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Abstract

We connect known results about diffusion limits of Markov chain Monte Carlo (MCMC)
algorithms to the computer science notion of algorithm complexity. Our main result states
that any weak limit of a Markov process implies a corresponding complexity bound (in
an appropriate metric). We then combine this result with previously-known MCMC
diffusion limit results to prove that under appropriate assumptions, the random-walk
Metropolis algorithm in d dimensions takes O(d) iterations to converge to stationarity,
while the Metropolis-adjusted Langevin algorithm takes O(d1/3) iterations to converge
to stationarity.
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1. Introduction

In the computer science literature, algorithms are often analysed in terms of ‘complexity’
bounds. In the Markov chain Monte Carlo (MCMC) literature, algorithms are sometimes
understood in terms of diffusion limits. The purpose of this paper is to connect these two
approaches, and in particular to show that diffusion limits (and other weak limits) can imply
algorithm complexity bounds.

Complexity results in computer science go back at least to Cobham (1965), and took on
greater focus with the pioneering NP-complete work of Cook (1971). In the Markov chain
context, computer scientists have been bounding convergence times of Markov chain algorithms
since at least Jerrum and Sinclair (1989), focusing largely on spectral gap bounds for Markov
chains on finite state spaces. More recently, attention has turned to bounding spectral gaps of
modern Markov chain algorithms on general (e.g. uncountable) state spaces, again primarily
via spectral gaps; see, e.g. Woodard et al. (2009a), (2009b). These bounds often focus on the
order of the convergence time in terms of some particular parameter, such as the dimension d

of the corresponding state space.
Meanwhile, in statistics, MCMC algorithms are extremely widely used and studied (see, e.g.

Brooks et al. (2011), and the many references therein), and their running times are an extremely
important practical issue. They have been studied from a variety of perspectives, including
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directly bounding the convergence in total variation distance (see, e.g. Rosenthal (1995a),
(1996), (2002), Jones and Hobert (2001), (2004), and the references therein), convergence
‘diagnostics’via statistical analysis of the Markov chain output (e.g. Gelman and Rubin (1992)),
and most notably by proving weak convergence limits of sped up versions of the algorithms to
diffusion limits (e.g. Roberts et al. (1997), Roberts and Rosenthal (1998)).

Direct total variation bounds for MCMC are sometimes presented in terms of the conver-
gence order; see, e.g. Rosenthal (1995b) for order bounds for a Gibbs sampler for a variance
components model. In addition, the MCMC diffusion limits often involve speeding up the
original algorithm by a certain order, and then proving weak convergence to a fixed process
which converges in O(1) iterations, thus giving them the flavour of complexity order bounds
too. However, these MCMC results are typically not stated precisely in terms of convergence
time complexity results, and (perhaps because of this) they are often overlooked by the computer
science complexity community.

In this paper we attempt to connect these two streams of Markov chain convergence time
bounds. In particular, we establish (Theorem 1) that results about weak limits do directly
imply corresponding complexity bounds (using an appropriate convergence metric as described
below). We then apply our theorem to previous results about diffusion limits of MCMC
algorithms (Section 3), to establish running time complexity order bounds for such MCMC
algorithms as the random-walk Metropolis algorithm (Theorem 2) and the Metropolis-adjusted
Langevin algorithm (Theorem 3).

2. Assumptions and main result

In this section we state our general result about obtaining convergence complexity bounds
from weak limits. To set it up, let (X, F , ρ) be a general measurable metric space, i.e. a
nonempty (and possibly uncountable) set X endowed with a metric ρ which induces a Borel σ -
algebra F of measurable subsets. We wish to bound the convergence of a stochastic process {Xt }
on (X, F ) to its stationary probability distribution π . To measure the distance to stationarity,
on finite state spaces one often (see, e.g. Aldous and Fill (2014, Section 2.4.1)) uses the total
variation distance defined by

‖Lx(Xt ) − π‖TV := sup
|f |≤1

|Ex[f (Xt )] − π(f )|,

where the supremum is taken over all measurable functions f : X → R with |f (x)| ≤ 1 for
all x ∈ X. Here Lx(Xt ) is the law of Xt conditional on starting at X0 = x, Ex[f (Xt )] is the
expected value of f with respect to this law, and π(f ) = ∫

f (x)π(dx) is the expected value
of f with respect to π .

