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Summary. Bounds on convergence rates for Markov chains are a very widely-studied
topic, motivated largely by applications to Markov chain Monte Carlo algorithms. For
Markov chains on finite state spaces, previous authors have obtained a number of very
useful bounds, including those which involve choices of paths. Unfortunately, many Markov
chains which arise in practice are not finite. In this paper, we consider the extent to which
bounds for finite Markov chains can be extended to infinite chains.

Our results take two forms. For countably-infinite state spaces X, we consider the
process of enlargements of Markov chains, namely considering Markov chains on finite
state spaces X7, Xs, ... whose union is X'. Bounds for the Markov chains restricted to X},
if uniform in d, immediately imply bounds on X'. Results for finite Markov chains, involving
choices of paths, can then be applied to countable chains. We develop these ideas and apply
them to several examples of the Metropolis-Hastings algorithm on countable state spaces.

For uncountable state spaces, we consider the process of refinements of Markov chains.
Namely, we break the original state space X into countable numbers of smaller and smaller
pieces, and define a Markov chain on these finite pieces which approximates the original
chain. Under certain continuity assumptions, bounds on the countable Markov chains,
including those related to choices of paths, will imply bounds on the original chain. We
develop these ideas and apply them to an example of an uncountable state space Metropolis
algorithm.
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1. Introduction.

Quantitative geometric rates of convergence for Markov chains is now a widely studied
topic, motivated in large part by applications to Markov chain Monte Carlo algorithms (see
Gelfand and Smith, 1990; Smith and Roberts, 1993). On finite state spaces, much progress
has recently been made, both in the form of general results (Diaconis, 1988; Sinclair and
Jerrum, 1988; Jerrum and Sinclair, 1988; Diaconis and Stroock, 1991; Sinclair, 1992), and
of results specifically related to Markov chain Monte Carlo (Hanlon, 1992; Frieze, Kannan,
and Polson, 1994; Frigessi, Hwang, Sheu, and Di Stefano, 1993; Ingrassia, 1994; Liu, 1992;
Belsley, 1993). On infinite state spaces, however, progress is much more limited (though
for partial results see Lawler and Sokal, 1988; Amit and Grenander, 1991; Amit, 1991,
1993; Hwang, Hwang-Ma and Sheu, 1993; Meyn and Tweedie, 1993; Rosenthal, 1995a,
1995b, 1994; Baxter and Rosenthal, 1995; Roberts and Rosenthal, 1994).

In this paper we consider the extent to which previous bounds for finite chains (es-
pecially those involving choices of paths) can be extended to bounds for infinite chains.
Our results fall into two categories. To study countably infinite chains, we consider en-
largements of a sequence of related finite chains, and show that many of the finite results
carry over to the countable chains. To study uncountable chains, we consider refinements
of a sequence of related countable chains, and derive related quantitative bounds in this
manner. Both techniques are illustrated through examples, all of which come from the
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).

A review of results about finite Markov chains is given in Section 2. In Section 3
we discuss enlargements, and in Section 4 we discuss refinements. Three examples of

enlargements, plus one example of a refinement, are given in Section 5.

2. Needed facts about finite chains.

Let X be a finite state space, and let P(z,y) be an irreducible matrix of transition
probabilities on X. Assume P has a stationary distribution 7, so that 7P = m, and
m(x) > 0 for all z € X. Let M be the set of all functions from X to C, and let P act
on M by (fP)(y) = > f(z)P(x,y). Let an initial distribution be given by pg, regarded
as an element of M, ;Co that u, = poP" is the distribution of the Markov chain after k

2



iterations. We are interested in bounds on the total variation distance
1
[tk — 7l[var = sup|pg(A) —7w(A)| = 5 > lpn(z) — w()]
A X

between the distribution of the Markov chain after k iterations, and the stationary distri-
bution .
We introduce some notation (which shall also apply in the next section for countably

infinite X'). Define an inner product on M by < f,g >r2q/m= > f(z)g(z)/n(x), and
z€X

set || flleeqymy = /< f, f >r2(/x). Finally, let W = {f € M|} f(x) = 0}, and set

HP‘WHLQ(l/W) = Sup{||fp||L2(1/7f) |f S W, ||f||L2(1/7r) = ]_}

Proposition 1. We have
1 k
[tk — 7llvar < §HM0—7THL2(1/7T) HP‘W||L2(1/W)~

Proof. We have that

1
| — 7llvar = §<|Mk — 7|, T)r2(1/m)
1
< §||Mk—7f||L2(1/7r)

1
= §||(M0 — )P 21 /m)
1
< §HM0—7T||L2(1/7r) 1P|y 1521/

as required. (We have used the Cauchy-Schwarz inequality and the definition of ||P| - z2(1/7)5
plus the observation that (ug — w) € W.) n

Remarks.
1. The quantity ||P‘W|| r2(1/x) 1s often referred to as the “second eigenvalue” of the
Markov chain. For reversible Markov chains it is equal to the largest absolute value
of any eigenvalue of P, excluding the eigenvalue 1 corresponding to the stationary

distribution 7.



