; %;g“;”]) < 1, thereby

obtaining a contradiction.

We first show that there exists a further subsequence % := {#/} and i € {1,--- ,d} such that
_ PV,(#)
lim =25\ /7
7 V@)
where for b > 0,

< r(s) = (2r(s) — 1) Ji(0) + Jias) + Ti(a(l - s)) — Ji(a), (20)

A
Ti(b) = /(i Mg (y)udy).

Vi/a
Indeed, let x and i be given by (A3'). We assume without loss of generality that sign(ﬁ:g ) =1.
Observe that

limR(#7,i) N J(6,A) = [6,A] and lim A(F,i) N J(6,A) = [-A, -],
J J
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where J(§,A) :=[-A, =6]U[§, A]. (The proof of this assertion is along the same lines than the
proof of (11), and is omitted here.) Proposition 3 implies

P, V(% oi . —j -
# z/ T(y; .1, 8)qi(y) u(dy) +/ I(y; 27,14, 5)qi(y) u(dy)
Vs(27) 5<ly|<a {lyl<ayufly/>A}

< / T(y; 39,0, 8)ai () ldy) +7(s) (1 — 27(0)) , (21
I<ly|<A

where 7 is given by (7). In addition,

i, 8)g; =27, p@ tye)| ),
/JSyISAI(y’ )il y) 2JZ(O)+/A(@1’,¢)N(5,A)<[ p(Z9) ] 1) ¢i(y)u(dy)

+/R(ij,z')ﬂJ(5,A) ([%] - - [%D )

Recall now that if y € A(37,1), p(Z7 +ye;) > p(#7) whereas if y € R(i7,14), p(# +ye;) < p(@).
Hence, using Lebesgue’s dominated convergence theorem,

: DTN s . PE +yei) A
lim K'y'SAI(y,w”,z,8)qz(y)u(dy) = 2‘7’(0)+/[A,5] ([lj @) ] 1) 4 (y)n(dy)

+/[<5,A] ([h]m%]l_s - [n]m%]) ai(y)n(dy).

S

Since ¢;dy is a symmetric distribution and u + u!~* — v is non-decreasing on [0,e '] for all

0 < s <1, we have
lim I(y; @4, 8)qi(y)p(dy) < Ji(0) + Ji(as) + Ti(a(l — s)) — Ji(a). (22)
7 Jo<lyl<A

Combining (21) and (22) yields (20).

Applying Proposition 3 again, we conclude that PrsV,(37)/V,(37) < H;i(a, s), where

Hi(e, s) i=r(s) — % ((2r(s) = 1) Ji(0) + Jila) — Ji(as) = Ti(a(l - s))). (23)

The result will follow if we can find s > 0 such that #;(a,s) < 1. Since H;(e,0) = 1 and
s — Hi(a, s) is differentiable at 0, it suffices to show 2%;(c,0) < 0. This condition is fulfilled

under (19), since

A A
5 (0,0) = (@=2700) ™ —a [y autdn) +o [y ()

A
<de ' —afl - 6_1)/ Yy qi(y)u(dy) < 0.
4
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O

Remark 7. When A = +o00, the condition (19) is satisfied by choosing for example proposal
distributions which are uniform on [—Q, Q] for @ large enough, or centered gaussian distributions

with large enough variances.

Remark 8. As shown by the proof, the Foster-Lyapunov drift condition in Theorem 6 holds

for any function V; := p~*

where 0 < s < 1 is chosen such that sup;cy, . g Hi(o,s) < 1.
If @ = 400, then (a) this condition essentially becomes r(s) < 1+ &/(d — 2£) where £ :=
infi<i<q |, JA qi(y)p(dy); (b) the assumptions (A3) and (A3') become similar; and (c) the condition

(19) is always verified. Thus Theorem 4 and Theorem 6 essentially coincide in this case.

