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1. Introduction.

Markov chain Monte Carlo (MCMC) techniques have become very popular in the

statistics literature, as a way of sampling from complicated probability distributions (such

as those arising in Bayesian inference). These techniques have their roots in the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), and include the Gibbs sampler

(Geman and Geman, 1984; Gelfand and Smith, 1990) and Data Augmentation (Tanner

and Wong, 1987).

One fundamental question about MCMC is its convergence rate. Specifically, how long

does MCMC need to be run before it gives satisfactory answers? In applied problems, this

question is often answered heuristically, by “eyeballing” the MCMC output. Often this

appears to suffice in practice, however it can sometimes be quite misleading (Matthews,

1991), and it is desirable to have more systematic methods of establishing convergence of

MCMC.

There have been various approaches to this problem. Geman and Geman (1984),

and Schervish and Carlin (1992), describe general results about exponential convergence

(but without giving quantitative bounds), using the theory of compact operators. Similar

approaches are used by Liu et al. (1991a, 1991b) and Baxter and Rosenthal (1994).

A “discretized” Markov chain is analyzed by Applegate, Kannan, and Polson (1990) and

Frieze, Kannan, and Polson (1993), who prove polynomial bounds on certain running times.

A method for estimating the variance of the chain is suggested in Geyer (1992). There

have also been various papers giving quantitative bounds on convergence rates for specific

models, including Amit and Grenander (1991), Amit (1991, 1993), Rosenthal (1993, 1991),

Liu (1992), Frigessi et al. (1992), Diaconis and Hanlon (1992), and Belsley (1993, Chapter

6). In addition, various “convergence diagnostics” have been suggested by a number of

authors, including Roberts (1992) and Gelman and Rubin (1992).

In this paper, we provide a method (Theorem 5) for proving rigorous, a priori bounds

on the number of iterations required until satisfactory convergence has taken place. We

feel that such bounds provide increased confidence in the results of MCMC, and allow for

improved analysis of the efficiency of various algorithms. It is our hope that the methods

presented here can be applied quite generally, to many different Markov chain samplers.
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Our method involves establishing minorization conditions (splits) for Markov chains

(see section 2) to establish results about convergence of MCMC. This amounts to showing

that the Markov chain satisfies a condition of the form P k0(x, ·) ≥ εQ(·) for all points x in

a subset R of the state space. We have attempted to make the method simpler, and easier

to apply, than our previous related work (Rosenthal, 1993, 1991). It is our hope that it

can be applied with greater ease and to a wider variety of models.

In section 2, we present the essence of our method (Theorem 1).

In section 3, we present a method for bounding (exponential moments of) the return

time to R, in terms of a drift condition involving an auxiliary function h with decreasing

expectation. We use this method to establish exponential convergence (in total variation

distance), with explicit rate, in quite general situations (Theorem 5). We further provide

some lemmas to facilitate the application of this theorem. We hope that the method

presented here can be applied to a wide variety of MCMC’s and can provide useful bounds

on their time to convergence.

In section 4, we use a simplified version of the method of section 3 to analyze re-

generation points of a Markov chain, without necessarily establishing convergence in total

variation distance. In particular, we provide explicit exponential bounds on the time re-

quired to complete a fixed number of regeneration tours (Corollary 9). Our results thus

relate to work of Mykland et al. (1992) who discuss how to identify regeneration times

when running MCMC.

In section 5, we apply our ideas to two examples of the Gibbs sampler. The first is

a simple bivariate normal example, taken from Schervish and Carlin (1992). The second

is a hierarchical Poisson model (with gamma conditionals), using actual data, taken from

Gelfand and Smith (1990), which is also discussed in Tierney (1991) and Mykland et

al. (1992). For each of these two models, we provide explicit, numerical, exponentially

decreasing bounds on total variation distance to stationarity. While our bounds are not

sharp numerically, they are not too wildly off, and they could be of use in guiding a

simulation.

In section 6, we present (Theorem 12) a simplified version of our main result, which

involves verifying a simpler drift condition than does Theorem 5. Finally, the theorem
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proofs are contained in the Appendix.

Remark. Since originally completing this manuscript, we have learned of recent similar

work by Meyn and Tweedie (1993b). Using minorization conditions and a simple drift

condition on the chain, they obtain computable bounds on the distance to stationarity

under certain conditions. Their methods require slightly less information than do ours,

however their bounds appear to be weaker in specific examples. I am very grateful to

Richard Tweedie for discussing these issues with me in detail.

2. Minorization conditions for Markov Chains.

A Markov chain with transition kernel P (x, dy) on a state space X is said to satisfy a

minorization condition or split on a subset R ⊆ X , if there is a probability measure Q(·)

on X , a positive integer k0, and ε > 0, such that

(∗) P k0(x, A) ≥ ε Q(A) , for all x ∈ R ,

for all measurable subsets A ⊆ X .

Minorization conditions are closely related to the notion of Harris Recurrence. They

were introduced in Athreya and Ney (1978); see also Athreya, McDonald and Ney (1978),

Nummelin (1984), Asmussen (1989), Lindvall (1992), and Meyn and Tweedie (1993a).

They have been used to analyze MCMC in Roberts and Polson (1990), Tierney (1991),

Rosenthal (1993, 1991), and Mykland et al. (1992).

Most of the present paper is based on the following theorem. Special cases of the

theorem were used in Rosenthal (1993, 1991) for similar purposes.