2. It is easily computed that |[po — 7||z2(1/x) = ( > %) — 1; this may be helpful
reX

for computations.

1—7(z0)
m(zo)

3. If up = 64, is a point mass at zg, then ||ug — 77”%2(1/70 = For such py,
with P reversible, this proposition reduces to Proposition 3 of Diaconis and Stroock
(1991). The greater generality for pg allowed here shall be especially important when
we consider refinements in Section 4 below; there the individual probabilities 7(x¢)

will all be approaching zero, so the bound of Diaconis and Stroock cannot be used

directly.

In what follows we shall assume P is reversible with respect to m, meaning that
m(x)P(x,y) = m(y)P(y,x) for all x,y € X. Furthermore, for simplicity, we shall assume
that P satisfies the following strong form of aperiodicity:

P(z,z) > a>0, reX.

This immediately implies that the eigenvalues of P are all real and are all at least —1 + 2a.
Weaker conditions can be used instead to get lower bounds on the eigenvalues; see for
example Proposition 2 of Diaconis and Stroock (1991). But such methods are not usually
required, and for simplicity we do not consider them further here.

Under these assumptions, we can state general bounds of previous authors regarding
HP‘WHLQ(l/W)' Suppose, for each z,y € X with « # y, we have chosen a path v, from x to y
consisting of a finite sequence of distinct directed “edges” ((vo,v1), (v1,v2),..., (vL—1,vL))
with vg = z, v =y, and P(v;,v;41) > 0 for each i. Then in terms of these paths, we have
(a) (Sinclair, 1992, Corollary 4)

1
||P|W||L2(1/7r) < max(1l —2a,1 — 8_772) :

where n =supQ(e)~! Y 7(z)7(y), and if e = (u,v) is a directed edge, then Q(e) =
e YayD€
m(u)P(u,v).

(b) (Sinclair, 1992, Theorem 5)

1
||P|W||L2(1/7r) < max(1 — 2a,1 — E> :
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where K =supQ(e)™t > |Vay|m(x)7m(y), and |vsy| is the number of edges in 7z,
€ "Yzyae

(c¢) (Diaconis and Stroock, 1991, Proposition 1)

1
||P‘W||L2(1/7r) < max(l —2a,1 — E) 7

where k =sup Y [vylem(@)7(y), and Jraylo = 3 Qe)™
€ Ygyde eCYqy

Remarks.

1.

In each of these bounds, the supremum is taken over all directed edges e = (u, v) with

P(u,v) > 0, and the sum is over points  and y such that (u,v) appears in 7g,.

. On a finite space X, there are of course only a finite number of possible edges e, so

the supremums above are actually maximums. However, we write the expressions as
supremums so that the same formula will also apply in the next section.
If the collection of paths {7, } is itself symmetric, in the sense that for all x # y, vy,
is simply the reversal of 7,,, then clearly the direction of the edge e does not matter,
so it suffices to take the supremums over edges pointed in only one direction. This
shall be the case in all of the examples we consider.
These bounds remain true if the paths {v,,} are chosen randomly, with n, s, and
K instead defined as supremums of expected values of the respective quantities (see
Sinclair, 1992, Section 4). This fact shall be important in the final proof in Section 4
below.
—t oo n

In continuous time the situation is even simpler. Write P (z,y) = Y. e "% P"(x,y)
for the corresponding continuous-time Markov operator (with mg;r?—l exponential
holding times). Then if P is reversible with eigenvalues {f;}, then the eigenvalues of
P’ are {io et gr} = {e~*(1=F)} and hence are all positive. The bounds corre-

=

n!

sponding to the above are then

—t max(ty, 4,1

_t P
HP ’W”L2(1/ﬂ-) < e 2 Kow)

In particular, the condition P(z,z) > a > 0 is no longer required.



3. Enlargements of Markov chains.

We suppose now that X is a countably infinite state space, and P(z,y) is an irreducible
Markov chain defined on X with initial distribution pg. We further assume that P is
reversible with respect to a stationary distribution m on X.

The idea of enlargements is as follows. We decompose X as X = UygXy where each
Xy C X is finite, and X; C X, C .... For d large enough so that n(Xxy) > 0 and
to(Xq) > 0, let w4 be the probability measure on X, defined by 74(z) = 7(x)/7(Xy) for
x € Xy, and similarly let poq(x) = po(x)/po(Xq) for x € Xy. Further define Py(z,y)
on Xy by Py(z,y) = P(x,y) for 2,y € Xy, x # y, and Py(z,x) = 1 — > Py(z,y) =
P(z,z) + P(z,X{). Then clearly P, is reversible with respect to 74 on Xd:l/#x
Proposition 2. Let P(-,-) be an irreducible Markov chain on a countable state space
X, reversible with respect to m(-), and with initial distribution po(-). Let X4, T4, f0,d;
and P,(-,-) be as above. Set uy = poP* and g q = po.aPy. Then for each fixed x € X

