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1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms are widely used in statistics, physics, and

computer science, to sample from complicated high-dimensional probability distributions. A

central question is how quickly the chain converges to the target (stationarity) distribu-

tion. In this paper, we consider this question for a particular class of MCMC algorithms,

independence samplers (Hastings, 1970; Tierney, 1994).

It is well known that independence samplers are geometrically ergodic if and only if

ess supx∈X w(x) ≡ w∗ < ∞ (where the weight function w(x) is defined below), in which

case precise quantitative convergence bounds are available (Liu, 1996; Smith and Tierney,

1996). However, if w∗ =∞, then the chain is not geometrically ergodic, and no quantitative

bounds were previously known. In this paper, we use the coupling method to develop general

quantitative upper bounds (Theorem 6, Corollary 7) applicable even when w∗ =∞. Together

with a corresponding lower bound (Theorem 8), they provide fairly precise information about

the time to stationarity of these algorithms.

We apply our results to three examples. In one fast-converging case, we prove that the

convergence time (defined as getting within 0.01 of stationarity in total variation distance)

is between 24 and 50 iterations. In another, much slower-converging case, we prove that

the convergence time is between 4,000,000 and 14,000,000 iterations. In still another case,

we prove that the convergence time is between 5 × 1032 and 1034 iterations. This shows
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the precision and flexibility of our methods. It also illustrates the variation in convergence

times of MCMC algorithms, and the importance of precise analysis to understand their

convergence.

Our paper extends previous work about quantitative convergence bounds on the distance

to stationarity of Markov chains after n steps. For geometrically ergodic chains, this is a

well studied area, see e.g. Rosenthal (1995, 2002), Roberts and Tweedie (1997), Jones and

Hobert (2001, 2004), Marchev and Hobert (2004), Douc et al. (2004), and Baxendale (2005).

For non-geometrically ergodic chains, convergence bounds have been studied by Meyn and

Tweedie (1993), Fort and Moulines (2000, 2003), Jarner and Roberts (2002), and especially

by Douc et al. (2007), who use hitting times of small sets to provide very general and

useful quantitative bounds which are then applied to certain specific examples (including an

independence sampler on the unit interval). Compared to the work of Douc et al. (2007),

our results are less general but are better suited to the specific properties of independence

samplers (as illustrated by our closely matching upper and lower bounds in the examples).

2. Preliminaries.

Let (X ,F , ν) be a non-atomic measure space (usually a subset of Rd with Lebesgue

measure), and let π and q be two different positive probability densities on X with respect

to ν(·). Let Π(A) =
∫
A π(x) ν(dx) and Q(A) =

∫
A q(x) ν(dx) be the corresponding probability

measures.

The independence sampler Markov chain is defined as follows. Given Xn−1, the algo-

rithm proposes a state Yn ∼ Q(·), and then accepts it with probability α(Xn−1, Yn) ≡
min(1, π(Yn) q(Xn−1)

π(Xn−1) q(Yn)
) = min(1, w(Yn)

w(Xn−1)
), where w(x) = π(x)/q(x) is the weight function,

otherwise it rejects it. That is, the algorithm chooses Un ∼ Uniform[0, 1], and then sets

Xn =

{
Yn , Un ≤ w(Yn)

w(Xn−1)

Xn−1 , otherwise .
(1)

If Un ≤ w(Yn)
w(Xn−1)

then we say the proposal Yn was accepted, otherwise we say it was rejected.

We write P (x,A) = P[X1 ∈ A |X0 = x] and P n(x,A) = P[Xn ∈ A |X0 = x], and let

‖P n(x, ·)−Π(·)‖ = supA∈F |P n(x,A)−Π(A)| be the total variation distance to stationarity

after n steps.

