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Abstract. We provide quantitative bounds on the convergence to stationarity
of real-valued Langevin diffusions with symmetric target densities.
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1 Introduction

Quantitative (computable) bounds on the convergence of Markov processes to stationarity

are an important and widely studied topic, particularly in the context of Markov chain Monte

Carlo (MCMC) algorithms (see e.g. Roberts and Tweedie, 1999; Rosenthal, 1995b, 1996,

2002; Jones and Hobert, 2001, 2004; Baxendale, 2005; and references therein). Most of this

research has focused on discrete-time Markov chains. However, continuous-time Langevin

diffusions also converge to stationary distributions, and they have applications in e.g. MCMC

(Roberts and Tweedie, 1996) and in molecular dynamics (Pavliotis, 2014).

A study of the qualitative exponential convergence properties of Langevin diffusions was

initiated in Roberts and Tweedie (1996). Quantitative bounds on their convergence are also

of interest. A start in this direction was made for a few specific examples by Roberts and

Rosenthal (1996) and Roberts and Tweedie (2000), but much remains to be done.

The current paper was inspired by a question from John Lafferty (personal communica-

tion), who asked about quantitative convergence bounds for Langevin diffusions on R with

target densities proportional to e−|x|
β

for some fixed β > 1. Below we provide quantitative

convergence upper bounds for such diffusions, and more generally for any symmetric real

Langevin diffusion satisfying certain conditions. Our bounds are conservative, but are still

numerically modest. For example, we show that in the e−|x|
β

case with β = 2, if we begin the
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diffusion at y = 2, then it converges to within 0.01 of stationarity in total variation distance

by time 27. (Or, if β = 1.1 and y = 10, then it is within 0.01 of stationarity by time 68.)

Our proof requires bounds on hitting times, which are also developed below using proba-

bility generating functions. It uses the coupling inequality, and the stochastic monotonicity

of the diffusions, following the general approach of Lund et al. (1996a, 1996b). Similar con-

structions have been used for Langevin diffusions in other contexts, see e.g. Silvestrov (1994,

1996) and Kartashov (1996).

2 Assumptions and Hitting Probabilities

Let π : R→ [0,∞) be a target density on R, satisfying the following:

(A1) (i) π is symmetric, i.e. π(−x) = π(x) for all x ∈ R;

(ii) π is continuously differentiable, i.e. is in C1;

(iii) π is unimodal, i.e. −∇ log π(x) ≥ 0 for all x ≥ 0;

(iv) π has light tails, i.e. there is b > 0 such that −1
2
∇ log π(x) ≥ b for all x ≥ 1.

For example, (A1) is satisfied if π(x) ∝ e−|x|
β

for any fixed β > 1, in which case for

x ≥ 0 we have −1
2
∇ log π(x) = −1

2
∇(−xβ) = 1

2
βxβ−1, which is ≥ 0 for x ≥ 0, and which is

non-decreasing on [1,∞) so we can take b = −1
2
∇ log π(1) = β/2 > 0.

On the other hand, if 0 < β < 1 (or if the tails of π are polynomial), then limx→∞∇ log π(x) =

0, so (A1) is not satisfied. Indeed, it follows from Roberts and Tweedie (1996, Theorem 2.4)

that the convergence to stationarity is not even exponential in those cases. However, the

convergence is still polynomial; this follows from results of Fort and Roberts (2005).

To continue, let {Xt} be a Langevin diffusion for π, so dXt = 1
2
∇ log π(Xt) dt + dBt

(where {Bt} is standard Brownian motion). Let Hy be this diffusion’s first hitting time of

0, conditional on starting at X0 = y. We wish to bound the tail probabilities of Hy.