3.2. Examples. We first consider a toy-example and prove that if the target density is expo-
nential then Prg is V-uniformly ergodic. We then consider two examples adapted from exam-
ples 2.4.2 and 2.4.3. In example 3.2.2, the target density p is a mixture of exponential densities
on R?. For that density, the curvature condition of Roberts and Rosenthal [16] fails to hold and
their result does not apply. In example 3.2.3, we prove that the full dimensional random walk
Metropolis algorithm can not be geometrically ergodic for the given target density whereas, as
it is verified by application of our result, the random scan Prg is V-uniformly ergodic. In these
examples, assumption (A1) trivially holds; in addition, one can always choose the proposal den-
sities {qx}, k € {1,--- ,d}, in such a way that (A2) and (19) hold. Hence, in Paragraphs 3.2.1
to 3.2.3, if the condition (A3') is proved, then it may be deduced from Theorem 6 that Prg is

V-uniformly ergodic for some function V(z) «x p(z)™%, 0 < s < 1.

3.2.1. Ezample 7. On R%, define for X\ > 0 the density

p(z) o< exp(=Alz|), 2= (21,7, La)-

Let x := {2/} be a sequence such that lim; |z/| = +00. Let X := {#’} be a subsequence such
that there exist 7 € {1,--- ,d} and ¢; € {—1,1} and (a) for all j > 0 and k € {1,--- ,d}, we have
|| < |#]]; (b) for all j > 0, sign(#) = ¢ and (c) lim; |#/|/|#7| exists. Then, for all y > 0,

y L\ 172
p (&7 + eiyes) j y? EA
log—————F—~ = )\ |3’ 1+ =—++2 ? -1
& (@) = (*W* Vizip
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Now, as j — +00, |27 — +o00, so that

51 e -
limlogp(x_'_—ﬁyel) =—-\y lim|a~c—z.|.
J p(27) i |#
Similarly,
7 7
limlog — P&\ tim 1Bl
j P (%7 — €ye;) i &

Hence, for all y > 0,

. p(F +eye) p(&7)
lim — = lim —= < exp(—My/Vd
BT G —age) S PV

since 1/v/d < lim; |#/|/|27] < 1. (A3') is thus verified with & = 1/v/d, § = v/d and A = +oc. For
proposal distributions satisfying (A2) and (19), Theorem 6 asserts that there exists 0 < s < 1
such that Prg is V-uniformly ergodic with V(z) o p(z)~*.

3.2.2. Ezample 8. In this example, we consider the sum of two exponential densities on RZ?.

Define for some a > 1
p(z) < 0.5 exp (— (|z1| + a|z2|)) + 0.5 exp (— (a|z1| + [z2])) T = (21,72).

A contour plot is given in Figure 5 when a = 4. Similarly to what is done in Jarner and
Hansen [9] for a mixture of Gaussian densities, it may be proved that the curvature on the
diagonal (z1,z2) = (t,t), t € R, is a positive constant. Let the contour curve corresponding to
a given level be given by (z1,h(z1)) in the first quadrant (that is z; > 0 and h(z1) > 0). Then
the curvature K((z1,h(z1))) of the curve at (z1,h(z1)) is given by

A" (z1)]

K((z1,h(21))) =
(1+ h'%(z1))

372

(see (46) in Jarner and Hansen [9] or (1.11) in Laugwitz [10]). In the present case, we find by
implicit differentiation that for (z1,h(z1)) = (¢,t), h'(z1) = —1 and h"(z1) = 2(1 — a)?/(1 + a)
so that
1 (1—a)?
K((t,t)) = \ﬁ% > 0.
Consequently, the result by Roberts and Rosenthal [16] does not apply. We now show that the
RSM is V-uniformly ergodic by application of Theorem 6. Let x := {27} be a sequence such

that, without loss of generality, lim; m{ = +o00. We may extract a subsequence % := {#/} such
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that (a) |#}| < #1; (b) for all 5 > 0, # > 0; and (c) lim;(#] — |#}|) = L, L € [0, +oc]. For all
y > 0, we have