Much is known about the theoretical properties of independence samplers. For example,

they are geometrically (in fact, uniformly) ergodic if and only if ess supx∈X w(x) ≡ w∗ <∞
(Tierney, 1994; Mengersen and Tweedie, 1996; Roberts and Rosenthal, 1998; Rosenthal,

1997), and their complete spectral decomposition is available (Liu, 1996; Smith and Tierney,

2



1996). In particular, if w∗ < ∞, then α(x, y) ≥ min(1, w(y)/w∗) = w(y)/w∗, so that

P (x, dy) ≥ [π(y)/w∗] dy, a minorisation condition which implies (Liu, 1996; Smith and

Tierney, 1996; Rosenthal, 1995, 2002) that

‖P n(x, ·)− Π(·)‖ ≤
(
1− 1

w∗

)n
,

a simple and useful quantitative bound. (Roughly speaking, w∗ < ∞ when the proposal

tails are at least as heavy as the target tails.) However, if w∗ =∞, then there is no spectral

gap and the chain is not geometrically ergodic, and no quantitative bounds were previously

known, though we develop some herein.

For numerical concreteness in the examples, we shall say (following Cowles and Rosenthal,

1997; Jones and Hobert, 2001, 2004) that the chain’s “convergence time” is the smallest

number n of iterations such that ‖P n(x, ·) − Π(·)‖ < 0.01. Hence, we shall attempt to find

upper and lower bounds, n∗ and n∗, such that ‖P n∗(x, ·) − Π(·)‖ < 0.01 and ‖P n∗(x, ·) −
Π(·)‖ > 0.01. (Since the total variation distance to stationarity is non-increasing, see e.g.

Roberts and Rosenthal, 2004, this implies that the convergence time is between n∗ and n∗.)

If n∗ / n∗ is not too large, this will indicate relatively tight bounds on the time to convergence.

3. Coupling Bounds.

We shall proceed using the standard method (see e.g. Roberts and Rosenthal, 2004, and

the references therein) of simultaneously constructing two different copies {Xn} and {X ′n}
of the same Markov chain, with different starting values X0 and X ′0, but identical marginal

transition probabilities: P[X1 ∈ A |X0 = x] = P[X ′1 ∈ A |X ′0 = x]. (We will later let

X0 = x for some specific x ∈ X , but choose X ′0 ∼ Π, so the coupling inequality will give

that ‖Pn(x, ·)− Π(·)‖ ≤ P[Xn 6= X ′n].)

For the independence sampler, we shall use a very simple joint coupling construction. We

let {Xn} and {X ′n} be two copies of the same independence sampler, with different initial

distributions L(X0) and L(X ′0), but each updated using the same random variables Yn and

Un. That is, the first chain {Xn} is updated according to (1), while the second chain {X ′n}
is updated according to

X ′n =

 Yn , Un ≤ w(Yn)
w(X′n−1)

X ′n−1 , otherwise .
(2)

using the same random variables Yn and Un in both (1) and (2).

Lemma 1. With the above coupling, if Xm = X ′m for some m, then Xn = X ′n for all

n ≥ m.

3



Proof. This follows immediately by comparing (1) and (2).

Lemma 2. With the above coupling, if w(Xn−1) ≤ w(X ′n−1) and the nth proposal Yn is

accepted by the second chain {X ′n}, then it is also accepted by the first chain {Xn}.

Proof. w(Xn−1) ≤ w(X ′n−1) implies w(Yn)
w(Xn−1)

≥ w(Yn)
w(X′n−1)

, so that if Un ≤ w(Yn)
w(X′n−1)

, then also

Un ≤ w(Yn)
w(Xn−1)

.

Lemma 3. With the above coupling, the independence sampler is monotone with respect

to the partial order induced by w. That is, if w(Xn−1) ≤ w(X ′n−1), then w(Xn) ≤ w(X ′n).

Proof. If both proposals are accepted, or both are rejected, then the conclusion is trivial.

By the previous lemma, the only other possibility is that the first chain accepts the proposal

but the second does not, i.e. that Xn = Yn but X ′n = Xn−1. But by (1), this can only happen

if w(Yn)/w(X ′n−1) < 1, i.e. w(Xn)/w(X ′n) < 1, i.e. w(Xn) < w(X ′n).

Corollary 4. With the above coupling, if w(X0) ≤ w(X ′0), and X ′n 6= X ′0, then Xn = X ′n.