Our key computation is the following bound on the probability generating function of

Hy, i.e. of My(s) := E(sHy). We require that:

(A2) The value s ∈ R satisfies that s > 1, and s < exp(b2/2), and

1 <
exp

(
b−

√
b2 − 2 log s

)
cos(
√

2 log s)
< 2 .
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Remark. It is computed directly that

d

ds
log

exp
(
b−

√
b2 − 2 log s

)
cos(
√

2 log s)

 =
1

b
> 0 ,

from which it follows that for any fixed b > 0, (A2) holds for all sufficiently small s > 1.

More specifically, let b0
.
= 0.54 be the first positive solution to eb/ cos(b) = 2. If 0 < b ≤ b0,

then the valid interval for s is 1 < s < exp(b2/2). If b > b0, then the valid interval for s is

from 1 to smallest s0 > 1 for which

exp
(
b−

√
b2 − 2 log s0

)
cos(
√

2 log s0)
= 2 .

Lemma 1. If π satisfies (A1), then for any y ∈ R, and any s satisfying (A2), the

probability generating function My(s) := E(sHy) of the Langevin diffusion for π satisfies

My(s) ≤ B(max(1, |y|), s, b), where

B(y, s, b) =
exp

(
(y − 1)

[
b−

√
b2 − 2 log s

])
cos(
√

2 log s)

/ 2−
exp

(
b−

√
b2 − 2 log s

)
cos(
√

2 log s)

 .

Lemma 1 is proved in Section 5 below.

Assuming Lemma 1, we immediately obtain a bound on the tail probabilities of the

hitting time of 0, as follows.

Proposition 2. If π satisfies (A1), then for any y ∈ R and t > 0, and any s satisfying

(A2), the hitting time Hy of the Langevin diffusion for π satisfies

P(Hy ≥ t) ≤ s−tB
(

max(1, |y|), s, b
)
.

Proof. It follows by Markov’s inequality that

P(Hy ≥ t) = P(sHy ≥ st) ≤ s−t E(sHy) = s−tMy(s) ≤ s−tB(max(1, |y|), s, b) .

Numerical Example. Suppose π(x) ∝ e−|x|
β
, so b = β/2 as above. Then if, say,

y = β = 2, then b = β/2 = 1, and choosing s = 1.3, we compute numerically from

Proposition 2 that P(Hy ≥ t) < 0.01 whenever t ≥ 27. This indicates that this process has

probability over 99% of hitting 0 by time 27. By contrast, if β = 1.1 and y = 10, then taking

s = 1.14 gives that P(Hy ≥ t) < 0.01 whenever t ≥ 68.
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3 Convergence Bounds: Reflected Case

Our main interest is in bounds on the convergence time to stationarity. We achieve this

via the coupling inequality, using stochastic monotonicity as in Lund et al. (1996a, 1996b).

We first consider the version of the process which is “reflected” or “folded” at zero, which

is equivalent to considering just the absolute value of the process. That is, we consider the

process Rt := |Xt|. This process behaves just like {Xt} on the positive half-line. But when

it hits 0, it reflects back to the positive part rather than go negative.

By symmetry, this process has a stationary density π equal to π restricted to the positive

half-line, i.e. π(x) = 2π(x)1x≥0. We seek specific quantitative computable bounds on the

total variation distance to stationarity of this process after time t, i.e. on

‖Ly(Rt)− π‖ := sup
A⊆R
|Py(Rt ∈ A)− π(A)| ,

where the supremum is taken over all measurable subsets A ⊆ R, and the subscript y

indicates that the process was started at the state y, and π(A) :=
∫
A
π(x) dx. We shall prove

the following.

Proposition 3. If π satisfies (A1), then for the reflected Langevin diffusion for π, started

at state y ≥ 1, for any s satisfying (A2), the total variation distance to stationarity at time

t > 0 satisfies

‖Ly(Rt)− π‖ ≤ 2 π[0, y] s−tB(y, s, b) + 2

∫ ∞
y

π(z) s−tB(z, s, b) dz ,

with B(y, s, b) as in Lemma 1.