and k > 0, as d — oo we have m4(z) — 7(z) and pgqa(zr) — pr(x), and furthermore

lro0,a = mall L2(1jza) = N0 = 7l L2(1/my and |lpk,a = Tallvar = [l = 7llvar-

Proof.  Since {X;} are increasing, we have n(X;) — m(X) = 1. Hence for d large
enough that = € Xy, we have my4(z) = 7(x)/n(Xy) — w(z). For the second statement,
write ug(x) = P(Aq) 4+ P(Bqg) + P(Cy), where Ay is the event that the path of the original
Markov chain ends up at = (after k steps) without ever leaving X; and without ever holding
at a point, while By is the event that it ends up at x but does leave X; at some point
during the first k£ steps, and Cj is the event that it ends up at x without leaving X; but
with holding at least once. Now, as for py q4(x), since po a(s) = po(s)/po(Xq) for s € Ay,
we have that py () = P(Aq)/po(Xq) + P(Dg), where Dy is the event that the chain
corresponding to Py(-,-) ends up at x but holds at least once. Now, as d — oo, we have
po(Xq) — 1, P(Dg) — P(Cy), and P(Bg) — 0, so that puy 4(x) — pr(z).

For the statement about L?(1/7), we have that

2 po,a()” m(Xa) po(x)”
_ =\ Hod\TT g > —1
10, — Tall22(1 /my) ; (@) NEDE m(x)
x g TEXy




MO(QC)2 _ 2
- :CGZX m(x) 1= {lpo—7ll72¢1/x) -

For the statement about variation distance, given € > 0, choose a finite subset S C X
with 7(S) > 1 — €¢/4 and pr(S) > 1 — ¢/4. Then choose dy with S C X, and with
|pk,a(z) — pe(x)| < €/4]S] and |mg(z) — w(x)| < €/4/|S] for all d > dp and all x € S. We
then have, for d > dy, that 74(S¢) < €/2 and j 4(S¢) < €/2, so

20|tk — Tallver = Y |ik.alz) — ma()]
rEXy

< /24 3 luna(@) — pla) + pi(@) — w(@) + 7(@) — 7a(2)
€S

<e/24+ ) (e/4]S| + /48| + | (z) — m(x)])

€S

<€+ 2H,Uk - 7rHvar .

It follows that limsup ||ux.d — Tallvar < ||k — 7|lvar- Similarly liminf ||pka — 7allvar

v

|t — 7||var- The result follows. [ |

Combining the above two propositions, and letting d — oo (along a subsequence if

necessary), we obtain

Corollary 3. Under the above assumptions, if lidm inf HPd‘WHH(l/wd) < (3, then

1
e = 7llvar - < 5 ko = mllz2a/m) B

This corollary says that we can bound the distance to stationarity on the countably
infinite chain X’ by any uniform bound on the sequence of finite chains {X;}. (A similar
idea is used in Belsley, 1993, Theorem VI-4-2.)

To make use of this fact, we make the following definition. A set of paths {v;,} on
X is unfolding if there exists a sequence of finite subsets X; of X with A} C Ay C ...
and X = UgkXy, such that for any z,y € Xy, the path v,, connecting x to y lies entirely

inside X;. Not all collections of paths will be unfolding: for example, suppose X is the
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non-negative integers, and for each = > y, the path from x to y includes the point = + 1.
However, natural choices of paths will usually be unfolding. And for such unfolding paths,

we can use the finite-chain bounds to obtain information about the infinite chain, as follows.

Theorem 4. Let P(x,y) be an irreducible Markov chain on a countably infinite state
space X, reversible with respect to a probability distribution 7, and with P(x,z) > a >0
for all x € X. Suppose that for each x,y € X with x # y we have chosen a path 7., from x
to y, and suppose further that this collection of paths is unfolding as defined above. Then

given an initial distribution po on X, and setting pj, = poP*, we have

ke = Tllvar < = o — 7l L2(1/my B

N =

where 3 = max(1 — 2a, min(1 — #, 1-— %, 1-— %)), with 1, K, and k as defined in Section
2. (Note that these quantities now involve supremums over infinite numbers of edges and

hence might be infinite, in which case we adopt the convention that é =0.)

Proof. Let {X;} be a nested sequence of subsets of X with respect to which the paths
{Vzy} are unfolding. Then {7Vzy}syex, is a collection of paths on X;. The finite-chain
bounds of the previous section, together with Proposition 1, immediately imply the anal-
ogous bounds for the finite chain P; as above. The stated results for A" follow by taking

the limit d — oo and using the previous corollary. |

Remarks.
1. As in the final remark of Section 2, in continuous time the situation is even simpler,

and we obtain

—t 1 —¢ 111
12" = llvar < 5 llko = llz2a/m) € maxgr o)
with no requirement that P(x,z) > a > 0.
2. Our original goal was to generalize to infinite chains the elegant results of Ingrassia

(1994) regarding bounds on finite versions of Metropolis-Hastings and Gibbs sampler
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algorithms. Unfortunately, this appears not to be possible. For example, his results
use quantities such as br = max #{Vay | € € Vay} and d* = max #{y| P(z,y) > 0},
and it is easily seen that if both of these quantities are finite, then (since a point x € X
must be connected to every point y # x) we must have |X| < brd* + 1 < co. Hence,
we have instead concentrated on generalizing the less specific results involving choices

of paths.

