
Automatically Tuned
General-Purpose MCMC via New

Adaptive Diagnostics

Jinyoung Yang∗ and Jeffrey S. Rosenthal†

(Last revised: July 2016.)

Abstract

Adaptive Markov Chain Monte Carlo (MCMC) algorithms at-
tempt to ‘learn’ from the results of past iterations so the Markov chain
can converge quicker. Unfortunately, adaptive MCMC algorithms are
no longer Markovian, so their convergence is difficult to guarantee.
In this paper, we develop new diagnostics to determine whether the
adaption is still improving the convergence. We present an algorithm
which automatically stops adapting once it determines further adap-
tion will not increase the convergence speed. Our algorithm allows
the computer to tune a ‘good’ Markov chain through multiple phases
of adaption, and then run conventional non-adaptive MCMC. In this
way, the efficiency gains of adaptive MCMC can be obtained while
still ensuring convergence to the target distribution.

1 Introduction

Markov Chain Monte Carlo (MCMC) is a technique widely used to sample
from complex probability distributions, leading to numerous applications and
methodological developments and theoretical advances (see e.g. Brooks et al.
2011). It is well-known that some Markov chains work much better than
others in terms of convergence speed, asymptotic variance and/or mixing

∗Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.
Email: jinyoung.yang@mail.utoronto.ca
†Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

Email: jeff@math.toronto.edu

1

speed (see e.g. Rosenthal 2011), leading to questions of how to find more
efficient chains.

Adaptive MCMC algorithms attempt to improve the Markov chain ‘on
the fly’, using information from past iterations of the chain. This can signif-
icantly improve efficiency in practice (e.g. Haario et al. 2001, 2006; Roberts
and Rosenthal 2009; Giordani and Kohn 2010; Vihola 2012; Turro et al. 2007).
Unfortunately, most adaptive MCMC algorithms are no longer Markovian, so
convergence of the algorithm to the target distribution is much more difficult
to establish and can sometimes fail (see e.g. Rosenthal 2004). This question
has been investigated extensively, and researchers have proved the ergodicity
of adaptive MCMC algorithms under various conditions (e.g. Haario et al.
2001, 2006; Giordani and Kohn 2010; Vihola 2012; Atchadé and Rosenthal.
2005; Andrieu and Moulines 2006; Andrieu and Atchadé 2007; Roberts and
Rosenthal 2007; Fort et al. 2011). However, these results all require assump-
tions such as “Containment” or “simultaneous polynomial drift conditions”
which are virtually impossible to verify directly in practical applications, and
there aren’t many widely applicable convergence results with easily-checkable
assumptions. This means that when using adaptive MCMC in practice, there
are usually no guarantees of even asymptotic convergence, and the user must
simply “hope” that aberrant behaviour such as that exhibited in Rosenthal
(2004) does not arise.

In this paper, we present an algorithm which uses new adaptive diagnos-
tics to determine when ‘enough’ adaption has already been done, i.e. when
further adaption is not likely to lead to significant further improvements in
efficiency. At this point, the adaption ceases, and the algorithm runs an
ordinary non-adaptive MCMC algorithm for which convergence is guaran-
teed. In this way, our algorithm achieves the efficiency gains of adaptive
MCMC, while avoiding the theoretical obstacles of typical adaptive MCMC
algorithms which continue to adapt indefinitely. For definitiveness, we focus
here on improving the proposal distribution for the Metropolis-Hastings al-
gorithm (Metropolis et al. 1953; Hastings 1970), though similar ideas could
also be applied in other adaptive MCMC contexts. We have developed a
companion software package ‘atmcmc’ (Yang 2014), written in the R com-
puter language (R Core Team 2014), to implement the algorithm introduced
herein.

We note that various other software packages for adaptive MCMC are
already available. One example is ‘AMCMC’ (Rosenthal 2007a,b) which
employs an Adaptive Metropolis-within-Gibbs algorithm from Roberts and
Rosenthal (2009). Another is the package ‘Grapham’ (Vihola 2010a,b) for
Adaptive Metropolis-within-Gibbs for graphical models with arbitrary block
decompositions. Another example is ‘adapMCMC’ by Scheidegger (2012),

2

which is based on the adaptive MCMC algorithm proposed by Vihola (2012)
which tries to learn the shape of the target distribution while coercing the
acceptance rate at the same time. A fourth example is ‘FME’ by Soetaert
and Petzoldt (2014), based on Soetaert and Petzoldt (2010), whose func-
tion ‘modMCMC’ is an implementation of the Delayed Rejection Adaptive
Metropolis (DRAM) method of Haario et al. (2006). These packages are all
promising and useful, but they all involve infinite adaption, and thus require
careful conditions to ensure convergence – in contrast to the algorithm herein
which stops adapting once a ‘good’ proposal distribution is obtained and thus
must converge by traditional Markov chain properties.

Section 2 of this paper explains the idea behind the our algorithm. Sec-
tion 3 provides some background information for our algorithm. Section 4
presents the details of the algorithm including all of the phases involved.
Section 5 applies the algorithm to a number of MCMC examples. Section 6
provides some concluding comments.

2 Approach

It is well-known that a discrete-time Markov chain on a general state space
converges eventually to its stationary distribution if it is φ-irreducible and
aperiodic (e.g. Roberts and Rosenthal 2004). In practice, with time and
resource constraints, we can’t just rely on this eventual convergence and
run a Markov chain to infinity. One concern is the time required to reach
convergence.

Some Markov chains take unreasonably long time to reach convergence,
especially in high dimension. We can improve the efficiency of a MCMC
algorithm considerably by adapting. Since adaption destroys the Markov
property of a Markov chain, the convergence of an adaptive MCMC algorithm
has to be proven case-by-case. We want a more general algorithm so the user
doesn’t have to prove the convergence of an adaptive MCMC algorithm every
time he tries different example, which sometimes is challenging. Thus, our
goal here to make an algorithm which stops adapting once it obtains a ‘good’
proposal distribution, or, in other words, once the chain is tuned to improve
the speed of the convergence.

Our focus in this paper is to find a way to approximate the point where
the adaption is not adding much value to the chain, thus allowing us to stop
the adaptive algorithm. Also, to efficiently utilize the adaption which takes
the past and current values of the chain to mimic the target distribution, we
decide to take some pre-steps before the final adaption. The actual methods
of adaption are not the main impotance here. You can change the adaption

3

Figure 1: Algorithm flowchart

4

methods.
Since we are interested in a finite adaption here, we have to decide when

to stop the adaption. To verify if the adaption is indeed improving the con-
vergence speed of a Markov chain, we calculate the squared jumping distance,
(Xn −Xn−1)

2, for each iteration n. We want a Markov chain to explore the
sample space of the target distribution quickly. In other words, we want a
Markov chain to have a high mixing speed. The average squared jumping
distances is one measure to show how well the chain is mixing by averaging
the magnitudes of the movements from one state to the next. If we see a
general increase in the squared jumping distances as the adaptive algorithm
runs, we presume the mixing of the chain is getting better. Since we have to
account for random fluctuations in squared jumping distances, we calculate
the average of squared jumping distances for a fixed number of iterations and
see if they are increasing. The more the chain moves for each iteration, the
faster the chain will converge because it implies that the chain moves well
throughout the entire state space, reducing the time to explore the full state
space. Therefore, once the average squared jumping distance stops increas-
ing, we assume further adaption would not significantly improve the mixing
of the chain. We then stop the adaption, take the proposal distribution
we get from the adaption, and run a standard MCMC algorithm for which
all the properties and theories of a true Markov chain apply. We will use
the Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992; Brooks
and Gelman 1998), which is explained briefly in Section 3, to check for the
convergence of the chain when we run a standard MCMC algorithm.

However, in the collection of past values we use to modify the chain,
we don’t want to include too many values which have low probabilities of
occurring in the target distribution. Thus, we want to discard a burn-in
period until the chain reaches the mode of target distribution. We call this
step to find the mode of the target distribution Transient phase. Only after
then, we want to collect the values from the chain to fine-tune the chain.

At the same time we don’t want our chain to take forever to reach the
mode of the target distribution due to the bad proposal distribution for a
specific target distribution. Thus, before we let the chain to find the mode
of the target distribution, or before Transient phase, we make the algorithm
quickly and roughly adjust the chain using some adaptive method. We call
this 1st adaption phase.

Thus, our method consists of 1st adaption phase, Transient phase, 2nd

adaption phase, and the sampling phase which we run the standard MCMC
algorithm while checking for the convergence with Gelman-Rubin diagnostic.
Figure 1 summarizes the key idea of our method.

