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Summary. We describe the importance and widespread use of Markov chain Monte
Carlo (MCMC) algorithms, with an emphasis on the ways in which theoretical anal-
ysis can help with their practical implementation. In particular, we discuss how to
achieve rigorous quantitative bounds on convergence to stationarity using the cou-
pling method together with drift and minorisation conditions. We also discuss recent
advances in the field of adaptive MCMC, where the computer iteratively selects from
among many different MCMC algorithms. Such adaptive MCMC algorithms may
fail to converge if implemented naively, but they will converge correctly if certain
conditions such as Diminishing Adaptation are satisfied.

1.1 Introduction

Markov chain Monte Carlo (MCMC) algorithms were first introduced in sta-
tistical physics [17], and gradually found their way into image processing [12]
and statistical inference [15, 32, 11, 33]. Their main use is to sample from a
complicated probability distribution π(·) on a state space X (which is usu-
ally high-dimensional, and often continuous, e.g. an open subset of Rd). In
particular, MCMC has revolutionized the field of Bayesian statistical infer-
ence, where π(·) would usually be a posterior distribution which is otherwise
intractable but which can (hopefully) be easily sampled using MCMC.

In brief, MCMC proceeds as follows. We define a Markov chain P (x, ·)
on X that leaves π(·) stationary. We first sample X0 from some (simple)
initial distribution on X . We then iteratively sample Xn from P (Xn−1, ·),
for n = 1, 2, 3, . . .. The hope is that for “large enough” n, the distribution
of Xn will be approximately equal to π(·), i.e. P (Xn ∈ A) ≈ π(A) for all
measurable A ⊆ X . If so, then Xn is approximately a sample from π(·). And,
once we can generate samples from π(·), then we can easily use those samples
to approximately compute any quantities of interesting involving probabilities
or expectations with respect to π(·).
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Such algorithms have become extremely popular in Bayesian statistics
and other areas. At last count, the MCMC Preprint Service lists about seven
thousand research papers, and the phrase “Markov chain Monte Carlo” elicits
over three hundred thousand hits in Google. As a result of this popularity,
many people are using MCMC algorithms without possessing much knowledge
of the theory of Markov chains or probability, and there has been some divorce
between theoreticians and practitioners of MCMC.

Despite this, there are a number of ways in which theory has had, and con-
tinues to have, important implications for the practical use of MCMC. In this
paper, we concentrate on two areas: theoretical bounds on time to stationarity
(Section 1.3), and validity of adaptive MCMC algorithms (Section 1.4); for
additional background see e.g. [24] and the references therein.

1.2 Asymptotic Convergence

The first and most basic question about MCMC is whether it converges
asymptotically, i.e. whether it is true that for sufficiently large n, the dis-
tribution of Xn is close to π(·). This is a bare minimal requirement for an
MCMC algorithm to be “valid”.

On a finite state space X , it is well known that if a time-homogeneous
Markov chain is irreducible and aperiodic, then it has a unique stationarity
distribution π(·), to which it will converge in distribution as n→∞.

In this context, “irreducible” means that for all x, y ∈ X , y is accessible
from x, i.e. there is n ∈ N such that Pn(x, {y}) ≡ P(Xn ∈ {y} |X0 = x) > 0.
This is clearly impossible on a continuous (uncountable) state space X , since
the subset {y ∈ X : ∃n ∈ N, Pn(x, {y}) > 0} is always countable. However,
it is possible to weaken the condition “irreducible” to that of φ-irreducible,
meaning there exists a non-zero σ-finite measure φ on X such that for all
measurable A ⊆ X with φ(A) > 0, and all x ∈ X , there exists n ∈ N such
that Pn(x,A) > 0. It is then well known (see e.g. [18, 33, 24]) that if a Markov
chain (on a general countably-generated state space X ) is φ-irreducible and
aperiodic, and possesses an stationarity probability distribution π(·) (which
is no longer guaranteed), then asymptotic convergence still holds, and in fact

lim
n→∞

sup
A⊆X

|Pn(x,A)− π(A)| = 0 , π-a.e. x ∈ X . (1.1)

For example, if the Markov chain transition probabilities all have positive
densities with respect to Lebesgue measure on Rd, then we can simply let φ(·)
be Lebesgue measure, to see that φ-irreducibility is satisfied (and aperiodicity
follows immediately as well). More generally, φ-irreducibility follows if the n-
step transitions Pn(x, ·) have positive densities on subsets which expand to
X as n→∞.