4. Refinements of Markov chains.

In this section we consider extensions of the theory to uncountable state spaces. We
assume throughout that X is an open subset of R™ with C! boundary. (More general
spaces are also possible, but we will use differentiability properties so the generalizations
are non-trivial.) We consider a Markov chain with initial distribution pg(-), and tran-
sition probabilities P(z,-), reversible with respect to a stationary distribution 7(-), and
irreducible with respect to Lebesgue measure A on R™.

We impose some regularity conditions. Call a subset of R™ gentle if it is contained
in some finite union of C'! hypersurfaces inside R™. (Intuitively, a gentle set is small and
unimportant.) We assume that po(-) has density r (with respect to A), and that 7(-) has
density h, such that h > 0 on X, and such that r?/h is a bounded function. We further
assume that for each z € X', P(x,-) is of the form P(x,dy) = a,0.(dy) + f.(y)\(dy). We
assume that a = iI%f az > 0, that each of (-), h(-), a., and [ f.dX are uniformly continuous
functions off of some specific gentle subset of R, and thatAfx(y) is a uniformly continuous
function of (z,y) € X x X off of some specific gentle subset of R?™. Reversibility then
implies that h(z)f,(y) = h(y)fy(z) except when (z,y) is in some specific gentle set in
R2™,

Remark. Allowing discontinuities on certain gentle sets is only a very minor and
unimportant weakening of our basic regularity conditions, and it is not really the main
thrust of our result. We include it simply to allow for such probability distributions P(z, -)

as, say, uniform distributions on nice subsets of X.

To describe our result, we again choose a collection of paths. Specifically, for each = #
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y, we let vy, = ((vo,vl), - (val,vL)) be a sequence of edges, for some L = |7y,,| < oo,
where each v; € X', with vy = x, v, =y, with {vs}o<s<r distinct, and with f,, (v;41) > 0
for 0 <i < L—1. We set v, (¢) = vp for £ < |y,,|. We assume that, for each ¢, the subset
of X x X on which 7,,(¢) is defined has C! boundaries, and that on that subset 7., (¢) is a
C' function of (z,y) except on some gentle subset of R?*"™. We further assume that {7,,}
is unfolding in the sense that there are bounded sets S; C Sy C ... with C'' boundaries
and with X = U, S, such that if x,y € 5, then ~,,(¢) € S; for all 0 < ¢ < |y, |. (If X is
itself bounded then this condition is satisfied automatically.)

To deal with the possible discontinuities on gentle sets, we use the following notation.
Given a function f which may have discontinuities or even be undefined at some points,
we let [ f](x) [resp. | f]|(z)] be the limsup [resp. liminf] of f, i.e. the limit as € \, 0 of the
supremum [resp. infemum] of the values of f (where defined) in an e-ball around z. Thus

[f]z(w) = lim inf  fo(w'),

e—0Tt llz/—zl<e
lw’ —wll<e

etc. Where f is continuous, we of course have [f| = | f| = f.

Finally, for ¢ < |v,,|, we define

aixi (%cy(g))j % (Vay (€ + 1))j

Joy(0) = det
o (Vey(0); o (e (E+ 1)),

to be the Jacobian of the mapping (z,y) — (Yay(€), Yy (£ + 1)). (If we are at an exceptional
point where 7, (£) or 7., (¢+1) is not C*!, then J,, (¢) may not be defined, but |J |, (¢) and
[J]2y(€) still will be.) We assume that |J ]z, (¢) > 0 for all z,y € X and all 0 < £ < |y4,].

We can now state

Theorem 5. Let P(-,-) be a Markov chain on an open subset X C R™, reversible with
respect to 7(+), with initial distribution pg(-), and satisfying the regularity conditions as
above. Let {v,,} be a collection of paths for each x # y, unfolding and satisfying the

regularity conditions as above. Then

—_

ke = Tllvar < = o — 7l r2(/my B

2
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where

o = sy = [ HEZHIE A,
X

and where § = max(1 — 2a, min(1 — #, 1-— %, 1— %)), with

’Yzy(z)=z
’Ya:y(z+1>:w

K= swp (U)X a2
Yy (£)=z

Yoy (L+1)=w

hl(x)|h
K = sup Z |7$y|Q( E((]J?Ey(l)(y)7

z,y,L
"/zy(‘e):z
me(£+1):w

where

|'me|*1 . . —1
o= 3 ( L] (Yay ) LF Ly () (Y (G 1)))
Remark. We emphasize that this theorem says nothing about the existence or properties
of paths {v;,} satisfying the stated regularity conditions; it merely provides a bound on
|tk — 7 ||var, assuming that such paths have been constructed. Furthermore, our regularity

conditions can likely be improved upon; we have not made a serious effort to find the

weakest conditions possible.

Proof. Foreachd=1,2,3,..., partition X into connected measurable subsets { By; }ic1,,
where [; is finite or countable, where By has diameter and Lebesgue-measure both less
than 1/d, and where furthermore there is a nested sequence of subsets {5} as above, with
respect to which {7,,} is unfolding, such that for each j and d there are only a finite
number of ¢ with Bg; NS; non-empty, and for each such ¢ we have By; C S;.

