Understanding MCMC, Lancaster 2003

Exercises

1.

Let X = {1,2,3}, and consider the Markov chain with transitions P(1,{2}) =
P(2,{3}) = P(3,{1}) =3/4, and P(1,{3}) = P(2,{1}) = P(3,{2}) = 1/4.

(a) Prove that the uniform distribution on X" is stationary for this chain.

(b) Prove that the chain is not reversible with respect to its stationary distribution.

Let X = R, and consider the Markov chain defined as follows. Given X,,, we choose
Xp+1 ~ N(X,/2, 3/4). Let w(-) = N(0,1). Prove that n(-) is stationary for this
Markov chain, in two ways:

(a) Given that X,, has standard normal density, compute directly the density of X, 11
and show it is the same.

(b) Use the fact that we can (why?) write X,,,1 = X,,/2 + \/3/4Z,.1, where {Z,}

are i.i.d. standard normal.
For the multiplicative RWM algorithm with proposal
Qw, ) =z

show that

]

Let X = R, and let 7(-) = N(0,1) be the standard normal distribution. Consider
the Random-Walk Metropolis algorithm which uses the proposal kernel Q(z,-) =
Uniform[z — 1, z + 1].

(a) Describe in detail how this algorithm proceeds.

(b) Prove that the resulting algorithm is ¢-irreducible.

(c) Prove that the resulting algorithm is aperiodic.

(d) What can we conclude from this?

a(x,y) = min {1,

Let X = [0,1] x [0,1], and let m(dx) = 7(x)dx, where dx is two-dimensional
Lebesgue measure, and where 7(x) = 4x3zo + 225. Consider running the Gibbs
sampler on this distribution.

(a) Describe in detail how this algorithm proceeds.

(b) Prove that the resulting algorithm is ¢-irreducible.

(c) Prove that the resulting algorithm is aperiodic.

(d) Prove that the resulting algorithm is Harris recurrent.

(d) What can we conclude from all of this?

Suppose Markov chain transitions P(x,-) on a state space X have a density with
respect to some reference measure v(-): P(z,dy) = p(x,y) v(dy). Let C C X. Show
that P(z,-) > ep(-) for all x € C, for some probability measure p(-) on X', where

€ = nyX (lnfx60p<x7y)>y(dy)



7. Let X = R, and consider again the Markov chain such that given X,,, we choose
Xp+1 ~ N(X,,/2, 3/4). Recall that 7(-) = N(0,1) is stationary for this Markov
chain. Let C = [—/3,V/3], and let V(z) = 1 + 22
(a) Compute E[V (X, 41) | X, = 2] explicitly.

(b) Use this to obtain a drift condition of the form PV (z) < AV(x) + blo(z) for
some A < 1 and b < oo.

(c) Establish a minorisation condition of the form P(x,-) > ev(-) for all x € C. [Hint:
Use the previous exercise.]

(d) Put this all together, to obtain a quantitative bound on the time to stationarity
of this Markov chain.

8. Let X = [0,00), and let m(dzx) = e *dx be the standard exponential distribution.
Consider the Random-Walk Metropolis algorithm which uses the proposal kernel
Q(z,-) = Uniform[x — 6, = + ¢] for some 6 > 0.

(a) Compute the rejection probability P[X, 1 = X, | X,, = 2| for x € X.
(b) What value of § do you think will lead to the most efficient algorithm? Why?

9. Let m denote the discrete uniform density on the following subset of S = {0,1}°. Let

5
X(l) = {<G1,a2, < 7a6); Z ’a/iJrl - ai] =0or 1}
i=1

and let .
X(2) = {<a17a27 e ,GG); Z ’aiJrl - a¢| =4 or 5},
i=1

so that 7 is the uniform distribution on X = X (1) U X'(2). We consider the Gibbs
sampling algorithm which updates in turn each of the 6 components. Write down
explicitly the elements of X.

By considering how the Gibbs sampler changes Z?Zl |a; 11 — a;|, show that the Gibbs
sampler is reducible in this example.

Suppose we decided to try and ‘diagnose’ convergence by monitoring a; from inde-
pendent runs of the Gibbs sampler started at a collection of different starting points.
Would we be able to ‘detect’” non-convergence? Why?

Methods which empirically monitor Markov chain output until approximate station-
arity is observed are called convergence diagnostics. What conclusions can you draw
about the use of one-dimensional convergence diagnostics from this simple example?

10. Suppose we consider the independence sampler with ¢(x,y) = ¢(y) and suppose that

MZﬁ>0, Vye X (1)

m(y)



11.

12.

then show that the transition density of the sampler (for y not equal to x is given by

q(x)7(y)

()

ple.n) = (4t 1 ) = o700

Hence show that

1P (2, ) ==l <2(1 = 5)" .

Consider the following random walk Metropolis sampler on the geometric distribu-
tion:

(i) =(1—-a)d', 1=0,1,23,...
fo some constant 0 < a < 1. ;jFrom state x we propose a move to x + 1 or z — 1 with
equal probability, 1/2.

Verify that for x > 1, the downward move (ie to = — 1) is always accepted, whereas
upward moves are accepted with probability a. Now consider the Lyapunov drift
function, V(z) = ¢7*. Show that for x > 1,

PV(x)=E((V(X})|Xo=2) = (aeﬁ(zﬂ) +(1—a)e® + eﬁ(xﬂ)) .

1
2
Show that the right hand side can be written as AV (x) where

(1-)a—e?)

:1—
A 2

Hence by a suitable choice of 3, show that the algorithm is geometrically ergodic.

Consider the bivariate normal distribution, 7, with unit variances and correlation p.
If (X,Y) ~ 7 show that the conditional densities are given by

(X]Y) ~ N(pY, (1= p?))
and
(VIX) ~ N(pX, (1= p?)) .

Hence show that if {X,,} is the X sequence of a Gibbs sampler under this parame-
terisation, then
X1~ N(pQXn, 1 - p4)

and that
X, ~ N(p*Xo,1— p*'") .