This total variation distance can also be used on general state spaces in many instances;
see, e.g. Rosenthal (1996). However, it is not appropriate for bounding the weak convergence
which arises in the diffusion context, since it may not go to 0 for processes which converge
only weakly to stationarity, so we do not use it here. Instead, we let

Lip1
1 = {f : X → R, |f (x) − f (y)| ≤ ρ(x, y) for all x, y ∈ X, |f | ≤ 1}

be the set of all functions from X to R with Lipschitz constant ≤ 1 and with |f (x)| ≤ 1 for all
x ∈ X, and use the distance function

‖Lx(Xt ) − π‖KR := sup
f ∈Lip1

1

|Ex[f (Xt )] − π(f )|.
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(Here ‘KR’ stands for ‘Kantorovich–Rubinstein’; see the proof of Proposition 1 below.) The
distance ‖ · · · ‖KR is similar to, but more restrictive than, the total variation distance, and as
discussed below (see Proposition 1); it metrises weak convergence and so is appropriate for our
purposes.

We also note that many approaches to stationary instead directly bound the spectral gap
of the corresponding Markov operator (e.g. Woodard et al. (2009a)). However, on general
state spaces, the spectral gap is zero for Markov chains which are not ‘geometrically ergodic’
(see, e.g. Roberts and Rosenthal (1997, Theorem 2)), even if they do converge to stationarity.
Furthermore, many MCMC algorithms are not geometrically ergodic (e.g. the random-walk
Metropolis algorithm on target distributions with heavier-than-exponential tails; see Mengersen
and Tweedie (1996, Theorem 3.3)). They also are often not reversible, which makes spectral
gaps harder to study or interpret. For these reasons, we do not wish to restrict attention to
spectral gaps, which is another reason that we use the metric ‖ · · · ‖KR.

A related issue is what initial states X0 should be considered. On finite state spaces, one often
(e.g. Jerrum and Sinclair (1989, Section 2)) considers the worst case, by taking a supremum
over all initial states x, i.e. using something like supx∈X ‖Lx(Xt )−π‖TV. But this supremum
is also frequently inappropriate on general state spaces. For instance, if X is unbounded then
as t increases one can start from worse and worse states X0 so that the supremum might never
go to 0. Instead, we need to specify more precisely which initial state(s) X0 to consider. As
a concrete choice, we will take the π -average of the distances to stationarity from all initial
states X0 in X. That is, for any Markov chain {Xt } on (X, F ) with stationary distribution π ,
we measure the distance to stationarity at time t by the distance function

EX0∼π‖LX0(Xt ) − π‖KR :=
∫

x∈X
π(dx) ‖Lx(Xt ) − π‖KR.

Using this distance function, we can state our main result concerning bounding convergence
to stationarity using weak convergence of a sequence of processes to another fixed process.
To avoid technicalities, we assume that this limiting process is càdlàg, i.e. has sample paths
which are continuous on the right with limits on the left. (In our MCMC examples, the limiting
process will in fact be a diffusion with continuous sample paths, so this is not a problem.)

Theorem 1. Let X(d) = {X(d)
t }t≥0 be a stochastic process on (X, F , ρ), for each d ∈ N, which

converges weakly in the Skorokhod topology as d → ∞ to a càdlàg process X(∞) = {X(∞)
t }t≥0,

i.e. X(d) w−→ X(∞). Assume these processes all have the same stationary probability distribution
π , and that X(∞) converges (either weakly or in total variation distance) to π . Then, for any
ε > 0, there are D < ∞ and T < ∞ such that

E
X

(d)
0 ∼π

‖L
X

(d)
0

(X
(d)
t ) − π‖

KR
< ε, t ≥ T , d ≥ D.

