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1. Introduction.

There has been a lot of recent work on the convergence of random walks on finite or

compact groups to their stationary, uniform distribution. Particular emphasis has been

placed on the rate of convergence, i.e. on estimates of the number of iterations until the

random walk is “close” to uniformity. The best-known examples come from the card-

shuffling analyses of Diaconis and co-workers; see [D] for an extensive introduction.

The most striking fact to emerge from these analyses is the existence of the “cut-off

phenomenon” (see [DS], [AD], [D]) in certain examples, meaning that the variation distance

to uniformity remains close to 1 for a large number of iterations, and then decreases to

close to 0 in a relatively small number of further iterations. Precise definitions are given

in Section 2.

The cut-off phenomenon has been observed in a number of specific examples, including

Random Transpositions [DS], Top-to-Random Shuffles [AD], Riffle Shuffles [BD], Random

Transvections [H], Random Rotations [R], and Random Reflections [P]. The known exam-

ples are all very specific, and it is reasonable to ask whether this phenomenon occurs more

generally. On the other hand, the cut-off phenomenon does not occur for all random walks

on finite and compact groups: One counter-example is simple random walk on Z/(n) (see

[D], Section 3C, Theorem 2).

This paper presents a first step towards a more general result about the cut-off phe-

nomenon. A large class of measures on a fairly large collection of groups (both finite and

compact) are considered. The measures are still required to be conjugate-invariant, but

they are defined much more generally than in the previous specific examples. For these

measures, we prove the “easier half” of a cut-off phenomenon. Specifically, we provide the

lower-bound part of the argument, proving that the variation distance stays close to 1 until
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a certain specified number of iterations, after which we conjecture that a cut-off occurs.

Our methods involve Fourier analysis, and directly generalize previous work of others. We

close by briefly discussing possible approaches to proving the corresponding upper bound,

and thereby establishing the cut-off phenomenon in this generality.

Section 2 presents the necessary notation and preliminaries. Section 3 presents our

main result, Section 4 provides some examples, and Section 5 presents the proof. Section

6 discusses the question of the upper bound.

2. Preliminaries.

A probability measure Q on a group G induces a random walk on the group, with

the distribution after k steps given by Q∗k, the k-fold convolution of the measure Q with

itself.

If the group G is compact [or finite], it has an associated normalized Haar measure

λ [or uniform probability measure]. If Q is “nice enough” (in particular, for finite G, if

the support of the measure Q is not contained in any coset of any subgroup of G), then

it is well-known (see e.g. [K]) that the measures Q∗k will converge to λ in total variation

distance. In symbols,

‖Q∗k − λ‖var := sup
A⊆G

|Q∗k(A)− λ(A)| → 0 as k →∞ .

It is often desired to know the “rate” at which this convergence to 0 takes place, in the

sense of how large k should be to make the variation distance small.

These questions can be handled by Fourier Analysis. See [DS] and [D] for background.

To define things, let ρ0, ρ1, ρ2, . . . be the irreducible representations of the compact (or

finite) group G, with ρ0 the trivial representation. Let di be the dimension of ρi. Recall

that the Fourier Transform of the measure Q∗k is defined by

Q̂∗k(ρi) :=
∫
G

ρi(s) Q∗k(ds) .

In this paper, we shall specialize to probability measures Q which are conjugate-invariant,

in the sense that Q(s−1As) = Q(A) for all group elements s and all measurable subsets A.
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For such measures, Schur’s Lemma implies that Q̂(ρi) = ciIi for some complex number ci,

where Ii is the di × di identity matrix. Thus

Q̂∗k(ρi) = (ci)kIi .

Furthermore, it is seen by taking traces that ci =
(
tr Q̂(ρi)

)
/di; in particular, |ci| ≤ 1.

The Upper Bound Lemma of Diaconis and Shashahani ([DS]; see also Chapter 3B of

[D]) states in this case that

‖Q∗k − λ‖var ≤ 1
2

√∑
i≥1

(di)2|ci|2k . (1)

In words, this states that if k is large enough to make
∑
i≥1

(di)2|ci|2k small, then the variation

distance of Q∗k to stationarity will be small. Equation (1) has been used to prove the upper

bounds in most of the previous cut-off phenomenon results; we shall discuss its possible

use in our problem in Section 6.