_ p (& +ye) exp(—y) L = oo,
lim - op(al) T ) (=) texp((1—aL)) exp(—ay)
J b Ttexp((I—al)) < exp(—y) L < o0
and similarly
2@ [ e L=t
; 77 — o 1+exp((1—alL
7 p(# —yer) exp(y)+e§p{)((1(faz)))<)exp(ay) exp(=y) < exp(=y) L <o

Hence (A3') is verified by setting @« = § = 1 and A = 400, and the RSM is V-uniformly ergodic.

3.2.3. Ezample 9. Consider the density p on R? given by
p(z) o< exp (= (|z1] + [z1[z2| + [2])) T = (z1,72)-

The contour plot of the surface is given in Figure 6. The full-dimensional random walk Metropolis
kernel Py is not geometrically ergodic for this target density. As above, we may find a sequence
of sets X; C R?, such that 7(X;) > 0 and lim; infzex; Pum(z, {z}) = 1; the criterion (15) shows
that Py cannot be geometrically ergodic. Consider for example X; := [j —1, j] x [0,1/4]. Using
straightforward calculations, it is shown that for all y € R?, there exists j large enough such

that

sup a(z,z +y) < exp (—j(ly2] —2/7) + |yl (1 +1/5 + [g2])) -
TEX;

Hence, if y # 0, lim; sup, X a(z,z +y) = 0 and Lebesgue’s dominated convergence theorem
thus shows that
liminf inf Pga(z,{z}) >1—1lim sup/ sup oz, + y)q(y)ua(dy) = 1.
J o xEX; j TEX;
For this target density, the RSM is V-uniformly ergodic. Indeed, let x := {27} be a sequence
such that, without loss of generality, lim; acl +00. Let % := {7} be a subsequence such that
(a) for all j > 0, |#| < #; (b) for all j >0, # > 0; and (c) lim; |#| = L € [0, +0c]. We have
for all y > 0,
og P C1) (3 ) (140 = o (14 15),

so that .

tim 27 +ver)

) o) = exp(—y(1 + L)).
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Similarly,
tim — 2 g1+ 1))
i p(&7 —ye)
Hence,
_p(# tyer) o p(d)
llmf:hmwi:ex — 1+L SeX —y),
i p(a) (@ —yer) p(—y( )) < exp(—y)

and (A3') is verified with @« = § = 1 and A = 4o0. For proposal distributions satisfying (A2)
and (19), Theorem 6 asserts that there exists 0 < s < 1 such that Prg is V-uniformly ergodic
with V(z) o p(z)~*.

3.3. A necessary condition for V-uniform ergodicity of the RSM algorithm. It is of
interest to find necessary conditions for V-uniform ergodicity. Mengersen and Tweedie [11,
Theorem 3.3] states that, if (a) the target density is positive and continuous on R, (b) the full
dimensional random walk Metropolis algorithm is V-uniformly ergodic (here the state space is
R), and (c) the proposal distribution is symmetric, bounded away from zero in a neighborhood of
zero and has a bounded mean [ |y| ¢(y)p(dy) < oo, then the target density has an exponential
moment, i.e. [e*®p(z)u(dr) < oo for some s > 0. This result has been extended to the
multidimensional case (i.e. to the full dimensional random walk Metropolis algorithm) by Jarner
and Hansen [9, Theorem 3.3.]. A similar result holds for the RSM. The proof below is adapted

from the proof of Theorem 3.3. of Jarner and Hansen.

Proposition 7. Assume (A1) and (A2). Assume in addition that for all i € {1,...,d},
[yl ¢i(y)u(dy) < oco. Then, if the RSM is V-uniformly ergodic, there exists s; > 0, i €
{1,...,d} such that

Rd
Proof. By Meyn and Tweedie [12, Theorem 16.3.2], it is known that if Prg is V-uniformly
ergodic, there exists § > 1 such that

/ pEloclp(z) pa(dz) < oo,

where o¢ is the hitting time on some small set C such that 7(C) > 0, and E, is the expectation
with respect to the chain {Xj} starting from Xy = z with transition kernel Prs. In addition,
C can be assumed to be on the form C := [, c]°.