Theorem 1 may be summarised as saying that if a sequence {X(d)} of Markov processes
converges weakly to a limiting ergodic process, then we can bound the convergence of the
sequence of processes uniformly over all sufficiently large d, i.e. the processes converge in
O(1) iterations with respect to d . We will next apply this result to previously known diffusion
limits of common MCMC algorithms.

3. Application to MCMC

Our primary interest is in the use of Theorem 1 to bound the complexity of MCMC
algorithms. We begin with the most popular MCMC algorithm, the random-walk Metropolis
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(RWM) algorithm. This algorithm proceeds, given a positive target probability density πd on
the state space R

d , by running a Markov chain {Zd
n }∞n=0 as follows. Given the value Zd

n , a
proposed new state Y d

n+1 ∼ MVN(Zd
n , σ 2

d ) is chosen from a multivariate normal distribution
centered atZd

n , and then with probability min[1, πd(Y d
n+1)/πd(Zd

n)] the proposal is accepted and
Zd

n+1 = Y d
n+1, otherwise with the remaining probability the proposal is rejected andZd

n+1 = Zd
n .

This algorithm is easily seen to be irreducible and aperiodic and to leave πd stationary, so it
will converge asymptotically to πd . The question then becomes how quickly it will converge,
and what choice of proposal variance σ 2

d is optimal.
In this context, Roberts et al. (1997) proved the result that Ud w−→ U as d → ∞, where

Ud
t = Zd
dt�,1 is the first coordinate of the RWM algorithm sped up by a factor of d, U is a

limiting ergodic Langevin diffusion, and
w−→ indicates weak convergence in the usual Skorokhod

topology. They proved this result under certain strong technical assumptions, namely that πd

takes on the special product form πd(x) = ∏d
i=1 h(xi) for some fixed function h : R → (0, ∞)

with h′/h Lipschitz continuous, and
∫ [

h′(x)

h(x)

]8

h(x) dx < ∞ (1)

and ∫ [
h′′(x)

h(x)

]4

h(x) dx < ∞. (2)

They also assumed the processes Zd are in stationarity, and that σ 2
d = �2/(d − 1) for some

fixed � > 0.
This theorem of Roberts et al. (1997) allowed them to study the limiting diffusion U as

a function of the proposal variance parameter �, and optimise it to prove that the algorithm
converges fastest when its asymptotic acceptance rate is equal to 0.234… (see also Roberts
and Rosenthal (2001)). Furthermore, since their process Ud involved speeding up the original
algorithm by a factor of d , their results seemed to imply that RWM required O(d) iterations to
converge. However, a precise statement of such a complexity bound was not provided.

In light of Theorem 1 above, we are now able to use the diffusion limit of Roberts et al.
(1997) to give an actual complexity bound on the RWM algorithm. We need one slight technical
extension, namely to replace (1) and (2) above by the slightly stronger conditions

∫ [
h′(x)

h(x)

]12

h(x) dx < ∞ (3)

and ∫ [
h′′(x)

h(x)

]6

h(x) dx < ∞. (4)

We then have the following result, proved in Section 5 below.

Theorem 2. Let Z(d) be a RWM algorithm satisfying the above technical assumptions of
Roberts et al. (1997), except with (1) and (2) replaced by (3) and (4). Then, for any ε > 0,
there is D < ∞ and T < ∞ such that

E
Z

(d)
0,1∼h

‖L
Z

(d)
0,1

(Z
(d)

dt�,1) − h‖

KR
< ε, t ≥ T , d ≥ D.

