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Abstract. We consider optimal temperature spacings for Metropolis-coupled
Markov chain Monte Carlo (MCMCMC) and Simulated Tempering algorithms.
We prove that, under certain conditions, it is optimal (in terms of maximising
the expected squared jumping distance) to space the temperatures so that the
proportion of temperature swaps which are accepted is approximately 0.234. This
generalises related work by physicists, and is consistent with previous work about
optimal scaling of random-walk Metropolis algorithms.

1. Introduction

The Metropolis-coupled Markov chain Monte Carlo (MCMCMC) algorithm [9],
also known as parallel tempering or the replica exchange method, is a version of
the Metropolis-Hastings algorithm [20, 12] which is very effective at sampling from
multi-modal densities. The algorithm works by simulating multiple copies of the
target (stationary) distribution, each at a different temperature. Through a swap
move, the algorithm allows copies at lower (slower-mixing) temperatures to borrow
information from copies at higher (faster-mixing) temperatures, to help them mix
faster (in particular, to escape from local modes). The performance of MCMCMC
depends crucially on the temperatures used for the different copies. There is an
ongoing discussion (especially in the Physics literature) about how to best select
these temperatures. In this paper, we show that this question can be partially
addressed using the optimal scaling framework initiated in [23].

MCMCMC can be described as follows. We are interested in sampling from a
target probability distribution π(·) having (complicated, probably multimodal, and
possibly un-normalised) target density fd(x) on some state space X , which is an
open subset of Rd for some (large) dimension d. We define a sequence of associated

tempered distributions f
(βj)
d (x), where 0 ≤ βn < βn−1 < . . . < β1 < β0 = 1 are

the selected inverse temperature values, subject to the restriction that f
(β0)
d (x) =

f
(1)
d (x) = fd(x). (Usually the densities f

(βj)
d are simply powers of the original density,
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i.e. f
(βj)
d (x) = (fd(x))βj ; in this case, if X has infinite volume, then we require

βn > 0.)
MCMCMC proceeds by running one chain at each of the n + 1 values of β. It

has state space X n+1, with unnormalised stationary density
∏n

j=0 f
(βj)
d (xj), where

each xj corresponds to a chain at the fixed inverse temperature βj having stationary

density f
(βj)
d (xj). In particular, the β0 chain has stationary density f

(β0)
d (x0) =

fd(x0), so that after a long run the samples x0 should approximately correspond
to the density fd(x) which is the density of actual interest. The hope is that the
chains corresponding to smaller β (i.e., to higher temperatures) can mix more easily,
and then can “lend” this mixing information to the β0 chain, thus speeding up
convergence of the x0 values to the density fd(x).

MCMCMC alternates between two different types of dynamics. On some iter-
ations, it attempts a within temperature move, by updating each xj according to
some type of MCMC update (e.g., a usual random-walk Metropolis update) for

which f
(βj)
d is a stationary density. On other iterations, it attempts a temperature

swap, which consists of choosing two different inverse temperatures, say βj and βk,
and then proposing to swap their respective chain values, i.e. to interchange the cur-
rent values of xj and xk. This proposed swap is then accepted according to the usual
(symmetric) Metropolis algorithm probabilities, i.e. it is accepted with probability

min
(

1,
f

(βj)
d (xk) f

(βk)
d (xj)

f
(βj)
d (xj) f

(βk)
d (xk)

)
, (1)

otherwise it is rejected and the values of x are left unchanged. (The rejected values
are normally discarded, though it is sometimes possible to make additional use of
them [11, 8, 6].)

Such algorithms lead to many interesting questions and have been widely studied,
see e.g. [9, 14, 15, 21, 7, 16, 18, 5, 29, 30]. This paper will concentrate on the specific
question of optimising the choice of the β values to achieve maximal efficiency in
the temperature swaps. Specifically, suppose we wish to design the algorithm such
that the chain at inverse temperature β will propose to swap with another chain at
inverse temperature β + ε. What choice of ε is best?

Obviously, if ε is very large, then such swaps will usually be rejected. Similarly,
if ε is very small, then such swaps will usually be accepted, but will not greatly
improve mixing. Hence, the optimal ε is somewhere between the two extremes (this
is sometimes called the “Goldilocks Principle”), and our task is to identify it.

Our main result (Theorem 1) will show that, under certain assumptions, it is
optimal (in a sense to be defined later on) to choose the spacing ε such that the
probability of such a swap being accepted is equal to 0.234. This is the same opti-
mal acceptance probability derived previously for certain random-walk Metropolis
algorithms [23, 25], and generalises some results in the physics literature [14, 21]. It
also has connections (Section 5.1) to the Dirichlet form of an associated temperature
process.

We shall also consider (Section 4) the related Simulated Tempering algorithm,
and shall prove that under certain conditions the 0.234 optimal acceptance rate
applies there as well. We shall also compare (Corollary 1) Simulated Tempering to
MCMCMC, and see that in a certain sense the former is exactly twice as efficient
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as the latter, but there are various mitigating factors so the comparison is far from
clear-cut.

1.1. Toy Example. To illustrate the importance of temperature spacings, and of
measuring the “influence” of hotter chains on colder ones, we consider a very simple
toy example. Suppose the state space consists of just 101 discrete points, X =
{0, 1, 2, 3, . . . , 100}, with (un-normalised) target density (with respect to counting
measure on X ) given by π{x} = 2−x + 2−(100−x) for x ∈ X . That is, π has two
modes, at 0 and 100, with a virtually insurmountable barrier of low probability states
between them (Figure 1, top-left). Let the tempered densities be given (as usual)

by powers of π, i.e. f
(β)
d (x) =

(
π(x)

)β
. Thus, for very small β, the insurmountable

barrier is nicely removed (Figure 1, top-middle). Can we make use of such tempered
densities to improve convergence of the original chain to π?

To be specific, suppose each fixed-β chain is a random-walk Metropolis algorithm
with proposal kernel q(x, x+ 1) = q(x, x− 1) = 1/2. Thus, the cold (large β) chains
are virtually incapable of moving from state 0 to state 100 or back (Figure 1, top-
left), but the hot (small β) chains have no such obstacle (Figure 1, top-middle). The
question is, what values of the inverse temperatures β will best allow an MCMCMC
algorithm to benefit from the rapid mixing of the hot chains, to provide good mixing
for the cold chain?