Theorem 1. Suppose a Markov chain P (x, dy) on a state space X satisfies (∗), for some

R, k0, ε, and Q(·). Let X(k), Y (k) be two realizations of the Markov chain (started in any

initial distribution), defined jointly as described in the proof. Let

t1 = inf{m : (X(m), Y (m)) ∈ R×R} ,

and for i > 1 let

ti = inf{m : m ≥ ti−1 + k0, (X(m), Y (m)) ∈ R×R} .
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Set Nk = max{i : ti < k}. Then for any j > 0,

‖L(X(k))− L(Y (k))‖var ≤ (1− ε)[j/k0] + P (Nk−k0+1 < j) ,

where [r] is the greatest integer not exceeding r.

This theorem would usually be applied with L(Y (0)) = π (so that L(Y (k)) = π

for all times k). It thus gives a rigorous bound on the total variation distance between

the distribution L(X(k)) of a Markov chain after k iterations, and the target stationary

distribution π.

If we take the subset R to be relatively small, then a good minorization can usually be

found so that ε is reasonably large. The term (1− ε)[j/k0] in the bound will then decrease

quickly as the number of iterations k gets large (assuming j is chosen correspondingly

large). The term P (Nk < j) is more complicated and involves controlling the returns of

the Markov chain to the subset R. This issue is explored in section 3 below.

At the other extreme is when the condition (∗) is satisfied with R = X , i.e. on the

entire state space. (This is called the Doeblin condition, and is equivalent (Nummelin,

1984, Theorem 6.15; Tierney, 1991, Proposition 2) to the Markov chain being uniformly

ergodic.) Clearly, if R = X , then Nk = [k/k0] with probability 1, so we can take j = [k/k0]

in Theorem 1 to conclude (as is well-known)

Proposition 2. If a transition kernel P on a state space X satisfies P k0(x, ·) ≥ εQ(·) for

all x ∈ X , with Q(·) a probability distribution and ε > 0, then its variation distance to a

stationary distribution π satisfies

‖L(X(k))− π‖var ≤ (1− ε)[k/k0] ,

for any starting distribution L(X(0)).

This proposition is discussed in Nummelin (1984), Roberts and Polson (1990), and else-

where. It was used in Rosenthal (1993) to obtain convergence rates for the Gibbs sampler

for a hierarchical Bernoulli model. Now, one might suppose that this “uniform ergodicity”

approach would only work for models with bounded state spaces. However, our Example
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#2 below has unbounded random variables, and yet it is easily seen that Proposition 2

still applies (though it gives a very small value of ε, hence we use a different approach).

3. Bounding the tail of Nk.

In applying Theorem 1, it will usually not be possible to establish condition (∗) on

the entire state space. Indeed, to be able to keep ε reasonably large and k0 reasonably

small, it is often necessary to keep the subset R relatively small. To apply Theorem 1, it

is then necessary to get bounds on the tail probabilities P (Nk < j) of the random variable

Nk (i.e. the number of times m ≤ k for which
(
X(m), Y (m)

)
∈ R×R).

In Rosenthal (1991), a special case of Theorem 1 was used in which j = [k/k0], using

the obvious bound

P (Nk < [k/k0]) ≤ P (X(0) 6∈ R) + P (Y (0) 6∈ R) + 2[k/k0] sup
x∈R

P k0(x,RC) .

However, to make this bound go to 0 as a function of k, it was necessary to let the subset R

(and the value of k0) grow larger and larger as a function of k. This made the calculations

considerably more complicated.

One of the main goals of this paper is to simplify such analyses. We propose to bound

P (Nk < j) more carefully, in a way that is more easily applicable and leads to useful,

exponential bounds on variation distance. In particular, it allows for use of smaller values

of k0; in both of our examples below we use k0 = 1.

It is well known that the expected number of returns to the set R by time k, E(Nk),

is bounded below by k/µ, where µ is the mean return time to R (see Feller, 1971, Chapter

XI, Section 3). However, it is not true, for example, that the coupling bound in Theorem

1 can be taken as (1 − ε)E(Nk). (To see this, consider a case where Nk is equal to either

zero or one million, each with probability 1/2.) Thus, the mean of Nk is insufficient to

establish exponential convergence of the chain; more information is needed.

The approach we take begins with the following.
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Lemma 3. Let ti be the “k0-delayed hitting times of R × R” as in Theorem 1, and let

ri = ti−ti−1 (with r1 = t1) represent the i’th gap between such times (i.e., the “k0-delayed

i’th return time to R×R”). Then for any α > 1,

P (Nk < j) ≤ α−kE

(
j∏

i=1

αri

)
.

Lemma 3 suggests that we attempt to bound the exponential moments E(αri) of

the return times of (X(k), Y (k)) to R × R. An approach is suggested by the following

lemma. It introduces an auxiliary function h whose expectation is decreasing rapidly

when (X(k), Y (k)) 6∈ R × R, thus facilitating bounds on the return time to R × R. It is

somewhat related to the “drift condition” of Nummelin (1984, Proposition 5.21).

Lemma 4. Let X(k) and Y (k) be two Markov chains on a state space X , defined jointly

as in Theorem 1, with R ⊆ X , and with ri the “k0-delayed i’th return time to R ×R” as

above. Suppose there is α > 1 and a function h : X × X → R such that h ≥ 1 and

E
(
h(X(1), Y (1)) |X(0) = x, Y (0) = y

)
≤ α−1 h(x, y) , for all (x, y) 6∈ R×R .