(Here L
Z

(d)
0,1

(Z
(d)

dt�,1) represents the probability distribution of the first coordinate of Z(d) at

iteration number equal to the greatest integer not exceeding dt , conditional on the process
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starting with its first coordinate equal to the specified state Z
(d)
0,1 , and with all other coordinates

of Z
(d)
0 chosen independently according to the density h.) Hence, the RWM algorithm takes

O(d) iterations to converge to within ε of stationarity in its first (or any one) coordinate.

We believe this to be the first precise general result about the complexity order of the RWM
algorithm. It does require strong technical assumptions, but it still applies to a fairly general
collection of densities on R

d . Furthermore, empirical studies (see, e.g. Roberts and Rosenthal
(2001)) indicate that even when RWM algorithms do not satisfy the technical assumptions, they
still exhibit similar limiting behaviour.

Another MCMC diffusion limit concerns the Metropolis-adjusted Langevin algorithm
(MALA). This algorithm is similar to the above RWM algorithm, except that now the proposal
state Y d

n+1 ∼ MVN(Zd
n + 1

2σ 2
d ∇ log πd(Zd

n), σ 2
d ) is chosen from a multivariate normal distri-

bution centered at Zd
n + 1

2σ 2
d ∇ log πd(Zd

n) (to better approximate πd ), and the above acceptance
probability is modified by the ratio of the corresponding proposal normal distributions. In this
context, Roberts and Rosenthal (1998) proved that Ud w−→ U , where Ud

t = Zd

d1/3t�,1 is the

first coordinate of the MALA algorithm sped up by a factor of d1/3, and U is again a limiting
ergodic Langevin diffusion. This result again requires strong technical assumptions, this time
that πd(x) = ∏d

i=1 h(xi) for some fixed function h : R → (0, ∞) with polynomially-bounded
log-derivatives of all orders, and finite moments of all orders, with h′/h Lipschitz continuous.
They also assume that the processes Zd are in stationarity, and that σ 2

d = �2 d−1/3 for some
fixed � > 0.

Roberts and Rosenthal’s (1998) theorem allowed them to optimise the limiting diffusion U as
a function of �, and to prove that the algorithm converges fastest when its asymptotic acceptance
rate is equal to 0.574….Also, since their process Ud involved speeding up the original algorithm
by a factor of d1/3, their results seemed to imply that MALA required O(d1/3) iterations to
converge. Once again, we can use Theorem 1 above to obtain the following more formal
complexity bound (proved in Section 5 below).

Theorem 3. Let Z(d) be a MALA algorithm on a product density in d dimensions satisfying
the above technical assumptions of Roberts and Rosenthal (1998). Then, for any ε > 0, there
is D < ∞ and T < ∞ such that (with notation as in Theorem 2)

E
Z

(d)
0,1∼h

‖L
Z

(d)
0,1

(Z
(d)


d1/3t�,1) − h‖
KR

< ε, t ≥ T , d ≥ D.

Hence, the MALA algorithm takes O(d1/3) iterations to converge to within ε of stationarity in
its first (or any one) coordinate.

Finally, we note that a number of other diffusion limits have been proven for MCMC
algorithms in other contexts. For example, Bédard (2007), (2008) and Sherlock and Roberts
(2009) have extended the original RWM diffusion limit to more general target distributions;
Roberts (1998), Neal and Roberts (2006), (2008), (2011), and Jourdain et al. (2013), (2014)
have extended it to other related cases; and Neal et al. (2012) have established diffusion limits
for RWM algorithms on discontinuous target densities. Each of these diffusion limit results
could also be combined with Theorem 1 above to yield complexity order bounds in new contexts.