Such considerations are usually sufficient to easily guarantee asymptotic
convergence of MCMC algorithms which arise in practice. However, results
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such as (1.1) only apply when n → ∞. This leads to numerous questions,
such as: How large must n be before Pn(x,A) ≈ π(A)? And, how can the
Markov chain be modified to make this convergence faster? Each of these
questions can be approached experimentally, through repeated simulation and
analysis of output for specific examples. However, they can also be considered
theoretically, as we now discuss.

1.3 Quantitative Convergence Bounds

In this section, we consider the question of how to obtain rigorous, quantitative
bounds on the total variation distance to stationarity of a Markov chain {Xn}
to its stationary distribution π(·), i.e. how to bound

‖L(Xn)− π‖ := sup
A⊆X

|P(Xn ∈ A)− π(A)| .

Of course, if the Markov chain is complicated and high dimensional (as we
assume here), then L(Xn) is complicated too, so our task is non-trivial.

While there are many approaches to this problem, the one we shall consider
here is based on the coupling inequality. Specifically, let {Xn} and {X ′n} be two
different copies of the Markov chain, each marginally following the transition
probabilities P (x, ·). Assume that {X ′n} was started in stationarity, so that
P(X ′n ∈ A) = π(A) for all n and A. Then by writing P(Xn ∈ A) = P(Xn ∈
A, Xn = X ′n) + P(Xn ∈ A, Xn 6= X ′n), and similarly for X ′n, it follows that

‖L(Xn)− π‖ = supA⊆X |P(Xn ∈ A)− π(A)|
= supA⊆X |P(Xn ∈ A)−P(X ′n ∈ A)|
= supA⊆X |P(Xn ∈ A, Xn 6= X ′n)−P(X ′n ∈ A, Xn 6= X ′n)|
≤ P(Xn 6= X ′n) .

In other words, to bound ‖L(Xn)−π‖, it suffices to “force” Xn = X ′n with
high probability. However, this presents its own challenges. In particular, if
X is continuous, then if {Xn} and {X ′n} proceed independently, then we will
usually have P(Xn = X ′n) = 0, which is of no help. On the other hand, if we
can define {Xn} and {X ′n} jointly in a way that increases P(Xn = X ′n), then
this can help to bound convergence. One way to accomplish this is with small
sets, as we discuss next.

1.3.1 Minorisation conditions (small sets)

Suppose we know that P (x, ·) ≥ ε ν(·), for all x ∈ C ⊆ X , for some “overlap”
probability measure ν(·). That is,

P (x,A) ≥ ε ν(A) , x ∈ C, A ⊆ X . (1.2)
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Such inequalities are called minorisation conditions, and the subset C is called
a small set. For background, see e.g. [18, 24].

For example, if P (x, dy) has a density f(x, y) with respect to Lebesgue
measure λ(·), and f(x, y) ≥ δ for x ∈ C and y ∈ B, then (1.2) is satisfied
with ε = δ λ(B) and ν(A) = λ(A ∩ B) / λ(B). In particular, it is often easy
enough to verify (1.2) even if the details of the transitions P (x, ·) are quite
complicated.

If (1.2) holds, then whenever (Xn−1, X
′
n−1) ∈ C×C, we can use Nummelin

splitting [20, 18, 24] to jointly update Xn and X ′n in such a way that Xn = X ′n
with probability at least ε. Thus, we have managed to “force” Xn = X ′n with
non-zero probability, as desired.

Putting this together, it follows that for any j ∈ N,

‖L(Xn)− π‖ ≤ (1− ε)j + P(Nn−1 < j) , (1.3)

where Nn−1 = #{m : 0 ≤ m ≤ n− 1, (Xm, X
′
m) ∈ C ×C} is the number of

“opportunities” that the two chains have had to couple by time n.
If C = X , then Nn−1 = n, and (1.3) reduces (with j = n) simply to

‖L(Xn) − π‖ ≤ (1 − ε)n. This is a very precise and useful inequality, which
gives an exponentially-decreasing upper bound on the distance to stationarity,
depending only on the value of ε from (1.2).

