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Understanding MCMC: Exercise Solutions

We compute that ) ., (1/3) P(x,{y}) = 1/3 for all y € X..

It is not reversible since e.g. 7{1} P(1,{2}) = (1/3)(3/4) # (1/3)(1/4) = n{2} P(2,{1}).
Let h(t) = \/%e_trz/ 2 be the standard normal density. Then if X,, has density h(z),
then X, 11 has density given by [g h(t) h((z — t/2)/\/ﬂ) dt which we compute is
equal to h(z) for all z € R, so that X, also has density h(z).

If X,, and Z, 4 are i.i.d. standard normal, then X, /2 + \/ﬂZnH is also standard

normal.

We compute the function ¢(z,y) as follows. Let g(z) = ze* (for fixed x). Then
Y11 = 9(Zny1), where Z,, .1 ~ N(0,02%) with density fz (say). Now, ¢’(2) = ze* and
g (y) = log(y/x), so ¢'(¢g"*(y)) = xe°8W/®) = g(y/x) = y. Hence, by the change-
of-variable formula, the density of Y, 11 is given by fy (y) = fz(¢ (%)) l¢'(¢7 1 (y)| =
fz(log(y/z)) y. We conclude that ¢(z,y) = fz(log(y/)) y.

Now, if C(z,y) = fz(log(y/x)), then C(x,y) = fz(logy—logx), so C(x,y) = C(y, x).

Hence,

Given X,,, propose Y, 11 ~ Uniform[X,, — 1, X,, + 1], then accept (and set X, 11 =
Y4+1) with probability min[1, 7(Y;,4+1)/7(X,,)], otherwise reject (and set X, 11 = X,).
Let A be Lebesgue measure on R. Then if A(A) > 0, we can find r € R with
AMAN([r,r+1]) > 0. Then from Xy = x, we have positive probability of being inside
[r,7 + 1] after > |z — r| + 1 iterations. From there, we have positive probability of
entering A on the next iteration. Hence, the chain is A-irreducible.

Assume to the contrary that the chain has periodic decomposition X = X7 U...U Xy
for some d > 2. Find r € R and A C &) N [r,r + 1] with A(A) > 0. Then for
x € [r,r + 1], we have P(xz, A) > 0, contradicting the fact that P(z,X;) = 0 for all

T € AX.



(d)

5. (a)

We conclude that lim,, o ||P"(z,:) — 7(-)|| = 0 for m-a.e. x € X.

Given z9, the 1-component update (P ) replaces x1 by a draw from the density on [0, 1]
given by f(x1) = 7((z1,x2)) / fol w((z1,2))dz. Similarly, the 2-component update
(P>) replaces x2 by a draw from the density on [0, 1] given by h(z2) = m((z1,22)) /
fol 7m((z,22))dz. The deterministic-scan Gibbs sampler then alternately applies P
and P,, while the random-scan Gibbs sampler repeated chooses one of P, and P»
uniformly at random.

Let A be Lebesgue measure on X = [0,1] x [0,1]. Then if A(A) > 0, then (since
m(x) > 0 for all x € X') the chain can reach A with positive probability in one step of
deterministic scan, or two steps of random scan. Hence, the chain is A-irreducible.
Random-scan Gibbs sampler is always aperiodic (since it might repeat the same update
twice). For deterministic-scan, if 7(A) > 0, then the chain has positive probability of
reaching A in one iteration from anywhere, so it cannot be periodic.

The deterministic-scan Gibbs sampler has transitions which are absolutely continuous
(i.e. have density), so it must be Harris recurrent. For random-scan the chain is
absolutely continuous as soon as it has updated both components at least once, which
must happen eventually with probability 1.

We conclude that lim,,,« || P"(z,:) — 7(-)|| = 0 for all x € X.

Let p(4) = e [, (infzec p(z,y))v(dy), for A C X. Then we claim that P(z,-) >
ep(), where € = fyeX (infxec p(a:,y))y(dy). The proof is that for x € X and any
ACX,

Pla.A) = [ plepyvids) = [ (inf p(e.s))vidy) = epla).