Denote by {I,4+1} the i.i.d. sequence of proposed increments and define, for & € {1,...,d},
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J( )1 = sign(Xy, - ex) Int1-ex Ugign(xp-ex) Ingier <0, 7 > 0. Observe that P(J,S’fi_)1 <X, =

z) = 1 for any v > 0 whereas for any v < 0,

(J(k)

ni1l S| Xp =1z) =P(sign(z - ex) Ini1-ex <v).

)

Since gxdp is a symmetric distribution, it follows that J, (k 41 and X, are independent, {.J +1} is

an i.i.d. sequence and
BTN = [t ault) de = (24)
Define, for k € {1,...,d}, the R-valued random walk W) b

Wi = Xo- e,  WE =w® 17, n>o0

We prove by induction that Wnk) < |Xp - ex|. This is true for n = 0. Assume that the property
holds for n. Then

X1 - en = || Xn - e +sign(Xp - ex) Tngr-exl > | X - ex] + I,

Using the induction assumption, it follows that | X, 11 -ex| > W, W(L 4_)1, which concludes the proof.

Thus for all z = (z1,...,24), k € {1,...,d},
Bz, | [ ] < E; [oc] (25)

where E, [agk)] is the mean of the first hitting time on (—o0, ¢ of the random walk W ®*) gtarted
from u. Finally, since E; [o¢] < oo for pug-a.a. z, the optional stopping theorem for martingale

and the monotone convergence theorem imply that for all u > c,
E, [o®] w=u-E W8] zu-c (26)
where 7y, is given by (24). Combining (25) and (26) gives

d
_ 1
E;[oc]> sup ;" (lzk| — o) V EZ (lzk] =€) V0.
ke{1,....d} p

The result follows. g

This result is of interest because it is not straightforward to show that (A3') implies the

existence of exponential moments.

Remark 9. The previous proposition still holds if instead of (A1), it is assumed that the target

density p is positive and continuous on an unbounded subset X C R%.
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3.3.1. Ezample 10. The so-called Normal-Inverse Gamma model appears as the posterior dis-
tribution in one of the simplest two-dimensional Bayesian analyses of an i.i.d. Gaussian model.
Although there are many other ways to simulate from this distribution without having to re-
sort to MCMC, it provides a fruitful testing ground for simple algorithms (see Roberts and
Tweedie [19]). The model assumes an i.i.d. collection of data {y1,...,ys} from the N(u,7 1)
distribution, with unknown mean y and precision 7 (so that the variance of the Gaussian is just
7~1). The distribution p that we will consider is the joint posterior density for these parameters

represented by

plu, ) o T2 T exp{—-7(yi = )*/2}  peRT >0. (27)
=1

This posterior is obtained if we assume a flat prior on p (that is, the prior is an improper

distribution with constant density on R) and the prior density r=1/2

on R, on the precision.
The contours of an example of this distribution is given in Figure 7. Notice how the contours

are stretched into long thin ridges for small values of the precision parameter 7.

For this target density, the random scan Metropolis kernel is not geometrically ergodic. In-

deed, set §:=n"1>p_;yr and S? := Y7 _;(yx — 7). Then

p(p, 1) oc T2 exp (-7 (S* +n(u-19))/2).

a—1 a—1

Using the equality b® fR+ T exp(—z)dz, a,b > 0, we have, for s; >

0,0 < s9 < 5?/2 that

exp(—bz)dz = fR+ z

oo
/ du/ dr exp(sip + so7)p(p, 7) / exp(s14) (52 +n(p — y)z o 232)—(n+3)/2 du,
R 0 R

which shows that the target density does not have exponential moments. Hence, Proposition 7

is not satisfied and the RSM algorithm cannot be geometrically ergodic.