However, in typical MCMC applications it will not be possible to take
C = X due to the inherently “unbounded” nature of the Markov chain. In
this case, we need other methods to control Nn. One idea is through a drift
condition, as we now discuss.

Remark. Of course, strictly speaking, MCMC algorithms are always run on
real computers which are finite-state machines, so in some sense the state space
X is always finite. But it is much more useful to model the state spaces as
being truly infinite, rather than try to obtain bounds based on some machine-
imposed truncation.

1.3.2 Drift conditions

Suppose there is some function V : X → [0,∞), and λ < 1 and Λ <∞, such
that

E
(
V (Xn) |Xn−1 = x

)
≤ λV (x) + Λ , x ∈ X . (1.4)

Such inequalities are called drift conditions. Intuitively, (1.4) means that when
the chain is at large values of V , it will tend to “drift” towards smaller V
values.

For this to be useful, we need to be able to couple the chains when they
are at small values of V . So, suppose further that (1.2) is satisfied with C =
{x ∈ X : V (x) ≤ D} for some D > 0, i.e. that

P (x, ·) ≥ ε ν(·) , ∀x with V (x) ≤ D . (1.5)
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Condition (1.4) then implies that the pair {(Xn, X
′
n)} will tend to “drift”

towards C × C, so hopefully P(Nn−1 < j) will be small, thus making the
bound (1.3) useful.

1.3.3 An explicit convergence bound

Putting this all together proves the following bound [28, 30]. (For related
results and discussion see [19, 27, 10, 8, 5, 24].)

Theorem 1. If the drift condition (1.4) and minorisation condition (1.5)
hold, with D > 2Λ

1−λ , then for any integer 0 ≤ j ≤ n,

‖L(Xn)− π‖ ≤ (1− ε)j + α−n+j−1∆j

(
1 +

Λ

1− λ
+ E

(
V (X0)

))
, (1.6)

where α = 1+D
1+2Λ+λD > 1 and ∆ = 1 + 2(λD + Λ).

If we set j = bcnc in (1.6) for appropriate small c > 0, then this provides
a quantitative, exponentially-decreasing upper bound on ‖L(Xn)− π‖, easily
computed in terms of only the quantities ε from (1.5) and λ and Λ from (1.4).

The question remains whether the bound (1.6) is useful in genuinely com-
plicated MCMC algorithms. We now consider an example.

1.3.4 A 20-dimensional example

We now consider a specific 20-dimensional MCMC algorithm. It corresponds
to a model for a James-Stein shrinkage estimator, and is a version of a Gibbs
sampler related to “variance components models” and “random-effects mod-
els”, as applied to data from baseball hitting percentages; for details see [29]
and the references therein.

For present purposes, we need know only that the Markov chain’s state
space is given by

X = [0,∞)×R×R18 ⊆ R20 ,

and that if we write the chain’s state at time n asXn = (A(n), µ(n), θ
(n)
1 , . . . θ

(n)
18 ),

then given Xn−1, the chain generates Xn by:

A(n) ∼ IG

(
15
2
, 2 +

1
2

∑
(θ(n−1)
i − θ(n−1)

)2
)

;

µ(n) ∼ N
(
θ
(n−1)

, A(n)/18
)

;

θ
(n)
i ∼ N

(
µ(n)β + YiA

(n)

β +A(n)
,

A(n)β

β +A(n)

)
, 1 ≤ i ≤ 18 ;

where β is a known positive constant, {Yi} are the known actual data values,
and θ

(n)
= 1

18

∑18
i=1 θ

(n)
i . Here N(m, v) is a normal distribution with mean m
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and variance v, while IG(a, b) is an inverse-gamma distribution with den-
sity proportional to e−b/xx−(a+1). This chain is specifically designed so that
it will have a stationary probability distribution π(·) equal to the posterior
distribution for the particular Bayesian statistical model of interest.

This chain represents a typical statistical application of MCMC. In par-
ticular, the state space is high-dimensional, and the transition densities are
known but messy functions of data values without any particularly nice struc-
ture or symmetry. We know the chain has a stationarity distribution π(·), but
know little else.

On the positive side, it is easily seen that the transition densities for this
chain are positive throughout X . So, the asymptotic convergence (1.1) must
hold. However, quantitative bounds on the time to stationarity are more chal-
lenging, and might at first glance appear intractable. However, using Theo-
rem 1, we are able to achieve this.