Figure 1: The toy example’s target density (top-left), tempered density at
inverse-temperature β = 0.001 (top-middle), random-walk Metropolis run
(top-right), and trace plots of the cold chain over 10,000 full iterations of
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MCMCMC runs with two temperatures (bottom-left), ten temperatures
(bottom-middle), and fifty temperatures (bottom-right).

To test this, we ran an MCMCMC algorithm for 10,000 full iterations (each con-
sisting of one update at each inverse-temperature, plus one attempted swap of ad-
jacent inverse-temperature values), in each of four settings: with just one inverse-
temperature, i.e. an ordinary MCMC algorithm with no temperature swaps (Fig-
ure 1, top-right); with two inverse-temperatures, 1 and 0.001 (Figure 1, bottom-left);
with ten inverse-temperatures, 0.001j/9 for j = 0, 1, 2, . . . , 9 (Figure 1, bottom-
middle); and with fifty inverse-temperatures, 0.001j/49 for j = 0, 1, 2, . . . , 49 (Fig-
ure 1, bottom-middle). We started each run with all chains at the state 0, to
investigate the extent to which they were able to mix well and effectively sample
from the equally-large mode at state 100.

The results of our runs were that the ordinary MCMC algorithm with no tem-
perature swaps did not traverse the barrier at all, and just stayed near the state 0
(Figure 1, top-right). Adding one additional temperature improved this somewhat
(Figure 1, bottom-left), and the cold chain was now able to sometimes sample from
states near 100, but only occasionally. Using ten temperatures improved this greatly
and led to quite good mixing of the cold chain (Figure 1, bottom-middle). Perhaps
most interestingly, using lots more temperatures (fifty) did not improve mixing fur-
ther, but actually made it much worse (Figure 1, bottom-right), despite the greatly
increased computation time (since each temperature requires its own chain values
to be updated at each iteration).

So, we see that in this example, ten geometrically-spaced temperatures performed
much better than two temperatures (too few) or fifty temperatures (too many). Intu-
itively, with only two temperatures, it is too difficult for the algorithm to effectively
swap values between adjacent temperatures (indeed, only about 5% of proposed
swaps were accepted). By contrast, with fifty temperatures, virtually all swaps are
accepted, but too many swaps are required before the rapidly-mixing hot chains can
have much influence over the values of the cold chain, so this again does not lead
to an efficient algorithm. Best is the compromise choice of ten temperatures. That
choice makes the temperature differences small enough so swaps are easily accepted,
but still large enough that they lead to efficient interchange between hot and cold
chains and thus to efficient convergence of the cold chain to π. This illustrates that
we would like the hot and cold chains’ values to be able to influence each other
effectively, which requires lots of successful swaps each of significant distance in the
inverse-temperature domain.

This leads to the question of how to select the number and spacing of the inverse-
temperature values for a given problem, which is the topic of this paper. To maximise
the influence of the hot chain on the cold chain, we want to maximise the effective
speed with which the chain values move along in the inverse-temperature domain.
We shall do this by means of the expected squared jumping distance (ESJD) of this
influence, defined below. Our main result (Theorem 1 below) says that to maximise
ESJD, it is optimal (under certain assumptions) to select the inverse-temperatures
so that the probability of accepting a proposed swap between adjacent inverse-
temperature values is approximately 23%.
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2. Optimal Temperature Spacings for MCMCMC

In this section, we consider the question of optimal temperature choice for MCM-
CMC algorithms. To fix ideas, we consider the specific situation in which the al-
gorithm is proposing to swap the chain values at two specific inverse temperatures,
namely β and β+ ε, where β, ε > 0 and β+ ε ≤ 1. We shall consider the question of
what value of ε is optimal in terms of maximising the influence of the hot chain on
the cold chain. We shall focus on the asymptotic situation in which the chain has

already converged to its target stationary distribution, i.e. that x ∼
∏n

j=0 f
(βj)
d .

To measure this precisely, let us define γ = β + ε if the swap is accepted, or
γ = β if the swap is rejected. Then γ is an indication of where the β chain’s value
has traveled to, in the inverse temperature space. That is, if the proposed swap is
accepted, then the value moves from β to γ = β + ε for a total inverse-temperature
distance of γ − β = ε, while if the swap is rejected then it does not move at all,
i.e. the distance it moves is γ − β = 0. Hence, γ − β indicates the extent to which
the swap proposal succeeded in moving different x values around the β space, which
is essential for getting benefit from the MCMCMC algorithm. So, the larger the
magnitude of γ − β, the more efficient are the swap moves at providing mixing in
the temperature domain. We therefore define the “optimal” choice of ε to be the one
which maximises the stationary (i.e. asymptotic) expected squared jumping distance
(ESJD) of this movement, i.e. which maximises

ESJD = Eπ

[
(γ − β)2

]
= ε2 × Eπ[P(swap accepted)] ≡ ε2 × ACC , (2)

where from (1),

ACC = Eπ[P(swap accepted)] = Eπ

[
min

(
1,

f
(βj)
d (xk) f

(βk)
d (xj)

f
(βj)
d (xj) f

(βk)
d (xk)

)]
(3)

and where the expectations are with respect to the stationary (asymptotic) distri-

bution x ∼
∏n

j=0 f
(βj)
d .

We shall also consider the generalisation of (2) to

ESJD(h) = Eπ

[
(h(γ)− h(β))2

]
(4)

for some h : [0, 1] → R; then (2) corresponds to the case where h is the identity
function. Of course, (2) and (4) represent just some possible measures of optimality,
and other measures might not necessarily lead to equivalent optimisations; for some
discussion related to this issue see Section 5.

To make progress on computing the optimal ε, we restrict (following [23, 25]) to
the special case where

fd(x) =
d∏
i=1

f(xi) , (5)

i.e. the target density takes on a special product form. (Although (5) is a very
restrictive assumption, it is known [23, 25] that conclusions drawn from this special
case are often approximately applicable in much broader contexts.) We also assume
that the tempered distributions are simply powers of the original density (which is
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the usual case), i.e. that

f
(β)
d (x) =

d∏
i=1

f (β)(xi) ≡
d∏
i=1

(
f(xi)

)β
. (6)

Intuitively, as the dimension d gets large, so that small changes in β lead to

larger and larger changes in f
(β)
d , the inverse-temperature spread ε must decrease to

preserve a non-vanishing probability of accepting a proposed swap. Hence, similar
to [23, 25], we shall consider the limit as d↗∞ and correspondingly ε↘ 0. To get
a non-trivial limit, we take

ε = d−1/2` (7)

for some positive constant ` to be determined. (Choosing a smaller scaling would
correspond to taking ` ↘ 0, while choosing a larger scaling would correspond to
letting ` ↗ ∞; either choice is sub-optimal, since the optimal ` will be strictly
between 0 and ∞ as we shall see.)