In terms of such a partition, we define a new Markov chain by Xy = 14, p0.4(7) =

to(Bgi) = f rd\, mq(i) = w(Bg;) = f hd\, and
Bgi Ba;

[ | fe()h(z)Mdy)\(dx)

Bg; Bgj

Pd(Z,j) = E, (P(CL‘,B@‘)’.CBEBCM) = 7Td(7;)
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Then it is easily verified that Py(-,-) is a Markov chain on &; which is reversible with
respect to mq(-). We let pyq = u()’dPg be the distribution of this Markov chain after k
iterations.

We define paths {74} on Xq randomly (see Remark 4 at the end of Section 2) as
follows. First choose points x4 € Bg; for each i € Iz, chosen randomly according to
normalized Lebesgue measure on Bg;. Then, in notation as above, set 74i;(¢) = c if
Yeaiza; (£) € Bac. Our assumptions imply that the random paths {45} are unfolding, with
probability 1, in the countable-X sense of the previous section.

Our previous theorem (for countable chains) thus implies bounds on the Markov chain
Py(-,-) on Xy, in terms of its corresponding quantities 14, K4, and 4. The current theorem

will thus follow from the following lemma:

Lemma 6. Under the above conditions, and assuming ||po — 7||12(1/x) < 00, we have

dlirgo 10, — mallL2(1/mg) = o — 721 /m) s
11msup|’ﬂk,d_77d||var = HMIC—WHvarB
d— o0

and furthermore

limsupng <7; limsupKy < K; limsupkg <F&.

d—o0 d—o0 d—oo

Proof. For the statement about L?(1/7), we have

(f rdA)
NOd 7' Z By;

ma (1) hd\
1€ly ely B{z

L+ [|po,a — mallee(i/ma) =

By continuity, off of gentle sets, we can find x¥;,y% € Bq; with [ rd\ = r(z5,)N(Ba)
Bai
and [ hdX = h(y};)N\(Bai). Hence,
Baji

L+ [Juo,a — mall 21 /my) = h A Bai) -
1€ly
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This is essentially a Riemann sum for 72 /h, except that we may have z, # y%.. But since
r?/h is bounded and uniformly continuous and integrable (since ||puo — 7|21 /x) < 00), it

still follows (cf. Spivak, 1980, p. 263) that as d — oo, the sum will converge to

h2
/T‘” = 1+ |lpo — 7l r2@1/m

as required.

For the statement about variation distance, fix € > 0, and choose a bounded subset
S C X with 7(S%) < ¢, and with probability less than e that the continuous chain escapes
from S in the first k steps. (Note that if &' is bounded there is no need to consider S
at all.) Assume for notational ease that A\(S) > 1. Then choose d; sufficiently large that
for d > dy, there is probability less than 2¢ that the chain on X; will escape from S, and
furthermore probability less than e that the chain on X; will in the first £ steps move
from point i to point j where Bg; intersects S¢ or a point of discontinuity of fy, (). These
conditions ensure that for d > dj, the limitations of the set S and the discontinuities of

the f.(-) will only affect probabilities by O(e) and hence can (and shall) be ignored.

Furthermore since the values a, are uniformly continuous, it follows that as d — oo
the chains on X; will hold with probabilities approaching the correct values for the original
chain on X. Thus, holding probabilities also can (and shall) be ignored in the calculation

which follows.

Now, by uniform continuity, choose dy such that for d > ds, the values of each of f,(-),
r(+), and ry(-) — h(-) vary by less than ¢/A(S)**! on each subset By;. Set dy = max(dy, da).

Then for d > dy, it follows that for any choices of jg,j1,...,Jk—1, we will have
110,4(jo) Pa(jos j1) - - - P(jk—2, jk—1)P(jr—1,7) within e \(Baz,) . .. M(Baj,_, ) A(Bai) /A (S)*
of the probability that the continuous chain goes from By, to Bgj, to ... to By, , to By
in its first k steps. Thus, summing over those jo, ..., jx—1 for which Bg;, C S, we see that
k,a(7) will be within e/A(S) of pg(Ba:)-

We conclude that |ug,q(i) — mq(i)| will be within O(e/A(S)) of |uk(Bai) — m(Bai)| =

| [ (ri — h)dA| (where 7y, is the density of p, with respect to ). Summing over i and
Ba;i
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dividing by 2, we see that ||k ¢ — Tallvar Will be within O(e) of

%Z|/(rk—h)d)\].

i€ly Bui

Now, if r — h does not change sign on By;, then ‘ [ (ri— h)d)\| = [ |rx — h|d\. Further-
Bdi Bdi
more, since d > do, the contribution to the above sum made by those i for which rp, — h

does change sign on By; (and hence satisfies |1, — h| < €/A(S)**! there), will be less than
e/A\(S)¥ < e. Hence, | pk,a — Tallvar Will be within O(e) of

33 [ ire=idx = 5 [l —hlax = e =l
i€lag, X
The statement about variation distance follows.