4. Proof of Theorem 1

In this section we prove Theorem 1. Along the way, we establish that ‖ · · · ‖KR metrises weak
convergence (Proposition 1), and that EX0∼π‖LX0(X

(d)
t ) − π‖KR is a nonincreasing function

of t (Lemma 4). We first establish that ‖ · · · ‖KR is a norm.
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Lemma 1. Let S be any nonempty collection of functionals X → R which is symmetric (i.e.
if f ∈ S then −f ∈ S). Let ‖μ‖ = supf ∈S μ(f ). Then ‖ · · · ‖ is a (possibly infinite) norm
function on the set of all signed measures on (X, F ). In particular, ‖ · · · ‖KR is a norm.

Proof. It is immediate that ‖0‖ = 0, and that ‖aμ‖ = a‖μ‖ for a > 0. The symmetry of S

implies that ‖ − μ‖ = ‖μ‖. Finally, for the triangle inequality, we check that

‖μ + ν‖ = sup
f ∈S

(μ(f ) + ν(f )) ≤
(

sup
f ∈S

μ(f )
)

+
(

sup
f ∈S

ν(f )
)

= ‖μ‖ + ‖ν‖.

Hence, ‖ · · · ‖ is a norm. The claim about ‖ · · · ‖KR then follows by taking S = Lip1
1. �

We next show that truncating the metric ρ does not change Lip1
1.

Lemma 2. Let ρ∗ = min(2, ρ). Then

Lip1
1 = {f : X → R, |f (x) − f (y)| ≤ ρ∗(x, y) for all x, y ∈ X, |f | ≤ 1}.

Proof. This is immediate since we always have |f (x) − f (y)| ≤ 2 for f ∈ Lip1
1. �

Proposition 1. The metric �(μ, ν) := ‖μ − ν‖KR metrises weak convergence of probability
measures on (X, F , ρ). That is, if {μt } and μ are probability measures on (X, F , ρ), then
{μt } w−→μ if and only if limt→∞ �(μt , μ) = 0.

Proof. Let ρ∗ be as in Lemma 2. We first note that since ρ and ρ∗ agree for distances less than
or equal to 2, they give rise to precisely the same open subsets. Therefore, (X, ρ∗) induces
the same Borel σ -algebra F that (X, ρ) does and, thus, gives rise to the same Skorokhod
topology. Hence, weak convergence on (X, F , ρ) is precisely equivalent to weak convergence
on (X, F , ρ∗). Furthermore, by Lemma 2, the metric ‖ · · · ‖KR is the same on (X, F , ρ∗) as
on (X, F , ρ). Hence, it suffices to prove the result on the truncated space (X, F , ρ∗).

Now, since (X, F , ρ∗) is a bounded metric space, it is known (see, e.g. Givens and Shortt
(1984, Proposition 4)) that weak convergence on (X, F , ρ∗) is metrised by the Wasserstein
metric W1 on (X, ρ∗), defined by

W1(μ, ν) := inf E[ρ∗(X, Y )],
where the infimum is taken over all pairs (X, Y ) of random variables on (X, F ) such that
L(X) = μ and L(Y ) = ν. On the other hand, again since (X, F , ρ∗) is a bounded metric
space, it is known (Kantorovich and Rubinstein (1958); see, e.g. Givens and Shortt (1984,
p. 233)) that for probability measures μ and ν on Wasserstein metric W1(μ, ν) is precisely
equal to ‖μ − ν‖KR. Combining these two facts, the result follows for (X, F , ρ∗) and, hence,
also for (X, F , ρ). �
Lemma 3. If X(∞) converges to π , either weakly or in total variation distance, then for all
x ∈ X and ε > 0 there is T < ∞ such that ‖Lx(X

(∞)
T ) − π‖KR ≤ ε/2 for all t ≥ T .

Proof. If the convergence is weak then this follows from Proposition 1. If the convergence
is in total variation distance then this still follows since ‖ · · · ‖KR ≤ ‖ · · · ‖TV. �

We are now in a position to prove convergence of X
(d)
T for certain fixed times T .