Then

(i) E (αr1) ≤ E
(
h(X(0), Y (0))

)
,

and for i > 1 and any choice of r1, . . . , ri−1,

(ii) E (αri | r1, . . . , ri−1) ≤ αk0 sup
(x,y)∈R×R

E
(
h(X(1), Y (1)) |X(0) = x, Y (0) = y

)
,

Putting all of the above together, we obtain the following.

Theorem 5. Suppose a Markov chain P (x, dy) satisfies condition (∗) for some R, k0 and

ε > 0, and satisfies the hypotheses of Lemma 4, for some h and α. Set

A = sup
(x,y)∈R×R

E
(
h(X(k0), Y (k0)) |X(0) = x, Y (0) = y

)
.

Then if ν = L(X(0)) is the initial distribution, and π is a stationary distribution, then for

any j > 0, the total variation distance to π after k steps satisfies

‖L(X(k)) − π‖var ≤ (1− ε)[j/k0] + α−k+jk0−1 Aj−1 Eν×π

(
h(X(0), Y (0))

)
.

(Here Eν×π means expectation with X(0) distributed according to ν, and with Y (0) dis-

tributed independently according to π.)
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This theorem provides a method for proving useful rates of convergence for a variety

of Markov chains. Typically one would choose j to be a small multiple of k (in Example

#1 below we use j = k/10). Also, a good choice for the function h appears to be of the

form h(x, y) = 1 + (xi − a)2 + (yi − a)2, where x is a vector and xi its i’th coordinate,

which works well assuming that xi tends to drift exponentially quickly towards the value

a (at least while it’s far away).

We illustrate this approach with two examples, in Section 5.

Remarks.

1. Theorem 5 still requires that we bound the expected value Eν×π

(
h(X(0), Y (0))

)
which

unfortunately depends on the unknown distribution π. However, if we have verified a

drift condition of the form E(V (X(1)) |X(0) = x) ≤ λV (x) + b, then it is easily seen

(cf. Meyn and Tweedie, 1993b, Proposition 4.3 (i)), by taking expectations of both

sides with respect to π, that EπV ≤ b
1−λ . We make use of this fact in Example #2

below, simplifying our original analysis. Furthermore, in section 6 we state (Theorem

12) a modified version of our theorem based on this approach.

2. The inequality in Lemma 4 is stated in terms of Markov chains defined jointly as de-

scribed in Theorem 1. However, it clearly suffices to verify the inequality for Markov

chains (X ′(k), Y ′(k)) with a different joint definition, provided the corresponding quan-

tity N ′
k is stochastically dominated by Nk. Furthermore, if the function h is of the

additive form h(x, y) = h1(x)+h2(y), then the joint structure of the two Markov chains

does not matter. This is the case for both of our examples, and also for Theorem 12

below.

We close this section with two lemmas which may help to establish a minorization

condition (∗) in certain examples. (Part (i) of the next lemma is not used in the examples

presented in section 5 herein, but it was used in Rosenthal (1993, 1991). The other parts

of the lemmas are used in section 5.)

Lemma 6.

(i) Suppose a Markov transition kernel P on a state space X satisfies

P k1(x,R2) ≥ ε1 for all x ∈ R1
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and

P k2(x, ·) ≥ ε2 Q(·) for all x ∈ R2 ,

for some probability measure Q(·) on X . Then condition (∗) is satisfied with k0 =

k1 + k2, with R = R1, and with ε = ε1ε2.

(ii) Given a positive integer k0 and a subset R ⊆ X , there exists a probability measure

Q(·) so that

P k0(x, ·) ≥ ε Q(·) for all x ∈ R ,

where

ε =
∫
X

(
inf
x∈R

P k0(x, dy)
)

.

Finally, we intend to apply our method to the Gibbs sampler, where there are typically

n random variables X1, . . . , Xn, which are updated repeatedly by

X
(k)
i ∼ L(Xi | Xj = X

(k−1)
j for j < i, and Xj = X

(k)
j for j > i) ,

with (say) Xi taking values in Xi. If the updating is done sequentially (i.e. each step of the

Markov chain corresponds to updating first X
(1)
1 , then X

(1)
2 , and so on up to X

(1)
n ) then

the following lemma may help to establish condition (∗). It says essentially that under

a certain independence assumption, if we establish condition (∗) for X1, . . . , Xd, then we

can conclude condition (∗) for all the variables X1, . . . , Xn, with the same value of ε.

Lemma 7. Consider a sequentially-updated Gibbs sampler, as above. Suppose that for

some d, conditional on values for X
(k)
1 , . . . , X

(k)
d , the random variables X

(k)
d+1, . . . , X

(k)
n are

independent of all X
(k′)
i for all k′ < k. (For example, for the Gibbs sampler this always

holds with d = n − 1.) Suppose further that there is R ⊆ X , ε′ > 0 and a probability

measure Q′(·) on X1 × . . .×Xd such that

L(X(k0)
1 , . . . , X

(k0)
d | (X(0)

1 , . . . , X(0)
n ) = x) ≥ ε′Q′(·) , for all x ∈ R .