Proof. Since w(X0) ≤ w(X ′0), therefore by Lemma 3, w(Xn−1) ≤ w(X ′n−1) for all n. Since

X ′n 6= X ′0, at least one proposal by time n must have been accepted by the second chain. By

Lemma 2, that proposal must have also been accepted by the first chain, at which point the

two chains became equal. Then, by Lemma 1, they remained equal thereafter, so Xn = X ′n.

Theorem 5. If w(X0) ≤ w(X ′0), then ‖L(Xn)− L(X ′n)‖ ≤ P[X ′n = X ′0], i.e. the distance

to stationarity is bounded by the probability that the second chain has not yet moved.

Proof. By the coupling inequality, ‖L(Xn)−L(X ′n)‖ ≤ P[X ′n 6= Xn]. But by Corollary 4,

P[X ′n 6= X0] ≤ P[Xn = X ′n], so P[Xn 6= X ′n] ≤ P[X ′n = X0]. The result follows.
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Remark. If X0 = x0 and X ′0 = x′0 are constants, with w(x0) < w(x′0), then the conclusion

of Theorem 5 becomes an equality.

To make the conclusion of Theorem 5 more concrete, let m(x) = P[X1 6= X0 |X0 = x] =

E[α(x, Y )] (where Y ∼ Q(·)) be the probability that the independence sampler will accept

its first move when started at x. Then we have:

Theorem 6. ‖P n(x, ·) − Π(·)‖ ≤ E[(1 − min(m(x),m(Z)))n], where the expectation is

taken with respect to Z ∼ Π(·).

Proof. We start by choosing X0 = x and X ′0 ∼ Π, so L(Xn) = P n(x, ·) and L(X ′n) = Π(·)
for all n. It follows directly from the coupling inequality that ‖Pn(x, ·)−Π(·)‖ ≤ P[Xn 6= X ′n].

We then condition on the value of X ′0, and break up the expectation over X ′0 ≡ Z ∼ Π into

the two parts w(x) ≤ w(X ′0) and w(x) > w(X ′0). The first part is bounded using Theorem 5

and the observation that P[X ′n = X ′0 |X ′0] = (P[X ′1 = X ′0 |X ′0])n, and the second part is

bounded similarly upon reversing the roles of {Xn} and {X ′n}. This leads to the string of

inequalities

‖P n(x, ·)− Π(·)‖ ≤ P[Xn 6= X ′n] = E
[
P[Xn 6= X ′n |X ′0]

]
= E

[
P[Xn 6= X ′n |X ′0] 1w(x)≤w(X′0) + P[Xn 6= X ′n |X ′0] 1w(x)>w(X′0)

]
= E

[
P[X ′n = X ′0 |X ′0] 1w(x)≤w(X′0) + P[Xn = X0 |X ′0] 1w(x)>w(X′0)

]
= E

[
(P[X ′1 = X ′0 |X ′0])n 1w(x)≤w(X′0) + (P[X1 = X0 |X ′0])n 1w(x)>w(X′0)

]
= E

[
(1−m(X ′0))

n 1w(x)≤w(X′0) + (1−m(x))n 1w(x)>w(X′0)

]
= E

[
(1−m(Z))n 1w(x)≤w(Z) + (1−m(x))n 1w(x)>w(Z)

]
.

Finally, it follows as in Lemma 2 that if w(x) ≤ w(Z) then m(x) ≥ m(Z) so 1 −m(Z) =

1−min(m(x),m(Z)), and similarly if w(x) > w(Z) then 1−m(x) = 1−min(m(x),m(Z)).

We conclude that

E
[
(1−m(Z))n 1w(x)≤w(Z) + (1−m(x))n 1w(x)>w(Z)

]
= E

[
(1−min(m(x),m(Z)))n

]
,

thus giving the result.