Our first challenge is to verify the drift condition (1.4). To do this, we
choose the drift function

V (A,µ, θ1, . . . , θ18) =
18∑
i=1

(θi − Y )2 ,

where Y = 1
18

∑18
i=1 Yi. (Intuitively, V measures how far our current vector of

values are from the “center” of the given data.) It is then messy but reasonably
straightforward to compute [29] that (1.4) is satisfied with λ = 0.000289 and
Λ = 0.161.

Our next challenge is to verify the minorisation condition (1.5). To do this,
we take D = 1, and compute [29] that (1.5) is satisfied with ε = 0.0656.

We then apply Theorem 1 to conclude that, starting with θ(0)i = Y for all
i (say), and setting j = n/2 (for n even, say), we have

‖L(Xn)− π‖ ≤ (0.967)n + (0.935)n(1.17) .

This is the precise quantitative bound that we sought. In particular, with
n = 140, we have that

‖L(X140)− π(·)‖ ≤ 0.009 < 0.01 .

In other words, we have proved that the chain will “converge” (to within 1%
of stationarity) after at most 140 iterations.

Although this is just an upper bound on convergence (and, indeed, conver-
gence is probably actually achieved after 10 or fewer iterations), it is the only
known rigorous bound. And, since it is very quick and easy to run the Markov
chain for 140 iterations on a computer, this bound is of clear practical benefit.
Similar bounds have been obtained for other practical examples of MCMC,
see e.g. [28, 16].

Remark. We refer to this example as 20-dimensional since the state space is
an open subset of R20. However, since the θi are conditionally independent
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given A and µ, one could also say that this Gibbs sampler has just three
components, A, µ, and θ, where θ happens to live in R18 instead of R.

1.4 Adaptive MCMC

For a given state space X and target probability distribution π(·), there are
many possible MCMC algorithms which will converge asymptotically. An im-
portant practical question is, which MCMC choice is “best”, or at least good
enough to converge after a feasible number of iterations?

Even within a given class of MCMC algorithms, choices of related tuning
parameters can be crucial in the algorithms success. A number of recent papers
[14, 1, 3, 25, 26, 34, 4, 2] have considered the possibility of having the computer
modify the Markov chain transitions while the chain runs, in an effort to seek
better convergence. This raises a number of theoretical and practical issues,
which we now discuss.

1.4.1 A toy example

Suppose π(·) is a simple distribution on the trivial state space X = {1, 2, 3, 4, 5, 6},
with π(x) > 0 for all x ∈ X . (For definiteness, take π(x) = 0 for x 6∈ X .) Fix
γ ∈ N, e.g. γ = 2. Consider a “random-walk Metropolis” (RWM) algorithm,
defined as follows:
• Given Xn, first propose a state Yn+1 ∈ Z, with

Yn+1 ∼ Uniform{Xn − γ, . . . ,Xn − 1, Xn + 1, . . . , Xn + γ} .

• Then, with probability min[1, π(Yn+1)
/
π(Xn)], accept this proposal by

setting Xn+1 = Yn+1.
• Otherwise, with probability 1−min[1, π(Yn+1)

/
π(Xn)], reject this pro-

posal by setting Xn+1 = Xn.

It is easily seen that these transition probabilities have π(·) as a station-
ary distribution, and are irreducible and aperiodic, so we have asymptotic
convergence as in (1.1), for any choice of γ ∈ N. (This example is discussed
in [3, 25]; for an interactive display see [31].)

However, this still leaves the question of choice of γ. If γ = 1, the chain will
move at most one unit at each iteration, leading to slow convergence. On the
other hand, if say γ = 50, then the chain will usually propose values outside
of X which will all be rejected, again leading to slow convergence. Best is a
“moderate” value of γ, e.g. γ = 4.

In a more complicated example, the best choice of a tuning parameter (like
γ) will be far less obvious. So, we consider the possibility of automating the
choice of γ. As an example, we might adapt γ as follows:
• Start with γ set to Γ0 = 2 (say).
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• Each time a proposal is accepted, set Γn+1 = Γn + 1 (so γ increases, and
the acceptance rate decreases).
• Each time a proposal is rejected, set Γn+1 = max(Γn − 1, 1) (so γ de-

creases, and the acceptance rate increases).