Proposition 2. Under the assumptions of Theorem 1, for any x ∈ X and ε > 0, there is
D < ∞ and T < ∞ such that

‖Lx(X
(d)
T ) − π‖KR < ε, d ≥ D.
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Proof. Using Lemma 1, by the triangle inequality, we have

‖Lx(X
(d)
t ) − π‖KR ≤ ‖Lx(X

(d)
t ) − Lx(X

(∞)
t )‖KR + ‖Lx(X

(∞)
t ) − π‖KR. (5)

To continue, we recall that since X(d) converges weakly to X(∞), it follows that X
(d)
t converges

weakly to X
(∞)
t for all fixed times t > 0 such that X(∞) has probability 0 of jumping at time t ,

i.e. for all but at most a countable number of times t (since X(∞) is càdlàg). By Lemma 3, there is
T < ∞ such that ‖Lx(X

(∞)
T ) − π‖KR ≤ ε/2, and by increasing T as necessary we can assume

that X(∞) has probability 0 of jumping at time T . Then X
(d)
T converges weakly to X

(∞)
T , so by

Proposition 1 there is D < ∞ such that, for all d ≥ D, ‖Lx(X
(d)
T ) − Lx(X

(∞)
T )‖KR < ε/2.

The result then follows from (5). �

Remark 1. If the weak convergence of X(d) to X(∞) is assumed to be uniform over bounded
time intervals, then we can strengthen Proposition 2 to say that for any x ∈ X and ε > 0 and
S < ∞, there are D < ∞ and T < ∞ such that ‖Lx(X

(d)
t ) − π‖KR < ε for all t ∈ [T , T +S].

Corollary 1. Under the assumptions of Theorem 1, for any ε > 0, there is D < ∞ and T < ∞
such that

EX0∼π‖LX0(X
(d)
T ) − π‖KR < ε, d ≥ D.

Proof. We first let

Am =
{
x ∈ X : ‖Lx(X

(∞)
t ) − π‖KR <

ε

4
for all t ≥ m

}
.

Then Am+1 ⊇ Am by inspection, and
⋃

m Am = X by Lemma 3. Hence, by continuity of
probabilities (see, e.g. Rosenthal (2000, Proposition 3.3.1)), limm→∞ π(Am) = 1. We can
therefore find T < ∞ such that π(AT ) ≥ 1 − (ε/8). As in the proof of Proposition 2, by
increasing T as necessary we can assume that X(∞) has probability 0 of jumping at time T .

Next, for this fixed T , let

Bm =
{
x ∈ X : ‖Lx(X

(d)
T ) − Lx(X

(∞)
T )‖KR <

ε

4
for all d ≥ m

}
.

Then Bm+1 ⊇ Bm by inspection, and
⋃

m Bm = X since X
(d)
T

w−→ X
(∞)
T , so again by continuity

of probabilities we can find D ∈ N such that π(BD) ≥ 1 − (ε/8).
We then compute that for this fixed T and D, and, for any d ≥ D,

EX0∼π‖LX0(X
(d)
T ) − π‖KR = EX0∼π (1{X0∈AT ∩BD} ‖LX0(X

(d)
T ) − π‖KR)

+ EX0∼π (1{X0 �∈AT ∩BD}‖LX0(X
(d)
T ) − π‖KR)

≤
[(

ε

4

)
+

(
ε

4

)]
+

[(
ε

8

)
+

(
ε

8

)]
× 2

= ε,

where for the first term we have used the triangle inequality, and for the second term we have
used the fact that by definition we always have ‖Lx(X

(d)
T ) − π‖KR ≤ 2 for any x and d. This

completes the proof. �



8 G. O. ROBERTS AND J. S. ROSENTHAL

Corollary 1 is nearly what we need to prove Theorem 1. However, for Theorem 1 we
want the convergence to be within ε for all t ≥ T , not just for one fixed T (nor just for
all t in some bounded time interval, as in Remark 1). Unfortunately, ‖Lx(X

(d)
t )‖KR − π

might not be a nonincreasing function of t (though ‖Lx(X
(d)
t )‖TV − π always is; see, e.g.