2.1. Main Result. Under the above assumptions, we shall prove the following
(where Φ(z) = 1√

2π

∫ z
−∞ e

−s2/2 ds is the cdf of a standard normal):

Theorem 1. Consider the MCMCMC algorithm as described above, assuming (5),
(6), and (7). Then as d → ∞, the ESJD of (2) is maximized when ` is chosen to

maximize `2 × 2 Φ
(
−`
√
I(β)/2

)
, where I(β) > 0 is defined in (10) below. Fur-

thermore, for this optimal choice of `, the corresponding probability of accepting a
proposed swap is given (to three decimal points) by 0.234. In fact, the relationship
between ESJD of (2) and ACC of (3) is given by

ESJD = (2/dI(β))× ACC ×
(
Φ−1(ACC/2)

)2
(8)

(see Figure 2). Finally, the optimal choice of ` also maximises ESJD(h) of (4), for
any differentiable function h : [0, 1]→ R.
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Figure 2: A graph of the relationship between the expected squared
jumping distance (ESJD) and asymptotic acceptance rate (ACC),
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as described in equation (8), in units where dI(β) = 1.

Proof. For this MCMCMC algorithm, the acceptance probability of a temperature
swap is given by

α ≡ 1 ∧ eB

where

eB =
f

(β)
d (y)f

(β+ε)
d (x)

f
(β)
d (x)f

(β+ε)
d (y)

and where x ∼ f
(β)
d and y ∼ f

(β+ε)
d are independent and in stationarity. We write

g = log f so that g
(β)
d (x) = log f

(β)
d (x), etc. We then have that

B =
[(
g

(β)
d (y)− g(β+ε)

d (y)
)
−
(
g

(β)
d (x)− g(β+ε)

d (x)
)]
≡ Td(y)− Td(x) ,

where

Td(x) = g
(β)
d (x)−g(β+ε)

d (x) = βgd(x)−(β+ε) gd(x) = −ε gd(x) = −
d∑
i=1

ε g(xi) .

Now, write Eβ for expectation with respect to the distribution having density pro-
portional to fβ, and similarly for Varβ. Then in this distribution, g has mean

Eβ(g) =

∫
log f(x)fβ(x)dx∫

fβ(x)dx
≡ M(β) , (9)

and variance

Varβ(g) =

∫
(log f(x))2fβ(x)dx∫

fβ(x)dx
−M(β)2 ≡ I(β) . (10)

Hence, in the distribution proportional to fβd , Td(x) has mean

Eβ
d

(
Td(x)

)
= −dεM(β) ≡ µ(β) ,

and variance
Varβd

(
Td(x)

)
= dε2I(β) ≡ σ(β)2 .

Now, taking derivative with respect to β (using the “quotient rule”),

M ′(β) =

∫
(log f(x))2fβ(x)dx∫

fβ(x)dx
−
(∫

fβ log f(x)dx∫
fβ(x)dx

)2

= I(β) , (11)

from which it follows that

µ′(β) = −d εM ′(β) = −d ε I(β) = −σ(β)2/ε .

Now, recall that ε = d−1/2`. Hence,

Td(y)− Td(x) = − `√
d

d∑
i=1

(
g(yi)− g(xi)

)
.

We claim that, as d → ∞, Td(y) − Td(x) converges weakly to a random variable
A ∼ N (−σ(β)2, 2σ(β)2). To see this, let φd(t) be the characteristic function of
Td(y)− Td(x). Then we have:

φd(t) = E
[
e−itε(Td(y)−Td(x))

]
= e−itεd(M(β+ε)−M(β))

{
E
(
e−itεḡ(y1)

)
E
(
e−itεḡ(x1)

)}d
,
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where ḡ(x) = g(x)−Eβ(g(x)). Since M(β+ε)−M(β) = εM(β)+o(ε) and ε = d−1/2`,
it follows that limd→∞ itεd(M(β + ε) −M(β)) = it`2I(β). Hence, using a Taylor
series expansion,

E
(
e−itεḡ(y1)

)
E
(
e−itεḡ(x1)

)
=

(
1− `2t2

2d
I(β + ε) + o(d−1)

)(
1− `2t2

2d
I(β) + o(d−1)

)
=

(
1− `2t2

2d
I(β) + o(d−1)

)2

.

Hence, φd(t) converges to e−it`I(β)e−`
2t2I(β) as d→∞. This limiting function is the

characteristic function of the distribution N(−`2I(β), 2`2I(β)), thus proving the
claim.

To continue, recall (e.g. [23], Proposition 2.4) that if A ∼ N(m, s2), then

E(1 ∧ eA) = Φ
(m
s

)
+ em+ s2

2 Φ
(
−s− m

s

)
.

In particular, if A ∼ N(−c, 2c) (so that E(eA) = 1), then

E(1 ∧ eA) = 2 Φ
(
−
√
c/2
)
.

Since the function 1 ∧ eB is a bounded function, it follows that as d → ∞, the
acceptance rate of MCMCMC converges to

E(α) = E(1 ∧ eB) ∼ E
(
1 ∧ exp

(
N(−σ(β)2, 2σ(β)2)

))
= 2 Φ(−σ(β)/

√
2) .

Now, with ε = d−1/2`, ε2d = `2 and σ(β)2/2 = dε2I(β)/2 = `2I(β)/2, whence
σ(β)/

√
2 = ` [I(β)/2]1/2. Then as d → ∞, P(accept swap) = E(1 ∧ eB) →

2 Φ(−` [I(β)/2]1/2), and so

ESJD = ε2 P(accept swap) ∼ (`2/d)× 2 Φ(−` [I(β)/2]1/2) ≡ eMC(`) . (12)

Hence, maximising ESJD is equivalent to choosing ` = `opt to maximise `2 ×
2 Φ(−` [I(β)/2]1/2), with the second factor being the acceptance probability. It
then follows as in [23, 25] that when ` = `opt, the acceptance probability becomes
0.234 (to three decimal places). Indeed, making the substitution u = `[I(β)/2]1/2

shows that finding `opt is equivalent to finding the value û of u which maximizes
8I(β)−2u2Φ(−u), and then evaluating â = 2Φ(−û). It follows that the value of
û, and hence also the value of â, does not depend on the value of I(β) (provided
I(β) > 0). So, it suffices to assume I(β) = 1, in which case we compute numerically
that û

.
= 1.190609, so that â = 2 Φ(−1.190609)

.
= 0.2338071

.
= 0.234.