Then there is a probability measure Q(·) on X such that

P k0(x, ·) ≥ ε′Q(·) .
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Remark. This lemma exploits the specific structure of a sequentially-updated Gibbs

sampler. We shall also take advantage of another aspect of this structure. At each iteration,

the Gibbs sampler begins by replacing the value of X
(k−1)
1 with the new value Xk

1 . Thus,

once a given iteration is completed, the value of X
(k−1)
1 is no longer used and has no effect

on the future behavior of the chain. This suggests that it is unnecessary for such quantities

as the subset R and the function h to make any reference to the value of X
(k−1)
1 . This

idea is used in both of the examples in Section 5.

4. Regeneration times.

There may be cases in which it is too difficult to apply the above methods and thus

obtain bounds on convergence in total variation distance. Part of the difficulty might come

from having to control a function h(X(k), Y (k)) of two Markov chains instead of just one.

It is thus reasonable to ask if useful information can be obtained by just considering a

single Markov chain, rather than attempting to couple two different chains.

An interesting possibility is suggested in Mykland et al. (1992), following Athreya

and Ney (1978) and Nummelin (1984), who use minorization conditions to introduce re-

generation times into a run of an MCMC. In the present context, this corresponds to the

following. Given X(k) = x and X(k+k0) = y, if X(k) ∈ R, then introduce a regeneration at

time k with probability ε Q(dy)/P k0(x, dy). Let Ti be the i’th such regeneration, subject

to Ti ≥ Ti−1 + k0. Then, as is well-known, the distribution of X(Ti) will be precisely Q(·).

Thus, the tours between regeneration times are actually independent. Furthermore, the

stationary distribution π will satisfy

Eπ(g) = (1/µ) E

 Ti∑
k=Ti−1+1

g(X(k))

 ,

where µ = E(Ti − Ti−1) is the expected time between regenerations.

This suggests (Mykland et al., 1992) that if we run the Markov chain for precisely j

complete tours, then we may estimate Eπ(g) as an average of j different i.i.d. quantities,

thereby simplifying the analysis considerably.

One implication of this approach is that, if the Markov chain is not started at a

regeneration point (i.e., with initial distribution Q(·)), then the initial values of g(X(k)),
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before the first regeneration point, must be discarded. We believe that this provides an

interesting resolution of the problem of burn-in period, (i.e. the fact that the initial values

in any MCMC run are too closely correlated with the starting distribution and should

therefore not be used for drawing inferences about the stationary distribution). Here, a

random number of initial iterations must be discarded. This corresponds to down-weighting

the initial iterations in an interesting way.

A potential limitation of this approach is that it is unclear (at the beginning) how

many iterations will be required to complete j tours. In this section, we shall show that

techniques similar to those of the previous section, but simpler to apply, can be used to

bound exponential moments of the intervals Ti − Ti−1 between regeneration times. They

thus provide exponential bounds on the waiting time until j tours are completed. This has

the advantage that the target number of tours can be specified in advance, which avoids

biases (related to the waiting-time paradox) associated with discarding an incomplete final

tour.

We prove the following.

Theorem 8. Suppose a Markov chain P (x, dy) on a state space X satisfies condition

(∗) for some R, ε, and Q(·), and in addition has the property that for some function

h : X → R with h ≥ 1, and some α > 1,

E
(
h(X(1)) | X(0) = x

)
≤ α−1 h(x), for all x 6∈ R .

Let T1 be the time of the first regeneration as described above, and for i > 1 let Ti be the

time of the first regeneration with Ti ≥ Ti−1 + k0. Then if (1− ε)αk0SR < 1, then

E
(
αT1
)
≤ ε E(h(X(0)))

1− (1− ε)αk0SR
,

and for i > 1,

E
(
αTi−Ti−1 | T1, . . . , Ti−1

)
≤ ε αk0 SR

1− (1− ε)αk0SR
.

where

SR = sup
x∈R

E
(
h(X(1)) | X(0) = x

)
.
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Note that in this lemma, it is not necessary to consider a second chain Y (k) in station-

ary distribution. This simplifies the analysis in several places. It does, of course, come at

the expense of no longer giving information directly about convergence in total variation

distance.

This lemma immediately implies information about the time required to complete a

particular number j of tours. Indeed, similar to Lemma 3 we have

Corollary 9. Let Uk be the number of regenerations of our Markov chain up to time k.

Then

P (Uk < j) ≤ α−k

(
ε E(h(X(0)))

1− (1− ε)αk0SR

)(
ε αk0 SR

1− (1− ε)αk0SR

)j−1

.

This corollary thus provides an exponential upper bound on the number of iterations

required to complete j tours.

If we are estimating the mean Eπ(g) of a function g that is bounded, then Theorem 8

provides bounds on exponential moments of the i.i.d. quantities
Ti∑

k=Ti−1+1

g(X(k)) that we

are averaging. It can thus be used to get quantitative bounds on the error of our estimate

after completing j tours, either through exponential bounds such as Cramér’s Theorem

(see Dembo and Zeitouni, 1993, Section 2.2.1), or through standard use of Chebychev’s

inequality (since exponential moments imply second moments). This appears to be an

interesting area for further research.

Finally, one can ask whether it is possible to obtain quantitative bounds on the con-

vergence of L(X(k)) (as opposed to ergodic averages) to its stationary distribution, solely

from information about the regeneration times as above. (It is then necessary to consider

periodicity issues, which complicates the analysis.) A similar issue is considered in Lindvall

(1992, Theorem II.4.2), where finiteness of the moments of the coupling time are shown

to follow from finiteness of corresponding moments (of order one less) of the return time.