In particular, if w(x) = infy∈X w(y), then with probability 1, w(x) ≤ w(Z) and hence

1−min(m(x),m(Z)) = 1−m(Z), and we conclude:
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Corollary 7. If w(x) = infy∈X w(y), then ‖P n(x, ·)− Π(·)‖ ≤ E[(1−m(Z))n], where the

expectation is again taken with respect to Z ∼ Π(·).

As for lower bounds, we have the following:

Theorem 8. For any x, z ∈ X , ‖P n(x, ·)−Π(·)‖ ≥ pz− (1− (1− qz)n), where pz = Π{y ∈
X : w(y) > w(z)} and qz = Q{y ∈ X : w(y) > w(z)}.

Proof. Let A = {y ∈ X : w(y) > w(z)} \ {x}. Then Π(A) = pz. On the other

hand, P n(x,A) ≤ P(∃m ≤ n : Xm ∈ A |X0 = x) ≤ P(∃m ≤ n : Ym ∈ A) = 1 − P(Ym 6∈
A ∀m ≤ n) = 1−(1−qz)n. So, ‖P n(x, ·)−Π(·)‖ ≥ Π(A)−P n(x,A) ≥ pz−(1−(1−qz)n).

Remark. We shall apply our results to several independence sampler examples below.

However, it should be admitted that the results may be less applicable in genuine MCMC

examples where little is known about the stationarity distribution Π(·). Indeed, to apply

Corollary 7, it is necessary to know x = arginfyw(y) which is often impossible. Theorem 6

does not require this, but it is still stated in terms of an expectation with respect to Π(·)
which may present significant obstacles in complicated examples (though it is sometimes

possible to bound such expectations using drift conditions and other techniques, see e.g.

Meyn and Tweedie, 1993, Theorem 14.3.7; alternatively those integrals could themselves be

estimated using auxiliary Monte Carlo simulations though at the expense of complete rigor in

the resulting bounds). Even Theorem 8 requires computing or bounding certain probabilities

with respect to Π(·), which may itself be challenging in some cases. In summary, while our

results are applicable to certain independence samplers as we shall now see, we do not expect

them to provide useful convergence bounds in all such situations.

4. Example #1: Exponential Distributions.

Let X = [0,∞) with Lebesgue measure. Let π(x) = e−x be the density of a standard

exponential distribution, and q(x) = k e−k x be that of the Exponential(k) distribution, for

some fixed k > 0. This example was considered e.g. by Smith and Tierney (1996) and

Roberts and Rosenthal (1998) and Jones and Hobert (2001); for an interactive display see

Rosenthal (1997).

Here w(x) = π(x)/q(x) = e(k−1)x/k. If k ≤ 1, then w∗ ≡ supxw(x) = 1/k <∞, and the

chain is geometrically ergodic, with ‖P n(x, ·)−Π(·)‖ ≤ (1− 1
w∗

)n = (1− k)n. (In particular,
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the case k = 1 corresponds to immediate convergence, i.e. to i.i.d. sampling.) For example,

if k = 0.01, then ‖P n(x, ·)−Π(·)‖ ≤ (0.99)n, which is less than 0.01 if n = 459, so the chain

converges within 459 iterations.

If k > 1, then w∗ = ∞, and the chain is not geometrically ergodic. In this case, the

chain is known from simulations (Roberts and Rosenthal, 1998) to converge very poorly. To

bound this, we compute (where Y ∼ Q(·)) that

m(x) = E[α(x, Y )] =
∫ ∞
0

α(x, y) ke−ky dy

=
∫ ∞
0

min(1, e(k−1)(y−x)) ke−ky dy

=
∫ x

0
e(k−1)(y−x) ke−ky dy +

∫ ∞
x

ke−ky dy

= ke−(k−1)x(1− e−x) + e−kx = ke−(k−1)x − (k − 1)e−kx .

To proceed, for simplicity consider starting at the state 0, since w(0) = infy∈X w(y).