Finally, if instead of ESJD we consider ESJD(h) ≡ E[
(
h(γ) − h(β)

)2
] for some

differentiable function h, then as ε↘ 0 we have
(
h(γ)− h(β)

)2 ∼ [h′(β)]2 (γ − β)2,
so ESJD(h) ∼ [h′(β)]2 (ESJD). Hence, as a function of ε, maximising ESJD(h)
is equivalent to maximising ESJD, and is thus maximised at the same value εopt.

2.2. Iteratively Selecting the Inverse Temperatures. The above results show
that, in high dimensions under certain assumptions, it is most efficient to choose the
inverse temperatures for MCMCMC such that the average acceptance probability
between any two adjacent temperatures is about 23%.

This leads to the question of how to select such temperatures. Although this may
not be a practical approach in general, we shall adopt an intensive iterative approach
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to this in order to assess the effects of our theory in applications. We assume we
know (perhaps by running some preliminary simulations) some sufficiently small
inverse temperature value β̄ such that the mixing of the chain with corresponding

density f β̄d is sufficiently fast. This value β̄ shall be our minimal inverse temperature.
(In the examples below, we use β̄ = 0.01.)

In terms of β̄, we construct the remaining βj values iteratively, as follows. First,
starting with β0 = 1, we find β1 such that the acceptance probability of a swap
between β0 = 1 and β1 is approximately 0.23. Then, given β1, we find β2 such that
the acceptance probability of the swap between β1 and β2 is again approximately
0.23. We continue in this way to construct β3, β4, . . ., continuing until we have
βj ≤ β̄ for some j. At that point, we replace βj by β̄ and stop.

To implement this iterative algorithm, we need to find for each inverse-temperature
β a corresponding inverse-temperature β′ < β such that the average acceptance
probability of the swaps between β and β′ is approximately 0.23. We use a simulation-
based approach for this, via random variables {(Xn, X

′
n, ρn)}n≥0. After initialisations

for n = 0, then at each time n ≥ 1, we let β′n = β(1 + eρn)−1, and draw Xn+1 ∼ fβd
and X ′n+1 ∼ f

β′n
d (or update them from some Markov chain dynamics preserving

those distributions). The probability of accepting a swap between β and β′n is then
given by αn+1 ≡ 1 ∧ eBn+1 where

Bn+1 = −(β′n − β)
(
gd(X

′
n+1)− gd(Xn+1)

)
.

We then attempt to converge towards 0.23 by replacing ρn by

ρn+1 = ρn + n−1 (αn+1 − 0.23) ,

i.e. using a stochastic approximation algorithm [22, 2]. This ensures that if αn+1 >
0.23 then β′ will decrease, while if αn+1 > 0.23 then β′ will increase, as it should.

We shall use this iterative simulation approach to determine the inverse temper-
atures {βj} in all of our simulation examples in Section 3 below.

2.3. Comparison with Geometric Temperature Spacing. In some cases, it is
believed that the optimal choice of temperatures is “geometric”, i.e. that we want
βj+1 = cβj for appropriate constant c. Now, the notation of Theorem 1 corresponds
to setting βj = β + ε and βj+1 = β. So, it is optimal to have βj+1 = cβj precisely
when εopt ∝ β in Theorem 1.

Recall now that, from the end of the proof of Theorem 1, û ≡ `opt[I(β)/2]1/2
.
=

1.190609, and in particular û does not depend on β. Then `opt = û[2/I(β)]1/2.
So, εopt = `optd

−1/2 = ûd−1/2[2/I(β)]1/2 ∝ I(β)−1/2. It follows that the condition
εopt ∝ β is equivalent to the condition I(β)−1/2 ∝ β, i.e. I(β) ∝ β−2.

While this does hold for some examples, e.g. the case when f(x) = e−|x|
r

(see
Section 2.4 below), it does not hold for most other examples (e.g. for the Gamma
distribution, various log x terms appear which do not lead to such a simple relation-
ship).

Thus, the optimal spacing of inverse temperatures is not necessarily geometric.
In our simulations below, we consider both geometric spacings, and spacings found
using our 23% rule. We shall see that the 23% rule leads to superior performance.
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2.4. A Simple Analytical Example. Consider the specific example where the
target density is given by (5) with f(x) = e−|x|

r
for some fixed r > 0. (This includes

the Gaussian (r = 2) and Double-Exponential (r = 1) cases.)
For this example, fβ(x) ∝ e−β|x|

r
, and g(x) = −|x|r. We then compute from (9)

that

M(β) = Eβ(g) =

∫
g(x) fβ(x) dx∫
fβ(x) dx

=
−
∫
|x|r e−|x|r dx∫
e−|x|r dx

=
−2 Γ(1/r) β−(1+r)/r r−2

2 Γ(1 + 1
r
) β−1/r

= −1/rβ

where Γ(z) =
∫∞

0
tz−1 e−t dt is the gamma function. Then by (11),

I(β) ≡ Varβ(g) = M ′(β) = 1/rβ2 ∝ β−2 .

Hence, since I(β) ∝ β−2, it follows as above that the spread of inverse-temperatures
should be geometric, with βj+1 = cβj for some constant c.

2.5. Relation to Previous Literature. The issue of temperature spacings and
acceptance rates for MCMCMC has been widely studied in the physics literature
[14, 15, 21, 7, 16, 5, 29, 30]. For example, the conclusion of Theorem 1, that the
inverse temperatures should be chosen to make the swap acceptance probabilities
all equal to the same value (here 0.234), is related to the “uniform exchange rates”
criterion described in [13], p. 629. In addition, simulation studies [7] have suggested
tuning the temperatures so the swap acceptance rate is about 20%, and analytic
studies have suggested [16] an optimal rate of 0.23 in some specific circumstances,
as we now discuss.

In physics, the canonical ensemble corresponds to writing f
(β)
d (x) = e−βV (x), where

V is the energy function and 1/β is the temperature. Thus, in our notation, V (x) =
−gd(x). Furthermore the average energy at inverse-temperature β is given by

U(β) =

∫
V (x) e−βV (x) dx∫
e−βV (x) dx

.

Physicists have approached the problem using the concepts of density of states and
heat capacity. If the state space X is discrete, the density of states is defined as the
function G(u) := #{x ∈ X : V (x) = u}. If X is continuous, then G(u) is defined to
be the (d− 1)-dimensional Lebesgue measure of the level set {x ∈ X : V (x) = u}.
The heat capacity of the system at inverse-temperature β is defined as

C(β) = −β2dU(β)

dβ
= −β2Varβ (V (X)) .