Roberts and Rosenthal (2004, Proposition 3(c))). On the other hand, fortunately the quantity
EX0∼π‖LX0(X

(d)
t )‖KR − π is indeed nonincreasing.

Lemma 4. Let ‖ · · · ‖ be any norm function on signed measures on (X, F ). Let P t(x, ·) be the
transition probabilities for a Markov chain on (X, F )with stationary probability distributionπ .
Let dist(t) = EX0∼π‖P t(X0, ·) − π‖. Then dist(t) is a nonincreasing function of t . In
particular, in the context of Theorem 1, EX0∼π‖LX0(X

(d)
t )‖KR − π is a nonincreasing function

of t .

Proof. We compute by stationarity that, for s, t > 0,

dist(s + t) = EX0∼π‖P s+t (X0, ·) − π‖
= EX0∼π

∥∥∥∥
∫

y∈X
P s(X0, dy)P t (y, ·) − π

∥∥∥∥
≤ EX0∼π

∫
y∈X

P s(X0, dy)‖P t(y, ·) − π‖
= EY0∼π‖P t(Y0, ·) − π‖
= dist(t);

thus, proving the first claim. The claim about Ex∼π‖Lx(X
(d)
t )‖KR − π then follows by

Lemma 1 upon setting P t(x, A) = P[X(d)
t ∈ A | X

(d)
0 = x]. �

Theorem 1 then follows by combining Corollary 1 and Lemma 4.

5. Proofs of Theorems 2 and 3

Theorems 2 and 3 nearly follow immediately by applying Theorem 1 to the diffusion limit
results of Roberts et al. (1997) and of Roberts and Rosenthal (1998), respectively. However,
there is one technical issue. The previous diffusion limit results assume that the process begins
in the stationary distribution. By contrast, Theorem 1 involves Lx(Xt ), i.e. conditioning on
the stochastic processes’ first coordinate beginning at a specific state x ∈ X. So, to prove
Theorems 2 and 3, we need to establish that the diffusion limit results remain valid even upon
conditioning on the starting value of the processes.

For the RWM algorithm, this does indeed follow, at least upon strengthening (1) and (2)
to (3) and (4) as above.

Proposition 3. Let Z(d) be a RWM algorithm satisfying the above technical assumptions of
Roberts et al. (1997), except with (1) and(2) replaced by (3) and (4). Then, for π -almost
everywhere x ∈ X, xU

d w−→ xU as d → ∞, where xU
d
t = (Zd
dt�,1 | Zd

0,1 = x) is the first
coordinate of the RWM algorithm sped up by a factor of d, conditional on starting at the
state x, and xU is the limiting ergodic Langevin diffusion U also conditional on starting at x.

Proof. The proof is very similar to the proof of the unconditioned diffusion limit theorem of
Roberts et al. (1997), using generators and cores (cf. Ethier and Kurtz (1986)). The only point
of departure between our proof and theirs concerns their Lemma 2.1, which states that for each
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fixed t > 0,
lim

d→∞ P[Z(d)
s ∈ Fd for all 0 ≤ s ≤ t] = 1,

where Fd is the event that both |Ad | < d−1/8 and |Bd | < d−1/8, where

Ad := 1

d − 1

d∑
i=2

(((log h(xi))
′)2 − Exi∼h[((log h(xi))

′)2])

and

Bd := 1

d − 1

d∑
i=2

((log h(xi))
′′ − Exi∼h[(log h(xi))

′′]).