On the other hand, consider the character χ1(s) = tr ρ1(s), where ρ1 is the “first non-

trivial irreducible representation”, to be defined more precisely later. Under the uniform

distribution λ, it is easily checked that we have Eλ(χ1) = 0 and Var λ(χ1) = 1. Under

the distribution Q∗k, setting mk := EQ∗k(χ1), we have mk = (c1)kd1. Now, if mk were

large for some k, then we would expect that the measures Q∗k and λ would be “far apart”.

To make this more precise, let A be the subset of G on which χ1(s) ≥ |mk|/2, and set

vk := Var Q∗k(χ1) := EQ∗k |χ1−mk|2. Then, using Chebychev’s inequality twice (cf. p. 44

of [D]), we see that

λ(A) ≤ 4/|mk|2 ; and

Q∗k(A) ≥ 1 − 4vk/|mk|2 .

Hence, it follows that

‖Q∗k − λ‖var ≥ 1 − 4(1 + vk)/|mk|2 . (2)

In words, this states that if (1 + vk)/|mk|2 is small, then the variation distance of Q∗k

to stationarity will be close to 1. We shall use equation (2) to establish our lower bound

result in the present generality.
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It has become standard to consider a sequence G1, G2, . . . of groups, with |Gn| → ∞,

and with a probability measure Qn defined on each Gn in a “natural” way. (For example,

for card shuffling, Gn = Sn is the symmetric group on n letters, and Qn is an appropriate

suffling measure.) For such a sequence, it is desired to know the time to stationarity as

a function of n. The sequence is said to have a cut-off if the time to stationarity gets

more “sharply defined” with increasing n. More precisely, we have the following definition,

taken from [AD].

Definition. Let {(Gn, Qn)}∞n=1 be a sequence of compact groups with probability mea-

sures. The sequence has a cut-off at kn if for any ε > 0,

‖Q ∗(1−ε)kn
n − λn‖var → 1 as n → ∞; and

‖Q ∗(1+ε)kn
n − λn‖var → 0 as n → ∞.

In words, this says that kn iterations (to first order in n) are both necessary and sufficient

to approach stationarity on Gn, and that this convergence to stationarity gets relatively

more and more “sudden” as n increases.

In this paper, we shall give a general proof of a lower bound, corresponding to the

convergence to 1 above. In the final section, we briefly discuss possiblities for proving an

upper bound corresponding to the convergence to 0.

3. Main Result.

We construct the measures we shall analyze as follows. Let G1, G2, G3, . . . be a se-

quence of groups, such that Gn is a subgroup of the unitary group U(n) that includes

at least the even permutation matrices An. (In symbols, An < Gn < U(n).) Let

M1,M2, . . . ,M` be fixed matrices with Mi ∈ U(ri) (an ri×ri matrix), and let a1, a2, . . . , a`

be non-negative real numbers summing to 1. The idea is to construct a probability mea-

sure Qn on Gn which represents a weighted (by ai) average of measures which are uniform

on conjugacy classes related to M1, . . . ,M`, respectively.

To this end, let M
(n)
i = Mi⊕In−ri be the n×n matrix formed by extending Mi by the

(n−ri)-dimensional identity matrix. Thus M
(n)
i ∈ U(n). Assume further that M

(n)
i ∈ Gn
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for each n. Let Ui,n be the probability measure which is uniformly concentrated on the

conjugacy class of M
(n)
i in Gn. (To be precise, Ui,n is the measure induced from Haar

measure on Gn by the map x → x−1M
(n)
i x.) Finally, let Qn =

∑̀
i=1

ai Ui,n. Thus, Qn is a

probability measure on Gn which is conjugate-invariant, and which represents a weighted

average of the uniform distributions on the conjugacy classes of M
(n)
1 , . . . ,M

(n)
` .

We observe that these measures include many of the known examples, as well as many

new ones. For such measures, we prove the following.

Theorem 1. Let Gn and Qn be as above. Then there are positive numbers A,B,C,

depending only on M1, . . . ,M` and a1, . . . , a`, but independent of n and Gn, such that if

k = <e (α−1)n log n + tn for any t < 0, then

‖Q ∗k
n − λn‖var ≥ 1−AeBt − C

(
log n

n

)
.

Here Q ∗k
n is the k-fold convolution of Qn with itself, λn is normalized Haar measure on

Gn, ‖ · ‖var is total variation distance on Gn, and α =
∑̀
i=1

ai(ri − trMi).