In our notation, Varβ (V (X)) = Varβ (−gd(X)) = I(β), so C(β) = −β2I(β). Hence,
C(β) is constant if and only if I(β) ∝ β−2 as discussed in Section 2.3.

The previous literature has considered, as have we, the idealised case in which
exact sampling is done from each distribution fβ. In this case, a swap in MCMCMC
between β and β′ (β < β′) has acceptance probability

A(β, β′) = E
[
min

(
1, e(β−β′)(V (X)−V (X′))

)]
,
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with the expectation taken with respect to X ∼ fβ and X ′ ∼ fβ
′
. Assuming that

the heat capacity is constant (i.e., C(β) ≡ C), and that the density of states has
the form

G(u) =

(
1 +

β0

C
(u− u0)

)C
G(u0),

[14] shows that the average acceptance probability of a swap between β and β′ > β
is given by:

A(β, β′) =
2Γ(2C + 2)

Γ(C + 1)2

∫ β/β′

0

uC

(1 + u)2(C+1)
du

=
2

B(C + 1, C + 1)

∫ 1/(1+R)

0

θC(1− θ)Cdθ, (13)

where R = β′/β > 1, Γ(x) is the Gamma function and B(a, b), the Beta function.
Assuming a constant heat capacity and a more specific form for the density of

state,

G(u) =
(2π)C+1

Γ(C + 1)
uC ,

[21] derived the same formula as in (13) for A(β, β′), which they call the incomplete
beta function law for parallel tempering. Letting C (and thus the dimension d of
the system) go to infinity, [15, 21] use (13) to derive a limiting expression for the
acceptance probability of MCMCMC similar to that obtained in (12) above. [16]
uses these limits to argue that 0.23 is approximately the optimal asymptotic swap
acceptance rate using arguments somewhat similar to ours (indeed, Figure 1 of [16]
contains the same acceptance-versus-efficiency curve implied by (12)).

Now, it seems that the heat capacity C(β) being constant is quite a restrictive
assumption; it is satisfied for the example f(x) = e−|x|

r
considered in Section 2.4,

but is usually not satisfied for more complicated functions. By contrast, our as-
sumption (6) does not impose any special conditions on the nature of the density
function f(x).

3. Simulation examples

3.1. A Simple Gaussian Example. We illustrate Theorem 1 with the following
simulation example. We implement the MCMCMC described above for Gauss-
ian target and tempered distributions. Specifically, we consider just two inverse-

temperatures β0 ≡ 1 and β1 with 0 < β1 < 1. We define fd(x) and f
(β)
d (x) as

in (5) and (6), with f the density of a standard normal distribution N(0, 1), so that
f (β) = N(0, β−1). We use a version of the algorithm where the within-temperature
moves are given by a Random Walk Metropolis (RWM) algorithm with Gaussian
proposal distribution N(x, (2.382/βd) Id) which is asymptotically optimal [25]. Our
algorithm attemps 20 within-temperature moves for every one time it attempts a
temperature swap.

We ran this algorithm for each of 50 different possible choices of β1, each with
0 < β1 < 1. For each such choice of β1, we ran the algorithm for a total of 500,000
iterations to ensure good averaging, and then estimated the acceptance probability
as the fraction of proposed swaps accepted, and the expected square jump distance
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(ESJD) as the average of the squared temperature jump distances (γ − β0)2 (or,
equivalently, as (β0− β1)2 times the average squared swap distance). Figure 3 plots
the estimated acceptance probabilities versus squared jump distances (SJD), for each
of four different dimensions (10, 20, 50, and 100). We can see from these results that
the swap acceptance probability 0.234 is indeed close to optimal, and it gets closer
to optimal as the dimension increases, and furthermore the relationship between
the two quantities is given approximately by (8) and Figure 2, just as Theorem 1
predicts.

0.0 0.4 0.8

0.
00

0.
02

0.
04

0.
06

(a)

Acc. Prob.

SJ
D

0.0 0.4 0.8

0.
00

0.
01

0.
02

0.
03

0.
04

(b)

Acc. Prob.

SJ
D

0.0 0.4 0.8

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

(c)

Acc. Prob.

SJ
D

0.0 0.4 0.8

0.
00

0
0.

00
4

0.
00

8

(d)

Acc. Prob.

SJ
D

Figure 3: squared jump distance (SJD) versus estimated Acceptance Probability

for the Gaussian case f = N(0, 1) and fβ = N(0, β−1), in dimensions (a) d = 10,
(b) d = 20, (c) d = 50, and (d) d = 100.

3.2. Inhomogeneous Gaussian Example. We now modify the previous example
to a non-i.i.d. case where fd(x) =

∏d
i=1 fi(xi) with fi = N(0, i2), so that fβi =

N(0, i2β−1). (The inhomogeneity implies, in particular, that assumption (5) is no
longer satisfied.) The rest of the details remain exactly the same as for the previous
example, except that the proposal distribution for the RWM within-temperature
moves is now taken to be N (x, (2.382i2/βd)Id) for the ith coordinate, which is
optimal in this case. The resulting plots (for dimensions d = 10 and d = 100) are
given in Figure 4. Here again, an optimum value of β for the ESJD function emerges
at a swap acceptance probability of approximately 23%. Again, the agreement with
Theorem 1 and the relationship (8) and Figure 2 is striking.

This is unsurprising given that this target distribution can be written as a col-
lection of scalar linear transformations of Example 3.1, and Theorem 1 remains
invariant through such transformations.
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Figure 4: SJD versus Acceptance Probability for the inhomogeneous Gaussian

case fi = N(0, i2) and fβi = N(0, i2β−1), in dimensions (a) d = 10 and (b) d = 100.

3.3. A Mixture Distribution Example. In this example and the next, we com-
pare the two temperature scheduling strategies discussed in Sections 2.2 and 2.3.
One strategy consists of selecting the inverse-temperatures as a geometric sequence;
we saw that this strategy is optimal when I(β) ∝ β−2, or equivalently the heat
capacity is constant. The other strategy consists of choosing the temperatures such
that the acceptance probability between any two adjacent temperatures is about
23%. We report here a simulation example comparing the two strategies.