5

3 Background

For Metropolis-Hastings algorithms, we can consider the acceptance rate, i.e.
the rate at which a new proposed value at each iteration is accepted. We
don’t want the acceptance rate to be too high, which implies each proposed
move is too small so the chain moves slowly throughout the whole state space.
At the same time, we don’t want the acceptance rate to be too low, either,
since then the chain tends to get stuck at one value and hardly moves from
it. In Roberts et al. (1997) it was shown that, for the symmetric random
walk Metropolis algorithm with proposal distribution N(0, σ2Id), the optimal
asymptotic acceptance rate is 0.234 as d→∞ if the target density function
has the form π(x) =

∏d
i=1 f(xi) on Rd. In Roberts and Rosenthal (2001), it

was proved that the optimal acceptance rate is still 0.234 as d → ∞ if the
target density has the form of π(x) =

∏d
i=1Cif(Cixi) where the {Ci} are

selected as i.i.d. positive random variables from some fixed probability dis-
tribution. Numerical studies also showed the optimal acceptance rate 0.234
is quite robust as it holds if d is as low as 5 (Gelman et al. 1996; Roberts and
Rosenthal 2001) or the target density doesn’t exactly have the form required
to prove the theorem (Roberts and Rosenthal 2001). It was also found by
numerical studies that the optimal asymptotic acceptance rate of one dimen-
sional MCMC algorithm is 0.44 not 0.234 (Gelman et al. 1996; Roberts and
Rosenthal 2001). Note that Gelman et al. (1996) and Roberts and Rosenthal
(2001) demonstrated that it is not worth tuning for the exact optimal accep-
tance rate of 0.234, since if the average acceptance rate is between 0.15 and
0.5 then the Markov chain is at least 80% efficient compared to the optimal.

Another way to improve the convergence speed of a Markov chain is, for
the symmetric random walk Metropolis algorithm with proposal distribution
N(0,Σp), to get the Σp proportional to the estimated covariance matrix of
target distribution. This strategy was first suggested in Haario et al. (2001)
and justified in Roberts and Rosenthal (2001). Intuitively, this strategy seems
promising since the more the proposal distribution is similar to the target
distribution, the more likely the chain would propose a value that the target
distribution would propose at each iteration given the current value Xn, and
it wouldn’t need as long a run of the Markov chain to converge to the target
distribution. It is shown in Roberts et al. (1997) that if the target covariance
matrix is multiplied by 2.382/d to obtain the covariance matrix Σp, then as
d→∞, the proposal distribution N(0,Σp) gives optimal convergence (again
with acceptance rate 0.234) among all Gaussian proposal distributions.

Of course, in practice we don’t know the target covariance matrix. How-
ever, we can use the empirical covariance matrix calculated from past chain
values instead. That is, after some burn-in period, we use past values of

6

the chain to estimate the covariance of the proposal distribution, and then
multiply this empirically estimated matrix by 2.382/d and use that as our
proposal covariance matrix (Haario et al. 2001; Roberts and Rosenthal 2009).
As the chain runs for a long time, the collection of the past values from the
chain gets closer to a sample from the true target distribution, and therefore
the estimated covariance get closer to the true target covariance.

One last problem is that even when running a standard MCMC algo-
rithm, we don’t know when is good time to stop the chain. In other words,
we don’t know when the chain convergence is achieved and we can take the
values generated from the chain as a sample from the target distribution.
Gelman and Rubin (1992) proposed a method to detect convergence of a
Markov chain. They run several replicative Markov chains from a overdis-
persed starting distribution. They discard values from first half of the chains
and take the second half as a sample and diagnose convergence. They assume
convergence is achieved if R̂c := (V̂ /W)(c.f.) is close to 1, where

V̂ =
n− 1

n
W +

B

n
+

B

nm
,

W is the average sample variance from each replicative chain, and B/n is the
variance of sample mean from each chain. Here n is the sample size of each
chain, m is the number of replicative chains, and the correction factor (c.f.)
accounts for the difference in variances between the Student’s t distribution
and the normal distribution. If R̂c is close to 1, this implies the variance
of the sample mean from each chain is almost negligible, which hopefully
indicates convergence to stationarity. The idea behind the Gelman-Rubin
diagnostic is that if chains started from all over the state space each give us
samples with similar distributions, then each chain must have reached the
same distribution, the target. Therefore, starting the replicative chains from
an ‘overdispersed’ starting distribution is crucial.

One pitfall of the Gelman-Rubin diagnostic R̂c is that it implicitly as-
sumes normality of the target distribution, in the sense that they only mon-
itor means and variances to compare distributions of the replicative chains.
To overcome this shortcoming, there is another paper by Brooks and Gel-
man (1998) extending the Gelman-Rubin diagnostic. They suggest the use
of (1 − α) ∗ 100% confidence intervals, and define R̂interval to be the ratio
of the length of the total-sequence interval (found when all points from all
replicative chains are thrown together as one sample) divided by the aver-
age length of the intervals from each of the replicative chains. They assume
convergence is achieved if R̂interval (instead of R̂c) is close to 1.

We next present the details of our algorithm, which combines all of the
above ideas together to automatically tune MCMC, and hopefully achieve

7

efficient convergence without sacrificing MCMC’s theoretical guarantees.

4 Technical Details

The major breakdown of our algorithm is as follows. It consists of a num-
ber of distinct phases. We start with an Adaptive Metropolis-within-Gibbs
algorithm (Roberts and Rosenthal 2009) to get a rough idea of scaling for
each coordinate of the Markov chain (“1st adaptive phase”). We continue
this phase until we get an acceptance rate of every coordinate in the neigh-
bourhood of 0.44 (the optimal acceptance rate for one dimensional Markov
chain). Note that we only need a very rough scaling estimate, so the neigh-
bourhood range can be quite large. Then, we run a fixed (non-adaptive)
Metropolis-within-Gibbs algorithm with this scaling (“transient phase”), and
diagnose whether the chain has reached the mode of the target distribution.
We do this by fitting a regression line to see if the chain values are trend-
ing, and continue until the regression signals that the chain becomes flat
in every coordinate. Next, we employ an Adaptive Metropolis algorithm
(Haario et al. 2001; Roberts and Rosenthal 2009) which adaptively updates
the full-dimensional proposal covariance matrix Σp (“2nd adaptive phase”).
As mentioned earlier, the increase in the averaged squared jumping distance
is used as a measure of the adaption improving the chain. We continue the
Adaptive Metropolis algorithm until the average squared jumping distance
stops increasing. At this point, we run a conventional Metropolis algorithm
(“sampling phase”), and apply a Gelman-Rubin convergence diagnostic to
divide the remaining run into two halves, one for burn-in and one for actual
sampling from the target distribution.

We now describe the details of these various phases, one by one. The
phases do involve various choices of approach and parameters, but they all
appear to work well in practice and to be robust to different target distri-
butions. Thus, the algorithm described below can be implemented directly
(using our companion software package ‘atmcmc’ (Yang 2014)), without re-
quiring any additional adjusting or tweaking by the user. And, as mentioned,
since our algorithm uses only a finite amount of adaption followed by a con-
ventional MCMC algorithm, asymptotic convergence to the target distribu-
tion is automatically guaranteed, without requiring the sorts of specialised
arguments which are needed for most adaptive MCMC algorithms.

8

4.1 1st Adaption Phase

To begin, we start with the Adaptive-Metropolis-within Gibbs algorithm
introduced in Roberts and Rosenthal (2009) to get a rough idea on what
is ‘good’ scale for each coordinate of a Markov chain. We call this step 1st

adaption phase. Let X0, X1, X2, . . ., be a Markov chain process and Y be
a new value proposed by a certain proposal distribution at each iteration.
Given a current value of a Markov chain, Xn, Y is proposed by substituting
Xn,j with Yj drawn by Yj ∼ N(Xn,j, σ

2
j) where Xn,j and Yj are the jth

coordinate of Xn and Y , respectively, and σ2
j is the variance of the proposal

distribution for the jth coordinate. Then Y is either accepted (Xn+1 = Y)
or rejected (Xn+1 = Xn) by the Metropolis rule. In short,{

Xn+1 = Y if U < min(1, π(y)/π(x))

Xn+1 = Xn if U ≥ min(1, π(y)/π(x))

where U ∼ U(0, 1) and π(·) is the target density function. This is done
for every coordinate j, sequentially. Note that when πu(x) = 0, we always
accept the new proposal y. Thus, we don’t want πu(x) = 0 situation because
we accept the new proposal y even if πu(y) = 0, making πu(x) = 0 for next
iteration. In this case, there is a chance a Markov chain end up drifting to
the ‘wrong’ direction. To prevent this, we will stop the whole MCMC run if
a certain number of iterations has πu(x) = 0 consecutively, and this rule will
be applied not just for this phase but for any other phase, whether the target
distribution is unimodal or not, if the Metropolis rule is used to accept or
reject.