If t << 0 and n is large, the right-hand side of this inequality is close to 1. The theorem

thus says that the variation distance to Haar measure is close to 1 if we do significantly

less than <e (α−1)n log n iterations of the random walk.

The real significance of this assertion lies in the following conjecture, which asserts

that the result of Theorem 1 corresponds to a cut-off phenomenon for the measures Qn.

Conjecture 2. Let Gn, Qn, and α be as above. Assume further that the support of Qn

is not contained in any proper coset of Gn for sufficiently large n. Then for many* such

Qn, there are constants D and E, depending only on M1, . . . ,M` and a1, . . . , a`, such that

for sufficiently large n, if k = <e (α−1)n log n + tn for any t > 0, then

‖Q ∗k
n − λn‖var ≤ De−Et.

* We originally made our conjecture for all such Qn. However, Ursula Porod, at Johns

Hopkins University, has recently constructed a counter-example on U(n), for which Q∗kn

is not even in L2 for k < O(n2). The precise conditions on Gn and Qn required for the

conjecture to hold remains an open problem.
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If t >> 0, the right-hand side of this inequality is very close to 0. The conjecture thus

asserts that the variation distance to Haar measure is close to 0 if we do significantly more

than <e (α−1)n log n iterations of the random walk.

To make the conjecture plausible, it should be noted that since the support of Qn is not

contained in any coset of Gn, the measure Q ∗k
n will usually be absolutely continuous with

respect to Haar measure for k ≥ O(n). Furthermore, there will be no periodicity problems.

Evidence for the conjecture comes from examining the computations for the Upper Bound

Lemma (equation (1)) in previously known examples, as well as the way these computations

appear to work in the present generality. Further comments on possibilities for proving

this conjecture will be given in Section 6.

Remark. Theorem 1 remains true if the numbers ai are replaced by numbers ai,n

depending on n, provided these numbers approach limits ri in such a way that |ai,n−ri| ≤

(const)/n. While for clarity we shall not consider this extension further, we note that our

proof goes through with only minor modifications. Also, Conjecture 2 remains unchanged

as well, except that we must now require that Qn assigns probability at least (const)/n to

the complement of each proper coset of Gn.

4. Examples.

In this section, we present two straightforward examples of Theorem 1 and Conjec-

ture 2.

Example 1. On Sn, Theorem 1 says that it takes the product of at least (1/j)n log n

randomly chosen j-cyles to get random, for j fixed and n large. (The case j = 2 corresponds

to the Random Transpositions studied in [DS].) More generally, if we define Qn on Sn to

share weight ai uniformly over all elements with non-trivial cycles of sizes si1, . . . , siN
i

(where
∑

i ai = 1), then Theorem 1 says it takes at least α−1n log n iterations to get

random, where

α =
∑

i

ai

∑
j

sij

 .

If for different i the sum
∑
j

sij is both even and odd, or if we restrict attention to An instead

of Sn, then Conjecture 2 asserts that α−1n log n iterations also suffices to get random.
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Example 2. On SO(n), if we define Qn to share weight ai uniformly over all elements

corresponding to rotations in orthogonal planes of angles si1, . . . , siNi, then Theorem 1

says it takes at least α−1n log n iterations to get random, with

α =
∑

i

ai

∑
j

(2− 2 cos sij) ,

while Conjecture 2 asserts that this number of iterations also suffices. The case a1 = 1,

N1 = 1 and s11 = π was studied in detail in [R].

5. Proof of Main Result.

In this section, we provide a proof of Theorem 1 above, making use of the method

implied by equation (2). We emphasize that this method has been used previously (see

p. 44 of [D]) in specific cases. Our contribution consists of proving a much more general

result using similar methods. In addition to the much greater generality, our approach

may help to “explain” why the computations work out as they do in the previous specific

cases.

We proceed by fixing n, and letting ρ1 be the “first non-trivial” irreducible represen-

tation of Gn given as follows. Think of Gn as acting on Rn. Let e1, . . . , en be the standard

basis for Rn, and let e+ = e1 + . . .+en. We distinguish two cases. Case (A) below includes

An and Sn, while case (B) below includes any Gn with SO(n) < Gn < U(n).

Case (A): g(e+) is a scalar multiple of e+ for each g ∈ Gn. This means that Gn leaves

the perpendicular subspace (e+)⊥ invariant. We define the representation ρ1

by ρ1(g) = g|(e+)⊥ . In words, ρ1 takes each group element g to the (n − 1)-

dimensional operator given by the restriction of g to (e+)⊥.