Then from Corollary 7, with Z ∼ Π(·),

‖P n(0, ·)− Π(·)‖ ≤ E[(1−m(Z))n]

=
∫ ∞
0

(
1− ke−(k−1)x + (k − 1)e−kx

)n
e−x dx . (3)

This gives a precise upper bound on the distance to stationarity after n steps. As ex-

pected, it does not decrease geometrically with n. The following table gives numerical upper

bounds when k = 5, for various values of n:

Upper bounds on ‖P n(0, ·)− Π(·)‖ from (3), with k = 5:

n upper bound
10 0.3706

100 0.2008
1,000 0.1105

10,000 0.06145
100,000 0.03434

1,000,000 0.01925
14,000,000 0.009931

In particular, this shows that ‖P n(x, ·) − Π(·)‖ < 0.01 when n = 14, 000, 000. That is, the

chain converges within 14 million iterations. In particular, we can take n∗ = 14, 000, 000.

Now, 14,000,000 is just an upper bound, and it is tempting to believe that it is hugely

conservative, with the actual convergence time being many orders of magnitude smaller.
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However, that is not the case. To see this, consider lower bounds from Theorem 8. Let z = 4.

Then pz = Π(4,∞) = e−z = e−4 .
= 0.0183, and qz = Q(4,∞) = e−kz = e−20 .

= 2.06 × 10−9.

Hence, by Theorem 8, for any x ∈ X ,

‖P n(x, ·)− Π(·)‖ ≥ pz − (1− (1− qz)n) = e−4 − (1− (1− e−20)n) . (4)

If n = 4, 000, 000, then this lower bound equals 0.01010492 > 0.01. So, we conclude that,

starting from any x ∈ X , this chain has still not converged after four million iterations, and

we can take n∗ = 4, 000, 000. That is, it really does take millions of iterations for this (rather

simple) Markov chain to converge. The ratio of upper to lower bound for this example is

n∗ /n∗ = 14, 000, 000 / 4, 000, 000 = 3.5 ,

a fairly small number, indicating fairly tight upper and lower bounds on convergence.

In addition to numerical bounds, we can also consider the functional form by which the

distance to stationarity decreases as a function of n. While we know that the decrease cannot

be geometric in this case, it can still correspond to polynomial ergodicity (Fort and Moulines,

2000, 2003; Jarner and Roberts, 2002). Looking at the above numerical table, it appears

that the upper bounds are decreasing at approximately the rate O(n−1/4).

For another approach to polynomial rates, combining Theorems 3.6 and 5.3 of Jarner

and Roberts (2002) yields the following result (note that they write q(x) for our 1/w(x)):

Proposition 9. For an independence sampler, for any x ∈ X ,

lim
n→∞

(n+ 1)β−1 ‖P n(x, ·)− Π(·)‖ = 0 ,

for any 1 ≤ β ≤ 1/(1 − α), with α = 1 − r
s
, and r < s < r + 1, and Π(Aε) = O(ε1/r) as

ε→ 0+, where Aε = {x ∈ X : (1/w(x)) ≤ ε}.

Now, in the above example, w(x) = e(k−1)x, whence

{x ∈ X : (1/w(x)) ≤ ε} = [− log(ε)

k − 1
,∞) ,

so for 0 < ε < 1,

Π(Aε) =
∫ ∞
− log(ε)

k−1

e−y dy = e−(− log(ε)/(k−1)) = ε1/(k−1) .

Hence, we can take r = k− 1, whence α has upper bound 1− r
r+1

= 1/k. Then β has upper

bound 1/(1 − (1/k)) = k/(k − 1), and the polynomial rate approaches O(n−(k/(k−1)−1)) =

O(n−1/(k−1)). In the case k = 5, this gives a polynomial rate approaching O(n−1/4), which

exactly agrees with the numerically imputed rate O(n−1/4) from the bound (3). This suggests

that the polynomial rate from Proposition 9 is indeed sharp in this case.
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Remark. Another approach to assessing the polynomial decay rate of the integral (3) is

to make the transformation z = e−x, to get that as n→∞,

(3) =
∫ 1

0

(
1− kzk−1 + (k − 1)zk

)n
dz =

∫ 1

0
e−nkz

k−1

(1 + o(1)) dz .