For the statement about 74, recall that our paths are now random, so we must bound
the ezpected values of quantities like > 7(z)m(y). To proceed, consider first the case
where there are no gentle sets of discg;%ciariuity or non-differentiability. Consider an edge
e =(i,j) of Xy. If a path vgap has v4ap(£) = @ and vy4ap(£ + 1) = j, then the corresponding
points x4, and zg, must satisfy v, 2, (£) € Bai and vz, 2., ( + 1) € Bg;. That is, we
must have (4q,Za) € g~ (Bai X Bgj), where g is the function on X x X taking (x,y)
t0 (Yay(£), Yoy (¢ + 1)) (with ge(z,y) undefined if |y,,| < £+ 1). Hence taking expected

values (with respect to the random choice of paths), and recalling that 7(-) has density h,

we obtain (writing I(-) for the indicator function of an event) that

a,b

E( Z m(a)ﬂd(b)) — E(%wda)@(b)l(%@(ﬁ):i, Yaab(£ + 1) Zj)>

Ydab(£)=1
Ydab£+1)=3

= de(a)wd(b) P(vdab(ﬁ) =14, Yaa({+1) = j)
a,b

_ A (g7 (Bai x Baj) N (Baa X Bap))
= Zﬁd(a)ﬂd(b) )\(Bda » Bdb)

_ / O(x, y)A(dz)A(dy)

g~ Y (Bai X Baj)
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where O is the piecewise-constant function defined by

(@)ra(®) h(z")h(y")A(dz")N(dy')

Tg\a)mq Bga X Bay

_ — f By, X Bap .
O(z,y) A(Bga X Bay) M Bga X Bay) ’ or (2,y) € Baa X Bay

Now, as d — oo, the diameters of the sets { By } approach 0. Thus, uniform continuity
implies (writing ~ to mean that the ratio of the two quantities uniformly approaches 1
as d — oo) that O(x,y) =~ h(x)h(y). The sum then becomes a Riemann sum, whence we
obtain that

B X m@m®) ~ [ k@M@,

a,b 1
Ydab(&)=1 g, (BaiXBagj)
Ydab(£+1)=3

We also have that

m@Plind) = [ H@EL(fu(w) [w € Ba)Ado)Ady).
Bd,L'Xij
Now, as d — oo, continuity implies that E,(f,(y)|w € Ba;) = f.(y) for any choice of

x = x(d) € Bg;, whence

m@P) [ h@)L@AA).

Bdi X ij
Finally, standard multi-variable calculus says that if Uy \, {2z} and Vi \, {w}, then

[ h@h)Mde)Mdy) o
9; ' (UaxVa) -1 2)h(y
e E ~ Wesw) Y e

x,y
UagxVy g(z,y)=(z,w)

We thus conclude that, as d — oo, quantities of the form

B((rruin) X mam)

a,b
Ydab (O)=1
Ydab(€+1)=3j

will be uniformly arbitrarily close to an expression of the form

-1 h(z)h(y)
(h(z)fz(w)> ;; m )

’Yzy(e):z
Yoy (L+1)=w

15



for an appropriate choice of (z,w) € X x X.
It follows that for fixed ¢,

limsup sup E((Wd(i)Pd(i,j)>_1 Z Wd(a)ﬂd(b))

d—oo 4,j€I,

a,b
Ydab (&)=t
Ydab(€+1)=3j

< s (orm) Y R

Yxy (£)==
’Ya:y(e‘i’l):w

Summing over ¢, the statement about 74 follows for this case.

To take account of possible discontinuities on gentle sets, we simply replace each com-
puted quantity by its “worst case” values (thus preserving the inequality). This amounts
to using the [-| operation in the numerators, and the || operation in the denominators,
as done in the statement of the theorem.

The statements about kg and K, are entirely similar. This completes the proof of the

lemma, and hence also the proof of the theorem. [ |

Remarks.
1. The regularity conditions and proof above may seem rather technical. The essence,
however, is that for well-behaved Markov chains P(-,-) on uncountable sets X C R™,
bounds involving choices of paths can be used analogously to their use for finite chains.

2. Again, in continuous time the situation is even simpler, and we obtain

ot 1 —t max(=1y
IP" = Fllar < 5 llto = llgaqaymy € T,

with no requirement that P(z,z) > a > 0.

16



5. Examples.

In this section we apply Theorems 4 and 5 to several examples. We note that all of
the examples are versions of the Metropolis-Hastings algorithm (Metropolis et al, 1953;

Hastings, 1970) with appropriate proposal distributions.

5.1. A geometric birth-death chain.

We suppose that X = {0, 1,2,...}, and that for some numbers a, b, ¢ > 0 with a + b+
c¢=1and b > ¢, we have for all z > 1, P(z,z) = a, P(x,z —1) =b, P(x,z+ 1) = ¢, while
for x = 0 we have P(0,0) = a+ b and P(0,1) = ¢. Such a chain is reversible with respect
to the stationary distribution given by 7(z) = C(¢/b)* with C =1 — (¢/b).