Case (B): Gn does not leave the subspace (e+)⊥ invariant. In this case we simply define ρ1

by ρ1(g) = g. In words, ρ1 takes each group element g to itself.

Thus, ρ1 is essentially the “natural” representation of Gn, with the proviso that we

mod out the span of e+ in case (A) above. It is well known that this representation ρ1, so

constructed, is irreducible (cf. [JG], p. 97).

Recall that d1 is the dimension of ρ1, and χ1 = tr ρ1 is the corresponding character.

In case (A) we have d1 = n− 1, and χ1(g) = tr (g)− 1, while in case (B) we have d1 = n
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and χ1(g) = tr (g). The two cases are not identical, but our computation will be similar

in each of them.

Following the method implied by equation (2), we let mn,k = EQ ∗k
n

(χ1) and vn,k =

Var Q ∗k
n

(χ1) := EQ ∗k
n
|χ1 −mn,k|2. Our goal is to bound (1 + vn,k)/|mn,k|2 and show it is

small (for large n) if k = <e (α−1)n log n + tn with t << 0.

We proceed by considering the representation ρ1⊗ρ1 of Gn given by taking the tensor

product of ρ1 with its (entry-wise) complex conjugate. This new representation will not

be irreducible but will split into a (finite) direct sum of irreducible representations:

ρ1 ⊗ ρ1 ∼
⊕

j

ρj

for some irreducible representations ρj . Once we understand this splitting, then with dj

and χj the dimension and character of ρj , we can write

EQ ∗k
n

(|χ1|2) = EQ ∗k
n

(tr (ρ1 ⊗ ρ1)) = EQ ∗k
n

tr
⊕

j

ρj

 = EQ ∗k
n

∑
j

χj =
∑

j

(cj)kdj ,

with cj as in Section 2. Then, recalling that vn,k = EQ ∗k
n

(
|χ1 −mn,k|2

)
= EQ ∗k

n
(|χ1|2)−

|mn,k|2, that (d1)2 =
∑
j

dj , and that mn,k = (c1)kd1, we have that

vn,k =
∑

j

(
(cj)k − |c1|2k

)
dj . (3)

We shall use this equation to obtain bounds on vn,k in Lemma 3 below. The proof is

somewhat computational, and involves considering the details of how the representation

ρ1 ⊗ ρ1 splits into irreducibles.

Lemma 3. Let Gn, Qn be as in Section 2, let α be as in Theorem 1, let χ1 be as above,

and let k = <e (α−1)n log n+ tn for any t < 0. Then there are numbers A and B, bounded

independently of n and t, such that

mn,k := EQ ∗k
n

(χ1) = e−αt + A

(
log n

n

)
; and

vn,k := Var Q ∗k
n

(χ1) ≤ 1 + B

(
log n

n

)
e−2<e (α)t + |mn,k| .
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Proof. We begin with the computation for mn,k. Recall that mn,k = (c1)kd1. If we are

in Case (B) above, then d1 = n and

c1 =
(
tr Q̂(ρ1)

)
/d1 =

(∑
i

ai χ1(M
(n)
i )

)
/n

=

(∑
i

ai(n− ri + trMi)

)
/n = (n− α) /n =

(
1− α

n

)
.

In Case (A) above, both the numerator and denominator of c1 = tr Q̂(ρ1)
d1

will be decreased

by 1, so we instead find that c1 =
(
1− α

n−1

)
. Hence, in either case (writing n± 1 for n or

n− 1) we have

mn,k =
(

1− α

n± 1

)(α−1n log n+tn)

(n± 1)

=
(
(1/n) + O(log n/n2)

) (
e−αt + O(1/n)

)
(n± 1) = e−αt + O(log n/n) ,

as asserted.

We now consider vn,k. We shall make use of formula (3). We begin by restricting our

attention to the case where Gn satisfies SO(n) < Gn < O(n). (We are thus in case (B)

above.) In this case, it is well-known (see e.g. [R]) that

ρ1 ⊗ ρ1 ∼ ρ0 ⊕ ρ2 ⊕ ρ3 (4)

where ρ0 is the trivial representation given by the restriction of ρ1 ⊗ ρ1 to the 1-dimensional

subspace spanned by the identity matrix; ρ2 is given by the restriction of ρ1 ⊗ ρ1 to the

skew-symmetric matrices; and ρ3 is given by the restriction of ρ1 ⊗ ρ1 to the symmetric,

traceless matrices. Thus d2 = n(n − 1)/2 and d3 = (n(n + 1)/2) − 1. We begin with the

computation for this case, and then derive the general case afterwards.