To begin, a single Markov chain is run from the randomly chosen initial
point X0. With adaption, for each coordinate j of a Markov chain, we try
to achieve the acceptance rate of 0.44, which is known to be an approxi-
mately optimal acceptance rate for one dimensional Markov chain (Roberts
and Rosenthal 2001). As in Roberts and Rosenthal (2009), we change the
variance of the proposal distribution to alter the acceptance rate of a Markov
chain since a proposal distribution with a larger variance tend to propose
larger values, which would get rejected more often than values proposed by a
proposal distribution with a smaller variance, and vice versa. Thus, for every
100 iteration, we calculate the acceptance rate of the past 100 iterations for
each coordinate j, and we add ε = 0.05 to log(σj) if the acceptance rate is
higher than 0.44, and subtract ε from log(σj) if the acceptance rate is lower
than 0.44. We do this until the acceptance rate for every coordinate of the
Markov chain falls between 0.28 and 0.60. If we get the acceptance rate for
every coordinate in between 0.28 and 0.60, we run 100 more iterations with

9

same σj’s, which have made the acceptance rates to fall between 0.28 and
0.60, and monitor the acceptance rate for the past 200 iterations. If at least
one acceptance rate from the coordinates falls outside of 0.28 and 0.60, then
we adjust log(σj) for every 200 iterations until the acceptance rate for every
coordinate comes between 0.28 and 0.60. Once we have the acceptance rate
for every coordinate fall between 0.28 and 0.60, we run 200 more iterations
with σj’s unchanged and monitor the acceptance rate for past 400 iterations.
If at least one acceptance rate falls outside of 0.28 and 0.60, we adjust log(σj)
for every 400 iterations until the acceptance rate for every coordinate fall be-
tween 0.28 and 0.60. If the acceptance rate for every coordinate from past
400 iterations falls between 0.28 and 0.60, we stop the chain and save σj for
every coordinate.

Note that here the acceptance rate is a continuous function of proposal
variance. If we want to increase (decrease) the acceptance rate by a bit, we
have to decrease (increase) the proposal variance by a bit accordingly. We
can always get the acceptance rate fall into some desired range (easier if the
range is big) as long as the target density and the proposal density is positive
everywhere in the state space and the shift in the proposal variance is not
too big at each adjustment.

4.2 Transient Phase

Next, we try to find if there is any transient phase for the Markov chain since
we don’t want to start final adaption when the values generated, which will
be used for the adaption, are far from where the major mass of the target
distribution is. We want a burn-in phase to discard the part of the chain,
which mostly consists of values in the low probability zones under the target
distribution. We call this transient phase.

We employ a standard Metropolis-within-Gibbs algorithm with proposals
for each coordinate drawn from Yj ∼ N(Xn, σ

2
j) with σ2

j determined by the 1st

adaption phase. To check if the chain is moving towards the mode of target
distribution, for every 200 iteration, the values generated for each coordinate
j of X are averaged, and with 5 different averages for each coordinate j, a
linear model is fitted to see if there is any trend in the jth coordinate of the
chain. The specific values 200 and 5 are somewhat arbitrary choices, but
we have found that they work well when we run the algorithm. The user
has flexibility to pick some other numbers, as long as he/she makes sure the
algorithm has enough points (for example, 5) to run a regression but also at
the same time two numbers (for example, 200 and 5) are not too big so it
doesn’t take too long to test whether the chain is trending or not.

We use a regression method to make sure the chain values are moving to

10

only one direction, neither increasing nor deceasing. If a regression method
confirms that the chain values show a linear trend, we presume that the chain
is still moving to a local mode. The p-value for the slope coefficient is used to
determine whether there is any linear trend. If p-value for every coordinate is
greater than 0.1, the chain gets stopped and this phase ends. We have found
that a p-value of 0.1 is a reasonable cutoff for our purpose. The p-value below
0.1 is the point where people start to talk about any sign of significance in
statistics, although many prefer a lot lower p-value than 0.1 to actually claim
the significance in practice. Here, we are detecting non-significance, so 0.1
seems to be a convenient threshold which appears to be robust in practice.
Plus, if for some reason, the p-value cutoff misses a trending chain (which
we believe has a very low chance of happening), we still have the last phase
which will run a standard MCMC algorithm. Therefore, at a minimum, the
algorithm will converge to the target distribution even though we might lose
some efficiency.

4.3 2nd Adaption Phase

Here, we slightly modify the Adaptive Metropolis algorithm introduced in
Haario et al. (2001) and Roberts and Rosenthal (2009)) to find the proposal
distribution that has a similar covariance structure with the target distribu-
tion. This phase is called 2nd adaption phase. The proposal, Y , is drawn
from Y ∼ N(Xn, cΣn), and again the accept/reject is by the Metropolis rule.
Σn is found by calculating the covariance matrix of all past values generated
by the chain from the point the trending stops in the transient phase to Xn−1,
and a constant we multiply to Σn is c = 2.382/d. After 200 iterations in this
phase, if the acceptance rate is too low (less than 0.02), then we reduce c
by a factor of d, to 2.382/d2, to make the scale of the proposal distribution
smaller thus increasing the acceptance rate, and start this phase again with
the last value from the transient phase as the starting value. We want to stop
the adaption when further adaption does not improve the chain. To check
whether the adaption is improving the chain or not, for every 200 iteration,
we calculate the average squared jumping distance for each coordinate j, and
again with 5 different averages for each coordinate j, we fit a linear model to
see if there is any trend in squared jumping distance for each coordinate. If
average squared jumping distance stops to increase, we presume the mixing
of the chain stops to improve, and we stop this phase. Thus, we stop this
phase when, for every coordinate, the p-value for the slope coefficient of the
regression is greater than 0.1.

11

4.4 Sampling Phase

Finally, we apply the symmetric random walk Metropolis algorithm with
proposal Y drawn from Y ∼ N(Xn,Σp). Σp is the last Σn obtained from the
2nd adaption phase multiplied by the constant c. We use both the Gelman-
Rubin diagnostic R̂c and the extension R̂interval to monitor convergence of
the Markov chain, since R̂interval doesn’t require the normality assumption
that R̂c does. To apply these diagnostics, we run k = 10 replicative chains
simultaneously. Besides the last value of the 2nd adaption phase used as
the initial point of one replicative chain, the initial points for each of k − 1
replicative chains are drawn from U(dj − (ej − dj)/4, ej + (ej − dj)/4) for
each coordinate where dj and ej are the minimum and maximum value,
respectively, for each coordinate j of the chain found from the point the
trending stops in the transient phase to the end of the 2nd adaption phase.
After some burn-in period, we discard the values from the first half of this
phase, and calculate R̂s with the values from the second half of the phase.
When both R̂s for every coordinate are close to 1, we stop the chain and take
the values from the second half of this phase as our sample from the target
distribution. For our runs of the algorithm, including runs on the examples
described in Section 5, we stopped the algorithm if R̂c and R̂interval falls in
between 0.9 and 1.1. The user of our algorithm can make the cutoff values
more strict if he/she desires. We call this phase sampling phase. Note that
we throw values from all replicative chains together in our sample.

Note that most of numerical values used in the algorithm can be changed
by the user in the R package ‘atmcmc’. The choice of these numerical values
does affect the performance of MCMC, and the numbers specified in this
section are the default values built in the R package. For details, see the
reference manual of the R package ‘atmcmc’ (Yang 2014).

4.5 Extension for Strongly Multimodal Targets

Suppose a target distribution has multiple local modes, and there is at least
one mode that is strongly separated from any of other modes. In other words,
the region between this mode and any other modes is at low density. Since
accepting a proposal value that is at much lower density region compared
to the current state is a low probability event, unless a direct proposal of a
point in another mode occurs from time to time, there is a chance a Markov
chain gets stuck in that mode. We will call a target distribution like this is
‘strongly multimodal’.

With a ‘strongly multimodal’ target distribution, we run multiple Markov
chains with different initial points drawn randomly from U(a, b), a, b ∈ Rd, for

12

the 1st adaption phase and transient phase as the chains find different modes.
It is important to run enough number of chains with widespread initial points
to find all modes in the target distribution. (Note that we do not assume
that we know the location of the modes in advance, nor even the number of
modes.) Once all these different chains find different modes, we calculate the
mean and standard deviation of each Markov chain from the segment off the
transient phase where the chain is not trending, and we use these means and
standard deviations to determine if the chains found different modes. For any
two chains, for at least one coordinate, if the difference in two chain means is
greater than at least one of two chain standard deviations, we consider two
chains reached different modes. With this selection process, we only collect
the chains with different modes.