Proof. Let y ≥ 1 and z > 0, and let {Xt} and {X̃t} be two separate copies of the diffusion

process, started at X0 = y and X̃0 = z. Let Rt = |Xt| and R̃t = |X̃t|. We wish to couple

the processes so that {Rt} and {R̃t} (started at y and at z, respectively) are both driven

by the exact same Brownian motion {Bt}. This can be accomplished by designing {Xt}
and {X̃t} so that when Xt > 0, dXt = 1

2
∇ log π(Xt)dt + dBt, while when Xt < 0, dXt =

1
2
∇ log π(Xt)dt− dBt, and similarly when X̃t > 0, dX̃t = 1

2
∇ log π(X̃t)dt+ dBt, while when

X̃t < 0, dX̃t = 1
2
∇ log π(X̃t)dt − dBt. With this choice, it follows from (A1) that whenever

Rt > 0 and R̃t > 0, then dRt = 1
2
∇ log π(Rt)dt+ dBt and dRt = 1

2
∇ log π(Rt)dt+ dBt, with

the same Brownian motion {Bt}. Hence, by continuity, the relative ordering of Rt and R̃t is

preserved, i.e. if y ≤ z then Rt ≤ R̃t for all t, while if y ≥ z then Rt ≥ R̃t for all t.

With this coupling construction, it follows that if the larger of the two processes hits 0,

then the other process must also equal 0 at that same time. Hence, the two processes must
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couple (i.e., become equal) by the time the larger of the two processes hits 0. But the larger

of the two processes started at max(y, z). Therefore, if the coupling time is U , then U is

stochastically bounded above by the hitting time Hmax(y,z) of 0 from the state max(y, z), i.e.

P(U ≥ t) ≤ P(Hmax(y,z) ≥ t).

Hence, by the usual coupling inequality (e.g. Roberts and Rosenthal, 2004, Section 4.1),

the total variation distance of the processes after time t satisfies

‖Ly(Rt)− Lz(R̃t)‖ := sup
A⊆R
|P(Rt ∈ A)−P(R̃t ∈ A)|

≤ P(U ≥ t) ≤ P(Hmax(y,z) ≥ t) .

Therefore, by Proposition 2, for any s ≥ 1, ‖Ly(Rt)− Lz(R̃t)‖ ≤ s−tB(max(1, y, z), s, b).

Suppose now that we start the {Rt} process at y ≥ 1, and start the {R̃t} process at a

state Z ∼ π chosen randomly from the stationary distribution. Then

‖Ly(Rt)− π‖ ≡
∥∥∥Ly(Rt)−

(
EZ∼πLZ(R̃t)

)∥∥∥
≤ EZ∼π‖Ly(Rt)− LZ(R̃t)‖

≤ EZ∼π[P(Hmax(y,Z) ≥ t)]

≤ EZ∼π[s−tB(max(1, y, Z), s, b)]

=

∫ ∞
0

π(z) s−tB(max(1, y, z), s, b) dz

= π[0, y] s−tB(y, s, b) +

∫ ∞
y

π(z) s−tB(z, s, b) dz

= 2 π[0, y] s−tB(y, s, b) + 2

∫ ∞
y

π(z) s−tB(z, s, b) dz .

Numerical Example. Again let π(x) ∝ e−|x|
β
. Then from the above,

‖Ly(Rt)− π‖ ≤ 2 π[0, y] s−tB(y, s, b) + 2

∫ ∞
y

π(z) s−tB(z, s, b) dz .

Suppose again that y = β = 2 with b = β/2 = 1. Then choosing s = 1.3, Proposition 3

shows that ‖Ly(Rt) − π‖ < 0.01 whenever t ≥ 27, i.e. the process also converges to within

99% of its stationarity distribution by time 27. By contrast, with y = 10 and β = 1.1, we

find choosing s = 1.14 that ‖Ly(Rt)− π‖ < 0.01 whenever t ≥ 68.
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4 Convergence Bounds: Unreflected Case

Finally, we consider convergence bounds on the full, unreflected diffusion {Xt}. Here we

cannot use stochastic monotonicity directly, because the full diffusion has no lowest state (or

even lower bound) on which to force two copies of the diffusion to couple.