The sum in (3) thus consists of three terms. The term j = 0 corresponding to the

trivial representation ρ0 (where d0 = 1) is clearly bounded by 1:

(
(ck

0 − |c1|2k
)
d0 ≤ 1 . (5)

For the term j = 2 corresponding to ρ2, we shall show that (c2)k − |c1|2k is small,

which we shall do by showing that c2 − |c1|2 is small. The reason this is true, roughly, is
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that while ρ1(M
(n)
i ) leaves about n − ri out of n basis elements invariant, ρ2(M

(n)
i ) will

leave about (n − ri)2/2 out of n2/2 basis elements invariant, so that
(
tr ρ2(M

(n)
i )/d2

)
≈(

tr ρ1(M
(n)
i )/d1

)2

.

We now proceed to the details of the calculation. Recall that

c2 =
tr Q̂(ρ2)

d2
=
∑

i

ai
tr ρ2(M

(n)
i )

d2
.

Since a basis for ρ2 (thought of as a sub-representation of ρ1 ⊗ ρ1) is given by

{er ⊗ es − es ⊗ er | r < s}, we have

tr ρ2

(
M

(n)
i

)
=

1
2

∑
r<s

〈 (ρ1 ⊗ ρ1)(M
(n)
i )(er ⊗ es − es ⊗ er), er ⊗ es − es ⊗ er 〉 .

But ρ1(M
(n)
i ) leaves er fixed for r > ri, so (ρ1 ⊗ ρ1)(M

(n)
i )(er ⊗ es − es ⊗ er) = er ⊗ es − es ⊗ er

for r, s > j. Also for r ≤ ri < s, we have

〈 (ρ1 ⊗ ρ1)(M
(n)
i )(er ⊗ es − es ⊗ er), er ⊗ es − es ⊗ er 〉

= 〈 ρ1(M
(n)
i )(er)⊗ es − es ⊗ ρ1(M

(n)
i )(er), er ⊗ es − es ⊗ er 〉

= 2<e 〈 ρ1(M
(n)
i )(er), er 〉

Hence,
1
2

∑
s<r

〈 (ρ1 ⊗ ρ1)(M
(n)
i )(er ⊗ es − es ⊗ er), er ⊗ es − es ⊗ er 〉

=
(n− ri − 1)(n− ri − 2)

2
+ (n− ri)<e

ri∑
r=1

〈ρ1(M
(n)
i )(er), er〉+ ∆ ,

=
(n− ri − 1)(n− ri − 2)

2
+ (n− ri)<e trMi + ∆ ,

where ∆ = 1
2

∑
r<s≤ri

〈 (ρ1 ⊗ ρ1)(M
(n)
i )(er ⊗ es − es ⊗ er), er ⊗ es − es ⊗ er 〉 = O(1) as

n →∞. Recalling that d2 = (n− 1)(n− 2)/2, we see that

c2 =
∑

i

ai

(
(n− ri − 1)(n− ri − 2) + 2(n− ri)<e trMi

(n− 1)(n− 2)

)
+ O(1/n2)

=
∑

i

ai

(
1− 2 (ri −<e trMi)

n

)
+ O(1/n2)

= 1− 2<e (α)
n

+ O(1/n2) .
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But

c1 =
∑

i

aiχ1(M
(n)
i )/n =

∑
i

ai

(
1− (ri − trMi)

n

)
= 1− α

n
,

so that

|c1|2 = 1− 2<e (α)
n

+ O(1/n2) ,

and hence ∣∣c2 − |c1|2
∣∣ = O(1/n2) . (6)

Using the basis

{er ⊗ es + es ⊗ er | r < s} ∪ {er ⊗ er − en ⊗ en | 1 ≤ r ≤ n}

for the term corresponding to j = 3, it is similarly computed that

c3 =
∑

i

ai (1− (2/n) (ri −<e trMi)) + O(1/n2) ,

so that also ∣∣c3 − |c1|2
∣∣ = O(1/n2) . (7)

To make good use of these bounds, we bound a typical term in equation (3) by noting

that

|xk − yk| = |(x− y)(xk−1 + xk−2y + . . . + yk−1)| ≤ |x− y| k max(|x|, |y|)k .