These and much more general birth-death chains have been studied in great detail by
Belsley (1993, Chapter VI), using sophisticated ideas related to orthogonal polynomials.
We here apply the ideas of this paper, by choosing paths and bounding the quantity n. (It
appears that the quantity « is always infinite for this example.)

We define unfolding paths 7., in the obvious way, namely that for x < y, v,y =
(z,z+1),(z+1,x4+2),...,(y — 1,y)), with 7,, defined symmetrically. Such paths are
obviously unfolding, with respect to Xy = {0,1,2,...,d}. Then if e = (2,2 + 1), then

_ 1
Qle)™ Y w(a)m(y) = ) Z Z
Yzy D€ I_) rz=0y=2+1

= (e Y (e = (1= (b)) <

C’cz+1/bz b—c

It follows that n < ;= , so that by Theorem 4,
1 , 1 g
lae = 7llvar <5 o = llz2q1/my {1 — min(2a, m) :

In particular, if 9 = 0, is a point mass, then
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5.2. An infinite star.

Choose positive weights {w;}2, with > w; = 1. Then define a Markov chain on

X ={0,1,2,...} by P(z,z) = § for all , andzfor i>1, P(0,i) = w; and P(i,0) = 3. This
Markov chain is reversible with respect to the stationarity distribution given by 7(0) = %
and 7(i) = w; for i > 1. It may be pictured as an infinite “star”, with 0 in the center and
all the positive integers connected to 0 around the sides. (A finite version of this example,
with equal weights, is discussed in Diaconis and Stroock, 1991, p. 49.)

We define paths in the obvious way, namely for 4,7 > 1 with ¢ # j, set v;; =
((4,0),(0,7)), while 79, = (0,7) and ;0 = (¢,0). Hence |yzy| < 2 for all x # y. Then
if e = (4,0), then

Q)™ Y Iylm(@)m(y) < 4(wi) T (i) Y wly) = 4(1 - wi) < 4.
VazyDe y#i
It follows that K < 4. Furthermore, we may take a = 3 to get P(z,z) > a for all z. Hence
max(1 — 2a,1 — %) < 3/4, so that by Theorem 4,

3 k
o = lzrey (3) -

5.3. A two-dimensional Metropolis walk.

e = lfvar <

N =

We here let X = {0,1,2,...} x {0,1,2,...}. For some fixed 0 < p < 1, for all
g > 1, we set P((i,4), (i +1,) = P((,9), (i, + 1)) = p/4, and P((i, ), (i — 1,)) =
P((i,7),(i,j—1)) =1/4 with P((4,7), (i,7)) = (1 — p)/2. We set the boundary conditions
in the obvious way by adding holding probability, so that P((0, ), (0,7+1)) = P((¢,0), (i+
1,0)) = p/4, P((0,7),(1,7)) = P((4,0),(i,1)) = p/4, P((0,7),(0,5 — 1)) = P((¢,0), (i —
1,0)) = 1/4, P((0,4),(0,9)) = P((3,0), (5,0)) = (3 — 2p)/4, and finally P((0,0),(1,0)) =

This Markov chain is simply the Metropolized version of two-dimensional simple sym-
metric random walk, reversible with respect to 7((i,5)) = C p**7 where C' = (1 — p)?. We
again proceed by choosing paths and bounding 7.

We choose paths as follows. If i1 < iy and j; < jo, with (i1, j1) # (i2, j2), then we set

Viingn)(ingo) = (((i1,71), (i1 +1,41)), ((r + 1, 41), (i1 + 2, 51)), - - -, (G2 — 1, 41), (32, 51)),

18



((i2,41), (G2, 1 + 1)), - -+, ((i2, J2 — 1), (i2, 42))) »

while if 41 <9 but j; > jo, we set
Y(i1,91),(12,42) = (((ilaj1)7 (Zl + 17j1))’ ((7’1 + 17j1>7 (Zl + 27j1))7 SER) ((22 - 1’j1)7 (7:27j1))’

((i2, 1), (12,51 — 1)), ..+, ((i2, j2 + 1), (i2, j2))) -

For i1 > ia, we define v(;, j,),(is,jo) t0 be the reversal of v, j,) i, ,j;)- To summarize, then,
V(i1,41),(i2,j2) 1S Simply the path which adjusts each coordinate, one step at a time, adjusting
the first coordinate first for i; < 725 and second for i; > 9.