Nevertheless, using the symmetry condition A1(i), we are able to prove that the same

convergence time bounds hold for the unreflected case as for the reflected case:

Proposition 4. If π satisfies (A1), then for the full unreflected Langevin diffusion for π,

started at state y ≥ 1, for any s satisfying (A2), the total variation distance to stationarity

at time t > 0 satisfies

‖Ly(Xt)− π‖ ≤ 2π[0, y] s−tB(y, s, b) + 2

∫ ∞
y

π(z) s−tB(z, s, b) dz ,

with B(y, s, b) as in Lemma 1.

Proof. We again proceed, similarly to Proposition 3, by defining an appropriate coupling to

preserve the ordering of the absolute values of the processes. We do this in stages. First, we

jointly define two copies {Xt} and {X̃t} of the Langevin diffusion for π, by X0 = y, X̃0 ∼ π,

dXt = 1
2
∇ log π(Xt) dt + dBt, and dX̃t = 1

2
∇ log π(X̃t) dt − dBt, where {Bt} is the same

standard Brownian motion in both cases. In particular, {Xt} and {X̃t} are anti-coupled, i.e.

are driven by the same Brownian motion but with opposite signs.

For this joint process, let

τ = inf{t ≥ 0 : Xt = X̃t}

be the first time they meet. Thus, τ is a stopping time for the joint process. Finally, define

another process {X̂t} by X̂0 = X̃0, and

dX̂t =

{
1
2
∇ log π(X̃t) dt− dBt , t ≤ τ

1
2
∇ log π(X̃t) dt+ dBt , t > τ

That is, {X̂t} is the same as {X̃t} up to the meeting time τ , after which {X̂t} is the same

as {Xt}. (This construction is valid since τ is a joint stopping time.)

We claim that this joint process preserves the absolute-value ordering of the processes

{Xt} and {X̂t}, i.e. if |X0| ≥ |X̂0| then |Xt| ≥ |X̂t| for all t ≥ 0, while if |X0| ≤ |X̂0| then

|Xt| ≤ |X̂t| for all t ≤ 0. Indeed, when Xt and X̂t have the same sign, the ordering is

preserved simply because of the continuous sample paths. The only remaining case is if Xt
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and X̂t are of opposite sign. But if that is true, then Xt 6= X̂t, so we must have t < τ , so that

{Xt} and {X̂t} are driven by Brownian motions of opposite sign. By the symmetry condition

A1(i), just as in Proposition 3, this means that their absolute values are driven by the same

Brownian motion, with the same drift function, and hence again cannot cross because of the

continuous sample paths. So, in any case, the absolute-value ordering is preserved.

The rest of the argument is identical to that of Proposition 3. Indeed, when the larger

(in absolute value) of the two processes reaches zero, the smaller one must also reach zero,

so they must have coupled by that time. That is, conditional on X0 = y and X̃0 = z, we

must have τ ≤ Hmax(y,z). Hence, if we start the {Xt} process at a state y ≥ 1, and start

the {X̃t} process at a state Z ∼ π chosen randomly from the stationary distribution, then

applying Proposition 2, we must again have

‖Ly(Xt)− π‖ ≡
∥∥∥Ly(Xt)−

(
EZ∼πLZ(X̃t)

)∥∥∥
≤ EZ∼π‖Ly(Xt)− LZ(X̃t)‖

≤ EZ∼π[P(Hmax(|y|,|Z|) ≥ t)]

= EZ∼π[P(Hmax(|y|,Z) ≥ t)]

≤ 2π[0, y] s−tB(y, s, b) + 2

∫ ∞
y

π(z) s−tB(z, s, b) dz ,

exactly as in the proof of Proposition 3.