Thus, using equation (6), we have that for the term j = 2,∣∣(c2)k − |c1|2k
∣∣ d2 ≤

∣∣c2 − |c1|2
∣∣ k max(|c2|, |c1|2)k d2

= O(1/n2)(<e (α−1)n log n + tn)
(

1− 2<e (α)
n

+ O(1/n2)
)<e (α−1)n log n+tn

O(n2)

≤ O

(
log n

n

)
e−<e (α)t (for t < 0)

(and similarly for the term j = 3). The asserted bound on vn,k now follows, for the case

SO(n) < Gn < U(n), using equations (3), (5), (6), and (7) (and with the |mn,k| term

unnecessary).
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We now proceed to the more general case An < Gn < O(n). The splitting given

by equation (4) will be slightly different in this case, but the changes do not matter

significantly as we shall see. There are several ways in which our computation for vn,k

could differ from the previous case. We list them all, and then argue point by point that

the conclusion about vn,k does not change.

The key point is that the splitting (4) cannot change by very much. Indeed, we have

(see [JG], p. 97 for Sn, and [FOW] for the extension to An) that for the case Gn = An,

ρ1 ⊗ ρ1 ∼ ρ0 ⊗ ρ1 ⊗ ρ2 ⊗ ρ3 (8)

where the representations are as follows. Recall that An falls in case (A) above, so that ρ1

is (n−1)-dimensional, and in fact corresponds to restricting each group element’s action to

those elements of Rn whose coordinates sum to zero. Thus ρ1⊗ ρ1 acts on those elements

of the vector space Rn ⊗Rn each of whose rows and columns sum to zero. The splitting

of this vector space is as follows: ρ0 is again the trivial representation, and corresponds to

restricting ρ1 ⊗ ρ1 to the 1-dimensional subspace given by

V0 = span

(n− 1)
n∑

i=1

ei ⊗ ei −
∑
i 6=j

(ei ⊗ ej)

 ;

ρ1 appears in the splitting as the restriction of ρ1 ⊗ ρ1 to the (n−1)-dimensional subspace

V1 = (V0)⊥ ∩ span
{

(n− 1)2
n∑

i=1

ei ⊗ ei − (n− 1)
∑
j 6=i

(ei ⊗ ej + ej ⊗ ei)

+
∑
j,k 6=i

ej ⊗ ek | 1 ≤ i ≤ n
}

;

ρ2 corresponds to the restriction to the
(

(n−1)(n−2)
2

)
-dimensional subspace

V2 = span {(ei ⊗ ej − ej ⊗ ei) + (ek ⊗ ei − ei ⊗ ek) + (ej ⊗ ek − ek ⊗ ej) | 1 ≤ i < j < k ≤ n} ;

and ρ3 corresponds to a restriction to the
(

n(n−3)
2

)
-dimensional subspace

V3 = (V0)⊥ ∩ (V1)⊥ ∩ span
{

ei ⊗ ei + ej ⊗ ej − 2ek ⊗ ek

− 2(ei ⊗ ej + ej ⊗ ei) + (ei ⊗ ek + ek ⊗ ei) + (ej ⊗ ek + ek ⊗ ej) | 1 ≤ i < j < k ≤ n
}

.
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Thus, ρ2 and ρ3 are roughly as they were in equation (4) above, except for some minor

modifications because they are restricted to (e+)⊥⊗ (e+)⊥. The only other new feature is

the appearance of ρ1 in the right-hand side of this splitting, where it didn’t appear before.

Since the splittings (4) and (8) for the extremes O(n) and An are so similar, this

allows us to control the splittings for any Gn sandwiched between them. Indeed, for any

such Gn, the splitting will be something “in between” equations (4) and (8), in the sense

that each of ρ1, ρ2, and ρ3 could “shrink” a little bit from its value in (4), and also ρ1 could

appear in the right-hand side of the splitting, but these changes will always be controlled

by being extensions of the corresponding representations appearing in (8).

To be more precise, the possible differences between the computation for vn,k in the

case SO(n) < Gn < O(n), and in the current more general case, are as follows.

(i) The value of c1 = tr Q̂(ρ1)
d1

could be changed (both denominator and numerator could

decrease by 1).