Then we go into the 2nd adaption phase with the chains we are left with
after the selection process. Once each of these chains stops in the 2nd adaption
phase, we get different Σi for each chain. Again, with the values generated
from the 2nd adaption phase, we check if each Markov chain still stays at the
different mode to each other.

After this, we start with some initial point, and run a MCMC algorithm
that we are about to describe. The initial points are the last point of the
2nd adaption phase from each chain and some randomly drawn points from∑r

i=1 U(ai, bi)/r, where i indexes for each of r chains with different modes
and (ai, bi) are decided based on the values generated from the 2nd adaption
phase. We don’t use values from the flat part of the transient phase here
since there is a chance that two or more chains with different modes merge
during the 2nd adaption phase, giving us a different number of ‘unique’ chains
after the 2nd adaption phase than right after transient phase. Keep in mind
that we want the overdispersed starting distribution for the Gelman-Rubin
diagnostic. As the Markov chain run, we need to evaluate which mode the
current value Xn = x is the closest to. The rule for determining this is

mode(x) = argmin
i

Di

where Di = max
j
dij with dij = |xj −mij|/σij. Here i indexes the multiple

chains with different modes, and j indexes for the coordinate of X. Also
mij and σij are the mean and standard deviation of chain i, i ∈ {1, ..., r},
and coordinate j, j ∈ {1, ..., s}, calculated from the values generated from
2nd adaption phase. Again, we don’t include values from the flat part of the
transient phase when calculating the mean and standard deviation of each
chain i.

Suppose mode(Xn) = k. Then we update the Markov chain in the sam-
pling phase as follows.

13

1. With a 1− α probability, we propose Y by

Y |Xn ∼ N(Xn, cΣk)

where Σk is the variance obtained from the 2nd adaption phase for the chain
k. We shall write q1k(x, y) for the probability of proposing y given x using
this rule. That is,

q1k(x, y) =

{
1√

(2π)s|cΣk|
exp

(
− 1

2c
(y − x)TΣk

−1(y − x)
)
, if mode(x) = mode(y) = k

0, otherwise

Note that here q1k(x, y) = q1k(y, x), since q1k depends only on |y − x|. y is
rejected if mode(x) 6= mode(y). Otherwise, y is accepted or rejected based
on the Metropolis rule.

2. With a α probability, we propose Y by proposing each coordinate of
Y as

Yj|Xn,j =
σlj
σkj

(Xn,j −mkj) +mlj

Here l is a random draw from all different chain i’s excluding chain k, where
the probability of drawing some chain l is uniform. Thus, σlj is the univari-
ate standard deviation of the chain l and the coordinate j, from the sample
obtained for the 2nd adaption phase, and σkj is the univariate standard de-
viation of the chain k and the coordinate j. In other words, if there are r
different chains with all different modes,

q2(x, y) =

{
1
r−1 , if yj =

σlj
σkj

(xj −mkj) +mlj, j = 1, ..., s, l = 1, ..., r, l 6= k

0, otherwise

where q2(x, y) is the probability of suggesting y given x using this rule. Note
that for all (x, y), q2(x, y) = q2(y, x). y is rejected if mode(x) = mode(y).
Otherwise, y is accepted or rejected based on the Metropolis rule.

Thus, if P (x, ·) is the transition probability for x and mode(x) = mode(y) =
k, then

π(dx)P (x, dy) = [s−1πu(x)dx][q(x, y)a(x, y)dy]

= [s−1πu(x)][(1− α)q1k(x, y)][min(1, c−1πu(y)/c−1πu(x))]dxdy

= s−1[(1− α)q1k(x, y)][min(πu(x), πu(y))]dxdy

= s−1[(1− α)q1k(y, x)][min(πu(y), πu(x))]dxdy

= [s−1πu(y)dy][q(y, x)a(y, x)dx]

= π(dy)P (y, dx)

14

for some normalizing constant s for πu(·), an unnormalized density function
of π. q(x, y) is the probability of suggesting y given x for the Markov chain
of interest, and a(x, y) is the probability of accepting y given x.

If mode(x) 6= mode(y), then

π(dx)P (x, dy) = [s−1πu(x)dx][q(x, y)a(x, y)dy]

= [s−1πu(x)][αq2(x, y)][min(1, c−1πu(y)/c−1πu(x))]dxdy

= s−1[αq2(x, y)](min(πu(x), πu(y)))dxdy

= s−1[αq2(y, x)](min(πu(y), πu(x)))dxdy

= [s−1[πu(y)dy][q(y, x)a(y, x)dx]

= π(dy)P (y, dx) .

Recall that when πu(x) = 0, we always accept the new proposal y. If
πu(x) = 0 and πu(y) 6= 0, then π(dx)P (x, dy) = π(dy)P (y, dx) = 0 since
P (y, dx) = 0 and vice versa. If πu(x) = 0 and πu(y) = 0, then it is trivial.

To sum up, the Markov chain we construct above is reversible with respect
to π(·).

In our runs of the proposed scheme, we used α = 0.05. α cannot be too big
since it is not desired the the mode-to-mode jump happening too frequently,
and it cannot be too small resulting mode-to mode-jump happening only
few times, which reduces the effectiveness of our algorithm for the ‘strongly
multimodal’ targets. The user of our scheme (and the user of the R package
‘atmcmc’) has some freedom to choose α as long as it is not too big or too
small due to the reasons just described.

Convergence of the Markov chain is still diagnosed the same way explained
in main algorithm, and, again, the final sample obtained is the collection of
all values from the second half of all replicative chains created for Gelman-
Rubin diagnostics. We assume throwing all points from all replicative chains
together will not distort the end result as we believe the convergence test
by Gelman-Rubin can be only passed when the mixing of each replicative
Markov chain is ‘good’.

5 Applications

In this section, we present a number of different applications of our algorithm.
The plots of the sampling phases come from one replicative chain out of 10,
which uses the last value of the 2nd adaption phase as the starting point
for the sampling phase. For ease of identification, each phase is coloured
differently in the trace plots: purple for the 1st adaption phase, orange for

15

the transient phase, red for the 2nd adaption phase, and blue and green for
the first and second halves of the sampling phase. Thus, the green segment
in each trace plot is what we take as our actual sample, and is also what we
use to calculate the displayed acceptance rates in the tables. Also note that
in the trace plots, the iteration number for the 1st adaption and transient
phases is counted coordinate-by-coordinate as the trace plots are presented
coordinate-by-coordinate. More clearly, the first update of coordinate 1 is
labeled iteration 1 in the trace plot for coordinate 1, and the first update of
the coordinate 2 (second update for the whole algorithm) is labeled iteration
1 in the trace plot for the coordinate 2 and so on.

In each example, two tables are given. First one displays the 10 estimates
of parameters obtained from 10 independent runs of the full algorithm in Sec-
tion 4. The second one displays the summary statistics of these 10 estimates:
mean, standard deviation, minimum and maximum. The second tables also
contain the true values of the parameters being estimated or estimates of the
parameters using by some other method, so the reader can compare and see
how the algorithm presented in this paper has performed.

Note that all the starting points for the 1st adaption phases are arbitrary
chosen as 0.1 ∗1, except in the ‘strongly multimodal’ case. For the examples
presented in Section 5.1, 5.2, 5.3, and 5.4, we did not use the scheme for
‘strongly multimodal targets’ from Section 4.5. Only for the example in
Section 5.5 the scheme from Section 4.5 was applied.

5.1 Multivariate Normal Distribution

First, we take a 9-dimensional multivariate normal distribution as our target
distribution. Each component of target mean, µ, was randomly drawn from
N(0, 10002) and target variance were constructed by ΣΣt where each com-
ponent of Σ was drawn from N(0, 202). The target distribution of interest is
N(µ,ΣΣt). The results of 10 different runs are shown in Table 1 and Table 2.

16

Table 1: Results of MCMC: Multivariate Normal. Results of 10 independent
runs of full algorithm in Section 4.