If we now make the transformation u = n1/(k−1)z, then this becomes

n−1/(k−1)
∫ n1/(k−1)

0
e−ku

k−1

(1 + o(1)) du ∼ n−1/(k−1)
∫ ∞
0

e−ku
k−1

du .

Since
∫∞
0 e−ku

k−1
du <∞ for k > 1, this again suggests that the upper bound (3) is decreasing

at the rate O(n−1/(k−1)), thus again confirming the same polynomial rate as before.

Remark. It may also be possible to derive polynomial rates from the formula (3) by means

of Tauberian theorems, see e.g. Bingham et al. (1987), but we do not pursue that here.

Remark. If we instead take k = 2 in this example, i.e. let q(x) = 2 e−2x, then it follows

from (3) that the chain converges (to within 0.01) after 50 iterations, i.e. we can take n∗ = 50.

Furthermore, we would now have qz = e−8 in (4), so ‖P n(x, ·)−Π(·)‖ ≥ e−4−(1−(1−e−8)n),

which is > 0.01 if n = 24. So, we conclude that the chain converges in between n∗ ≡ 24

and n∗ ≡ 50 iterations. More interestingly, the upper bound values appear numerically to

decrease at a rate of O(n−1), and this is equal to the rate O(n−1/(k−1)) from Proposition 9,

again showing agreement between the two rates. Furthermore, the rate O(n−1) is the cut-off

for establishing a Markov chain
√
n-CLT (see e.g. Tierney, 1994), and it is proved by Roberts

(1999) that the above independence sampler fails to have a
√
n-CLT for k ≥ 2, thus showing

precise agreement between all three different perspectives for convergence of this particular

independence sampler.

5. Example #2: Normal Distributions.

Let X = R with Lebesgue measure. Let π(x) = 1√
2π
e−x

2/2 be the density of a standard

normal distribution, and q(x) = 1
σ
√

2π
e−x

2/2σ2
that of a N(0, σ2) distribution for some fixed

σ > 0. Then w(x) = π(x)/q(x) = σ e−(x2/2)(1−σ−2) = σ e(x
2/2)(σ−2−1).

If σ ≥ 1, then w∗ ≡ supx∈X w(x) = σ < ∞, and the chain is uniformly ergodic with

‖P n(x, ·)− Π(·)‖ ≤ (1− 1
σ
)n. (In particular, if σ = 1, then we again have i.i.d. sampling.)

However, if 0 < σ < 1, then w∗ =∞, and again the chain is not uniformly or geometri-

cally ergodic. In that case, we compute (where Y ∼ Q(·)) that

m(x) = E[α(x, Y )] =
∫ ∞
−∞

α(x, y) q(y) dy
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=
∫ ∞
−∞

min(1, e(y
2−x2)(σ−2−1)/2)

1

σ
√

2π
e−y

2/2σ2

dy

= 2
∫ −|x|
−∞

1

σ
√

2π
e−y

2/2σ2

dy +
∫ |x|
−|x|

e(y
2−x2)(σ−2−1)/2 1

σ
√

2π
e−y

2/2σ2

dy

= 2 Φ(−|x|/σ) +
1

σ
√

2π
e−x

2(σ−2−1)/2
∫ |x|
−|x|

e−y
2/2 dy

= 2 Φ(−|x|/σ) + σ−1 e−x
2(σ−2−1)/2 [1− 2 Φ(−|x|)] . (5)

To proceed, again start at 0 since w(0) = infy∈X w(y). Then from Corollary 7, with

Z ∼ Π(·),

‖P n(0, ·)− Π(·)‖ ≤ E[(1−m(Z))n] =
1√
2π

∫ ∞
−∞

(1−m(x))n e−x
2/2 dx , (6)

with m(x) as in (5).

In the case σ = 0.5, the bound (6) gives:

Upper bounds on ‖P n(0, ·)− Π(·)‖ from (6), with σ = 0.5:

σ n upper bound
0.5 10 0.145
0.5 100 0.0546
0.5 1000 0.0219
0.5 7000 0.0104
0.5 8000 0.00989

This indicates that for the case σ = 0.5, the chain converges (to within 0.01 of stationarity)

within 8,000 iterations, which is not too quick but not overly slow. From the numbers in the

table, the polynomial order appears to be approximately O(n−0.4).