PV(z) =E[V(Xps1 | Xn =2] =1+ (/2)% + (3/4) = 22 /4 + 7 /4.

We verify that PV (z) < (5/8)V(z) + (9/8)1¢(x), i.e. we may take A = 5/8 and
b=9/8.

Here inf,ec p(z,y) = p(V3,y) = h((y — v/3/2)/1/3/4) for y < 0, and inf,ec p(z, y) =
p(—V3,y) = h((y—+/3/2)//3/4) for y > 0, where again h(t) = \/%76_’52/2 is the stan-
dard normal density. Thene= [ o (infoec p(z,y))dy = [0 h((y—+/3/2)//3/4)+
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IS h((y+v3/2)/1/3/4) =2 ®(—1) > 0.31 (where ®(z) = [*__ h(t)dt is the cdf of a
standard normal).

To obtain a quantitative bound, apply the above values of ¢ = 0.31, A = 5/8, b =9/8,
and d = v/3 to the results on slides 83 and 84.

If x > 6, then we can reject only to the right, and
z+9d
P[Xo1 = X | X, = 2] = (20) / (1— e )y = (20) (5 — 1+ 7).
If x < 6, then we can also reject to the far left, and
PXpi1=Xp| Xp=2]=(20)" 6 —14+e°+ (5 —2)).
The stationary rejection probability is then given by
é
Rs = (26)~! (5 —14e7? —|—/ (0 — m)e_xdx> =1-(1-e%)/6.
0

We should then choose ¢ so that 1 — Rs ~ 0.234, which is achieved at § = 4.2 (though

any value close to this is fine too).

Here
X (1) ={(0,0,0,0,0,0), (0,0,0,0,0,1), (0,0,0,0,1,1), (0,0,0,1,1,1),
(0,0,1,1,1,1), (0,1,1,1,1,1), (1,1,1,1,1,1), (1,1,1,1,1,0),
(1,1,1,1,0,0), (1,1,1,0,0,0), (1,1,0,0,0,0), (1,0,0,0,0,0)},
while
X(2) ={(o,1,0,1,0,1), (0,1,0,1,0,0), (0,1,0,1,1,0), (0,1,0,0,1,0),
(0,1,1,0,1,0), (0,0,1,0,1,0), (1,0,1,0,1,0), (1,0,1,0,1,1),
(1,0,1,0,0,1), (1,0,1,1,0,1), (1,0,0,1,0,1), (1,1,0,1,0,1)},

and the chain never moves between X(1) and X(2). Hence, the chain is not ¢-

irreducible. On the other hand, for the uniform distribution on either X’(1) or X'(2), we
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have Pla; = 0] = Pa; = 1] = 1/2 for each i. Hence, if you used any one-dimensional
convergence diagnostic, you would conclude that the chain had converged, even though

it was actually stuck in either X(1) or X(2).

We compute that

plav) = ) (11 TN — (o) 1 L) > (3n(0) n 7(0)8) = ).

X

It then follows from Theorem 5.7 on slide 57 that ||P™(z,-) — «(-)|| < 2(1 — B)", for
all z € X.

We have a(z,y) = min[l, m(y)/7(z)] which equals 1 for y < z and equals a if y = x+1.
The computation for PV (z) is then the sum of three terms from either proposing a
move right and accepting, proposing a move right and rejecting, and proposing a move
left (and therefore accepting). The formula for A follows by factoring out V(x) = e°*.

For large enough 3, we have a — e™? > 0, and then \ < 1.

The conditional densities are a standard result about the bivariate normal distribu-
tion. Hence the (deterministic-scan) Gibbs sampler sets Y,, 1 = pX,, + ﬂ Lnt1
and then X, 11 = pYni1 +/1— 02 Wiyt = p>° X + p/1 = 02 Zyy1 + /1= 02 Wiis
(where {Z,,} and {W,,} are i.i.d. standard normal). Hence, conditional on X, the con-

2
ditional distribution of X,,; is normal with mean p?X,, and variance (\/ 1-— p2> +

2
(p 1-— ,02) = (1—p?)+ (p?>(1 — p?)) = 1 — p*, as stated. The final statement about

X, in terms of X then follows by induction.