Estimates

µ

106.41 104.39 100.40 103.95 103.68 100.95 105.98 102.33 99.95 102.40
-525.14 -524.19 -524.41 -524.70 -526.58 -525.22 -525.52 -524.31 -522.74 -523.95
-863.71 -863.87 -859.42 -856.61 -862.88 -862.62 -866.63 -859.77 -868.21 -866.57
407.99 403.73 403.35 404.56 406.61 409.45 409.35 406.99 406.59 404.20
976.56 971.01 975.57 967.18 975.00 976.11 977.07 974.82 979.93 975.85
-451.47 -448.95 -449.23 -445.73 -449.28 -446.40 -450.20 -445.58 -446.73 -451.32
641.23 640.33 637.31 636.82 643.90 644.32 646.91 641.47 648.55 644.17
-556.63 -557.20 -559.81 -564.46 -560.43 -561.50 -561.68 -562.48 -562.97 -556.53
796.44 797.07 794.05 797.12 795.07 787.79 798.65 792.79 791.75 796.50

Acceptance Rates
0.2685 0.2565 0.2616 0.2771 0.2469 0.2750 0.2765 0.2755 0.2775 0.3031

Runtime (in seconds)
30.28 29.54 28.90 28.95 33.64 29.59 30.08 29.55 31.54 31.28

Table 2: Summary Statistics for the Estimates in Table 1: Multivariate
Normal. µ is the true mean of the target distribution.

Mean of Estimates SD of Estimates Min Estimate Max Estimate µ
103.04 2.23 99.95 106.41 103.54
-524.68 1.03 -526.58 -522.74 -524.46
-863.03 3.63 -868.21 -856.61 -862.79
406.28 2.25 403.35 409.45 405.96
974.91 3.50 967.18 979.93 974.04
-448.49 2.23 -451.47 -445.58 -448.01
642.50 3.81 636.82 648.55 642.51
-560.37 2.79 -564.46 -556.53 -561.15
794.72 3.23 787.79 798.65 796.02

As we see from Table 2, the estimates from the runs look to be close
enough with the true mean µ. Trace plots for the first run can be found in
Figure 2. The mixing of Markov Chain for the sampling phase, the blue and
green phase in the figure, look to be good.

17

Figure 2: Trace Plots for Multivariate Normal

5.2 Logistic Regression

Next, we run a MCMC with a simple logistic regression model. The data
used here is from data(logit) in the R package ‘mcmc’ (Geyer and Johnson
2014). It is a simulated logistics regression dataset, with a hundred data
points and five variables. We name the five variables y, x1, x2, x3 and x4. y
is a Bernoulli response and x1, x2, x3 and x4 are quantitative predictors. We
know the basic structure of a logistic regression is

f(y1, ..., yn|β,X) =
∏n

i=1 P (yi = 1|β,X)yiP (yi = 0|β,X)1−yi

P (yi = 1|β,X) = 1/(1 + exp(−η))

η = ln[P (yi = 1|β,X)/P (yi = 0|β,X)] = βX.

18

If we put a prior β = (β0, β1, ..., βk)
T ∼ N(0, 4), the posterior distribution

of interest is

f(β|y1, ..., yn, X) ∝ exp(−
∑

β2
j /8)[(

1

1 + exp(−βX)
)
∑
yi][(1− 1

1 + exp(−βX)
)n−

∑
yi].

Again, the results of 10 different runs are shown in Table 3 and Table
4, and the trace plots for the first run are shown in Figure 3. We see our
algorithm worked fine as we compare its results with MCMC estimates via R
package ‘mcmc’ and with GLM estimates. Trace plots show a good mixing
of the Markov chain.

Table 3: Results of MCMC:Logistic Regression. Results of 10 independent
runs of full algorithm in Section 4.

Estimates
β0 0.6618 0.6469 0.6671 0.6498 0.6486 0.6494 0.6678 0.6566 0.6654 0.6541
β1 0.7975 0.7878 0.8240 0.7982 0.8129 0.8039 0.8216 0.8089 0.8082 0.8191
β2 1.1848 1.2173 1.1621 1.1729 1.1761 1.1593 1.1635 1.1804 1.1574 1.1583
β3 0.5192 0.5039 0.5120 0.5127 0.5016 0.5063 0.4967 0.5114 0.5077 0.4873
β4 0.7095 0.7188 0.6875 0.7174 0.7148 0.7192 0.7347 0.7093 0.7229 0.7180

Acceptance Rates
0.2728 0.2925 0.2927 0.2901 0.3028 0.2863 0.2876 0.2901 0.2786 0.2891

Runtime (in seconds)
6.22 6.47 6.18 6.06 6.24 6.16 6.21 6.18 6.33 6.05

Table 4: Summary Statistics for the Estimates in Table 3: Logistic Regres-
sion. Results of a run from R package ‘mcmc’ and GLM estimates are also
presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Rpackage mcmc GLM
β0 0.6567 0.0082 0.6469 0.6678 0.6634 0.6328
β1 0.8082 0.0117 0.7878 0.8240 0.7629 0.7390
β2 1.1732 0.0183 1.1574 1.2173 1.2074 1.1137
β3 0.5059 0.0091 0.4873 0.5192 0.5315 0.4781
β4 0.7152 0.0121 0.6875 0.7347 0.7408 0.6944

19

Figure 3: Trace Plots for Logistic Regression. Each coordinate corresponds
to the parameters listed in Table 3 as ordered.

5.3 Pump Failure Data

This is the data from Gaver and O’Muircheartaigh (Gaver and O’Muircheartaigh
1987). It is shown in Table 5

Table 5: Pump Failure Data

Obs. no. 1 2 3 4 5 6 7 8 9 10
yi 5 1 5 14 3 19 1 1 4 22
ti 94.320 15.720 62.880 125.760 5.240 31.440 1.048 1.048 2.096 10.480

We followed the Bayesian set-up from George et al. (1993) to construct
the posterior distribution.

f(y1, ..., yn|λ1, ..., λn) =
n∏
i=1

Poisson(λiti)

where n=10, λi ∼ G(α, β), α ∼ exp(1) and β ∼ G(0.1, 1). Thus, the
posterior distribution of the parameters is

20

f(λ1, ..., λn, α, β|y1, ..., yn) ∝ e−αβ0.1−1e−β
n∏
i=1

βα

Γ(α)
λα−1e−βλ(λiti)

yie−λiti

The results are shown in Table 6, Table 7 and Figure 4. We bring the
results from OpenBUGS website (Lunn et al. 2009) to compare with our
estimates.

Table 6: Results of MCMC: Pump Failure Data. Results of 10 independent
runs of full algorithm in Section 4.

Estimates
λ1 0.0579 0.0626 0.0598 0.0591 0.0603 0.0593 0.0589 0.0595 0.0574 0.0598
λ2 0.1023 0.1042 0.1014 0.1077 0.1011 0.1042 0.0938 0.1033 0.0965 0.1065
λ3 0.0889 0.0911 0.0926 0.0923 0.0873 0.0869 0.0903 0.0856 0.0900 0.0870
λ4 0.1159 0.1163 0.1165 0.1160 0.1126 0.1176 0.1173 0.1150 0.1153 0.1187
λ5 0.5629 0.6008 0.5884 0.5700 0.5936 0.5954 0.5947 0.6074 0.6090 0.5966
λ6 0.6030 0.6071 0.5956 0.6140 0.6085 0.5955 0.5941 0.6101 0.6122 0.5973
λ7 0.9148 0.8865 0.8217 0.8945 0.8879 0.8324 0.8332 0.8539 0.8697 0.8685
λ8 0.9548 0.8217 0.8764 0.8093 0.8847 0.8935 0.9589 0.9104 0.9402 0.9671
λ9 1.5930 1.5932 1.5768 1.6202 1.5692 1.4670 1.5332 1.5542 1.6088 1.6102
λ10 2.0065 1.9909 1.9897 2.0038 1.9872 2.0169 1.9948 1.9624 1.9961 2.0507
α 0.6963 0.7026 0.7009 0.7123 0.6864 0.6878 0.7039 0.6965 0.6996 0.6817
β 0.9183 0.9355 0.9080 0.9497 0.9152 0.9498 0.9453 0.8963 0.9304 0.9180

Acceptance Rates
0.1690 0.1837 0.1660 0.1612 0.1694 0.1533 0.1558 0.1593 0.1740 0.1978

Runtime (in seconds)
31.79 24.53 24.23 23.03 25.06 23.64 25.22 22.69 25.95 30.55

Table 7: Summary Statistics for the Estimates in Table 6: Pump Failure
Data. Results from the OpenBUGS website, obtained via Gibbs sampler,
are also presented, for comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate BUGS
λ1 0.0595 0.0014 0.0574 0.0626 0.05986
λ2 0.1021 0.0042 0.0938 0.1077 0.1015
λ3 0.0892 0.0024 0.0856 0.0926 0.08899
λ4 0.1161 0.0017 0.1126 0.1187 0.1156
λ5 0.5919 0.0149 0.5629 0.6090 0.6043
λ6 0.6037 0.0076 0.5941 0.6140 0.6121
λ7 0.8663 0.0306 0.8217 0.9148 0.899
λ8 0.9017 0.0557 0.8093 0.9671 0.9095
λ9 1.5726 0.0458 1.4670 1.6202 1.587
λ10 1.9999 0.0229 1.9624 2.0507 1.995
α 0.6968 0.0092 0.6817 0.7123 0.6867
β 0.9267 0.0184 0.8963 0.9498 0.9024

21

Figure 4: Trace Plots for Pump Failure Data. Each coordinate corresponds
to the parameters listed in Table 6 as ordered.