Now, if e = ((i,), (i +1,7)), then

Q@V1§:W@M@%=aﬁ%5ﬂ > wlling) Y w((ig)w((iz, 4a))
0<i1 <2 i+1§i2<<oooo

- gt X 00T Y 0 S

0<i1<4i i+1<ip<oo 0<ja <00
_ dc ol — pititi pitl 1
pititt 1—p 1l—p)\1=p
4C 4
< e

(1=p3 1-p

Similarly, if e = ((¢,7), (¢,5 + 1)), then

At Y wr) = oy X (e((in o)) (i, ) + (i1, ((ia.0))

yrye 0<ig <t
i+1<ig<oo
0<jo<ij
T Cpititl Z CF (ph70pttd 4 phtd platio)
0<ig <i
i+1<ig<oo
0<jo<j
_ 8C 1— pi—|—1 pi+1 1 _pi—|—1
P\ 1-p 1-p 1-p
8C 8

< = .
(1=p3? 1-p
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It follows that n < %, so that 1— # <1-— Og—fy. Furthermore we have P(z,z) > a
for all x € X, where a = 1_7‘), sothat 1 —2a=p < 1— (lg—f)Q. Theorem 4 thus implies

that .
1 (1-p)?
i = wlhae < 5 lhio = laymy (1 S525)

5.4. A Metropolis chain for a truncated normal distribution.

We let X = R be the one-dimensional real line, and consider a Metropolis algorithm
with stationary distribution 7(-) given by the standard normal distribution N(0,1) trun-
cated to [—M, M], having density h(y) = K e=¥ /2 for |y| < M (with respect to Lebesgue

M
measure \), where Kt = [ e=v’/ 2dy. We consider proposal distributions Q(z,-) given
-M

by the normal distributions N (z, 1) having densities g, (y) = \/%76_@_@2/ 2. Assume that
lesothatKg(%)L<1.

V2r
In the language of the Metropolis algorithm, the “acceptance probabilities” are thus
2
given by oy, = min(1, ;Z—Qg) for |y| < M, and by azy = 0 for y > |M], and the Markov

chain transitions are then given by

P(z,dy) = a3 0:(dy) + quyge(Y)Ndy) = az6:(dy) + fu(y)A(dy),

where f,(y) = \/%76_ max((y—2)*,2y*~292)/2 for |y| < M and 0 otherwise, and a, = 1 —

M
[ fa(y)A(dy).
-M
We choose paths “linearly” as follows. Given z,y € X with z # y, set L;, =

max(1, ||y — z|]) (i.e. the greatest integer not exceeding max(1, |y — z|)), set Ay, = %;:,

and set vy (£) = o + LAy, for 0 < £ < Ly = [V4yl- (Note that 0 < Agy < 2 for all
z,y e X.)
It is easily verified that all of the regularity and unfolding assumptions of Theorem 5

are then satisfied. It is further computed that

1— 14 14
Loy Loy
Jzy(l) = det = 1/L,,.
i) = aer( ) < L,
Loy Loy

We now proceed to compute 7.
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Given an edge e = (z,w), assume without loss of generality (by symmetry around 0)

that z > |w|. If z—w < 1, then the only path using the edge e is the length-one path ..

Furthermore J,,,(0) = 1, and we obtain

h(a:)h(y) _ w w) — 67w2/2 Lefmax((wfz)Q,Qwasz)/Q
> Y hw)/nw) = Ke o

z,y,L
’Yacy(z)=z
’me(£+1)1w

— Von K emax(zw?)—2wz) /2 o g\/a

If 1 <z—w < 2, then the only way the edge e = (z,w) can be in the path v, is if
for some non-negative integers m and n, we have x = z+m(z —w) and y = w — n(z — w).

Hence

Z hff)}(lé?;) < Z ZKQ (z —w)(m+n+ 1)e—(z+m(z—w))2/26—(w—n(z—w))2/2
Ty

x,y,L m=0n=0
VEy(e):Z

Yoy (L+1)=w

< (2 —w) (Z (m+1) e_(z+m(z_w))2/2) <Z(n +1) e_(w_”(z_w))2/2> .
m=0 n=0
Since z > 0, the first of these two sums is easily bounded by
> —22/2
—(ZZ+m(z—w)?) /2 _ €
Z(m+1)e (1 _e—(z—w)2/2)2 ’

m=0
The second sum is more difficult, since if w is large and positive then it is possible that
(w —n(z —w)) will be very small (or even 0) for a large value of n, in which case the sum
could still be very large. However, by making the change of variables j = n — [ *-| and
allowing j to range over all integers, the sum can be bounded by

w +2

zZ—Ww

142 -
Z—w (1 _ e—(z—w)2/2)

We conclude that

1 > 25\ 1 2y 374 +5 6e2 M
—2°2/2 —(w—=2)%/2 (e —z7/2 Z-w
< (—Ke e ) (2 —w)e™*/ (1— e 1/2)4 < (1— e 1/2)2"




where we have used that K+/2m > 2/3, that z — w < 2, and that w < M.

We conclude that 7 < (1_6;%—%2)4. Furthermore, it is easily verified that the holding

probabilities satisfy

o0 oo

1
2 or 2 or —2 22
T 0

ay >

Hence, Theorem 5 implies that

k
1 (1 —e1 / 2)8
- var S o - 2 T 1 T S/A 97\
= mlhae < 5l =iy (1= Gsam
Remark. This example successfully bounds 7 for an uncountable chain. However,

it is easily seen that as M — oo, we have 7 — o0o. (Indeed, consider the single term
m = 0,n= | M| — 1 in the above sum for 7, with z = M and w = L(1 — ﬁ)) Thus, in
this example at least, Theorem 5 does not help to bound convergence as the state space

becomes unbounded.
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