Consider the density

fd(x1, . . . , xd) =
d∏
i=1

f(xi;ωi, µi, σ
2
i )

corresponding to a mixture of normal distributions, where d = 20, and

f(x;ω, µ, σ2) =
3∑
j=1

ωj
1√

2πσj
e
− 1

2σ2
j

(x−µj)2
,

with ω = (1/3, 1/3, 1/3), µ = (−5, 0, 5), and σ = (0.2, 0.2, 0.2). For the 23% rule,
we build the temperatures sequentially as described in Section 2.2, with β̄ = 0.01.
The number of chains is thus itself unknown initially, and turns out to be 9 as shown
in the top line of Table 1. The geometric schedule uses that same number (9) of
chains, geometrically spaced between β0 ≡ 1 and β̄ ≡ 0.01. (Thus, the geometric
schedule is allowed to “borrow” the total number of chains from the 23% rule, which
is in some sense overly generous to the geometric strategy.) Each chain was run for
200, 000 iterations.

We report the square jump distances both in the temperature space and in the X -
space. We observe that the 23% rule performs significantly better that the geometric
scheduling, in terms of having larger average squared jumping distances in both the
β space and the X space.
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0.23 rule 1.00 0.675 0.395 0.206 0.106 0.048 0.022 0.0105 0.01
Geometric spacing 1.00 0.562 0.316 0.178 0.100 0.056 0.032 0.018 0.01

Table 1: Inverse-temperature schedules for the two different temperature scheduling
strategies for the mixture distribution example.

E
[
|βn − βn−1|2

]
E
[
‖Xn −Xn−1‖2

]
0.23 rule 0.209 0.428
Geometric spacing 0.084 0.315

Table 2: Squared Jumping distances in β space and X space for the two different
temperature scheduling strategies for the mixture distribution example.

3.4. Ising Distribution. We now compare the two scheduling strategies using
the Ising distribution on the N × N two-dimensional lattice, given by π(x) =
exp (E(x)) /Z, where Z is the normalizing constant and

E(x) = J

(
N∑
i=1

N−1∑
j=1

xijxi,j+1 +
N−1∑
i=1

N∑
j=1

xijxi+1,j

)
, (14)

with xi ∈ {1,−1}. Obviously, this distribution does not satisfy the assumption (5).
For definiteness, we choose N = 50 and J = 0.45.

The Ising distribution admits a phase transition at the critical temperature Tc =
2J/ log(1 +

√
2)

.
= 1.021, i.e. critical inverse-temperature βc

.
= 0.979, around which

the heat capacity undergoes stiff variation. Tempering techniques like MCMCMC
and Simulated Tempering can perform poorly near critical temperatures because
small changes in the temperature around Tc result in drastic variations of the prop-
erties of the distribution. We expect the 23% rule to outperform the geometric
schedule in this case.

For our algorithm, for the within-temperature (i.e., X -space) moves, we use a
Metropolis-Hastings algorithm with a proposal which consists of randomly selecting
a position (i, j) on the lattice and flipping its spin from xij to −xij.

We first determine iteratively the inverse-temperature points using the algorithm
described in Section 2.2. Then, given the lowest and highest temperatures and the
number of temperature points determined by this algorithm, we compute the geo-
metric spacing. Figure 5 gives the selected temperatures (not inverse-temperatures,
i.e. it shows Tj ≡ 1/βj) from the two methods (the circles represent the 23% rule
and the ’triangles’ represent the geometric spacing).
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Figure 5: The temperatures {Tj} selected for the Ising model (triangle: geometric
spacing; circle: 23% rule).

We note here that the 23% rule and the geometric spacing produce very different
temperature points. Interestingly, in order to maintain the right acceptance rate,
the 23% rule puts more temperature points near the critical temperature (1.021);
this is further illustrated in Table 3.

23% rule 1.00 1.02 1.06 1.10 1.14 1.18 1.24 1.30 1.37 1.44 1.53 · · ·
Geometric rule 1.00 1.20 1.46 1.77 2.14 2.59 3.13 3.79 4.59 5.55 6.70 · · ·

Table 3: Selected temperature values near Tc = 1.021 for the Ising model.

Each version of MCMCMC was run for 5 million iterations. The average squared
jump distance in inverse-temperature space was 0.0095 for the 23% rule and 0.0049
for the geometric spacing, i.e. the 23% rule was almost twice as efficient.

We also present the trace plots (subsampled every 1,000 iterations) of the function
{E(Xn), n ≥ 0} during the simulation for each of the two algorithms in Figure 6,
together with their autocorrelation functions. While the trace plots themselves
appear similar, the autocorrelations indicate that the 23% rule has resulted in a
faster mixing (less correlated) sampler in the X -space as well. We confirm this by
calculating the empirical average square jump distance in the X space, SJD(X ) =
n−1

∑n
j=1 |E(Xj)− E(Xj−1)|2, which works out to 22.11 for the 23% rule, and 13.76

for the geometric sequence, i.e. the 23% rule is 1.6 times as efficient by this measure.
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Figure 6: (a),(c) trace plots and (b),(d) autocorrelation functions of E(Xn) for
the Ising model, subsampled every 1,000 iterations, with (a),(b) geometric

temperature spacing, and (c),(d) the 23% rule.

4. Simulated Tempering

We now consider the Simulated Tempering algorithm [19, 9]. This is somewhat
similar to MCMCMC, except now there is just one particle which can jump ei-
ther within-temperature or between-temperatures. Again we focus on the between-
temperatures move, and keep similar notation to before.

The state space is now given by {β0, β1, . . . , βn}×X and the target density is pro-

portional to fd(β,x) =
∏d

i=1 e
K(β) fβ(xi) = edK(β) f

(β)
d (x) for some choice of “nor-

malizing” constants K(β). Letting β = βj and β + ε = βk, a proposed temperature
move from (β,x) to (β + ε,x) is accepted with probability

α = 1 ∧

(
edK(β+ε)fβ+ε

d (x)

edK(β)fβd (x)

)
.

We again make the simplifying assumptions (5) and (6), and again let ε ↘ 0
according to (7). We further assume that we have chosen the “true” normalising
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constants,

K(β) = − log
(∫

fβ(x)dx
)
, (15)

so that fd(β, ·) is indeed a normalised density function. This choice makes the sta-
tionary distribution for β be uniform on {β0, β1, . . . , βn}; this appears to be optimal
since it allows the β values to most easily and quickly migrate from the cold tem-
perature β0 to the hot temperature βn and then back to β0 again, thus maximising
the influence of the hot temperature on the mixing of the cold chain.