Numerical Example. Since the bounds in Proposition 4 are the same as those in

Proposition 3, the same bounds still apply. For example, if y = β = 2, then choosing

s = 1.3, Proposition 4 again shows that ‖Ly(Xt) − π‖ < 0.01 whenever t ≥ 27, i.e. the full

unreflected process also converges to within 99% of its stationarity distribution by time 27.

Or, with y = 10 and β = b = 1.1, Proposition 4 with s = 1.14 yields that ‖Ly(Xt)−π‖ < 0.01

whenever t ≥ 68.

Remark. It is perhaps surprising that we obtain identical convergence bounds in both

the reflected and the unreflected (original) case. Indeed, in general the reflected case should

converge faster. However, since our upper bounds are derived using the hitting time of the

larger process (in absolute value) to reach zero, we obtain the same bound in both cases.
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5 Proof of Lemma 1

Finally, we prove Lemma 1. We assume y ≥ 1; the case y ≤ −1 then follows by symmetry,

and the case |y| < 1 then follows since, by monotonicity, the hitting time of 0 from such y is

stochastically bounded above by the hitting time of 0 from 1.

We first introduce an indicator process {It}t≥0. Intuitively, It indicates whether at time

t we are “waiting to hit 1”, or are “waiting to hit 0 or 2 from 1”. Specifically, we begin with

I0 = 0 if y > 1, or I0 = 1 if y = 1. Then, each time Xt hits 1, we set It = 1. And, each time

Xt hits 2 or 0, we set It = 0.

Next, we let {X̃t} be a slight modification of {Xt}, as follows. {X̃t} mostly follows the

same dynamics as {Xt}. However, whenever It = 1, the drift of {X̃t} is instead 0, i.e. we

replace the Langevin diffusion dynamics by standard Brownian motion. Also, when It = 0,

the drift of {X̃t} is instead the constant value −b.
Now, because of the assumptions (A1), this new process is stochastically larger than the

original process up to time Hy, i.e. it can only take longer to hit 0. So, writing H̃y for the first

time the modified process {X̃t} hits 0, and M̃y(s) := E(sH̃y) for its probability generating

function, we must have My(s) ≤ M̃y(s) for all y ≥ 0 and s ≥ 1. That is, we can (and will)

use the hitting time of 0 for the modified process, as an upper bound on the hitting time of

0 for the original process. So, it suffices to show that M̃y(s) = B(y, s, b), which we now do.

For the modified process {X̃t}, we break up the journey from y ≥ 1 to 0 into steps:

1. Reach the state 1.

2. From there, reach either state 0 or state 2.

3(a). If it reached state 0, then we’re done.

3(b). If instead it reached state 2, then return to step 1.

Now, since {X̃t} has zero drift on [0, 2], it follows that after reaching state 1, the process

has equal probability 1/2 of reaching either 0 or 2. Therefore, the number of times the

process will return to step 1 before finally hitting 0 is a geometric random variable G ∼
Geometric(1/2) with P[G = k] = 2−k−1 for k = 0, 1, 2, . . .. It then follows that the time for

{X̃t} to reach state 0 from y can be written as

H̃y = Ty1 +
G∑
i=1

(T̃
(i)
12|2 + T

(i)
21 ) + T̃10|0 .

Here Ty1 is the random time for {X̃t} to reach 1 from y with constant drift −b, and each

T
(i)
21 is an independent random time for {Xt} to reach 1 from 2 with drift −b, and each T̃

(i)
12|2

is an independent random time for {Xt} with drift 0 to reach 2 from 1 with drift 0 but
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conditional on reaching 2 before 0, and T̃10|0 is an independent random time for standard

Brownian motion to reach 0 from 1 with drift 0 but conditional on reaching 0 before 2.