However, that work does not appear to extend easily to quantitative bounds, and is thus

difficult to apply in the present context. We leave this as an open question.
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5. Examples.

We here apply Theorem 5 to two examples involving the Gibbs sampler, one a bivariate

normal model and the other a hierarchical Poisson model.

Example #1. Bivariate Normal Model.

Schervish and Carlin (1992) analyze a model in which (X1, X2) are bivariate normally

distributed, with common mean µ, with variances 2 and 1, respectively, and with covariance

1. (We shall write this as N

((
µ
µ

)
,

(
2 1
1 1

))
.) The conditional distributions are thus

given by

L(X1 |X2 = x) = N(x, 1) ,

and

L(X2 |X1 = x) = N(
x + µ

2
, 1/2) .

They suggest running a Gibbs sampler on these two random variables, as follows.

Given a value for X
(0)
2 (perhaps chosen from some initial distribution), generate X

(1)
1 from

N(X(0)
2 , 1), then generate X

(1)
2 from N(X

(1)
1 +µ

2 , 1/2), then generate X
(2)
1 from N(X(1)

2 , 1),

then generate X
(2)
2 from N(X

(2)
1 +µ

2 , 1/2), and so on.

In analyzing this use of the Gibbs sampler, we can ask whether L(X(k)
1 , X

(k)
2 ) (the

distribution of the Gibbs sampler after k iterations) converges to N

((
µ
µ

)
,

(
2 1
1 1

))
and at what rate. Now, this example is simple enough that it permits an exact analysis

(Schervish and Carlin, 1992, Theorem 4). However, it is instructive to proceed using the

general method outlined above. We prove the following quantitative exponential bound

on total variation distance.

Theorem 10. The total variation distance between the distribution of the Gibbs sampler

after k iterations when started in the initial distribution ν, and the true joint distribution

of (X1, X2), satisfies

‖L(X(k)
1 , X

(k)
2 ) − N

((
µ
µ

)
,

(
2 1
1 1

))
‖var ≤ (0.964)k + (0.953)k

(
2 + Eν(x2 − µ)2

)
.
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Remark. The exact analysis of Schervish and Carlin (1992, Theorem 4) indicates that

this total variation distance is actually decreasing at the rate (0.5)k. Our results are

therefore not sharp, though they are within a factor of about 20.

Example #2. Hierarchical Poisson Model.

We analyze here the Gibbs sampler applied to a hierarchical Poisson model corre-

sponding to failures in pumps at nuclear power plants. We use the same data studied by

Gaver and O’Muircheartaigh (1987) using an empirical Bayes approach, and by Gelfand

and Smith (1990), Tierney (1991), and Mykland et al. (1992) using the Gibbs sampler.

The Gibbs sampler for this model is a Markov chain (β(k), θ
(k)
1 , . . . , θ

(k)
10 )k≥0 on X =

(R≥0)11, with updating scheme given (following Tierney, 1991, Section 5) by

L(β(k+1) | {θ(k)
j }) = G

γ + 10α0, δ +
10∑

j=1

θ
(k)
j

 ,

L(θ(k+1)
i | β(k+1), {θ(k+1)

j }j<i, {θ(k)
j }j>i) = G

(
α0 + si, ti + β(k+1)

)
, (1 ≤ i ≤ 10)

where G(a, b) denotes the gamma distribution with density baxa−1e−bx/Γ(a), where α0 =

1.802, γ = 0.01, and δ = 1, and with the data si and ti as in Gelfand and Smith (1990,

Table 3). (Note that we write “α0” rather than the usual “α” to avoid confusion with the

α of Theorem 5.) Starting with initial values β(0), θ
(0)
1 , . . . , θ

(0)
10 (chosen from some initial

distribution), the Markov chain proceeds by updating each of these random variables in

turn, from these conditional distributions, for k = 0, 1, 2, . . ..

Since we shall make use of this property, we note explicitly that (as in the Remark

following Lemma 7) once a given k’th iteration is completed, the value of β(k) is not used

further and has no effect on the future behavior of the chain.

For this Markov chain, we prove the following.

Theorem 11. The total variation distance between the distribution of this Gibbs sam-

pler after k iterations when started in the initial distribution ν, and the true stationary

distribution π, satisfies

‖L(β(k), θ
(k)
1 , . . . , θ

(k)
10 ) − π‖var ≤ (0.976)k + (0.951)k(6.2 + Eν

(
(S(0) − 6.5)2

)
) ,

where S(0) =
∑
i

θ
(0)
i .
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6. A simplification of the main result.

Since originally completing this manuscript, we have realized that our main result

(Theorem 5) can be stated in another form, using a drift condition on the original chain

rather than on the coupled chain. This new form is inspired by the work of Meyn and

Tweedie (1993b). (I am very grateful to Richard Tweedie for discussing these matters with

me.)

A self-contained version of this new form of our result is the following.

Theorem 12. Suppose a Markov chain P (x, dy) on a state space X satisfies the drift

condition

E
(
V (X(1)) | X(0) = x

)
≤ λ V (x) + b , x ∈ X

for some V : X → R≥0, and some λ < 1 and b < ∞; and further satisfies a minorization

condition

P (x, ·) ≥ ε Q(·) , for all x ∈ X with V (x) ≤ d ,

for some ε > 0, some probability measure Q(·) on X , and some d > 2b
1−λ . Then for any

0 < r < 1, beginning in the initial distribution ν, we have

‖L(X(k) − π‖var ≤ (1− ε)rk +
(
α−(1−r)Ar

)k
(

1 +
b

1− λ
+ Eν(V (X0))

)
,

where

α−1 =
1 + 2b + λd

1 + d
< 1 ; A = 1 + 2(λd + b) .