This appears to be a logical way for the computer to seek out good choices
of γ, and in simulations [31] it appears to work well for a while. However,
if (say) π{2} is very small, then the chain will eventually get “stuck” with
Xn = Γn = 1 for long stretches of time. This is due to a certain asymmetry:
for the adaptive chain, entering the region {Xn = Γn = 1} is much easier
than leaving it. In particular, this adaptive chain does not converge to π(·) at
all, but rather may converge to a different distribution giving far too much
weight to the state 1. That is, the adaption – which attempted to improve the
convergence – actually ruined the convergence entirely.

1.4.2 An adaptive MCMC convergence theorem

In light of counter-examples like the above, we seek conditions which guarantee
that adaptive MCMC schemes will in fact converge. One such result is the
following, from [25]; for related results see e.g. [1, 3, 34, 4, 2]. To state it,
define the “ε convergence time function” Mε : X × Y → N by

Mε(x, γ) = inf
{
n ≥ 1 : ‖Pnγ (x, ·)− π(·)‖ ≤ ε

}
.

Theorem 2. An adaptive scheme {(Xn, Γn)}, using transition kernels {Pγ}γ∈Y
will converge, i.e. limn→∞ ‖L(Xn) − π(·)‖ = 0, assuming (i) π(·) is station-
ary for each individual Pγ , and (ii) the “Diminishing Adaptation” property
that limn→∞ supx∈X ‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability, and (iii) the
“Containment” property that for all ε > 0, the values {Mε(Xn, Γn)} remains
bounded in probability as n→∞.

In this theorem, condition (i) is basic to any adaptive MCMC algorithm,
and (ii) can be ensured by careful design of the adaption, while (iii) is an
unfortunate technical condition though it is nearly always satisfied in practical
examples [4]. Furthermore, these same conditions also guarantee central limit
theorems (CLTs) for adaptive MCMC with bounded functionals, though not
necessarily with unbounded functionals [34].

In light of this theorem, we see that the toy example of 1.4.1 satisfies
conditions (i) and (iii), but not (ii). However, (ii) will be satisfied, and the
chain will converge to π(·), if we modify the adaption so that at time n, it only
adapts with probability p(n) for some probabilities p(n) → 0, otherwise the
value of γ is left unchanged. In particular, we could choose, say, p(n) = 1/n,
in which case we would still have

∑
n p(n) =∞ and thus still have an infinite

amount of adaptation, and yet still guarantee convergence.
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1.4.3 A 100-dimensional example

For complicated examples in high dimensions, adaption is not as trivial as for
the example of Section 1.4.1, but it is still quite feasible.

For example, it is known (see [23] and the references therein) that if target
distribution π(·) is (approximately) a high-dimensional normal distribution
with covariance Σ, then the optimal Gaussian proposal distribution for a
RWM algorithm is equal to N(x, (2.38)2d−1Σ).

Now, the target covariance Σ is generally unknown, but it can be approx-
imated by Σn, the empirical covariance of the first n iterations of the Markov
chain. This suggests [14, 26] an adaptive MCMC algorithm with proposal
distribution at the nth iteration given by the mixture distribution

Qn(x, ·) = 0.95 N
(
x, (2.38)2d−1Σn

)
+ 0.05 N

(
x, (0.1)2d−1 Id

)
[if Σn is non-singular, otherwise say Qn(x, ·) = N

(
x, (0.1)2d−1 Id

)
]. Such

algorithms will generally satisfy condition (ii) of Theorem 2, and furthermore
will satisfy condition (iii) provided the tails of π(·) are not too heavy [4].

If we run [26] this algorithm on an example in dimension d = 100, then a
trace plot of the first coordinate (plotted against iteration number) looks as
follows:

A close inspection of this plot shows that the first coordinate is initially
“stuck” at values very close to 0. Then, after about 300,000 iterations, the
empirical Σn gets close to the true Σ, so the adaptive algorithm “finds” good
proposal distributions and starts mixing well. At this point, the first coordi-
nate mixes nicely and efficiently over values concentrated between about −1
and 1, corresponding to accurate samples of the first coordinate from the true
target distribution π(·).