22

5.4 Variance Components Model (VCM)

The Variance Components Model (VCM) is a well-known example in Bayesian
statistics. The structure of the model can be found in Roberts and Rosenthal
(2004) and Gelfand and Smith (1990). In short, the model is constructed as:

yij|θi, σ2
e ∼ N(θi, σ

2
e), i = 1, 2, ..., K, j = 1, 2, ..., J

where θi|µ, σ2
θ ∼ N(µ, σ2

θ). θi|µ, σ2
θ are independent of each other. The

distributions of hyperparameters are: σ2
θ ∼ IG(a1, b1), σ

2
e ∼ IG(a2, b2) and

µ ∼ N(µ0, σ
2
0). Thus, the full posterior for the VCM is

f(σ2
θ , σ

2
e , µ, θi|yij) ∝ (σ2

θ)
−(a1+1)e−b1/σ

2
θ (σ2

e)
−(a2+1)e−b2/σ

2
ee−(µ−µ0)

2/2σ2
0

×
K∏
i=1

eθi−µ)
2/2σ2

θ

σθ

K∏
i=1

J∏
j=1

e(yij−θi)
2/2σ2

e

σe

First, we set a1 and a2 to 0.001, b1 and b2 to 1000, µ0 to 0, and σ2
0 to

1010, making the inverse gamma priors flat and uninformative. The results
can be found in Table 8, Table 9 and Figure 5. We compare our estimates
to the estimates from Gibbs samplers ran for 1.1 million iterations (which
is a lot higher than the number of iterations in any of our algorithm runs
in Table 8) with last 0.1 million iterations used as a sample. One small
problem we found was that our model underestimated σ2

θ compared to the
Gibbs sampler. This error is correctable if we apply tighter cutoffs for the
R̂c and R̂interval of Gelman-Rubin diagnostics, to make our algorithm run
longer. For consistency, we here let the cutoffs for the R̂c and R̂interval be
the same as other examples. Other than that, our estimates and trace plots
show that our model worked fine.

Table 8: Results of MCMC:VCM, flat inverse gamma priors. Results of 10
independent runs of full algorithm in Section 4.

Estimates
σ2
θ 3687.3 4113.2 4039.6 3273.6 3907.1 3710.9 3291.5 3346.2 3714.8 3771.4
σ2
e 2763.2 2832.4 2649.5 2729.7 2713.0 2773.8 2810.0 2779.7 2764.6 2760.1
µ 1527.9 1528.0 1529.7 1527.2 1529.8 1529.5 1527.0 1527.1 1527.3 1528.1
θ1 1509.7 1509.1 1506.6 1508.9 1509.0 1509.0 1509.7 1510.2 1509.1 1509.8
θ2 1527.4 1525.7 1528.4 1528.7 1527.0 1527.3 1529.8 1527.6 1528.3 1529.0
θ3 1556.1 1556.4 1558.3 1556.9 1558.2 1557.2 1557.1 1556.5 1555.8 1557.1
θ4 1504.2 1505.0 1504.0 1505.2 1503.9 1503.9 1503.5 1504.1 1503.6 1502.7
θ5 1586.4 1584.9 1587.3 1585.8 1585.7 1587.6 1584.8 1585.6 1585.6 1587.7
θ6 1480.6 1482.3 1479.3 1481.6 1480.1 1481.2 1481.6 1481.5 1482.8 1479.8

Acceptance Rates
0.1714 0.1891 0.1557 0.2001 0.1822 0.2203 0.2037 0.2135 0.1728 0.1413

Runtime (in seconds)
37.27 28.69 20.36 21.28 21.55 21.22 35.58 52.48 24.66 20.09

23

Table 9: Summary Statistics for the Estimates in Table 8: VCM, flat inverse
gamma priors. Results from a Gibbs sampler run are also presented, for
comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Gibbs
σ2
θ 3685.6 299.3 3273.6 4113.2 3891.8
σ2
e 2757.6 51.2 2649.5 2832.4 2769.1
µ 1528.2 1.1 1527.0 1529.8 1527.4
θ1 1509.1 1.0 1506.6 1510.2 1509.5
θ2 1527.9 1.2 1525.7 1529.8 1527.9
θ3 1557.0 0.8 1555.8 1558.3 1556.8
θ4 1504.0 0.7 1502.7 1505.2 1503.8
θ5 1586.1 1.1 1584.8 1587.7 1585.6
θ6 1481.1 1.1 1479.3 1482.8 1481.2

24

Figure 5: Trace Plots for Variance Components Model. Each coordinate
corresponds to the parameters listed in Table 8 as ordered.

This time, we set a1 and a2 to 300, b1 and b2 to 100 while everything
else remained same as before. This makes the inverse gamma priors really
concentrated, and the results are shown in Table 10, Table 11 and Figure 6.
As we can see from Figure 6, in this example, the transient phase was crucial
to find the mode so in the 2nd adaption phase we can avoid using ‘bad’ values
to estimate the covariance of the target distribution.

25

Table 10: Results of MCMC:VCM, concentrated inverse gamma priors. Re-
sults of 10 independent runs of full algorithm in Section 4.

Estimates
σ2
θ 3.5057 3.4959 3.4998 3.5326 3.5163 3.5169 3.5004 3.5144 3.5067 3.5008
σ2
e 171.38 171.76 170.70 170.55 171.16 171.31 171.07 170.58 171.38 171.55
µ 1527.5 1527.3 1527.3 1527.7 1527.5 1527.9 1527.6 1527.4 1527.5 1527.7
θ1 1525.3 1525.3 1525.3 1525.5 1525.4 1525.8 1525.4 1525.3 1525.3 1525.6
θ2 1527.6 1527.5 1527.3 1527.6 1527.5 1527.8 1527.4 1527.3 1527.6 1527.7
θ3 1531.0 1530.7 1530.7 1531.1 1531.0 1531.2 1530.8 1530.8 1531.0 1531.0
θ4 1524.7 1524.8 1524.6 1524.8 1524.7 1525.1 1524.7 1524.4 1524.7 1524.9
θ5 1534.2 1534.2 1534.0 1534.4 1534.3 1534.7 1534.1 1534.2 1534.3 1534.4
θ6 1522.2 1522.1 1522.0 1522.1 1522.2 1522.7 1522.2 1521.7 1522.3 1522.3

Acceptance Rates
0.2659 0.2631 0.2559 0.2520 0.2705 0.2858 0.2972 0.2635 0.2673 0.2816

Runtime (in seconds)
18.33 17.28 18.57 18.20 24.06 23.33 20.54 16.83 21.69 14.16

Table 11: Summary Statistics for Estimates in Table 10: VCM, concentrated
inverse gamma priors. Results from Gibbs sampler are also presented, for
comparison.

Mean of Estimates SD of Estimates Min Estimate Max Estimate Gibbs
σ2
θ 3.5089 0.0111 3.4959 3.5326 3.5060
σ2
e 171.14 0.42 170.55 171.76 171.08
µ 1527.5 0.2 1527.3 1527.9 1527.5
θ1 1525.4 0.2 1525.3 1525.8 1525.4
θ2 1527.5 0.2 1527.3 1527.8 1527.5
θ3 1530.9 0.2 1530.7 1531.2 1530.8
θ4 1524.7 0.2 1524.4 1525.1 1524.7
θ5 1534.3 0.2 1534.0 1534.7 1534.2
θ6 1522.2 0.2 1521.7 1522.7 1522.1

26

Figure 6: Trace Plots for Variance Components Model. Each coordinate
corresponds to the parameter listed in Table 10 as ordered.

5.5 A Strongly Multimodal Example

The ‘strongly multimodal’ target density function we work with is

1

3
∗N(µ1,ΣΣt) +

1

3
∗N(µ2,ΣΣt) +

1

3
∗N(µ3,ΣΣt)

27

where each component of Σ is randomly drawn from N(0, 1). The parameter
values are

µ1 = (21.62166,−10.00424, 15.49878)T

µ2 = (9.671977,−28.515220,−12.744802)T

µ3 = (26.0518930, 0.2331812,−0.3433256)T

ΣΣt =

 1.2742983 0.1801673 −1.353580
0.1801673 2.6300580 1.451527
−1.3535803 1.4515267 4.861334

 .