7. Conclusions.

In this paper we have presented a general result (Theorem 5) giving upper bounds on

the distance to stationarity of a Markov chain. We have provided two examples illustrating

how this result can be applied to Markov chain Monte Carlo, to provide rigorous, a priori

upper bounds on the required running times. It is our hope that this method can be

applied in the future to other, more complicated examples of MCMC.
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Appendix: Proofs.

Proof of Theorem 1. We take k0 = 1; the extension to general k0 is straightforward.

The proof uses a coupling approach. (For background on coupling, see Pitman (1976),

Diaconis (1988, Chapter 4E), Asmussen (1990), Lindvall (1992), or Rosenthal (1991, Ap-

pendix).) We begin by constructing X(n) and Y (n) simultaneously as follows. Let X(0)

and Y (0) be chosen from the given initial distribution. For each time n ≥ 0, given X(n)

and Y (n), flip a coin with probability of heads equal to ε. If X(n) and Y (n) are both in R,

and if the coin comes up heads, then choose a point x ∈ X according to the probability

measure Q(·), set X(n+1) = Y (n+1) = x, and let the processes update so that they remain

equal for all future times. If X(n) and Y (n) are both in R but the coin comes up tails,

choose X(n+1) and Y (n+1) independently, according to the “complementary” measures(
P (X(n), ·)− εQ(·)

)
/(1 − ε) and

(
P (Y (n), ·)− εQ(·)

)
/(1 − ε), respectively. (Such a defi-

nition makes sense because (∗) holds.) Finally, if X(n) and Y (n) are not both in R, then

simply update them independently, according to P (X(n), ·) and P (Y (n), ·) respectively,

ignoring the coin flip.

It is easily checked that X(n) and Y (n) are each marginally updated according to the

transition kernel P . Furthermore, X(n) and Y (n) are coupled the first time (call it T ) that

we choose them both from Q(·) as above. It now follows from the coupling inequality that

‖L(X(k))− L(Y (k))‖var ≤ P (X(k) 6= Y (k)) ≤ P (T > k) .

Now, it follows by construction that each time X(n) and Y (n) are both inside R, there

is probability ε that they will couple on the next update. Thus, since

Nk = #{m < k : (X(m), Y (m)) ∈ R×R} ,

we have that

P (T > k and Nk ≥ j) ≤ (1− ε)j ,

and hence that

P (T > k) ≤ (1− ε)j + P (Nk < j) ,

completing the proof.
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Proof of Lemma 3. This follows immediately from the fact that

P (Nk < j) = P (r1 + . . . + rj > k) = P (αr1+...+rj > αk) ,

and from Markov’s inequality.

Proof of Lemma 4. The hypotheses of the lemma imply that (with ti as in Lemma 3)

the function

gi(k) =

αk h(X(k), Y (k)) , k ≤ ti

0, k > ti

has non-increasing expectation as a function of k, at least for k ≥ ti−1 + k0. Statement

(i) now follows (recalling that h ≥ 1) from the fact that E αr1 ≤ E g1(r1) ≤ E g1(0).

Similarly, statement (ii) follows from the fact that

E
(
αri | X(ti−1), Y (ti−1)

)
= E

(
αti−ti−1 | X(ti−1), Y (ti−1)

)
≤ E

(
α−ti−1 gi(ti) | X(ti−1), Y (ti−1)

)
≤ E

(
α−ti−1 gi(ti−1 + k0) | X(ti−1), Y (ti−1)

)
= αk0 E

(
h(X(ti−1+k0), Y (ti−1+k0)) | X(ti−1), Y (ti−1)

)
≤ αk0 sup

(x,y)∈R×R

E
(
h(X(1), Y (1)) |X(0) = x, Y (0) = y

)
.

Proof of Lemma 6. Part (i) is obvious. For part (ii), define the measure Q′(·) on X by

Q′(A) =
∫
A

(
inf

x∈R2
P k2(x, dy)

)
.

Then it is easily seen that P k2(x, ·) ≥ Q′(·) for x ∈ R. Assuming Q′(X ) > 0 (otherwise

the lemma is vacuously true), the result now follows by setting Q(·) = Q′(·)/Q′(X ), and

setting ε2 = Q′(X ).
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Proof of Lemma 7. We define the measure Q(·) as follows. Marginally on the first d

coordinates, Q(·) agrees with Q′(·). Conditional on the first d coordinates, Q(·) is defined

by

Q(Xd+1, . . . , Xn | X1, . . . , Xd) = L(Xd+1, . . . , Xn | X1, . . . , Xd) .

By the independence hypothesis, the minorization condition for Q′(·) implies the minoriza-

tion condition for Q(·).

Proof of Theorem 8. By reasoning similar to Lemma 4, letting ri be the i’th waiting

time (subject to ri ≥ k0) to return to the set R, we have that E(αr1) ≤ E(h(X(0))) and

E(αri) ≤ αk0SR. Now, each time the chain is inside R, it has probability ε of regenerating.