To complete our proof, we need to show that this statement remains valid, even when condi-
tioning on starting at a specific state x ∈ X. (In fact, it would suffice to replace 1

8 by any other
power α ∈ (0, 1

2 ), but we do not need to do that.)
To this end, fix t > 0, and let

p(d, x) = P[Z(d)
s �∈ Fd for some 0 ≤ s ≤ t | Z

(d)
0,1 = x],

and let r(d) = Ex∼hp(d, x) be its expected value when averaged over x in stationarity. Also,
let

vj = Exi∼h[(((log h(xi))
′)2 − Exi∼h[((log h(xi))

′)2])j ]
and recall that |vj | < ∞ for 1 ≤ j ≤ 6 by (3). Then, by expanding out the power (Ad)6, while
omitting terms involving v1 since clearly v1 = 0, we conclude that

Eπ [(Ad)6] = (d − 1)−6
[(

d − 1

1

)
v6 + (d − 1)(d − 2)

(
6

2

)
v2v4 +

(
d − 1

2

)(
6

3

)
v2

3

+
(

d − 1

3

)(
6

2, 2, 2

)
v3

2

]

= (d − 1)−6[(d − 1)v6 + 15(d − 1)(d − 2)v2v4 + 10(d − 1)(d − 2)v2
3

+ 15(d − 1)(d − 2)(d − 3)v3
2].

In particular, Eπ [(Ad)6] = O(d−3) as d → ∞. Hence, by Markov’s inequality,

Pπ (|Ad | > d−1/8) ≤ E[(Ad)6]
(d−1/8)6 = O(d−3+(6/8)) = O(d−9/4).

Similarly, Pπ (|Bd | > d−1/8) ≤ O(d−9/4), so that also P[Z(d)
s �∈ Fd ] ≤ O(d−9/4).

Next, we note that there are O(dt) different RWM iterations corresponding to times s with
0 ≤ s ≤ t . Hence, by subadditivity,

r(d) := Pπ [Z(d)
s �∈ Fd for some 0 ≤ s ≤ t] ≤ O(dtd−9/4) = O(td−5/4).

In particular,
∑∞

d=2 r(d) < ∞, which is the key.
Finally, we wish to show that limd→∞ p(d, x) = 0 with probability 1. To that end, let

ε > 0 and set Sd = {x ∈ X : p(d, x) ≥ ε}. Then writing Ph(A) for
∫
A

h(x) dx, it follows



10 G. O. ROBERTS AND J. S. ROSENTHAL

by Markov’s inequality that Ph(Sd) ≤ Eh[p(d, x)]/ε = r(d)/ε. Hence,
∑∞

d=2Ph(Sd) ≤∑∞
d=2r(d)/ε < ∞. Hence, by the Borel–Cantelli lemma, Ph(Sd infinitely often) = 0, i.e. the

set of x with an infinite sequence of d with p(d, x) ≥ ε has probability 0. This means that
with probability 1, lim supd→∞ p(d, x) < ε. Since this holds for all ε > 0, it follows that with
probability 1, lim p(d, x) = 0, as desired; thus, completing the proof. �

Theorem 2 then follows by combining Theorem 1 and Proposition 3.
Finally, we prove a similar result for the MALA algorithm. In this case, no strengthening

of the assumptions is required.

Proposition 4. Let Z(d) be a MALA algorithm on a product density in d dimensions satis-
fying the above technical assumptions of Roberts and Rosenthal (1998). Then, for π -almost
everywhere x ∈ X, xU

d w−→xU as d → ∞, where xU
d
t = (Zd


d1/3t�,1 | Zd
0,1 = x) is the first

coordinate of the RWM algorithm sped up by a factor of d1/3, conditional on starting at x, and
xU is the limiting ergodic Langevin diffusion U also conditional on starting at x.

Proof. The proof involves modifying the weak convergence proof of Roberts and Rosenthal
(1998), along lines very similar to that of Proposition 3, so we omit the details. Furthermore,
since Roberts and Rosenthal (1998) assumed finite moments of all polynomial orders, there is
no need to strengthen any of their assumptions as was necessary for Proposition 3. �

Theorem 3 then follows by combining Theorem 1 and Proposition 4.
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