We first ran 10 different chains with the starting values of the 1st adaption
phase chosen randomly from U(−30, 30) for every coordinate of each chain.
Since we want only one chain for one particular mode, once every chain ran
for both 1st adaption phase and transient phase, we reduced the number
of chains down, based on the criteria described in Section 4.5, leaving us
with 3 different chains. Then, we ran for the 2nd adaption phases for all 3
chains, separately. Once this is done, we once again checked every chain had
different modes with the values generated in the 2nd adaption phase. Then
we randomly chose 7 starting points as described in Section 4.5. With 10
different starting points in total (7 starting values randomly chosen and the
last values from the 3 different chains), we created 10 replicative chains to run
for the sampling phase. The plots for the sampling phase in Figure 7 are from
one replicative chain which used the last values of the 2nd adaption phase of
the chain started with ‘mode 1’ as the starting point of the sampling phase.
We did 10 different runs with the same starting values for the 1st adaption
phase, and the end results we got from the runs are shown in Table 12, Table
13 and Figure 7.

Table 12: Results of MCMC: Multimodal Distribution. Results of 10 inde-
pendent runs of full algorithm in Section 4.5.

Estimates

µ
18.764 18.170 20.413 18.965 18.853 19.746 19.690 18.687 19.241 20.200
-13.440 -14.311 -9.723 -12.907 -13.093 -11.551 -11.769 -13.604 -12.467 -10.825
0.9235 -0.1113 2.7895 0.3334 -0.0131 1.0996 1.8526 1.1745 0.9141 1.5964

Acceptance Rates
0.3374 0.3489 0.3057 0.3449 0.3464 0.3370 0.3627 0.3472 0.3448 0.3471

Runtime (in seconds)
72.04 71.40 70.26 72.93 70.31 74.74 71.33 72.50 72.20 71.29

28

Table 13: Summary Statistics for the Estimates in Table 12: Multimodal
Distribution. µ is the true mean of target distribution.

Mean of Estimates SD of Estimates Min Estimate Max Estimate µ
19.273 0.719 18.170 20.413 19.115
-12.369 1.401 -14.311 -9.723 -12.762
1.0559 0.8827 -0.1113 2.7895 0.804

Figure 7: Trace Plots for Mixture of Three 3-Dimensional Multivariate Nor-
mals. Each row represents each coordinate and each column represents each
chain trapped in different mode until the sampling phase.

As we see from Figure 7, the mixing of the Markov chain for the sampling
phase looks to be good and not just occurs within one mode as in the previous

29

phases.

6 Discussion

This paper has presented a new algorithm, implemented in the R package
‘atmcmc’ (Yang 2014), to run adaptive MCMC for a finite amount of time,
diagnose when the adaption is sufficient, and then run conventional MCMC
with standard convergence diagnostics to get good target distribution conver-
gence and estimates. The algorithm was illustrated on a number of examples,
and found to perform quite well in each case.

We finish by discussing a number of related issues.

6.1 Acceptance Rate

Our algorithm makes heavy use of the fact (Roberts et al. 1997; Roberts and
Rosenthal 2001) that for the symmetric random walk Metropolis algorithm
on certain target densities, the optimal asymptotic acceptance rate is 0.234,
which can be achieved if we use the proposal distribution N(Xn,Σp) where
Σp = (2.382/d) ∗ Σ and Σ is the target covariance matrix. Now, for certain
truncated (discontinuous) target densities, the optimal acceptance rate is
actually 0.1353 (Neal et al. 2012), and the true optimal value of the multiple
to Σ is unknown. We used the multiple 2.382/d whether the target density
is truncated or not. The acceptance rates we found in Table 1, Table 3
and Table 6 are slightly higher than the optimal acceptance rates, which
is reasonable as our Markov chains have dimensions far from infinity. The
acceptance rates for the Variance Components Model (VCM) look to be more
puzzling, as they vary between 0.1353 and 0.234 in Table 8 but are close to
0.234 in Table 10. In VCM some coordinates are truncated and some are not,
and there is little known about the optimal asymptotic acceptance rate in
this case. Also, note that for the ‘strongly multimodal’ algorithm extension,
the acceptance rates are a lot higher than 0.234 as seen in Table 12, which
is due to the fact that direct jumps between the modes are allowed in this
case.

6.2 Significance of Transient and 2nd Adaption Phase

One question is whether our 2nd adaption phase helps in terms of convergence
speed, or whether our 1st adaptive phase alone would be sufficient. To check
this, we removed the 2nd adaption phase from the full algorithm and ran
each unimodal example three times, with starting values for Gelman-Rubin

30

diagnostics picked based on the flat part of the transient phase. The runtimes
we got for 3 different runs of the 9-dimensional multivariate normal example
are 121.07, 79.89, and 76.13 seconds, respectively. These runtimes are all
larger than any of runtimes we got for our full MCMC model in Table 1.
Estimates from all three runs came out reasonable. For the logistic regression
example, we got 8.78, 6.84 and 9.43 seconds for 3 runs; for pump failure data,
we got 5330.87, 5007.72 and 1490.13 seconds; for VCM with flat inverse
gamma priors, we got 72.65, 149.96 and 80.34 seconds, and for VCM with
concentrated inverse gamma priors, we got 202.66, 89.36 and 153.84 seconds.
Estimates from all these runs came out reasonably good except σ2

θ for VCM
with flat inverse gamma priors was even more underestimated (about 2700 -
3200) than results in Table 9 from full algorithm. We conclude that runtimes
were larger (most times by a lot) without a 2nd adaption phase than with
our full algorithm.

As another test, we tried removing both the transient phase and the 2nd

adaption phase, and again ran each unimodal example three times. (Here the
starting values for the Gelman-Rubin diagnostic were chosen based on the
values from the 1st adaption phase, since we had neither a transient phase nor
a 2nd adaption phase; that is, we had to pick starting values for the sampling
phase without having a rough idea on the range of target distribution.) For
the 9-dimensional multivariate normal example, we got runtimes of 101.70,
80.22 and 69.03 seconds; for logistic regression, we got 8.47, 8.19 and 7.53
seconds; for pump failure data, we got 10756.04, 2593.72 and 2866.11 sec-
onds; for VCM with flat inverse gamma priors, we got 6227.88, 744.50 and
72.83 seconds, and for VCM with concentrated inverse gamma priors, we got
918.97, 2774.98 and 2551.30 seconds. The estimates again came out reason-
able. But once again, all runtimes were larger than the corresponding ones
for our full algorithm.

6.3 Comparison with a Full-dimensional Metropolis

We next consider how our algorithm fares against a full-dimensional Metropo-
lis algorithm. Notice that we are not comparing our algorithm to the full-
dimensional Metropolis with a really good proposal distribution. Finding a
good proposal distribution for the full-dimensional Metropolis algorithm is
the goal of the first three phases of our algorithm, and if we know a good
proposal distribution from the start, there is no need to adapt the chain.
However, in most cases of MCMC examples, we have little to no idea on
the target distribution, and picking a good proposal distribution out of all
possible choices is virtually impossible without adaption.

Since our algorithm runs replicative chains in the sampling phase to check

31

for the convergence, it wouldn’t be fair to compare our algorithm to one full-
dimensional Metropolis chain in terms of runtime. Also, if we only run one
full-dimensional Metropolis chain, we have to find a way to figure out when
the full-dimensional Metropolis chain achieved the same level of convergence
as the chain by our algorithm. Thus, we compare our algorithm with the full-
dimensional Metropolis algorithm in terms of number of iterations they run
for, and we run the same number of replicative chains for the full-dimensional
Metropolis algorithm to check for the convergence through Gelman-Rubin
diagnostics, using the same R̂c and R̂interval cutoffs with our algorithm.