Hence, with corresponding notation, the probability generating function M̃y(s) := E(sH̃y)

is given by

M̃y(s) = My1(s)×MG

(
M̃12|2(s)×M21(s)

)
× M̃10|0(s) . (1)

Now, these various formulas are known. First, by symmetry, M̃12|2(s) = M̃10|0(s) = M∗
0 (s)

where M∗
x(s) is the probability generating function for the time taken by standard Brownian

motion to reach ±1 when started at x (where −1 < x < 1), and this is known to be given

for s > 1 by

M∗
x(s) =

cos(x
√

2 log s)

cos(
√

2 log s)
,

so that M∗
0 (s) = 1/ cos(

√
2 log s). Also, G has known probability generating function given

by MG(r) := E(rG) = (1− 1/2)/(1− r/2) = 1/(2− r) for 1 < r < 2.

Finally, it is known (see e.g. equation 2.0.1 on p. 301 of Borodin and Salminen, 2002;

Proposition 3.3.5 of Etheridge, 2002) that if {Wt} is standard Brownian motion, and Ta,b =

inf{t ≥ 0 : Wt = a+ bt}, then for α > 0 and a > 0 and b ≥ 0,

E [exp(−αTa,b)] = exp
(
−a
[
b+
√
b2 + 2α

])
.

Hence, with the identification α := − log s and a := −(y − 1), this indicates that

My1(s) = exp
(

(y − 1)
[
b−

√
b2 − 2 log s)

])
,

and M21(s) then follows by setting y = 2.

Plugging these various formulae into (1), it follows by direct algebra (verified using

the Mathematica symbolic algebra software, Wolfram 1988) that M̃y(s) = B(y, s, b) with

B(y, s, b) as stated. Then, by monotonicity, My(s) ≤ M̃y(s) = B(y, s, b), giving the result.

Remark. An examination of the proof of Lemma 1 indicates that assumption (A1) is

not strictly necessary, and quantitative bounds could be obtained by similar methods for

Langevin diffusions for other target densities π as well.

6 Conclusion

This paper has provided quantitative bounds on the convergence to stationarity of Langevin

diffusions for one-dimensional symmetric target densities π. The resulting time bounds are
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fairly modest, giving values like 27 and 68 for different examples. This is in contrast to most

of the previous related work, which considered qualitative convergence properties such as

exponential convergence, but which did not provide any quantitative bounds.

One might wonder if our results can be extended to multidimensional diffusions. In gen-

eral, the answer is essentially no. Specifically, our main result relies crucially on monotonicity

arguments. As such, generalisation to the multidimensional case is difficult without strong

symmetry assumptions. For example, in Roberts and Tweedie (2000), it is remarked that

the stochastic monotonicity can be retained for spherically symmetric target densities. But

even in that situation, the drift of |x| would go to infinity as x→ 0, so that the proof herein

could not be applied in that case.

Finally, we note that our convergence time estimates are of course upper bounds, and it is

reasonable to ask how tight they are. In the special case that π(x) ∝ e−|x|
β

with β = 2, the

corresponding diffusion is an Ornstein-Uhlenbeck process. In that case, it can be computed

exactly that if X0 = y, then Xt ∼ N(ye−t, (1 − e−2t)/2). Hence, ‖Ly(Xt) − π‖ is simply

the total variation distance between N(ye−t, (1 − e−2t)/2) and the stationary distribution

N(0, 1/2). We compute directly that this is < 0.01 whenever t ≥ 4.73. So, in this one special

case, we can say that the true convergence time is 4.73, while our upper bound is 27. This

gives a ratio of 27/4.37
.
= 6.2, i.e. our upper bound is about 6.2 times as large as the true

answer, so that the theory is not too far from the actual convergence time in this case.

Acknowledgements. We thank John Lafferty for asking this question, and the anonymous

referees and editors for very helpful reports which greatly improved the manuscript.
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