Thus, letting F be the number of times the Markov chain is inside R (after waiting at least

time k0) before the next regeneration, we see that F is a geometrically distributed random

variable with parameter ε. Setting m0 = E(h(X(0))), we have that

E
(
αT1
)
≤ m0 E (αk0SR)F = m0

∞∑
`=0

ε(1− ε)`(αk0SR)` =
ε m0

1− (1− ε)αk0SR
,

as desired. The second statement follows similarly.

Proof of Theorem 10. We begin by noting (using E(X2) = (EX)2 + V ar(X)) that

E
(
(X(1)

2 − µ)2 | X
(0)
2 = x2

)
= E

(
E
(
(X(1)

2 − µ)2 | X
(1)
1

)
| X

(0)
2 = x2

)
= E

(X
(1)
1 − µ

2

)2

+ (1/2) | X
(0)
2 = x2


= 1/4 (x2 − µ)2 + 3/4 .

(Of course, here the simple nature of the problem makes this computation easy. In a more

complicated situation (such as Example #2 below) this quantity may have to be estimated,

numerically or otherwise. A good upper bound on the quantity is all that is required.)

We recall (see the Remark following Theorem 7) that, since at each iteration the

old value X
(k)
1 is discarded, our subset R and function h should only refer to the second

components x2 and y2.
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Thus, setting h(x, y) = 1 + (x2 − µ)2 + (y2 − µ)2, and considering two independent

versions X(k) = (X(k)
1 , X

(k)
2 ) and Y (k) = (Y (k)

1 , Y
(k)
2 ) of the chain, we have that

E
(
h(X(1), Y (1)) | X

(0)
2 = x2, Y

(0)
2 = y2

)
= 9/4 + (1/4) h(x, y) .

Hence, if we set R = {x ∈ X | (x2−µ)2 ≤ 3}, then if (x, y) 6∈ R×R, then h(x, y) ≥ 4, and

hence

E
(
h(X(1), Y (1)) | X(0) = x, Y (0) = y

)
≤ (13/16) h(x, y) .

Hence, we can take α = 16/13.

To continue, we note that

A = sup
(x,y)∈R×R

E
(
h(X(1), Y (1)) | X(0) = x, Y (0) = y

)
= (9/4) + (1/4)(7) = 4 .

Furthermore, since the stationary distribution for Y2 is N(µ, 1), we have that Eπ(Y2−µ)2 =

1, so that Eν×π

(
h(X(0), Y (0))

)
= 2+Eν (x2 − µ)2. (Again, in a more complicated example

these quantities may have to be estimated, perhaps using the first Remark after Theorem

5, but bounds on them are all that is required.)

We obtain a value for ε from Lemma 6 (ii). Indeed, we can take

ε =
∫ (

inf
x∈R

N(
x2 + µ

2
, 3/4; y)

)
dy =

∫ 0

−∞
N(
√

3/2, 3/4; y)dy +
∫ ∞

0

N(−
√

3/2, 3/4; y)dy

(where N(a, b; y) = 1√
2πb

e−(y−a)2/2b is the density function of N(a, b)). This last expression

is just the probability that a normal random variable will be more than one standard

deviation away from its mean, and is thus well known to be ≥ 0.31.

We now apply Theorem 5 with k0 = 1, A = 4, α = 16/13, and ε = 0.31. We choose

j = k/10. Since (0.69)1/10 < 0.964, and (16/13)−9/1041/10 < 0.953, the result now follows

from Theorem 5.

Proof of Theorem 11. To begin the analysis, note that the θ
(k)
i are conditionally

independent given the value of β(k−1). Using this and recalling that G(a, b) has mean a/b

and variance a/b2, it is easily verified (writing S(k) for
∑
i

θ
(k)
i ) that

E
(
β(k+1) | S(k)

)
=

γ + 10α0

δ + S(k)
,
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V ar
(
β(k+1) | S(k)

)
=

γ + 10α0

(δ + S(k))2
,

E
(
S(k+1) | β(k)

)
=
∑

i

α0 + si

ti + β(k)
,

and V ar
(
S(k+1) | β(k)

)
=
∑

i

α0 + si

(ti + β(k))2
.

Note that although the random variables involved here are not themselves bounded,

the conditional means and variances given above are bounded. This suggests that it

should be possible to apply Proposition 2 directly. Indeed, using Chebychev’s inequality

it is straightforward to establish a condition (∗) on the entire state space. Unfortunately,

it appears to be very difficult to obtain a value of ε that is not extremely small. Thus, we

consider the other methods developed in this paper.

We recall (see the Remark following Theorem 7) that, since at each iteration the old

value β(k) is discarded, our subset R and function h should only refer to the remaining

components θ
(k)
1 , . . . , θ

(k)
n . Indeed, we shall see that it is sufficient to refer only to their

sum S(k).

A cursory numerical examination of the conditional means above (for the given data)

suggests that the value of S(k) roughly approaches the value 6.5. Thus, writing our

two Markov chains as X(k) = (β(k), θ
(k)
1 , . . . , θ

(k)
10 ) and Y (k) = (β′(k), θ

′(k)
1 , . . . , θ

′(k)
10 ), with

S(k) =
∑
i

θ
(k)
i and S′(k) =

∑
i

θ
′(k)
i , we set

h(X(k), Y (k)) = 1 + (S(k) − 6.5)2 + (S′(k) − 6.5)2 .

To proceed it is necessary to control quantities of the form

E
(
h(X(1), Y (1)) | X(0), Y (0)

)
.