(ii) The value of c2 = tr Q̂(ρ2)
d2

could be changed (both denominator and numerator could

decrease because we’re restricting to (e+)⊥).

(iii) The value of c3 = tr Q̂(ρ3)
d3

could be similarly changed.

(iv) The extra representation ρ1 may appear in the splitting.

We examine each of these issues in turn. For (i), we have already seen that the value

of c1 will be changed by at most ((α/(n− 1))− (α/n)) = O(1/n2). For (ii) and (iii), it is

seen that the denominator (d2 or d3) will be decreased by an amount δ = O(n), and the

numerator (tr Q̂(ρ2)) will be decreased by an amount δ ± O(1). Since the denominator is

O(n2) and the numerator is within O(n) of the denominator in any case, it is seen that

the value of c2 or c3 will change by only O(1/n2). Specifically, writing the denominator as

xn2, and the numerator as xn2 − yn, the change in c2 or c3 will be of the form(
xn2 − yn

xn2

)
−
(

xn2 − yn− δ ±O(1)
xn2 − δ

)
= O(1/n2) .

Thus, differences (i), (ii), and (iii) will only affect the values of |cj − |c1|2| in equations (6)

and (7) by O(1/n2) which will not affect the conclusion. Also, difference (iv) will merely

add mn,k to vn,k, which accounts for the extra term |mn,k| in the lemma.
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We conclude that the previous computation for vn,k will not be changed in a way

that affects the conclusion. Thus, the present statement about vn,k in the more general

situation is verified.

Finally, we turn our attention to the general (possibly complex) case An < Gn < U(n).

Here, in addition to the issues mentioned above, it is possible (because of the complex

conjugate of the second ρ1) that the two large representations in the splitting of (ρ1 ⊗ ρ1)

(namely ρ2 and ρ3 corresponding to skew-symmetric and symmetric matrices, respectively)

will themselves not be separately invariant. If so, the representations ρ2 and ρ3 would be

replaced by a representation ρ4 corresponding to their direct sum (modulo the possible

small differences mentioned above). Setting dj = dim ρj and Nj = EQ∗kχj (so that

cj = Nj/dj), we see that the corresponding dimension and character values for ρ4 would

be d4 = d2 + d3 and N4 = N2 + N3. Thus, writing

N2 + N3

d2 + d3
=

d2

d2 + d3

(
N2

d2

)
+

d3

d2 + d3

(
N3

d3

)
,

we see that we will similarly have

∣∣c4 − |c1|2
∣∣ = O(1/n2) .

The conclusion about vn,k is thus valid for any An < Gn < U(n).

Lemma 3 allows us to complete the proof of Theorem 1. Indeed, using equation (2),

we have that

‖Q ∗k
n − λn‖var ≥ 1 −

4
(
1 + B

(
log n

n

)
e−2<e (α)t + (e−<e (α)t + A

(
log n

n

)
)
)

(
e−<e (α)t + A

(
log n

n

))2

≥ 1− (const)e<e (α)t − (const)
(

log n

n

)
,

establishing Theorem 1.
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6. On Proving the Conjecture.

Theorem 1 is unsatisfying in that it only provides a lower bound on the time to

uniformity for the random walks being considered, and does not establish the existence of

a cut-off phenomenon. It is reasonable to ask about the possibility of proving Conjecture

2, and thus establishing the full result.

We believe that the methods used in this paper could be used to prove Conjecture 2,

though we have been unable to do so. The idea is to use the Upper Bound Lemma (1),

and to show that the sum there is small if k = α−1n log n + tn with t >> 0. Now, we

already know that in this case the first term (d1)2(c1)2k will be small. But Lemmas 3 and

4 assert that also vn,k is small, which amounts to saying that d2(c2)k ≈ (d1|c1|k)2/2, and

similarly d3(c3)k ≈ (d1|c1|k)2/2. This means that the next two terms in the Upper Bound

Lemma sum are correspondingly smaller. It appears that this pattern continues through

all of the “small” irreducible representations. If so, then the Upper Bound Lemma sum can

be easily summed (by comparison to a geometric sum) and shown to be small, establishing

Conjecture 2. On the other hand, to carry out this program it is insufficient to consider

vn,k = V arQ ∗k
n

(χ1). Rather, variances of other characters have to be computed, and this

involves considering how representations ρi ⊗ ρi split for i > 1. This program appears to

be somewhat involved, but still promising.
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