As for lower bounds, we take z = 2.5 in Theorem 8. Then, writing Φ(z) =
∫ z
−∞

1√
2π
e−x

2/2 dx

for the cumulative distribution function of a standard normal distribution, we have that

pz = Π{y ∈ X : w(y) > w(z)} = Π{y ∈ X : y2 > z2} = 2 Φ(−z) = 2 Φ(−2.5) ,

while

qz = Q{y ∈ X : w(y) > w(z)} = Q{y ∈ X : y2 > z2} = 2 Φ(−z/σ) = 2 Φ(−2.5/σ) .

So, by Theorem 8,

‖P n(x, ·)− Π(·)‖ ≥ pz − (1− (1− qz)n)
.
= 2 Φ(−2.5)− (1− (1− Φ(−2.5/σ))n) . (7)
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If σ = 0.5, then this bound equals 0.0101 when n = 4000. This shows that when σ = 0.5, the

chain converges in between n∗ = 4000 and n∗ = 8000 iterations, giving a ratio n∗/n∗ = 2,

again showing fairly tight bounds, specifically that we have identified the precise convergence

time within a factor of 2.

When σ = 0.2, the values from (6) become more extreme:

Upper bounds on ‖P n(0, ·)− Π(·)‖ from (6), with σ = 0.2:

σ n upper bound
0.2 1000 0.399
0.2 10,000 0.340
0.2 1010 0.149
0.2 1020 0.0452
0.2 1030 0.0148
0.2 1033 0.010725
0.2 1034 0.00963
0.2 1040 0.00507

This indicates that 1034 iterations (a huge number!) are sufficient for convergence, i.e. we can

take n∗ = 1034. Furthermore, the polynomial order appears to be approximately O(n−1/20).

One can again wonder if this bound is hugely conservative. However, with σ = 0.2, the

lower bound (7) is > 0.01 when n = 5 × 1032. So, the chain still has not converged after

5 × 1032 iterations. That is, the convergence time is between n∗ ≡ 5 × 1032 and n∗ ≡ 1034.

This gives a ratio of n∗/n∗ = 20, which is still fairly small, especially considering the huge

values of n∗ and n∗ involved. Thus, once again we have identified the convergence time fairly

precisely, even though the chain converges extremely slowly.

Remark. In the case σ = 0.2, numerical computation of the integral (6) required special

care regarding numerical precision. This is because m(x) is often extremely close to zero, re-

quiring lots of computations like (1−10−21)1034
, which should be very close to zero, but which

would be rounded to 11034
= 1 using ordinary double-precision floating-point arithmetic. To

avoid such problems, we performed these computations using Mathematica (Wolfram, 1988)

with the parameter WorkingPrecision set to a large number (e.g. 55), instead of the default

value (15.95). This produced accurate numerical integration even with such small values of

m(x) and such large values of n.
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6. Example #3: Unit Interval.

Finally, we consider the independence sampler example of Douc et al. (2007), where

X = (0, 1], π(x) ≡ 1, and q(x) = (r+ 1)xr for some r > 0. (We exclude the point 0 from the

state space simply to avoid the problem that q(0) = 0; alternatively we could just re-define

the single value of q(0) arbitrarily.) Douc et al. (2007) use hitting times of small sets to

prove that when r = 2, then ‖P n(x, ·)− Π(·)‖ < 0.1 for n = 500, while when r = 1/2, then

‖P n(x, ·)− Π(·)‖ < 0.1 for n = 50.

Here w(x) = π(x)/q(x) = x−r/(r + 1), so α(x, y) = min(1, xr/yr). We then compute

(with Y ∼ Q(·)) that

m(x) = E[α(x, Y )] =
∫ 1

0
min(1, xr/yr) (r + 1) yr dy

=
∫ x

0
1 (r + 1) yr dy +

∫ 1

x
(xr/yr) (r + 1) yr dy

= xr+1 + xr(1− x)(r + 1) = xr(r + 1)− rxr+1 .

