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Abstract. We present a general method for prov-
ing rigorous, a priori bounds on the number of it-
erations required to achieve convergence of Markov
chain Monte Carlo. We describe bounds for spe-
cific models of the Gibbs sampler, which have been
obtained from the general method. We discuss pos-
sibilities for obtaining bounds more generally.

1. Introduction.

Markov chain Monte Carlo techniques, includ-
ing the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), data augmentation
(Tanner and Wong, 1986), and the Gibbs sampler
(Geman and Geman, 1984; Gelfand and Smith, 1990)
have become very popular in recent years as a way
of generating a sample from complicated probabil-
ity distributions (such as posterior distributions in
Bayesian inference problems). A fundamental is-
sue regarding such techniques is their convergence
properties, specifically whether or not the algorithm
will converge to the correct distribution, and if so
how quickly. Many general convergence results (e.g.
Tierney, 1994), qualitative convergence-rate results
(Schervish and Carlin, 1992; Liu, Wong, and Kong,
1991a, 1991b; Baxter and Rosenthal, 1994), and
convergence diagnostics (e.g. Roberts, 1992; Gel-
man and Rubin, 1992; Mykland, Tierney, and Yu,
1992) have been developed. However, none of these
approaches are entirely satisfactory (Matthews, 1991;
Cowles and Carlin, 1994).

In a different direction, a number of papers have
attempted to prove rigorous, quantitative bounds on
convergence rates for these algorithms (Jerrum and
Sinclair, 1989; Frieze, Kannan, and Polson, 1993;
Meyn and Tweedie, 1993; Lund and Tweedie, 1993;
Mengersen and Tweedie, 1993; Rosenthal, 1991, 1993a,
1993b, 1994). Such results often provide bounds
which are very weak, and/or for very specific mod-
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els, but the area appears to be worthy of further
work.

In this paper we describe a general method (Sec-
tion 2) for proving such quantitative bounds. The
method requires only that we verify a drift condi-
tion and a minorization condition, for the Markov
chain of interest. We describe (Section 3) the appli-
cation of this (and related) methods to various spe-
cific examples of the Gibbs sampler, including vari-
ance components models, hierarchical Poisson mod-
els, and a model related to James-Stein estimators.
In some cases, the bounds appear to be small enough
to be of practical use. In other cases, they provide
additional theoretical information about the Gibbs
sampler for the model being studied.

We close (Section 4) with a brief discussion of
possibilities for further bounds of this type.

2. The general method.
The simplest form of our general method is the

following, taken from Rosenthal (1993b, Theorem
12).

Proposition. Let P (x, ·) be the transition proba-
bilities for a Markov chain X0, X1, X2, . . . on a state
space X , with stationary distribution π(·). Suppose
there exist ε > 0, 0 < λ < 1, 0 < Λ < ∞, d > 2Λ

1−λ , a
non-negative function f : X → R, and a probability
measure Q(·) on X , such that

E (f(X1) |X0 = x) ≤ λf(x) + Λ , x ∈ X (1)

and
P (x, ·) ≥ ε Q(·) , x ∈ fd (2)

where fd = {x ∈ X | f(x) ≤ d}, and where P (x, ·) ≥
ε Q(·) means P (x, S) ≥ ε Q(S) for every measurable
S ⊆ X . Then for any 0 < r < 1, the total varia-
tion distance to the stationary distribution after k
iterations is bounded above by

(1−ε)rk+
(
α−(1−r)γr

)k
(

1 +
Λ

1− λ
+ E (f(X0))

)
,



where

α−1 =
1 + 2Λ + λd

1 + d
< 1 ; γ = 1 + 2(λd + Λ) .

Inequality (1) above is called a drift condition,
while inequality (2) above is called a minorization
condition. The proposition thus allows for precise,
quantitative, exponentially-decreasing upper bounds
on the distance to stationarity, as a function of the
number of iterations k, using just these two inequal-
ities.

The proof of this proposition involves the cou-
pling inequality, which states that the total variation
distance between the laws of two random variables is
bounded by the probability that they are unequal.
Proving the proposition thus amounts to (theoret-
ically) constructing auxiliary random variables Yk,
so that L(Yk) = π but P (Xk = Yk) is as large as
possible. Inequality (2) allows us to construct Xk

and Yk jointly so that, whenever (Xk, Yk) ∈ fd× fd,
they have probability ε of becoming equal on the
next generation. Furthermore, inequality (1) implies
that the number of iterations k for which (Xk, Yk) ∈
fd× fd will be large with high probability. Combin-
ing these two facts, we can construct Xk and Yk so
that P (Xk 6= Yk) is small, and thus use the coupling
inequality to prove the proposition. The reader is
referred to Rosenthal (1993b) for details.