This interpretation can be confirmed by looking at a plot of the sub-
optimality factor bn ≡ d

(∑d
i=1 λ

−2
in

)
/
(∑d

i=1 λ
−1
in

)2, where {λin} are the
eigenvalues of the matrix Σ1/2

n Σ−1/2. This quantity bn is known [23] to mea-
sure the convergence slow-down factor of a chain using the covariance estimate
Σn obtained after n iterations, compared to a chain using the true covariance
Σ. The plot clearly shows that the values of bn are initially very large, and
then get close to 1 after about 300,000 iterations:



10 Jeffrey S. Rosenthal

This further confirms that after about 300,000 iterations, the adaptive scheme
“finds” good values of Σn which accurately approximate Σ, leading to fast and
accurate convergence. And, since the 100× 100 covariance matrix Σ involves
5,050 unknown values, it seems clear that this optimisation could not have
been done manually, and that the adaptive MCMC scheme really was essential
to achieving fast convergence to π(·). Similar success has been found in other
high-dimensional examples (see e.g. [14, 26]), and we expect that adaptive
MCMC will be used more often in the years ahead.

1.5 Connection with QMC?

In the context of a conference on “MCQMC”, it is reasonable to ask about
the placement of MCMC algorithms in the Monte Carlo (MC) / Quasi-Monte
Carlo (QMC) divide.

For the most part, MCMC algorithms are squarely on the MC side, us-
ing pseudorandom number generators to power the iterations according to
(approximately) the laws of probability. Furthermore, much of the theoreti-
cal analysis, including that discussed herein, uses probability theory and as-
sumes the algorithms follow probabilistic laws. However, it has been observed
[21, 6, 22] that it is also possible to power MCMC algorithms using quasi-
random sequences.

In principle, QMC is “smarter” than just using (pseudo)random numbers,
so should be better. Furthermore, it is known [13, 7, 6] that using e.g. anti-
thetic or other not-entirely-random variates can sometimes speed up MCMC
convergence. So, it seems that future MCMC work – both applied and theo-
retical – might make more use of quasi-randomness and thus make more of a
leap towards the QMC world.

However, many of the ideas considered herein – ideas like “irreducible”,
“coupling”, “minorisation”, “drift”, “Diminishing Adaptation”, “Contain-
ment”, etc. – all use probabilistic intuition and it is not clear how to translate
them into QMC ideas. Furthermore, in many cases we may not know enough
about the (complicated, messy, high-dimensional) target distribution to de-
sign QMC effectively, and it might be easier to verify “weak” conditions like
minorisation and drift.
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Thus, in this paper, we have treated the algorithms as being “truly ran-
dom”, i.e. within the context of traditional Monte Carlo. However, we look
forward to more QMC ideas finding their way into MCMC in the future.

1.6 Summary

The main points of this article may be summarised as follows:
• MCMC algorithms are extremely widely used, in Bayesian statistics and

elsewhere.
• Quantitative convergence bounds are a very important topic for MCMC,

with both practical and theoretical implications.
• An approach using the coupling inequality, together with minorisation

and drift conditions, can provide specific, useful bounds (like “140”) on the
convergence times even of rather complicated Markov chains on continuous,
high-dimensional state spaces.
• For a given problem, many different MCMC algorithms are available, and

it can be difficult (though very important) to choose among them.
• Adaptive MCMC is a promising recent method of getting the computer

to help find better MCMC algorithms during the course of a run.
• Naive application of adaptive MCMC may fail to converge to π(·).
• However, theorems are available which prove the validity of adaptive

MCMC under certain conditions which can often be verified for specific adap-
tive schemes.
• Adaptive MCMC works well in some high-dimensional statistics-related

examples, including an adaptive random-walk Metropolis (RWM) algorithm
in dimension 100.
• While MCMC is traditionally on the “MC” side of the MC / QMC di-

vide, we anticipate greater connections between MCMC algorithms and quasi-
Monte Carlo ideas in the future.

And more generally:
• Theory informs the applied use of MCMC in many ways, thus providing

an excellent arena in which mathematical results can have a genuine and
widespread impact on applications of algorithms.

It is to be hoped that many experts in MC and QMC will get more in-
terested in MCMC algorithms, and make further theoretical contributions to
this interesting and widely applicable area.
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