If we start at the state 1 for simplicity, since w(1) = infy∈X w(y), then we have from Corol-

lary 7 (with Z ∼ Π(·)) that

‖P n(1, ·)− Π(·)‖ ≤ E[(1−m(Z))n] =
∫ 1

0
(1− xr(r + 1) + rxr+1)n dx . (8)

If r = 2, then (8) is < 0.1 when n = 28. (Thus, we have improved the bound 500 of

Douc et al., 2007, by a factor of nearly 18. On the other hand, the bounds of Douc et al.

are based on very general results, while ours are specifically designed for the independence

sampler.) By contrast, to make (8) be < 0.01 requires n = 2640, i.e. we have that n∗ = 2640.

(This again shows the slow nature of the convergence; it is much faster to get within 0.1 of

stationarity than to get within 0.01 of stationarity.)

As for lower bounds, for z ∈ X we compute that pz = Π(0, z) = z, and qz = Q(0, z) =

zr+1, so Theorem 8 gives that

‖P n(x, ·)− π(·)‖ ≥ pz − (1− (1− qz))n = z − (1− (1− zr+1)n) . (9)

If r = 2, then choosing z = 0.16 gives that for any x ∈ X , ‖P n(x, ·)−π(·)‖ > 0.1 for n = 15,

so the time to get within 0.1 of stationarity is between 15 and 28. Also, choosing z = 0.016

gives that for any x ∈ X , ‖P n(x, ·) − π(·)‖ > 0.01 for n = 1450, so the time to get within

0.01 of stationarity is between n∗ = 1450 and n∗ = 2640, a factor of n∗/n∗
.
= 1.8.

If r = 1/2, then (8) is < 0.1 when n = 2 (thus improving on Douc et al.’s bound of

50), and is < 0.01 when n = 9, so we can take n∗ = 9 in this case, indicating very fast
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convergence. On the other hand, if r = 5, then n∗ = 1.1 × 109 iterations are required to

make (8) be < 0.01, and after n∗ = 3.5 × 108 iterations (9) is still > 0.01, thus bounding

the time to convergence within a factor of 1.1 × 109 / 3.5 × 108 .
= 3.1, and again showing

how small changes in parameter values (e.g. changing r from 2 to 5) can have a tremendous

effect on convergence times.

7. Discussion.

This paper has provided precise quantitative upper and lower bounds for independence

samplers which are not geometrically ergodic. We provided both general results (Theorem 6,

Corollary 7, Theorem 8), and applications to specific examples. For the exponential example,

we proved that with k = 2 the convergence time is between 24 and 50 iterations, while for

k = 5 it is between 4,000,000 and 14,000,000. For the normal example, we proved that with

σ = 0.5 the convergence time is between 4,000 and 8,000, while for σ = 0.2 it is between

5× 1032 and 1034.

We believe this analysis to be useful for several reasons:

• It provides clear examples of precise quantitative convergence bounds for specific exam-

ples of non-geometrically ergodic MCMC algorithms, thus adding to the previous results

of e.g. Douc et al. (2007).

• It complements the previous analysis of Liu (1996) and Smith and Tierney (1996), who

studied convergence rates for geometrically ergodic independence samplers.

• It shows the usefulness of the coupling method for bounding convergence of MCMC,

without the use of minorisation conditions as in e.g. Rosenthal (1995) and Douc et al.

(2007).

• It shows that slight changes to a parameter value (e.g., changing k from 2 to 5) can have

an enormous effect on convergence times (e.g., from 50 to 14,000,000).

• It illustrates that even simple-seeming Markov chains can often converge extremely slowly,

requiring millions of iterations or more, so users of MCMC should not be confident of

convergence without careful analysis. (For related discussion see e.g. Jones and Hobert,

2001.)

We hope that in the future the coupling method can be applied to other Markov chains

and other examples of MCMC, in a continuing effort to better understand the nature and

speed of the convergence of Markov chains to their stationarity distributions.
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