We ran the full-dimensional Metropolis on the pump failure data from
Section 5.3 and the VCM from Section 5.4. The proposal distributions for
the Metropolis algorithm are N(Xn, I) for the pump failure data and the
VCM with flat inverse gamma priors and N(Xn, 10I) for the VCM with con-
centrated inverse gamma priors, where Xn is the current state value and I is
the identity matrix. We took the initial value 0.1∗1 for the Metropolis algo-
rithm, which is the initial value of the runs of our algorithm for all unimodal
examples in Section 5. We also ran the same number of replicative chains,
10, as what we used in the runs of our algorithm in Section 5 for the Gelman-
Rubin diagnostics, with the same R̂c and R̂interval cutoffs. With pump failure
data, we ran the full-dimensional Metropolis for 2 million iterations, but the
algorithm failed to achieve the convergence by the Gelman-Rubin diagnos-
tics. Our algorithm was proved to be significantly more efficient in this case
in terms of number of iterations since all of the runs in Section 5.3 converged
in between 81200 and 126200 iterations. For VCM with flat inverse gamma
priors, the Metropolis algorithm again didn’t achieve the convergence for 2
million iterations by the Gelman-Rubin diagnostics. All the runs of our algo-
rithm for the same example, shown in Section 5.4, achieved the convergence
in between 156800 and 299600 iterations. For VCM with concentrated in-
verse gamma priors, the Metropolis algorithm achieved the convergence in
1775200 iterations, and the comparative runs in Section 5.4 converged some-
where in between 77200 and 210200 iterations. Thus, we conclude that our
algorithm performed notably better in these particular cases.

Even if the proposal distribution is not as bad as what we just described,
our algorithm still beat the full-dimensional Metropolis algorithm with a de-
cent proposal distribution. When we removed both transient and 2nd adap-
tion phase from our algorithm in Section 6.2, we practically ran the full-
dimensional Metropolis algorithm with a roughly-tuned diagonal proposal
covariance matrix. So, we took the run with the fewest iterations for the 1st

adaption phase out of three runs from Section 6.2 to compare the efficiency
of our algorithm to the full-dimensional Metropolis with a roughly tuned
proposal distribution. This comparison is really not fair to our algorithm

32

since we counted the number of iterations for the 1st adaption phase against
our algorithm but gave the tuned proposal distribution obtained from the 1st

adaption phase of our algorithm to the full-dimensional Metropolis from the
start. However, our algorithm still did better.

For pump failure data example, two chains with the fewest number of iter-
ations for the 1st adaption phase from Section 6.2 took 664200 and 333800 it-
erations, respectively, counting only for the sampling phase, or in other words
the standard full-dimensional Metropolis phase. Thus, the full-dimensional
Metropolis algorithm took 2.65 to 8.18 times more iterations to reach the
same level of the convergence compared to the runs in Section 5.3. For VCM
with flat inverse gamma priors, the number of iterations for the run with the
fewest 1st adaption period from Section 6.2 was 547400. Our algorithm ran
1.83 to 3.49 times faster in terms of number of iterations. For VCM with
the concentrated inverse gamma priors, our algorithm was 1.58 to 4.57 times
better than the full-dimensional Metropolis run from Section 6.2.

6.4 Initial Value for a Markov Chain

One important issue for improving Markov chain convergence speed is get-
ting a good starting value. This problem is solved naturally for unimodal
target distributions in our algorithm since we go through all the different
phases, including the mode-finding transient phase, before starting the final
sampling phase. The information we obtain in the first 3 phases are used to
get a rough idea about the target distribution, and hence to pick good start-
ing values for the sampling phase. The situation is a bit more problematic
for a ‘strongly multimodal’ target distribution. There it is important to have
well-dispersed starting points to find all the modes in the target distribution,
right from the beginning. If we fail to find some modes, our resulting esti-
mates will be compromised. Of course, similar concerns apply to virtually
all MCMC algorithms and diagnostic approaches.

Implementing MCMC in practice does have some difficulties depending on
the target distribution one is dealing with. We hope that the algorithm
presented in this paper, and implemented in the R package ‘atmcmc’ (Yang
2014), will provide a simple and efficient approach that can be applied to
most target distributions which arise in practice.

33

References

Andrieu, C. and Atchadé, Y. F. (2007). On the efficiency of adaptive MCMC
algorithms. Electronic Communications in Probability, 12(33):336–349.

Andrieu, C. and Moulines, E. (2006). On the ergodicity properties of some
adaptive Markov Chain Monte Carlo algorithms. The Annals of Applied
Probability, 16(3):1462–1505.

Atchadé, Y. F. and Rosenthal., J. S. (2005). On adaptive Markov Chain
Monte Carlo algorithms. Bernoulli, 11(5):815–828.

Brooks, S., Gelman, A., Jones, G. L., and Meng, X., editors (2011). Handbook
of Markov Chain Monte Carlo. Taylor & Francis.

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring con-
vergence of iterative simulations. Journal of computational and graphical
statistics, 7(4):434–455.

Fort, G., Moulines, E., and Priouret, P. (2011). Convergence of adaptive
and interacting Markov chain Monte Carlo algorithms. The Annals of
Statistics, 39(6):3262–3289.

Gaver, D. P. and O’Muircheartaigh, I. G. (1987). Robust empirical Bayes
analyses of event rates. Technometrics, 29(1):1–15.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to
calculating marginal densities. Journal of the American statistical associ-
ation, 85(410):398–409.

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis
jumping rules. In et al., J. M. B., editor, Bayesian Statistics, volume 5,
pages 599–607. Oxford University Press.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation
using multiple sequences. Statistical science, 7(4):457–472.

George, E. I., Makov, U. E., and Smith, A. F. M. (1993). Conjugate likelihood
distributions. Scandinavian Journal of Statistics, 20(2):147–156.

Geyer, C. J. and Johnson, L. T. (2014). MCMC: Markov Chain Monte Carlo.
R package version 0.9-3. http://CRAN.R-project.org/package=mcmc.

Giordani, P. and Kohn, R. (2010). Adaptive independent Metropolis–
Hastings by fast estimation of mixtures of normals. Journal of Compu-
tational and Graphical Statistics, 19(2):243–259.

34

Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). DRAM: efficient
adaptive MCMC. Statistics and Computing, 16(4):339–354.

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis
algorithm. Bernoulli, 7(2):223–242.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97–109.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS
project: Evolution, critique, and future directions. Statistics in Medicine,
28(25):3049–3067. http://www.openbugs.net.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. (1953). Equation of state calculations by fast computing ma-
chines. The journal of chemical physics, 21(6):1087–1092.

Neal, P. J., Roberts, G. O., and Yuen, W. K. (2012). Optimal scaling of
random walk Metropolis algorithms with discontinuous target densities.
The Annals of Applied Probability, 22(5):1880–1927.

R Core Team (2014). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence
and optimal scaling of random walk Metropolis algorithms. The annals of
applied probability, 7(1):110–120.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various
Metropolis-Hastings algorithms. Statistical science, 16(4):351–367.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov
chains and MCMC algorithms. Probability Surveys, 1:20–71.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adap-
tive Markov chain Monte Carlo algorithms. Journal of Applied Probability,
44(2):458–475.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC.
Journal of Computational and Graphical Statistics, 18(2):349–367.

Rosenthal, J. S. (2004). Adaptive MCMC Java applet. http://

probability.ca/jeff/java/adapt.html.

35

Rosenthal, J. S. (2007a). AMCMC: An R interface for adaptive MCMC.
Computational Statistics & Data Analysis, 51(12):5467–5470.

Rosenthal, J. S. (2007b). The AMCMC package. http://probability.ca/
amcmc.

Rosenthal, J. S. (2011). Optimal proposal distributions and adaptive MCMC.
In Brooks, S., Gelman, A., Jones, G. L., and Meng, X., editors, Handbook
of Markov Chain Monte Carlo, pages 93–112. Taylor & Francis.

Scheidegger, A. (2012). adaptMCMC: Implementation of a generic adaptive
Monte Carlo Markov Chain sampler. R package version 1.1. http://CRAN.
R-project.org/package=adaptMCMC.

Soetaert, K. and Petzoldt, T. (2010). Inverse modelling, sensitivity and
Monte Carlo analysis in R using package FME. Journal of Statistical
Software, 33(3):1–28.

Soetaert, K. and Petzoldt, T. (2014). FME: A Flexible Modelling Environ-
ment for Inverse Modelling, Sensitivity, Identifiability, Monte Carlo Analy-
sis. R package version 1.3.1. http://CRAN.R-project.org/package=FME.

Turro, E., Bochkina, N., Hein, A. M. K., and Richardson, S. (2007). BGX:
a Bioconductor package for the Bayesian integrated analysis of Affymetrix
GeneChips. BMC bioinformatics, 8(1):439–448.

Vihola, M. (2010a). Grapham: graphical models with adaptive random
walk Metropolis algorithms. Computational Statistics and Data Analysis,
54(1):49–54.

Vihola, M. (2010b). The Grapham package. http://www.stats.ox.ac.uk/

~mvihola/grapham/.

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced ac-
ceptance rate. Statistics and Computing, 22(5):997–1008.

Yang, J. (2014). atmcmc: Automatically Tuned Markov Chain Monte Carlo.
R package version 1.0. http://CRAN.R-project.org/package=atmcmc.

36