3. Applications to specific models.
The general method of Section 2 (and related

methods) have been applied to a number of specific
examples of the Gibbs sampler, to derive informa-
tion about their rates of convergence to the appro-
priate posterior distributions.

In Rosenthal (1993), a version of the data aug-
mentation algorithm (a special case of the Gibbs
sampler) was applied to finite sample spaces. It was
shown that, with n parameters and n observed data,
the algorithm would converge in O(log n) iterations.
Thus, the running time of the algorithm does not
grow too quickly with the number of parameters.

In Rosenthal (1991), the Gibbs sampler applied
to variance components models (as discussed in Gel-
fand and Smith, 1990; Gelfand et al., 1990) was
analyzed. It was shown that, with K location pa-
rameters each having J observed data, the (K +
3)-dimensional Gibbs sampler would approximately
converge in O

(
1 + log K

log J

)
iterations. So again, the

running time of the algorithm does not grow too
quickly with the number of parameters.

In Rosenthal (1993b), the Gibbs sampler ap-
plied to a hierarchical Poisson model was analyzed,

using the same data as analyzed in Gelfand and
Smith (1990). For this data, the (11-dimensional)
Gibbs sampler was shown to have total variation
distance to stationarity after k iterations bounded
above by

(0.976)k + (0.951)k(6.2 + E
(
(S(0) − 6.5)2

)
) ,

where S(0) =
∑
i

θ
(0)
i is a sum of initial values. The

bound is thus explicit and quantitative, and depends
explicitly on the initial distribution. The bound is
also not absurdly large: for example, if E

(
(S(0) − 6.5)2

)
=

2 and k = 150, this bound is equal to 0.03, implying
that 150 iterations are sufficient to achieve random-
ness.

In Rosenthal (1994), the Gibbs sampler applied
to a model related to James-Stein estimators (James
and Stein, 1961) was analyzed. The model (sug-
gested by Jun Liu) was designed to avoid the use of
guesses and empirical estimates in the usual (empir-
ical Bayes) formulation of James-Stein estimators.
The Gibbs sampler was intended to facilitate com-
putations related to the associated posterior distri-
bution. A formula was provided which gave a bound
on convergence of the Gibbs sampler explicitly, in
terms of the number of iterations, the initial distri-
butions, the prior distributions of the model, and
the observed data. When applied to the baseball
data analyzed in Efron and Morris (1975) and Mor-
ris (1983), it proved that the Gibbs sampler would
converge in less than 200 iterations.

For certain other prior distributions, it was shown
(Rosenthal, 1994) that this Gibbs sampler would in
fact not converge at all. This information was used,
together with standard convergence theory, to prove
that for these (improper) priors, the model itself was
improper, i.e. the posterior distribution was non-
normalizable. Analysis of the Gibbs sampler was
thus used to provide additional information about
the model under consideration.

Our method has thus been applied to a variety
of realistic examples of the Gibbs sampler. It has
provided useful quantitative bounds, convergence in-
formation relating the running time to the number
of parameters, and additional theoretical informa-
tion about the underlying model itself.

4. Discussion.
It is now widely recognized that convergence

issues are crucial for the successful implementation
of Markov chain Monte Carlo algorithms. However,
no method is entirely satisfactory for demonstrating
such convergence or providing a convergence rate.



We have provided a general method (Section
2) for rigorously and explicitly bounding the con-
vergence of these Markov chain algorithms. The
method requires only that we verify a drift condition
and a minorization condition for the Markov chain
under consideration. In principle the method can
be applied to virtually any Markov chain algorithm,
and does not require special structure such as spec-
tral information or reversibility. However, it is to
be admitted that, in complicated high-dimensional
problems, even the verification of the two required
conditions can be quite difficult.

We have described the application of this method
to several models of the Gibbs sampler. These mod-
els are realistic and non-trivial, and our method pro-
vides useful information about their convergence prop-
erties. The theoretical results appear to be at the
point where they can begin to have practical impli-
cations.

However, each of these applications has required
additional, extensive computation. Furthermore, sim-
ilar computation may be extremely difficult for more
complicated models. Hence, further work is required
before these methods are easily usable in very gen-
eral applied settings. It is possible that the theoreti-
cal approach described here can be combined with a
more practical analysis, for example by attempting
to verify drift and minorization conditions through
additional simulation (Cowles and Rosenthal, 1994),
which might allow for wider use.

In any case, while there is much work to be
done, the methods described here appear to hold
promise for providing rigorous rates of convergence
for many additional examples of Markov chain Monte
Carlo.
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