4.1. Main Result. Under the above assumptions, we prove the following analog of
Theorem 1:

Theorem 2. Consider the Simulated Tempering algorithm as described above, as-
suming (5), (6), (7), and (15). Then as d → ∞, the ESJD of (2) is maximized
when ` is chosen to maximize `2× 2 Φ

(
−`I(β)1/2/2

)
. Furthermore, for this optimal

choice of `, the corresponding probability of accepting a proposed swap is given (to
three decimal points) by 0.234. In fact, the relationship between ESJD of (2) and
ACC of (3) is given by

ESJD = (4/dI(β))× ACC ×
(
Φ−1(ACC/2)

)2
(16)

(see Figure 7). Finally, this choice of ` also maximises the ESJD(h) of (4), for any
differentiable function h : [0, 1]→ R.
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Figure 7: A graph of the relationship between the expected squared
jumping distance (ESJD) and asymptotic acceptance rate (ACC),
as described in equations (16) (top, green) and (8) (bottom, blue),

in units where dI(β) = 1.

Proof. A proposed temperature move from (β,x) to (β + ε,x) is accepted with
probability

α = 1 ∧

(
edK(β+ε)fβ+ε

d (x)

edK(β)fβd (x)

)
= 1 ∧ ed(K(β+ε)−K(β))eε

Pd
i=1 g(xi)
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= 1 ∧ ed(K(β+ε)−K(β))+εdM(β)eε
Pd
i=1 ḡ(xi) ,

where ḡ(x) = g(x)−M(β).

If we choose K(β) = − log
( ∫

fβ(x)dx
)

, then we compute (again using the “quo-

tient rule”) by comparison with (9) that K ′(β) = −M(β). Hence, from (11),
K ′′(β) = −M ′(β) = −I(β). Therefore, by a Taylor series expansion, K(β + ε) −
K(β) = εK ′(β) + 1

2
ε2K ′′(β) = −εM(β)− 1

2
ε2I(β) for some βε ∈ [β, β+ ε]. It follows

that d (K(β + ε)−K(β))+εdM(β) = ε2dK ′′(βε)/2 = (`2/2)K ′′(βε) = −(`2/2)I(βε).
Setting ε = d−1/2` for some ` > 0 and letting d → ∞, it follows from the above

and the central limit theorem that

lim
d→∞

1 ∧

(
edK(β+ε)fβ+ε

d (x)

edK(β)fβd (x)

)
= lim

d→∞
1 ∧

(
e−(`2/2)I(βε) eε

Pd
i=1 ḡ(xi)

)
= lim

d→∞
1 ∧

(
e−(`2/2)I(β) e`d

−1/2
Pd
i=1 ḡ(xi)

)
≡ 1 ∧ eA ,

where A ∼ N(−(`2/2)I(β), `2Varβ(g)) = N(−(`2/2)I(β), `2I(β)).
The rest of the argument is standard, just as in Theorem 1, and shows that for

large d, the squared jump distance of Simulated Tempering is approximately

ESJD = (`2/2d)× 2 Φ(−`I(β)1/2/2) ≡ eST (`) , (17)

which is again maximised by choosing ` such that the acceptance probability is (to
three decimal places) equal to 0.234. The argument for (16) is identical to that for
Theorem 1.

4.2. Comparison of Simulated Tempering and MCMCMC. Now that we
have optimality results for both Simulated Tempering (Theorem 2) and MCMCMC
(Theorem 1), it is natural to compare them. We have the following.

Corollary 1. Under assumptions (5), (6), (7), and (15), asymptotically as d→∞,
the maximal value of ESJD for Simulated Tempering is precisely twice that for
MCMCMC (cf. Figure 7). (More generally, the maximal ESJD(h) for Simulated
Tempering is precisely twice that for MCMCMC, for any differentiable h). Fur-
thermore, the optimal choice of ` for Simulated Tempering is

√
2 times that for

MCMCMC.

Proof. Comparing eMC(`) from (12) with eST (`) from (17), we see that eMC(`) =
1
2
eST (`

√
2). In particular, sup` eMC(`) = 1

2
sup` eST (`), and also argsup`eMC(`) =

(1/
√

2) argsup`eST (`), which gives the result.

Corollary 1 says that, under appropriate conditions, the ESJD of MCMCMC is
precisely half that of Simulated Tempering. That is, if Simulated Tempering has
ideally-chosen normalisation constants K(β) as in (15), then in some sense it is twice
as efficient as MCMCMC. (For a related inequality about spectral gaps of these two
algorithms on finite state spaces, see Theorem 3 of [31].)

However, choosing K(β) ideally may be difficult or impossible (though it may be
possible in certain cases to learn these weights adaptively during the simulation, see
e.g. [4]), and for non-optimal K(β) this comparison no longer applies. By contrast,
MCMCMC does not require K(β) at all.
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Furthermore, a single temperature swap of MCMCMC updates two different chain
values, and thus may be twice as valuable as a single temperature move under
Simulated Tempering. If so, then the two different factors of two precisely cancel
each other out.

In addition, it may take more computation to do one within-temperature step
of MCMCMC (involving n + 1 particles) than one step of Simulated Tempering
(involving just one particle).

In summary, this comparison of the two algorithms involves various subtleties and
is not entirely clear-cut, though Corollary 1 still provides certain insights into the
relationship between them.

4.3. Langevin Dynamics for Simulated Tempering? One limitation of Simu-
lated Tempering is that it performs a Random Walk Metropolis (RWM) algorithm
in the β-space, where each proposal bears a high chance of being rejected if the value
of the energy

∑d
i=1 g(xi) is not consistent with the proposed value of temperature.

Now, it is known [24] that Langevin dynamics (which use derivatives to improve
the proposal distribution) are significantly more efficient than RWM when they can
be applied. In the context of the inverse temperatures, a Langevin-style proposal
distribution could take the form:

N

[
β +

σ2

2

(
d∑
i=1

g(xi)− d∇K(β)

)
, σ2

]
.

Furthermore, in this case ∇K(β) = Eβ(g(X)). Therefore, such a Langevin pro-

posal will compare the current value of
∑d

i=1 g(xi) to the average value d∇K(β). If∑d
i=1 g(xi) ≤ d∇K(β) then smaller temperature are more compatible and are more

likely to be proposed (and vice versa).
The main limitation of this idea is that in practice, we do not know the gradient

∇K(β). This can perhaps be estimated during the simulation as the average of the

energy
∑d

j=1 g(Xn) at times n where the inverse-temperature level β is visited, but
this needs more investigation and we do not pursue it here.