The same conclusion can also be reached by using the notion of capacitance of a Markov
chain. Recall that for a given Markov chain P with stationary distribution 7, the conductance

c(A) of a measurable set A is given by

w(dz)
c(A) == / P(z, A°),
()= | TP A
and the capacitance of the Markov chain is defined as

k:= inf  ¢(A).
Am(A)<1/2
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The following result, which applies generally to a large number of applications of the Metropolis-
within-Gibbs algorithm, is proved in Roberts and Tweedie [19, Theorem 9.7.1], (see also Roberts
and Rosenthal [16, Lemma 11]).

Theorem 8. Suppose that 7 is a d—dimensional distribution, and for each i, P; is a Markov
chain which is reversible with respect to m, and updates just the i-th coordinate. Consider running
a random scan of the P;’s, that is a chain P with

P+P+...+ P

P =
d

Suppose that for some component i, P; is a random walk Metropolis algorithm with fized incre-

ment proposal density q, and that
log7(X; € (K, ))

li =0. 2
D ’ )
Then
liminfe({X; € (K,00}) =0, (29)
K—o

and consequently x = 0, so that P is not geometrically ergodic.

We prove that for the present model, 41 has an heavy tailed distribution (decreasing as ||~ ("+3)
in the tails) so that (28) is verified with ¢ = 1. Indeed
_ —(n+3)/2
wuz KD = [ da [ drpure [ (S gy )Y,
[K,00) Ry [K00)

Hence, limg o0 log m(pp > K) /K o limg o0 log K/K = 0, and (28) is verified.

Now, for this target density, one of the conditions (A3), (A3’) must fail. Consider the sequence
zJ = (a?,1/7), which tends to OX as j tends to infinity. For any z > 0,

n
log p(z?) — logp(a? — zey) = —2 z:(2y;c —2a2+2)/(2j) =0 asj— .
k=1
In addition, for large j, p(z/)/p(z? — ze3) = 0 (see Remark 4) and
log(1+ jz) — z Z(yk —a*)?/2 5 +oo as j — oo
k=1

n+1
2

log p(z? + zez) — log p(x?) =

Hence, neither (A3) nor (A3’) can hold.
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-15 -10 -5 0 5 10 15

FIGURE 2. A contour plot of the surface of the density p(z1,z2) =

exp (—(af + (#] — 23)%/4 + 23)).
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FIGURE 3. For some fixed |r2| > +/2, this is the plot of the function L, :
Ry — R,z = —(2? + (2% — 22%)?/4 + 25?). For all z1, > 0, the set {z; €
R, Ly, (1) > Ly, (z1,4)} is the acceptance region on R, in the e;-direction at the
point (1, z2), that is A((z1,4, z2), 1) NR4. The set A((z1.,22),1) NR_ is easily

found by symmetry.

=8 =12

X 786 7 X X, 19 11
1

FIGURE 4. We illustrate that for all z € Aj, the Lebesgue measure of the accep-
tance region in the e;-direction A(z,7) goes to zero as j goes to infinity. As the
target density p is symmetric (p(—x1,x2) = p(z1,22) = p(z2,21)), we consider
the case ¢ = 1 and the figures on 1 > 0. For A = 2 and two different values
of j, we plot (a) logp(z) for different values of x € X; [solid lines|, and (b) the
translated acceptance region A((j, z2),1) + j [grey surface].
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FIGURE 5. A contour plot of the surface of the density p(z1,z2) =

0.5exp(—(|z1| + 4|z2])) + 0.5 exp(—(4|z1] + |z2]))-

FIGURE 6. A contour plot of the surface of the density p(z1,z2) = exp(—(|z1| +
|z1]|@2| + |22]).

FIGURE 7. A contour plot of the surface of a Normal-Inverse Gamma density function.
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