Because the Markov chain proceeds by first replacing the value β(0) by a new value β(1),

it is easily seen that this quantity will depend only on the values of S(0) and S′(0), so we
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proceed accordingly. We define the function e(w) by

e(w) = E
(
(S(1) − 6.5)2 | S(0) = w

)
=

∞∫
0

E
(
(S(1) − 6.5)2 | β(1) = x

)
P (β(1) = dx | S(0) = w)

=

∞∫
0

(∑
i

(
α0 + si

ti + x

)
− 6.5

)2

+
∑

i

(
α0 + si

(ti + x)2

) G(γ + 10α0, δ + w;x) dx ,

where we have used the conditional mean and variance of the θi, and the conditional

distribution of the β, as given above (and where G(a, b;x) = baxa−1e−bx/Γ(a) is the density

of the gamma distribution). Now, the function e(w) is difficult to handle analytically, but

it is easily evaluated numerically. Integrating e(w) numerically over a fine grid of values

of w, we find the following. The function e(w) changes slowly as a function of w, with a

unique minimum of about 1.40 near w = 5.8. We compute numerically that

e(4.0) < 1.90; e(9.0) < 2.29 .

This suggests that we choose R = {X(k) : 4.0 ≤ S(k) ≤ 9.0}.

To proceed, we verify numerically (as will be important shortly) that

sup
w 6∈[4.0,9.0]

(
1 + e(w)

1 + (w − 6.5)2

)
< 0.46 ,

with the supremum obtained at w = 9.0. Also,

sup
w

(
0.46

1 + (w − 6.5)2/7.25
+

e(w)
7.25 + (w − 6.5)2

)
< 0.66 ,

with the supremum obtained near w = 6.6 (though there is a competing upturn to 0.405

near w = 0). Hence,

sup
(x,y) 6∈R×R

(
E
(
h(X(1), Y (1)) | X(0) = x, Y (0) = y

)
h(x, y)

)

= sup
w1,w2

w1 6∈[4.0,9.0]

(
1 + e(w1) + e(w2)

1 + (w1 − 6.5)2 + (w2 − 6.5)2

)

≤ sup
w2

[(
sup

w1 6∈[4.0,9.0]

(
1 + e(w1)

1 + (w1 − 6.5)2

) / (
1 + (w2 − 6.5)2/7.25

))

+
(

e(w2)
7.25 + (w2 − 6.5)2

)]
< 0.66 ,
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where we have used the above numerical bounds, and have also used the fact that 1 +

(w1 − 6.5)2 ≥ 7.25. Hence, we can choose α = 1/0.66 > 1.5.

We compute a value for ε using Lemma 6 (ii) and Lemma 7 (with d = 1). We have

(using that for fixed a and x, G(a, b;x) is unimodal as a function of b) that

ε =

∞∫
0

(
inf

w∈[4.0,9.0]
G(γ + 10α0, δ + w;x)

)
dx

=

∞∫
0

min (G(γ + 10α0, δ + 4.0;x), G(γ + 10α0, δ + 9.0;x)) dx

> 0.14 ,

where again we have done the integration numerically.

In the context of Theorem 5, since sup
w∈R

e(w) < 2.3, we have A < 1 + 2.3 + 2.3 = 5.6.

Finally, we need to bound Eπ

(
(S′(0) − 6.5)2

)
. Using the stationarity of π, we have

the crude bound

Eπ

(
(S′(0) − 6.5)2

)
≤ sup

x
E
(
(S − 6.5)2 | β = x

)
= E

(
(S(1) − 6.5)2 | β(1) = 0

)
< 43 .

We can do better using the Remark following Theorem 5. Setting V (X) = 1 + (S − 6.5)2,

our previous calculations indicate that we will have E(V (X(1) |X(0) = x) ≤ λV (x) + b

with λ = 0.46 and b = 3.3. The Remark then gives Eπ(S − 6.5)2 ≤ b/(1 − λ) < 6.2. It

follows that

Eν×π

(
h(X(0), Y (0)

)
< 6.2 + E

(
(S(0) − 6.5)2

)
.

We now apply Theorem 5, with k0 = 1, ε = 0.14, α = 1.5, A = 5.6, and j = k/6.

Since (0, 86)1/6 < 0.976, and (1.5)−5/6(5.6)1.6 < 0.951, the result follows.

Proof of Theorem 12. We set h(x, y) = 1+V (x)+V (y), and set R = {x ∈ X |V (x) ≤ d}.

Then if (x, y) 6∈ R×R, then h(x, y) ≥ 1+d. Thus, in terms of a coupled chain as in Lemma

4, we have

E
(
h(X(1), Y (1)) | X(0) = x, Y (0) = y

)
≤ 1 + λV (x) + λV (y) + 2b
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≤
(

λ +
1− λ + 2b

1 + d

)
h(x, y) =

(
1 + 2b + λd

1 + d

)
h(x, y) ,

so the hypothesis of Lemma 4 are satisfied with h, α, and R as given.

Furthermore, with A as in Theorem 5, we have

A = 1 + 2 sup
x∈R

E
(
V (X(1)) |X(0) = x

)
≤ 1 + 2(λd + b) .

Finally, using the Remark following Theorem 5, we have that

Eν×π

(
h(X(0), Y (0))

)
≤ 1 + Eν

(
V (X(0))

)
+

b

1− λ
.

Setting j = rk + 1, Theorem 12 now follows directly from Theorem 5.
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