5. Discussion and Future Work

This paper has presented certain results about optimal inverse-temperature spac-
ings. In particular, we have proved that for MCMCMC (Theorem 1) and Simulated
Tempering (Theorem 2), it is optimal (under certain conditions) to space the inverse-
temperatures so that the probability of accepting a temperature swap or move is
approximately 23%. Our theorems were proved under the restrictive assumption (5),
but we have seen in simulations (Section 3) that they continue to approximately ap-
ply even if this assumption is violated.

Theorems 1 and 2 were stated in terms of the expected squared jumping dis-
tances (ESJD) of the inverse-temperatures, assuming the chain begins in station-
arity. While this provides useful information about optimising the algorithm, it
provides less information about the algorithm’s long-term behaviour. In this sec-
tion, we consider various related issues and possible future research directions.
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5.1. Inverse-Temperature Process. It is possible to define an entire inverse tem-
perature process, {yn}∞n=0, living on the state space Y = {β0, β1, . . . , βn}. For Sim-
ulated Tempering (ST), this process is simply the inverse-temperature β at each
iteration. For MCMCMC, this process involves “tracking” the influence of a par-
ticular inverse-temperature’s chain through the temperature swaps, i.e. if yn = βj,
and then the βj and βj+1 chains successfully swap, then yn+1 = βj+1 (otherwise
yn+1 = βj).

In general, this {yn} process will not be Markovian. However, if we assume that
the ST/MCMCMC algorithm does an automatic i.i.d. “reset” into the distribution
f (β) immediately upon entering the inverse-temperature β (i.e., where the chain
values associated with each inverse-temperature β are taken as i.i.d. draws from

f
(β)
d at each iteration), then {yn} becomes a Markov chain. Indeed, under this

assumption, it corresponds to a simple random walk (with holding probabilities) on
Y .

In that case, it seems likely that as d→∞, if we appropriately shrink space by a
factor of

√
d and speed up time by a factor of d, then as in the RWM case [23, 25], the

{yn} will converge to a limiting Langevin diffusion process. In that case, maximising
the speed of the limiting diffusion is equivalent to optimising the original algorithm
(according to any optimisation measure, see [25]), and this would provide another
justification of the values of `opt in Theorems 1 and 2.

In terms of this {yn}Markov chain, ESJD from (2) is simply the expected squared
jumping distance of this process. Furthermore, ESJD(h) from (4) is then the Dirich-
let form corresponding to the Markov operator for {yn}. Thus, Theorems 1 and 2
would also be saying that the given values of `opt maximise the associated Dirichlet
form.

Of course, this “reset” assumption that the moves within each inverse tempera-
ture βj result in an immediate i.i.d. reset to the density fβj is not realistic, since
in true applications the convergence within each fixed temperature chain would oc-
cur only gradually (especially for larger βj). However, it is not entirely unrealistic
either, for a number of reasons. For example, some algorithms might run many
within-temperature moves for each single attempted temperature swap, thus mak-
ing the within-temperature chains effectively mix much faster. Also, some within-
temperature algorithms (e.g. Langevin diffusions, see [24]) have convergence time
of smaller order (O(d1/3)) than that of the temperature-swapping random-walk be-
haviour (O(d)), so effectively the within-temperature chains converge immediately
on a relative scale, which is equivalent to the “reset” assumption.

Proving convergence to limiting diffusions can be rather technical (see e.g. [23,
24]), so we do not pursue it here, but rather leave it for future work. In any case,
assuming the limiting diffusion does hold (as it probably does), this provides new
insight and context for the optimal behaviour of MCMCMC and ST algorithms.

5.2. Joint Diffusion Limits? If we do not assume the “reset” assumption as
above, then the process {yn} is not Markovian, so a diffusion limit seems far less
certain.

However, it is still possible to jointly consider the chain {xn}∞n=0 living on X (for
ST) or X d (for MCMCMC), together with the inverse temperature process {yn}.
The joint process (xn, yn) must be Markovian, and it is quite possible that it has its
own joint diffusion limit and joint optimal scalings.
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This would become quite technical, and we do not pursue it here, but we consider
it an interesting topic for future research.

5.3. Models For How the Algorithms Converge. Related to the above is the
question of a deeper understanding of how MCMCMC and ST make use of the
tempered distributions to improve convergence. Significant progress was made in
this direction in previous research (e.g. [29]), but more remains to be done.

One possible simplified model is to assume the process does not move at all in the
within-temperature direction, except at the single inverse-temperature β = β̄ when

it does an immediate i.i.d. reset to f
(β̄)
d . At first we thought that such a model is

insufficient since it would then be exponentially difficult for the algorithm to climb
from β = β̄ to β = β0, but the work of [29] shows that this is in fact not the case.
So, we may explore this model further in future work.

A compromise model is where the state space X is partitioned into a finite number
of modes, and when entering any β > 0 the process does a “reset” into f (β) condi-
tional on remaining in the current mode. Such a process assumes fast within-mode
mixing at all temperatures, but between-mode mixing only at the hot temperature
when β = 0. We believe that in this case, there is a joint diffusion limit of the joint
(β,mode) process. If so, this would be interesting and provide a good model for how
the hot temperature and intermediate temperature mixing all works together.

5.4. State space invariance. Our results do not depend in any way on the up-
date mechanism within the state space X . Moreover, although our results are proved
for the case of IID components, this observation immediately generalises our find-
ings to the very large class of distributions which we can write as functions of IID
components. In fact the only thing which stops this being a completely general
d−dimensional state space result is the fact that ST on the transformed variables
is a different method from the transformed ST algorithm. From a practical point
of view, this might even suggest improved tempering schemes (rather than simply
considering powered densities).

5.5. Implementation. Finding practical ways to implement MCMCMC and ST in
light of our results has not been a focus of this paper, though this is an important
issue for future consideration. The approach adopted in Subsection 2.2 is designed
to be a thorough methodology to investigate the effects of Theorem 1, but cannot be
considered a practical approach in general. Intriguing is the propect of integrating
our theory within an adaptive MCMC framework as in for example [3, 1, 27, 26].

5.6. Parallelisation. As computational power become more and more widespread,
there is increasing interest in running Monte Carlo algorithms in parallel on many
machines, perhaps even using Graphics Processing Units (GPUs), see e.g. [10, 28,
17]. It would be interesting to consider, even in simple situations, how to optimise
parallel computations asymptotically as the number of processors goes to infinity.

Acknowledgements: We thank the editors and anonymous referees for very help-
ful reports that significantly improved the presentation of our results.
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